

CoreLED P/N 12001-STAR-E17

- 7H x 3V Flood IES NEMA Type lens
- Nichia E17 LED source
- 20mm Starboard for easy prototyping and evaluation

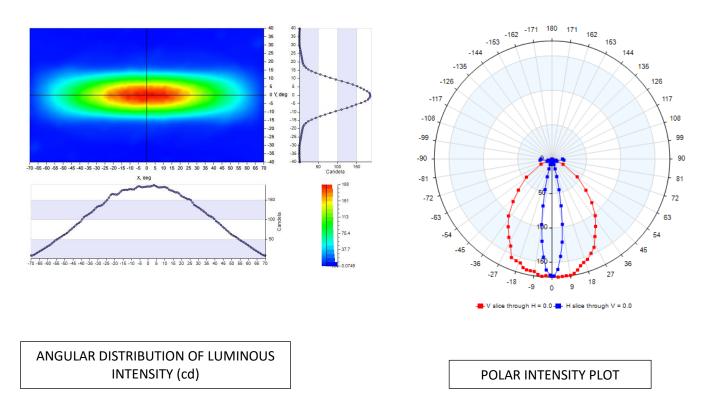
SMO Product Description:

The SMO product family is a series of molded high-temperature silicone miniature lenses that attach directly to PCB with solder clip using standard reflow method. These components achieve high light collection efficiency, a variety of engineered beam patterns, and are supplied for high volume pick and place electronics assembly.

Key Features:

- \circ $\,$ Optical lens is reflow mounted at the same time as LED assembly
- Supplied in tape and reel
- o Increased control of light output
- \circ Precision alignment (within ±0.1mm)
- \circ Family of optical beam patterns that will work using IR reflow
- Reflow solder clip directly attached to lens
- Standard pick and place equipment
- Manufactured without the need for additional components to attach the optics

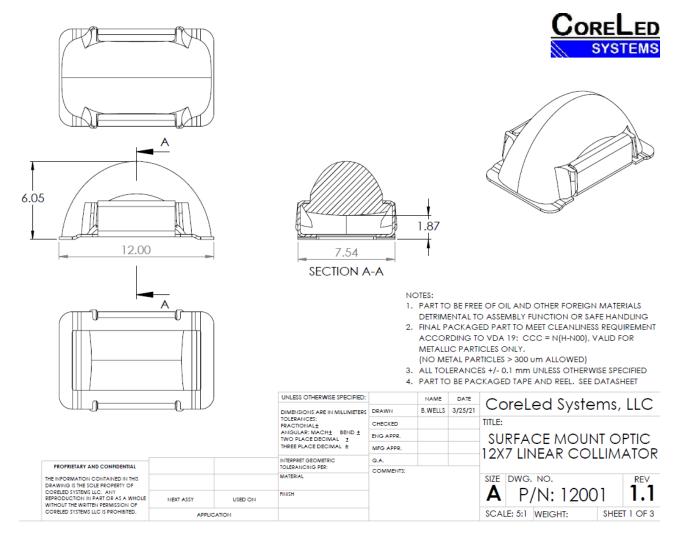
STARBOARD mounted optics are meant for PROTOTYPE and EVALUATION purposes only


Surface Mounted Optic (SMO) 12x7mm Linear Collimator STARBOARD

Rev 1.0 – 05/13/21

Emitted Pattern Profile

Nichia E17 (Measured) 1717 LED package


IES NEMA Type	7H x 3V
Maximum Candela	173
Horizontal Beam Angle (50%)	84
Vertical Beam Angle (50%)	19.5
Horizontal Field Angle (10%)	131
Vertical Field Angle (10%)	33
Total Rated Lamp Lumens	100

IES files and Raytrace models are available upon request from CoreLed Engineering.

Mechanical Profile: SMO Linear Collimator

Mechanical design features shown with solder clip

CAD files available upon request from CoreLed Engineering

LED Information

NCSWE17AT

Pb-free Reflow Soldering Application

RoHS Compliant

NICHIA STS-DA1-3687I <Cat.No.170112>

SPECIFICATIONS

(1) Absolute Maximum Ratings

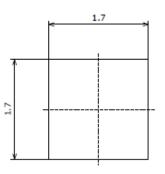
Item	Symbol	mbol Absolute Maximum Rating	
Forward Current	I _F	700	mA
Pulse Forward Current	Ipp	1000	mA
Reverse Voltage	VR	5	v
Power Dissipation	Pp	2.31	W
Operating Temperature	Toor	-40~100	°C
Storage Temperature	T _{stg}	-40~100	°C
Junction Temperature	T ₂	135	°C

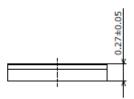
* Absolute Maximum Ratings at T_c =25°C.

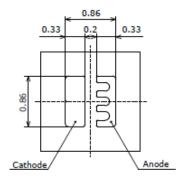
* $I_{\mu\nu}$ conditions with pulse width ${\leq}10\text{ms}$ and duty cycle ${\leq}10\%.$

(2) Initial Electrical/Optical Characteristics

Item		Symbol	Condition	Тур	Max	Unit
Forward Voltage		VF	I _F =350mA	3.0	-	v
Reverse Current		IR	$V_R = 5V$	-	-	μA
R70	Luminous Flux	Φv	I _F =350mA	158	-	lm
	Color Rendering Index	Ra	I _F =350mA	72	-	-
R8000	Luminous Flux	Φ,	I _F =350mA	148	-	Im
	Color Rendering Index	Ra	I _F =350mA	82	-	-
R9050	Luminous Flux	Φv	I _F =350mA	125	-	lm
	Color Rendering Index	Ra	I _F =350mA	92	-	-
R9080	Luminous Flux	Φv	I _F =350mA	118	-	lm
	Color Rendering Index	Ra	I _F =350mA	92	-	-
Chromaticity Coordinate	х	-	I _F =350mA	0.3447	-	-
	y	-	I _F =350mA	0.3553	-	-
Thermal Resistance		Rec	-	0.5	1.0	°C/W

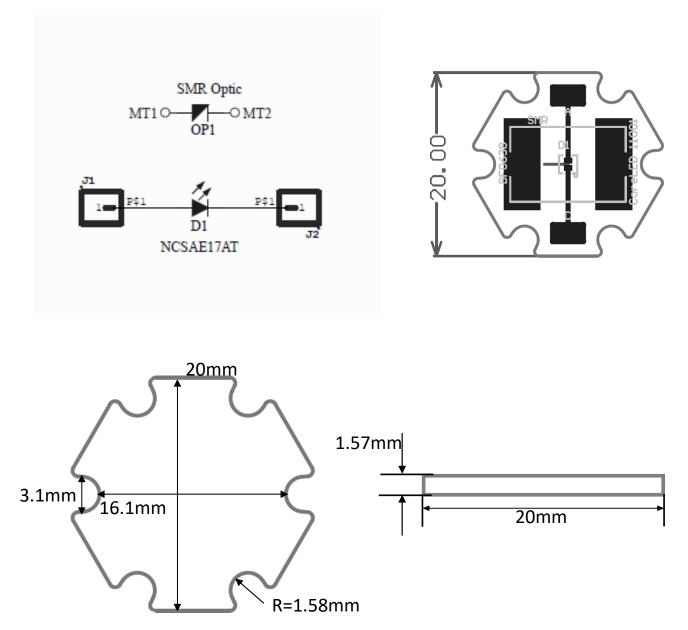

* Characteristics at T_C=25°C.


* Luminous Flux value as per CIE 127:2007 standard.


* Chromaticity Coordinates as per CIE 1931 Chromaticity Chart.

* The thermal resistance value (R_{80C}) is used to perform logical analysis (e.g. computer-based thermal analysis simulation) and represents a thermal resistance between the die to the T_c measurement point (PCB used: Aluminum PCB t=1.5mm, Insulating layer t=0.12mm).

* For more details on thermal resistance, see CAUTIONS, (6) Thermal Management.



Starboard Schematic

STARBOARD mounted optics are meant for PROTOTYPE and EVALUATION purposes only

Electrical:

From LED Data sheet: recommended operation is Typical 3.0V at 350mA (1 Watt to provide 150 lumens).

Thermal:

Recommended attachment to heat sink to dissipate 1W (3.0V at 350mA). LED is rated higher and can be run up to 700mA with appropriate heatsinking provided.

Packaging:

Individually packaged in static controlled bag.