
COMPACT 3 CHANNEL MICRO MOTOR CONTROLLER
MODULE DESIGNED FOR MOTORIZED LENSES

DATASHEET

2021-02-07, Rev. #173

SCF4

Tiny self-sufficient stepper motor controller SCF4-M module is designed for high integration

customer products and can drive FIZ+ lens with 3 stepper motors (for example Focus/Zoom

/P-Iris with micro-stepping up to 1/1024 steps for inaudible operation) and IR filter

simultaneously. Also has 3 limit switch inputs and 4 GPIO (IN/OUT/ADC) pins for custom

application control. The controller expects industry-standard G-code formatted commands

for fastest and easiest integration. Designed to be connected over single USB cable (USART

and I2C can be supported in custom firmware). Firmware modifications can be tailored to

suit customer requirements. SCF4 - is a one in a series of Kurokesu stepper motor controllers

and stands for Stepper Controller Model F, 4'th modification.

Small footprint 16 x 23 x 2.3 mm [0.63 x 0.91 x 0.09 in]

3x stepper motor controller with up to 1/1024 micro-stepping support for each motor

1x H-bridge for coil control (day/night filter switch)

3x limit switch processing for precise lens homing/referencing

Direct USB Full-speed (12 Mbit/s) connectivity

4x GPIO's with Input/Output/Analog functionality

Industry standard G-code command set

Can drive most lenses with bipolar stepper motors with minor or none tuning

Certificates: REACH, RoHS, CE

Motorized zoom lenses

Small test fixtures

Micro mechanism control

About
General Description

Features

•

•

•

•

•

•

•

•

•

Applications

•

•

•

2 ABOUT

www.kurokesu.com

SCF4-M module

Pin description

Technical specifications

Module dimensions 16 x 23 x 2.3 mm [0.63 x 0.91 x 0.09 in]

Controlled stepper motors 3

Connectivity USB (optional USART, I2C, SPI)

Module pin count 29

Stepper motor resolution up to 1/1024 micro-steps (1/64 default)

PWM voltage levels for filter switch H-Bridge (128 voltage levels)

Weight 0.9g

Absolute maximum ratings

Min supply voltage 4.3 V

3 SCF4-M MODULE

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4-M_motor_diagram.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4-M_motor_diagram.png

For testing, flashing firmware and post-production purposes SCF4-M module has several test

points.

Max supply voltage 7.0 V

Stepper motor max current 200 mA @ 5V

IR Filter coil max current 300 mA @ 5V

Operating parameters

Operating voltage 4.5 ~ 5.5 V

Controller max current consumption 1 A @ 5V

Controller power rating 5 W

Relative Humidity Non-Condensing

Operating Temperature -40 ~ 85 °C

Mechanical dimensions

Test points

4 SCF4-M MODULE

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4M_dimensions.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4M_dimensions.png

For exact dimensions and locations check 3D STEP file.

For large scale module or assembled evaluation board customizations, testing or post-

production procedures at customer premises test fixture can be supplied.

Flash/test/post-production fixture

5 SCF4-M MODULE

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4-M-tps.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4-M-tps.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4_flash_fixture.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/SCF4_flash_fixture.png

FIZ+ controller expects industry-standard G-code formatted commands. Commands are

text-based and human-readable. Some highlights and behavior notes:

Controller has limited buffer/cache functionality, a user should rely on single

command execution at a time. Each command ends with a response

Controller never sends commands back to the computer without asking

G1 linear interpolation is not supported, but it can be implemented by setting motion

speeds and feeds manually

G-code is the common name for the most widely used numerical control (CNC)

programming language. It tells the motors where to move, how fast to move, and what path

to follow. G-code has many variants and each machine has unique behavior

implementation. More details on G-code can be found at https://en.wikipedia.org/wiki/G-

code

Below is a list of supported commands. For a detailed explanation and usage examples see

next section.

Controlling SCF4 with G-code commands

•

•

•

G-code introduction

Index of supported G-code commands

Version strings and identification commands

Command Description Returns

$S Return version, sn, model and brand strings See details below

Controller initialization

Command Description Returns

$B1 Reset motor driver OK

$B2 Reset and initialize motor driver OK

$B3 Reset STM32F103 processor OK

Motion commands

Command Description Returns

G0 Rapid positionin OK

G4 Wait / stall after complete OK

6 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/G-code

G90 Absolute programming mode OK

G91 Incremental programming mode OK

G92 Set position OK

Miscellaneous function

Command Description Returns

M0 Compulsory stop OK

M7 DN function with filter (VIS) OK

M8 DN function no filter (IR + VIS) OK

M230 Set normal move OK

M231 Set normal + forced move OK

M232 Set PI low/high detection voltage OK

M234 Set motor and DN drive current OK

M235 Set motor idle current OK

M238 PI LED on (some lenses leak light into sensor) OK

M239 PI LED off OK

M240 Set motor drive speed OK

M245 Drive AUX output to low (high resistance output) OK

M246 Drive AUX output to high (low resistance output) OK

M247 Read power supply voltage value ADC=xxxx

Advanced function

Command Description Returns

M241 Dividing setting 1 OK

M242 Pulse generation control 1 OK

M243 Microstepping OK

M244 Dividing setting 2 OK

Status commands

Command Description Returns

!1
Return motor pos, limit sw, moving
status

4000, 20000, 0, 0, 0, 0, 0, 0

7 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

Driver support bipolar stepper motors for 3 axes. They are named A/B/C and usually have

defined function:

A - zoom

B - focus

C - aperture

Command returns version string concentrated into single line EVB.1.0.2, SCF4-M

RevB, Kurokesu, 5DDFF39-3739584E-xxxxxxxx received information is comma

separated:

EVB.1.0.2 - Module firmware version

SCF4-M RevB - Module PCB revision

Kurokesu - Manufacturer Brand

5DDFF39-3739584E-xxxxxxxx - Unique serial number

The main motor drive command. It moves motor specified number steps. Any or all

axes can be specified at the same time. Minimal step size is 1. G0 command replies

as soon as the command is parsed and does not wait until motors stop.

G0 A100 - drives A-axis 100 steps

G0 A-100 - drives A-axis -100 steps

G0 A100 B-100 C1000 - drives all three axes by specified step count

Instructs controller to delay (stall) defined interval in milliseconds [ms]. This is an

only command which sends response not after parsing command but after prolonged

execution time. During this time command parser is blocked and the only way to

complete this command is to wait until it finishes.

Switch to relative coordinate programming mode. Motors can be instructed to turn

positive or negative 0 ~ 65535 steps (16-bits). When the counter exceeds this range,

it will overflow. And will not affect motor movement.

Controlling SCF4 with G-code commands explanation and
usage examples

Axis description

•

•

•

$S - Return version string

◦

◦

◦

◦

G0 - Rapid positioning

◦

◦

◦

G4 - Wait

G90 - Relative coordinates

8 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

Switch to absolute coordinate programming mode. In this mode, the range is limited

by the internal 16-bit motor register and can be operated in a range of 0 ~ 65535.

The controller sets an internal counter to the specified value.

G92 A0 - Set A axis counter to 0

G92 A100 - Set A axis counter to 100

G92 A100 B1000 C200 - Set all axis counters to specified counter values

If the controller is not in G4 delay mode it will instruct motors to stop moving

Instructs controller to shift filter to one of two fixed positions

Default is normal mode in which motors turn instructed step count and stop

after

In forced mode controller does not stop turning motor after specified step count

is reached, instead seeks corresponding port PIN_x status state change.

Internal step counter may overflow. Motion is stopped when input status

changes, M0 or reset command is issued. PIN_x is connected to internal 12bit

Analog to Digital Converter (ADC), lower and upper thresholds can be controlled

with M232 command

Set 12bit comparator values for limit switch detection inputs. Upper voltage is 3.3V,

lower - 0V

A, B, C - set lower threshold values

E, F, G - set upper threshold values

M232 A1242 E2483 - If the input voltage is below ~1V - set flag to 0 . If the

value is above ~2V, set flag to 1 . Everything in between - is hysteresis and

does not change the flag. Used to debounce and filter the input signal

Sets motor and coil drive current. Expects 8-bit value.

M234 A120 B120 C120 D80 - Set A, B, C stepper motors strength to 120 and IR

filter driver to 80

G91 - Absolute coordinates

G92 - Set position

◦

◦

◦

M0 - Compulsory stop

M7 and M8 - Infrared filter switch commands

M230 and M231 - normal / forced move

◦

◦

M232 - Set PI low/high detection voltage

◦

◦

◦

M234 - Set motor and DN drive current

◦

9 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

When motors are not moving, idle current can be reduced to eliminate heating and

save energy. It is not advised to completely turn off motors as the driver can lose

micro-step holding position

M234 A50 B50 C50 - Sets A/B/C motors holding current to value 50

Opto-interrupter LEDs can be controlled by connecting them to PIS_AB and PIS_C pins.

They can stay in either state, but some lenses in IR mode can leak light into the

sensor so after referencing/calibration procedure is complete it is advised to switch

them off

Each motor can drive at different speeds. Speed is 16-bit register. Register specifies

internal timing interval, the lower value is the faster pulse rate will be.

M240 A800 B800 C1200 - Set motion speeds for each axis to corsponding value

These registers control motor driver timing and should not be altered normally,

however in some cases it can be necessary to make adjustments. Please seek

the support of you have questions

Command drives auxiliary output to high resistance state. This is default value after

power up or CPU reset.

Command drives auxiliary output to low resistance state.

Command reads power supply voltage. Responds with 12bit decimal value.

Reference voltage is Vref=3.3

M235 - Set motor idle current

◦

M238 and M239 - control output pins

M240 - Set motor drive speed

◦

M241 , M242 , M243 , M244 - advanced timing registers

◦

M245 - Drive AUX output to low

Feature added in EVB.1.1.0 firmware. Used in SCF4-L090 revC and SCF4-

L087 revB boards.

M246 - Drive AUX output to high

Feature added in EVB.1.1.0 firmware. Used in SCF4-L090 revC and SCF4-

L087 revB boards.

M247 - Read power supply voltage value

Symbol Value Units Note

Vref 3.3 V

ADC_TOP 4096 12bit max ADC value

10 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

Conversion to voltage: Vin = ADC/4096*Vref/DIV

Command returns 9 values indicating:

4000, 20000, 0, 0, 0, 0, 0, 0 - example output

A Motor position counter

B Motor position counter

C Motor position counter

A Limit switch status

B Limit switch status

C Limit switch status

A Moving status

B Moving status

C Moving status

SCALE 0.5 Boards uses resistance divider

ADC Value returned by command

Feature added in EVB.1.1.0 firmware. Used in SCF4-L090 revC and SCF4-

L087 revB boards.

!1 - Return status

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

11 CONTROLLING SCF4 WITH G-CODE COMMANDS

www.kurokesu.com

In order to simplify I2C communication, firmware utilizes one one direction read/write

operations. All commands expect 5 bytes, where first byte is function address, remaining

bytes is payload.

USB-CDC works in parallel with I2C functionality and independently, but it is recommended

to use single communication channel once controller is initialized.

All commands are fixed length consisting of 5 bytes.

Controlling over I2C port

Applies to EVB.1.2.0 firmware where I2C is implemented

Slave address: 0x33

About

Wiring

In order to avoid power loops, do not connect both (SCF4 and Arduino) USB ports at

the same time.

Write data

W: I2C ADDR FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

12 CONTROLLING OVER I2C PORT

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2020-08/MFPi2c_connection.png
https://wiki.kurokesu.com/uploads/images/gallery/2020-08/MFPi2c_connection.png

First issue write command (register values are ignored). This step performs necessary

calculations and fills memory with registers ready for reading in next step.

Read command also consists of 5 bytes. FUNCTION repeats last write command value.

Resets CPU. Other values are ignored.

Read data

W: I2C ADDR FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

R: I2C ADDR FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Commands

ADDR REGISTER NAME R/W FUNCTION

0x02 RESET_CPU W Reset STM32 CPU

0x03 INIT_DRV W
Reset and initialize motor
driver

0x05 AUX_OUT W Control AUX output on/off

0x06 MODE W Normal / forced move

0x07 STOP W Compulsory stop

0x08 PI_LEDS W Switch on ON or OFF PI LEDs

0x09 MOTOR_SLEEP_PWR W Set motor sleep power

0x0A MOTOR_DRV_PWR W Set motor working power

0x0B MOTOR_SPEED W Set motor speed

0x0C PI_THRESHOLD W Set PI detector thresholds

0x0D READ_STATUS R Read controller status

0x0E SET_MOTOR_POS W Set current motor position

0x0F SET_MICROSTEPPING W
Set motor micro-stepping
mode

0x10 DN_SWITCH W IR fitler

0x20 MOVE W Move motor

Command explanation

RESET_CPU - Reset CPU

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

13 CONTROLLING OVER I2C PORT

www.kurokesu.com

Resets and initializes motor controller. Other values are ignored.

Controls GPIO output

Selects between normal and normal+forced move mode

Channel encoding:

Stop movement of all motors

Reset CPU 0x02 ignored ignored ignored 0x32

INIT_DRV - Reset motor driver

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Initialize motor driver 0x03 ignored ignored ignored 0x32

AUX_OUT - Control AUX output

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set AUX to Low 0x05 ignored ignored ignored 0x00

Set AUX to High 0x05 ignored ignored ignored 0x01

MODE - Normal / forced move

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Normal move mode 0x06 ignored ignored Channel 0x00

Normal+Forced move mode 0x06 ignored ignored Channel 0x01

Channel BYTE3 value

A 0x01

B 0x02

C 0x03

STOP - Compulsory stop

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Reset CPU 0x07 ignored ignored ignored 0x32

14 CONTROLLING OVER I2C PORT

www.kurokesu.com

Control LEDs used in homing procedure.

Set motor sleep current

Channel encoding:

Set motor operating current

Channel encoding:

PI_LEDS - Switch on ON or OFF PI LEDs

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

OFF 0x08 ignored ignored ignored 0x00

ON 0x08 ignored ignored ignored 0x01

MOTOR_SLEEP_PWR - Set motor sleep power

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set current 0x09 ignored ignored Channel Power

Channel BYTE3 value

A 0x01

B 0x02

C 0x03

MOTOR_DRV_PWR - Set motor working power

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set current 0x0A ignored ignored Channel Power

Channel BYTE3 value

A 0x01

B 0x02

C 0x03

D 0x04

15 CONTROLLING OVER I2C PORT

www.kurokesu.com

Set motor speed

Channel encoding:

Set limit switch optocoupler detector thresholds

Channel encoding:

Read motor status, PI status and motor positions

MOTOR_SPEED - Set motor speed

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set speed 0x0B ignored Channel
Speed
[15:8]

Speed
[7:0]

Channel BYTE2 value

A 0x01

B 0x02

C 0x03

PI_THRESHOLD - Set PI detector thresholds

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set threshold 0x0C ignored Channel
Signal
[15:8]

Signal
[7:0]

Channel BYTE2 value

A LOW 0x01

B LOW 0x02

C LOW 0x03

A HIGH 0x04

B HIGH 0x05

C HIGH 0x06

READ_STATUS - Read controller status

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set current 0x0D ignored ignored ignored Channel

16 CONTROLLING OVER I2C PORT

www.kurokesu.com

Channel encoding:

Returns:

Redefine current position

Channel encoding:

Set microstepping mode for defined channel

Channel BYTE2 value

A position 0x01

B position 0x02

C position 0x03

PI_A status 0x04

PI_B status 0x05

PI_C status 0x06

A moving 0x07

B moving 0x08

C moving 0x09

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Status return value 0x0D
Value

[31:24]
Value

[23:16]
Value
[15:8]

Value
[7:0]

SET_MOTOR_POS - Set position

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Set position 0x0E Channel
Speed
[23:16]

Speed
[15:8]

Speed
[7:0]

Channel BYTE1 value

A 0x01

B 0x02

C 0x03

SET_MICROSTEPPING - Set microstepping mode

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

17 CONTROLLING OVER I2C PORT

www.kurokesu.com

Channel encoding:

Move motor defined step count.

Channel encoding:

Switch filter to day or night position

Set microstepping 0x0F ignored ignored Channel Mode

Channel BYTE1 value

A 0x01

B 0x02

C 0x03

MOVE - Move motor

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

Steps 0x20 Channel Direction
Steps
[15:8]

Steps
[7:0]

Channel BYTE2 value

A 0x01

B 0x02

C 0x03

MAX steps is: 0xFFFF-1 = 0xFFFE

Theia lens exceeds 0xFFFF step count, thus absolute positioning has to be

implemented on client side code

DN_SWITCH - IR filter swith

Description FUNCTION BYTE1 BYTE2 BYTE3 BYTE4

POS1 0x10 ignored ignored ignored 0x00

POS2 0x10 ignored ignored ignored 0x01

18 CONTROLLING OVER I2C PORT

www.kurokesu.com

Demo output should look like

tester.ino

Arduino sketch example

SCF4-M I2C tester

Init driver

Set microstepping

Move mode

PI LEDS

Set drive pwr

Set sleep pwr

Set motor speeds

Set PI thresholds

Read status: posA

D 0 0 0 0

Read status: PI A

D 0 0 0 1

Homing A

Homing B

Move +A

Move -A

Move +B

Move -B

Move +C

Move -C

Set position

DN 0

DN 1

DN 0

DN 1

Last return from I2C port: ok

Loop...

#include <Wire.h>

#define CH_A 0x01

#define CH_B 0x02

#define CH_C 0x03

#define CH_D 0x04

#define CCW 0

#define CW 1

19 CONTROLLING OVER I2C PORT

www.kurokesu.com

void err_print(byte err)

{

 if (err == 0)

 {

 Serial.println("ok");

 }

 else if (err==4)

 {

 Serial.println("failed");

 }

}

void setup()

{

 Wire.begin();

 Serial.begin(115200);

 while (!Serial);

 Serial.println("\nSCF4-M I2C tester\n");

}

void loop()

{

 byte error;

 Serial.println("Init driver");

 SCF4_INIT_DRIVER();

 Serial.println("Set microstepping");

 SCF4_MICROSTEPPING(2, CH_A);

 SCF4_MICROSTEPPING(2, CH_B);

 SCF4_MICROSTEPPING(6, CH_C);

 Serial.println("Move mode");

 SCF4_MODE(0x00, CH_A);

 SCF4_MODE(0x00, CH_B);

 SCF4_MODE(0x00, CH_C);

 Serial.println("PI LEDS");

 SCF4_PI_LEDS(0x01);

 Serial.println("Set drive pwr");

 SCF4_DRV_PWR(180, CH_A);

 SCF4_DRV_PWR(180, CH_B);

 SCF4_DRV_PWR(180, CH_C);

 SCF4_DRV_PWR(90, CH_D);

20 CONTROLLING OVER I2C PORT

www.kurokesu.com

 Serial.println("Set sleep pwr");

 SCF4_SLEEP_PWR(50, CH_A);

 SCF4_SLEEP_PWR(50, CH_B);

 SCF4_SLEEP_PWR(50, CH_C);

 Serial.println("Set motor speeds");

 SCF4_MOTOR_SPEED(5000, CH_A);

 SCF4_MOTOR_SPEED(5000, CH_B);

 SCF4_MOTOR_SPEED(5000, CH_C);

 Serial.println("Set PI thresholds");

 SCF4_PI_THRESHOLD(2000, 0x01);

 SCF4_PI_THRESHOLD(2000, 0x02);

 SCF4_PI_THRESHOLD(2000, 0x03);

 SCF4_PI_THRESHOLD(3000, 0x04);

 SCF4_PI_THRESHOLD(3000, 0x05);

 SCF4_PI_THRESHOLD(3000, 0x06);

 Serial.println("Read status: posA");

 SCF4_READ_STATUS(0x01);

 Serial.println("Read status: PI A");

 SCF4_READ_STATUS(0x04);

 Serial.println("Homing A");

 MOVE(30000, CW, CH_A);

 delay(2000);

 SCF4_MODE(0x01, CH_A);

 MOVE(0x100, CCW, CH_A);

 delay(15000); // status reading is not implemented, for testing 15s timeout is

used

 SCF4_MODE(0x00, CH_A);

 SET_MOTOR_POS(100, CH_A);

 Serial.println("Homing B");

 MOVE(30000, CW, CH_B);

 delay(2000);

 SCF4_MODE(0x01, CH_B);

 MOVE(0x100, CCW, CH_B);

 delay(15000); // status reading is not implemented, for testing 15s timeout is

used

 SCF4_MODE(0x00, CH_B);

 SET_MOTOR_POS(100, CH_B);

21 CONTROLLING OVER I2C PORT

www.kurokesu.com

 // normal operation starts here

 Serial.println("Move +A");

 MOVE(0xFFFE, CW, CH_A);

 delay(5000);

 Serial.println("Move -A");

 MOVE(0xFFFE, CCW, CH_A);

 delay(5000);

 Serial.println("Move +B");

 MOVE(0xFFFE, CW, CH_B);

 delay(5000);

 Serial.println("Move -B");

 MOVE(0xFFFE, CCW, CH_B);

 delay(5000);

 Serial.println("Move +C");

 MOVE(1000, CW, CH_C);

 delay(2000);

 Serial.println("Move -C");

 MOVE(1000, CCW, CH_C);

 delay(2000);

 Serial.println("Set position");

 //SET_MOTOR_POS(100, 0x01);

 //SET_MOTOR_POS(200, 0x01);

 //SET_MOTOR_POS(300, 0x01);

 //STOP();

 Serial.println("DN 0");

 DN_SWITCH(0);

 delay(1000);

 Serial.println("DN 1");

 DN_SWITCH(1);

 delay(1000);

 Serial.println("DN 0");

 DN_SWITCH(0);

 delay(1000);

 Serial.println("DN 1");

 DN_SWITCH(1);

22 CONTROLLING OVER I2C PORT

www.kurokesu.com

scf4_i2c.ino

 delay(1000);

 Serial.print("Last return from I2C port: ");

 err_print(error);

 Serial.println("Loop...");

 while(1)

 {

 }

}

// SCL - A5

// SDA - A4

#include <Wire.h>

#define SCF4_ADDR 0x33

// SCF4 is not signaling busy status, thus fixed delay is added

// If next I2C command is sent too soon it might be ignored

#define I2C_SLEEP 200

byte SCF4_AUX(byte status)

{

 byte function = 0x05;

 byte error;

 //byte w1 = (counter&0xFF);

 //byte w2 = ((counter>>8)&0xFF);

 //byte w3 = ((counter>>16)&0xFF);

 //byte w4 = ((counter>>24)&0xFF);

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(status);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

23 CONTROLLING OVER I2C PORT

www.kurokesu.com

byte SCF4_RESET_CPU(void)

{

 byte function = 0x02;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0x32);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_INIT_DRIVER(void)

{

 byte function = 0x03;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0x32);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_MODE(byte mode, byte ch)

{

 byte function = 0x06;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(mode);

24 CONTROLLING OVER I2C PORT

www.kurokesu.com

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_PI_LEDS(byte mode)

{

 byte function = 0x08;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(mode);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_SLEEP_PWR(byte pwr, byte ch)

{

 byte function = 0x09;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(pwr);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_DRV_PWR(byte pwr, byte ch)

{

 byte function = 0x0A;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

25 CONTROLLING OVER I2C PORT

www.kurokesu.com

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(pwr);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_MOTOR_SPEED(int speed, byte ch)

{

 byte function = 0x0B;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(highByte(speed));

 Wire.write(lowByte(speed));

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_PI_THRESHOLD(int level, byte ch)

{

 byte function = 0x0C;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(highByte(level));

 Wire.write(lowByte(level));

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_READ_STATUS(byte ch)

26 CONTROLLING OVER I2C PORT

www.kurokesu.com

{

 byte function = 0x0D;

 byte error;

 /*

 * channel:

 * 0x00 - dummy, reads 0x87, 0x65, 0x43, 0x21

 * 0x01 - chA.position

 * 0x02 - chB.position

 * 0x03 - chC.position

 * 0x04 - piA.status

 * 0x05 - piB.status

 * 0x06 - piC.status

 * 0x07 - chA.moving

 * 0x08 - chB.moving

 * 0x09 - chC.moving

 */

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(ch);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 byte w1 = 0xff;

 byte w2 = 0xff;

 byte w3 = 0xff;

 byte w4 = 0xff;

 byte w5 = 0xff;

 Wire.requestFrom(SCF4_ADDR, 5);

 w1 = Wire.read();

 w2 = Wire.read();

 w3 = Wire.read();

 w4 = Wire.read();

 w5 = Wire.read();

 Serial.print(w1, HEX);

 Serial.print(" ");

 Serial.print(w2, HEX);

 Serial.print(" ");

 Serial.print(w3, HEX);

27 CONTROLLING OVER I2C PORT

www.kurokesu.com

 Serial.print(" ");

 Serial.print(w4, HEX);

 Serial.print(" ");

 Serial.print(w5, HEX);

 Serial.println();

 delay(I2C_SLEEP);

 // TODO: return read values

 return error;

}

byte SET_MOTOR_POS(int pos, byte ch)

{

 byte function = 0x0E;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(ch);

 Wire.write(0);

 Wire.write(highByte(pos));

 Wire.write(lowByte(pos));

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte MOVE(unsigned int steps, byte dir, byte ch)

{

 byte function = 0x20;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(ch);

 Wire.write(dir);

 Wire.write(highByte(steps));

 Wire.write(lowByte(steps));

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

28 CONTROLLING OVER I2C PORT

www.kurokesu.com

byte DN_SWITCH(byte mode)

{

 byte function = 0x10;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(mode);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte SCF4_MICROSTEPPING(byte stepping, byte ch)

{

 byte function = 0x0F;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(ch);

 Wire.write(stepping);

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

byte STOP(void)

{

 byte function = 0x07;

 byte error;

 Wire.beginTransmission(SCF4_ADDR);

 Wire.write(function);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0);

 Wire.write(0x32);

29 CONTROLLING OVER I2C PORT

www.kurokesu.com

 error = Wire.endTransmission();

 delay(I2C_SLEEP);

 return error;

}

30 CONTROLLING OVER I2C PORT

www.kurokesu.com

SCF4-SDK comes with open-sourced command line and GUI sample programs for rapid

controller evaluation. A simple control software example is provided for testing and

demonstration. Software is given "as is" to help with getting started and testing.

Source code is maintained on GitHub

There are several control software branches maintained in parallel for different cameras.

See table below for details

Python program with a graphical user interface allows many parameters to be controlled by

an inexperienced user. To keep user interface uncluttered some parameters are not

displayed. After connecting to SCF4 controller virtual serial port version string should be

displayed at the bottom. Also, all controls will be activated. From now relative movement

commands should be issued to check if connected motors turn properly (once button is

pressed it will change positioning mode to absolute). When sliders operated positioning is

switched to absolute mode, it makes sense after the axis is referenced.

Python scripting language with PyQt5 user interface was chosen because of rapid

development and clear syntax. Python 3.6 and a few dependencies should be installed

before running any examples. Python and PyQt5 enables modern cross-platform user

interface capable of running on high DPI monitors correctly.

Demonstration software

Overview

Camera /
Product

Controller
board

Notes

C1_PRO_X18 SCF4-L087 Camera block with 18x motorized zoom lens

C1_PRO_X20 SCF4-L090 Camera block with 20x motorized zoom lens

C1_PRO_X10 SCF4-L054 Camera with 10x motorized zoom lens

C1_PRO_X3 SCF4-L050 Camera with 3x motorized zoom lens

SCF4-L065-KIT SCF4-EVB 5-50mm lens with M14/CS mount

SCF4-L002-KIT SCF4-EVB 2.8-12mm lens with M14/CS mount

GUI

31 DEMONSTRATION SOFTWARE

www.kurokesu.com

https://github.com/Kurokesu/SCF4-SDK
https://www.kurokesu.com/shop/C1_PRO_X18
https://www.kurokesu.com/shop/C1_PRO_X20
https://www.kurokesu.com/shop/C1_PRO_X10
https://www.kurokesu.com/shop/C1_PRO_X3
https://www.kurokesu.com/shop/SCF4-L065-KIT
https://www.kurokesu.com/shop/SCF4-L002-KIT

Many lenses and motion systems can be connected to the controller and they can be split

into two groups - with and without limit/reference switch/sensor. So there are two

fundamentally different homing approaches.

Homing without limit switch is not very accurate but universal and works with all

lenses. Idea is to rotate motor until the mechanical system hits its limit, then

rotate a bit backwards and mark position as 0 . The lens should not sustain any

irreversible damage, but this procedure should not be performed often.

The lens can incorporate various limit or reference switch configurations, therefore

homing procedure should be adapted to a particular geometry. For example, the

lens has reference opto-interrupter when it crosses the middle of its travel. By

reading status register it becomes is clear at which section lens axis is and motor

should be moved to center until switch changes status. To complicate things even

more optocoupler or any switch has backlash/hysteresis and controller comparator

has adjustable lower and upper thresholds. Good understanding of how particular

lens behaves is a must and still, it can take a few experiments to set optimal

parameters. Some lenses depending on each axis position can have variable

travel limits.

1.

2.

32 DEMONSTRATION SOFTWARE

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2020-08/5uXscf4-m_gui_demo.png
https://wiki.kurokesu.com/uploads/images/gallery/2020-08/5uXscf4-m_gui_demo.png

Current program version has following homing procedure implemented:

Move motor by a fixed number of steps (lens may hit mechanical stop)

Move opposite direction until the switch is actuated

Move back by a fixed number of steps

Set current position as 0

Program configuration is saved to settings.json . It's a read/write file with the purpose to

provide default settings for some parameters like motion speed, jog steps, last used COM

port, etc. and save settings and last position when program is closed.

Internal stepper motor driver has 16-bit position counter, absolute positioning is possible

within a range of 0..65535 steps, (for 200 steps per revolution motor equals 20 full turns). In

relative movement, if motion exceeds 16bit counter range it will overflow and continue the

motion. The single move command is also 16 bits.

Command-line programs provide quick clean coding templates, examples to understand G-

code usage. Programs explain how to:

Read version string

Initialize and perform relative movements

Perform lens homing

Change motion speed

Perform an emergency stop

And more

For the full list see the examples directory

Control commands also can be sent directly from a terminal program of your choice.

Baudrate for virtual COM port is irrelevant and communication speed over Full-speed USB

2.0 is 12 Mbit/s.

Each command must be terminated by a newline

Each command returns status code or requested information

•

•

•

•

Command line

•

•

•

•

•

•

Terminal

•

•

33 DEMONSTRATION SOFTWARE

www.kurokesu.com

Stock firmware registers as "STM32 Virtual COM". Most modern operating systems should

work out of the box, but original drivers can be downloaded from STMicroelectronics web

page

Drivers
Drivers

In some Windows cases Prolific USB to serial controller drivers can claim detected

COM port, in this case uninstall driver and install downloaded from ST web page.

34 DRIVERS

www.kurokesu.com

https://www.st.com/en/development-tools/stsw-stm32102.html
https://www.st.com/en/development-tools/stsw-stm32102.html

Kurokesu SCF4 multi-axis stepper motor controller System On Module (SOM) targets

applications where time to market, reliability and small footprint is important. Main control

MCU is ST Cortex STM32F103 powerful enough either to run standard or run dedicated

standalone firmware. The motor front end is based on ON Semiconductor new and highly

specialized driver LC898201.

Besides SCF4-M module, some basic boards are offered

SCF4 BREAKOUT board allows quick evaluation, testing and prototyping.

Dedicated boards

SCF4-BREAKOUT breakout demo board

General view

35 DEDICATED BOARDS

www.kurokesu.com

https://www.onsemi.com/products/power-management/motor-drivers/motor-drivers-stepper/lc898201
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/Kurokesu-SCF4-breakout-1.jpg
https://wiki.kurokesu.com/uploads/images/gallery/2021-01/Kurokesu-SCF4-breakout-1.jpg

SCF4-THEIA board is designed for THEIA motorized zoom lenses: TL410P R6 and TL1250P

R6

Schematics

PCB Layers

SCF4-THEIA lens controller board

36 DEDICATED BOARDS

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-01/Kurokesu-SCF4-breakout-1.jpg
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/layers.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/layers.png
https://www.theiatech.com/tl410-4k-resolution
https://www.theiatech.com/tl1250-4k-telephoto
https://www.theiatech.com/tl1250-4k-telephoto

General view

37 DEDICATED BOARDS

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-02/IMG_2843_r.jpg
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/IMG_2843_r.jpg

Schematics

38 DEDICATED BOARDS

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-02/IMG_2843_r.jpg
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/SCH_SCE2_THEIA_1of2.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/SCH_SCE2_THEIA_1of2.png

PCB layers

39 DEDICATED BOARDS

www.kurokesu.com

https://wiki.kurokesu.com/uploads/images/gallery/2021-02/SCH_SCE2_THEIA_2of2.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/SCH_SCE2_THEIA_2of2.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/LOulayers.png
https://wiki.kurokesu.com/uploads/images/gallery/2021-02/LOulayers.png

ALL PRODUCTS, PRODUCT SPECIFICATIONS, AND DATA ARE SUBJECT TO CHANGE

WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE

Kurokesu UAB, its affiliates, agents, and employees, and all persons acting on its or

their behalf (collectively, "Kurokesu"), disclaim any and all liability for any errors,

inaccuracies or incompleteness contained in any datasheet or any other disclosure

relating to any product.

The Information given herein is believed to be accurate and reliable. However, users

should independently evaluate the suitability of and test each product selected for

their applications

See Kurokesu standard terms and conditions for warranty and other information

Do not short circuit any part of the module

Do not exceed nominal input

Do not overload outputs

Keep the module dry

Observe the electrostatic discharge (ESD) precautions when handling the product.

Damage caused by non-observance of the above instructions is not covered by the

warranty

Power electronics equipped with thermal shutdown circuitry, but if controller becomes

too hot disconnect it

Module is designed exclusively for installation into a device or housing to prevent

external influences such as humidity/water or dirt

Add active and/or passive power filtering circuitry in an electromagnetically noisy

environment if a module becomes unstable

Add active and/or passive power filtering circuitry if module exceeds allowed EMC

emissions

Precautions and disclaimers

General disclaimer

•

•

•

•

Precautions

•

•

•

•

•

•

•

•

•

40 PRECAUTIONS AND DISCLAIMERS

www.kurokesu.com

Revisions

Documentation revision history

Version Date Changes

0.1 2019-07-01 Initial documentation created

1.0 2019-07-22 Internal release

1.1 2019-07-22
Disclaimers and precautions added, more complete command
description added

1.2 2019-07-23 Minor corrections and mistypes, document public release

1.3 2020-07-27
Migrated to online documentation. Lens section moved to
separate document.

1.4 2020-08-09
Added documentation parts affected by EVB.1.1.0 new
firmware features, fixed a few typos, minor updates

1.5 2020-08-15 Added I2C documentation

1.6 2021-02-07
Updated some pictures, added more demonstration board
details

Firmware revision history

Version Date Changes

0.6.52 2019-07-01 Initial public release version•

EVB.1.0.0 2019-07-14

Bump to 1.0.0 release
Consolidated version reporting into single string
Code cleanup

•
•
•

EVB.1.0.1 2019-07-14 Minor bug fixes•

EVB.1.0.2 2019-07-18

Added new advanced commands: M241..M244
Fixed: set motor idle power to 0 is not allowed
Fixed: default relative movement mode after reset

•
•
•

EVB.1.1.0 2020-05-30
Added USART support over 4 pin connector besides
original USB-CDC mode

•

EVB.1.2.0 2020-08-15 Added I2C support (forked from EVB.1.1.0)•

EVB.1.3.0 2020-08-09
Added power input voltage ADC readout command
Added AUX output on/off control commands

•
•

41 REVISIONS

www.kurokesu.com

42 REVISIONS

www.kurokesu.com

	SCF4
	COMPACT 3 CHANNEL MICRO MOTOR CONTROLLER MODULE DESIGNED FOR MOTORIZED LENSES

	DATASHEET
	About
	General Description
	Features
	Applications

	SCF4-M module
	Pin description
	Technical specifications
	Absolute maximum ratings
	Operating parameters
	Mechanical dimensions
	Test points
	Flash/test/post-production fixture

	Controlling SCF4 with G-code commands
	G-code introduction
	Index of supported G-code commands
	Version strings and identification commands
	Controller initialization
	Motion commands
	Miscellaneous function
	Advanced function
	Status commands

	Controlling SCF4 with G-code commands explanation and usage examples
	Axis description
	$S - Return version string
	G0 - Rapid positioning
	G4 - Wait
	G90 - Relative coordinates
	G91 - Absolute coordinates
	G92 - Set position
	M0 - Compulsory stop
	M7 and M8 - Infrared filter switch commands
	M230 and M231 - normal / forced move
	M232 - Set PI low/high detection voltage
	M234 - Set motor and DN drive current
	M235 - Set motor idle current
	M238 and M239 - control output pins
	M240 - Set motor drive speed
	M241, M242, M243, M244 - advanced timing registers
	M245 - Drive AUX output to low
	M246 - Drive AUX output to high
	M247 - Read power supply voltage value
	!1 - Return status

	Controlling over I2C port
	About
	Wiring
	Write data
	Read data
	Commands
	Command explanation
	RESET_CPU - Reset CPU
	INIT_DRV - Reset motor driver
	AUX_OUT - Control AUX output
	MODE - Normal / forced move
	STOP - Compulsory stop
	PI_LEDS - Switch on ON or OFF PI LEDs
	MOTOR_SLEEP_PWR - Set motor sleep power
	MOTOR_DRV_PWR - Set motor working power
	MOTOR_SPEED - Set motor speed
	PI_THRESHOLD - Set PI detector thresholds
	READ_STATUS - Read controller status
	SET_MOTOR_POS - Set position
	SET_MICROSTEPPING - Set microstepping mode
	MOVE - Move motor
	DN_SWITCH - IR filter swith

	Arduino sketch example

	Demonstration software
	Overview
	GUI
	Command line
	Terminal

	Drivers
	Drivers

	Dedicated boards
	SCF4-BREAKOUT breakout demo board
	General view
	Schematics
	PCB Layers

	SCF4-THEIA lens controller board
	General view
	Schematics
	PCB layers

	Precautions and disclaimers
	General disclaimer
	Precautions

	Revisions
	Documentation revision history
	Firmware revision history

