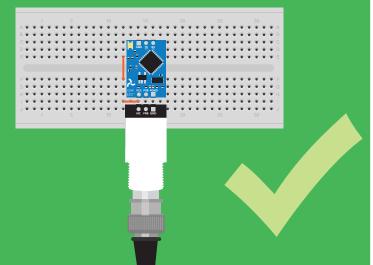
AtlasScientific Environmental Robotics

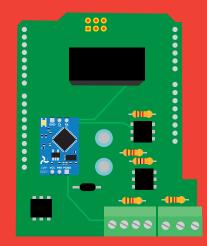
V 5.0

EZO-ORPTM Embedded ORP Circuit

Reads	ORP	
Range -1019	9.9mV – 1019.9mV	GND TX RX (SDA) RX
Accuracy	+/- 1mV	
Response time	1 reading per sec	
Supported probes	Any type & brand	
Calibration	Single point	
Temp compensation	N/A	
Data protocol	UART & I ² C	
Default I ² C address	98 (0x62)	ORP VCC PRB PGND
Operating voltage	3.3V – 5V	EZO [™]
Data format	ASCII	ROME LANS


PATENT PROTECTED

SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.


This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

Get this device working in a solderless breadboard first!

Do not embed this device without testing it in a solderless breadboard!

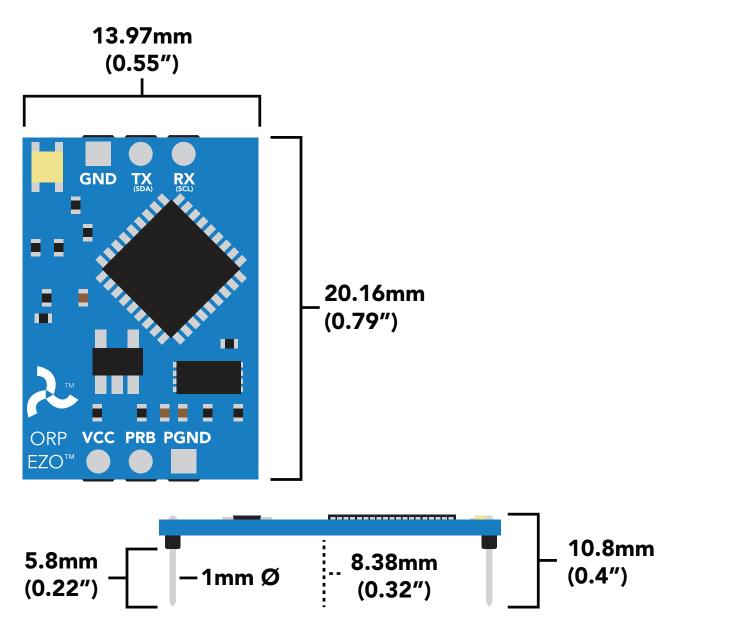
Table of contents

Circuit dimensions	4
Power consumption	4
Absolute max ratings	4
Operating principle	5

UART

UART mode	17
Receiving data from device	18
Sending commands to device	19
LED color definition	20
UART quick command page	21
LED control	22
Find	23
Continuous reading mode	24
Single reading mode	25
Calibration	26
Export calibration	27
Import calibration	28
Naming device	29
Device information	30
Response codes	31
Reading device status	32
Sleep mode/low power	33
Change baud rate	34
Protocol lock	35
Factory reset	36
Change to I ² C mode	37
Manual switching to I ² C	38

Power and data isolation	7
Correct wiring	9
Calibration theory	12
Default state	14
Available data protocols	15


1²**C**

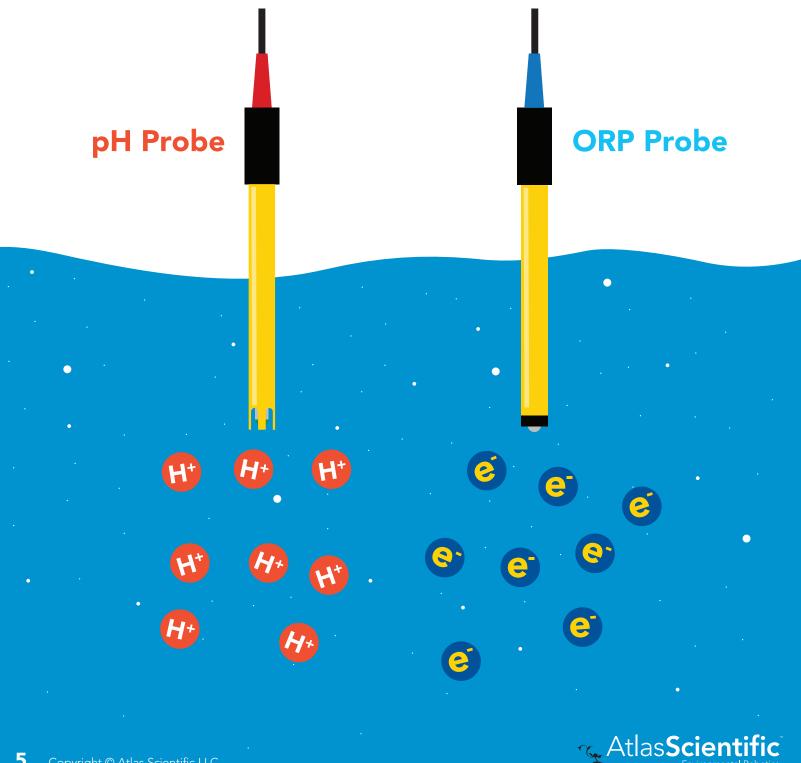
I ² C mode	40
Sending commands	41
Requesting data	42
Response codes	43
LED color definition	44
I ² C quick command page	45
LED control	46
Find	47
	48
Taking reading	
Calibration	49
Export calibration	50
Import calibration	51
Naming device	52
Device information	53
Reading device status	54
Sleep mode/low power	55
Protocol lock	56
I ² C address change	57
Factory reset	58
Change to UART mode	59
Manual switching to UART	60

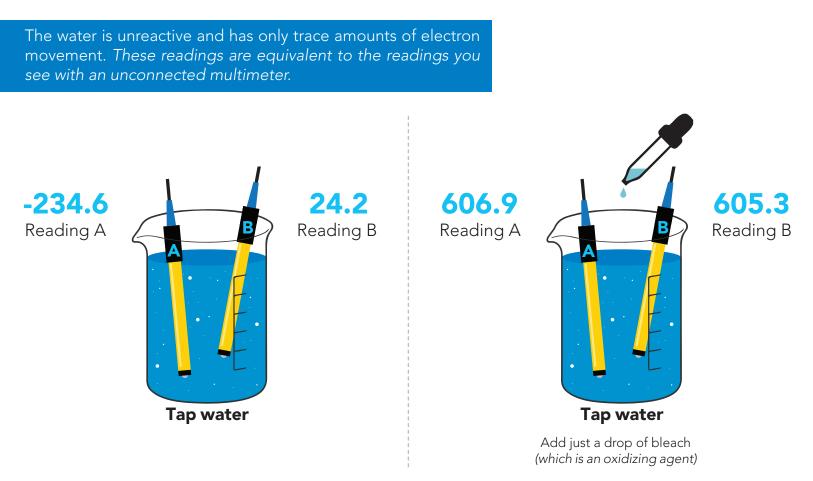
Circuit footprint	61
Datasheet change log	62
Warranty	65

EZO[™] circuit dimensions

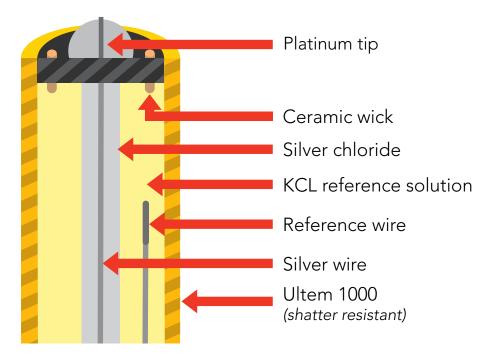
	LED	MAX	STANDBY	SLEEP
5V	ON	18.3 mA	16 mA	1.16 mA
	OFF	13.8 mA	13.8 mA	
3.3V	ON	14.5 mA	13.9 mA	0.995 mA
	OFF	13.3 mA	13.3 mA	

Power consumption Absolute max ratings


Parameter	MIN	ТҮР	MAX
Storage temperature (EZO™ ORP)	-65 °C		125 °C
Operational temperature (EZO™ ORP)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V

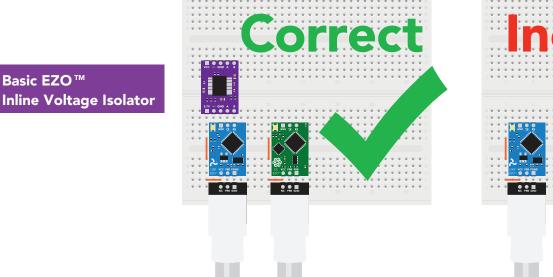

Operating principle

ORP stands for oxidation/reduction potential. Oxidation is the loss of electrons and reduction is the gain of electrons. The output of the probe is represented in millivolts and can be positive or negative.


Just like a pH probe measures hydrogen ion activity in a liquid; an ORP probe measures electron activity in a liquid. The ORP readings represents how strongly electrons are transferred to or from substances in a liquid. Keeping in mind that the readings do not indicate the amount of electrons available for transfer.

When reading the ORP of a liquid that has very few electrons available for transfer ORP readings can appear to be inconsistent.

An ORP probe has a platinum tip that is connected to a silver wire, surrounded by silver chloride. That silver wire is then connected to a KCL reference solution. Because platinum is an unreactive metal it can "silently observe" the electron activity of the liquid without becoming apart of whatever reaction is occurring in the liquid.

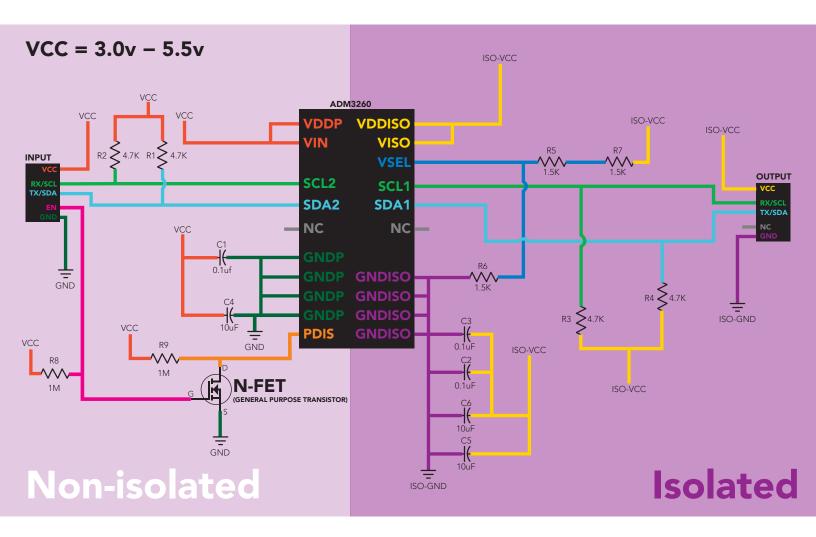

Power and data isolation

The Atlas Scientific EZO[™] ORP circuit is a very sensitive device. This sensitivity is what gives the ORP circuit its accuracy. This also means that the ORP circuit is capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves or other probes/sensors.

When electrical noise is interfering with the ORP readings it is common to see rapidly fluctuating readings or readings that are consistently off. To verify that electrical noise is causing inaccurate readings, place the ORP probe in a cup of water by itself. The readings should stabilize guickly, confirming that electrical noise was the issue.

When reading ORP and Conductivity or Dissolved Oxygen together, it is strongly recommended that the EZO[™] ORP circuit is electrically isolated from the EZO[™] Conductivity or Dissolved Oxygen circuit.

Without isolation, Conductivity and Dissolved Oxygen readings will effect ORP accuracy.

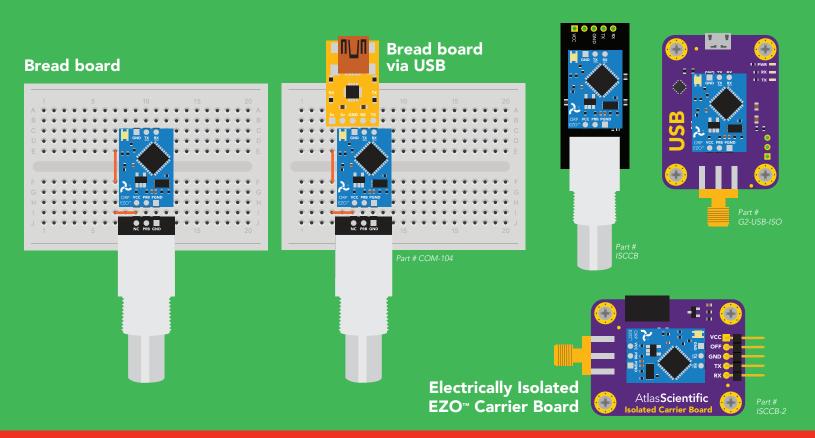


Basic EZO™

This schematic shows exactly how we isolate data and power using the and a few passive components. The ADM3260 can output isolated power up to 150 mW and incorporates two bidirectional data channels.

This technology works by using tiny transformers to induce the voltage across an air gap. PCB layout requires special attention for EMI/EMC and RF Control, having proper ground planes and keeping the capacitors as close to the chip as possible are crucial for proper performance. The two data channels have a $4.7k\Omega$ pull up resistor on both the isolated and non-isolated lines (R1, R2, R3, and R4) The output voltage is set using a voltage divider (R5, R6, and R7) this produces a voltage of 3.9V regardless of your input voltage.

Isolated ground is different from non-isolated ground, these two lines should not be connected together.



Correct wiring

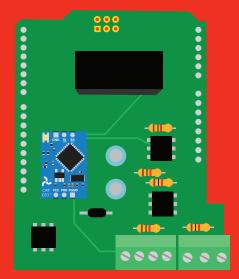
Carrier board

USB carrier board

Incorrect wiring

Extended leads

Sloppy setup

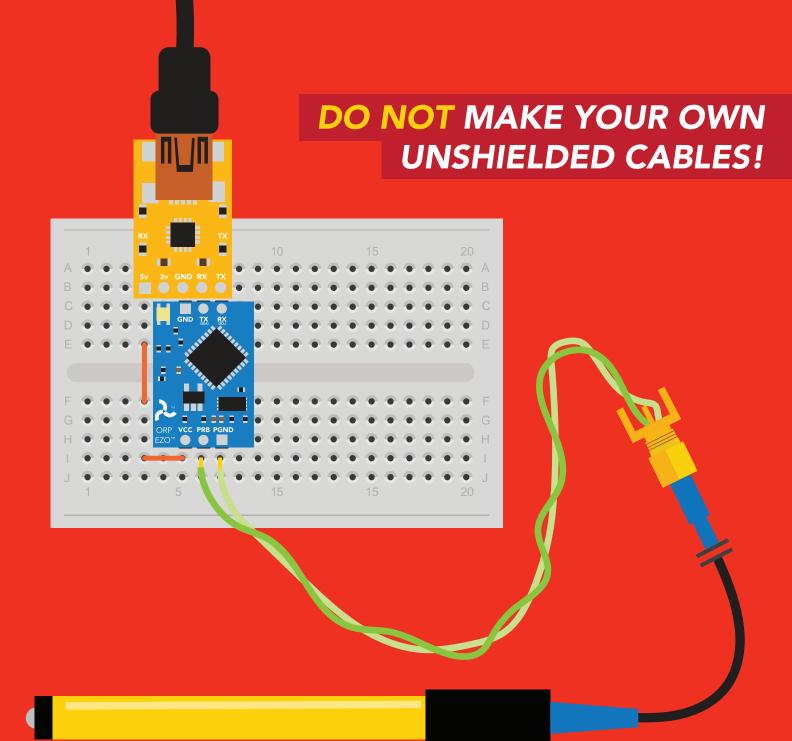

Perfboards or Protoboards

NEV

use Perfboards or Protoboards

Flux residue and shorting wires make it very hard to get accurate readings.

*Embedded into your device

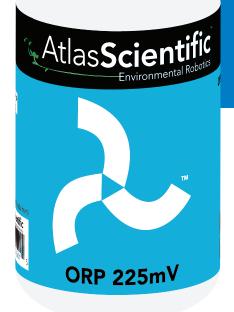

*Only after you are familar with EZO[™] circuits operation

DO NOT CUT THE PROBE CABLE WITHOUT REFERING TO THIS DOCUMENT!

ONLY USE SHIELDED CABLES. REFER TO THIS DOCUMENT!

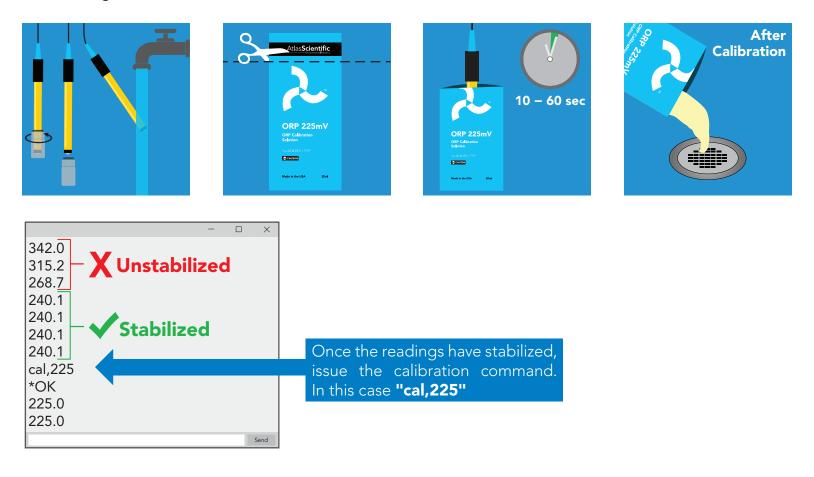
Calibration theory

	- 0	×
152.1		
197.3		
210.6	– 🗙 Unstabilized	
295.7		
306.2		
315.7		
315.7		
315.7	- Stabilized	
315.7		
315.7		
315.7		
		Send


The most important part of calibration is watching the readings during the calibration process.

It's easiest to calibrate the device in its default state (UART mode, with continuous readings enabled).

Switching the device to I²C mode after calibration **will not** affect the stored calibration. If the device must be calibrated in I²C mode be sure to **continuously request readings** so you can see the output from the probe.


However, If this is your first time calibrating the EZO[™] ORP circuit, Atlas Scientific recommends using the 225mv calibration solution.

Single point calibration

Remove the soaker bottle and rinse off the ORP probe. Remove the top of the **ORP 225mV** calibration solution pouch. Insert the ORP probe directly into the pouch, and let the probe sit in the calibration solution until the readings stabilize (*small movement from one reading to the next is normal*).

Calibration should be done at least once per year

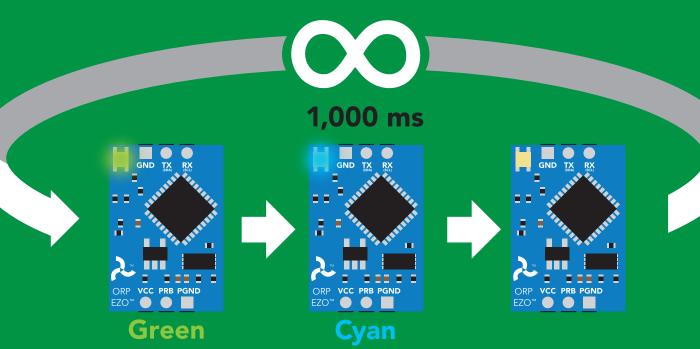
If the ORP that's being read is continuously on the extremes of the scale (\sim -900mV or +900mV) calibration may have to be done more often. The exact frequency of calibration will have to be determined by your engineering team.

Default state UART mode

Baud

Readings

Speed


LED

9,600

continuous

1 reading per second

on

Taking reading

Transmitting

Standby

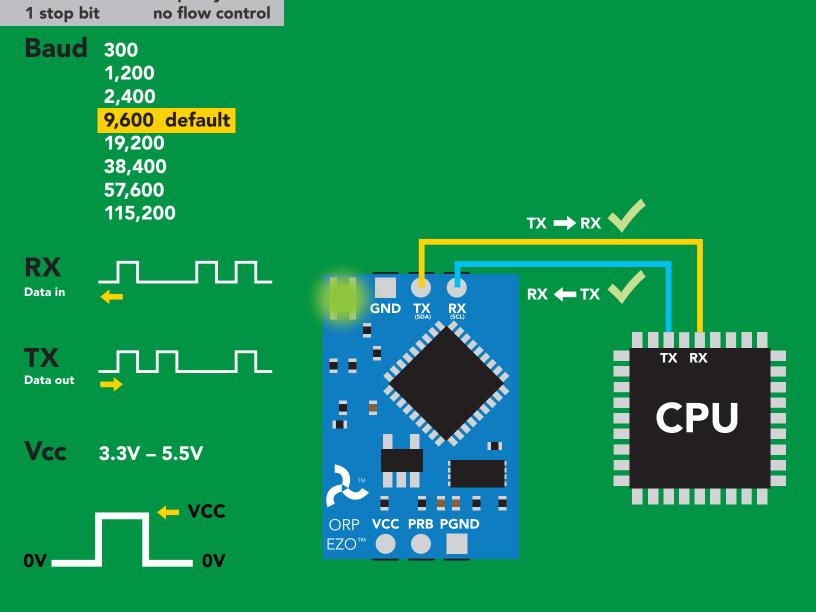
1²C

X Unavailable data protocols SPI Analog RS-485 Mod Bus 4–20mA

15 Copyright © Atlas Scientific LLC

UART mode

Settings that are retained if power is cut


Baud rate Calibration Continuous mode Device name Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode

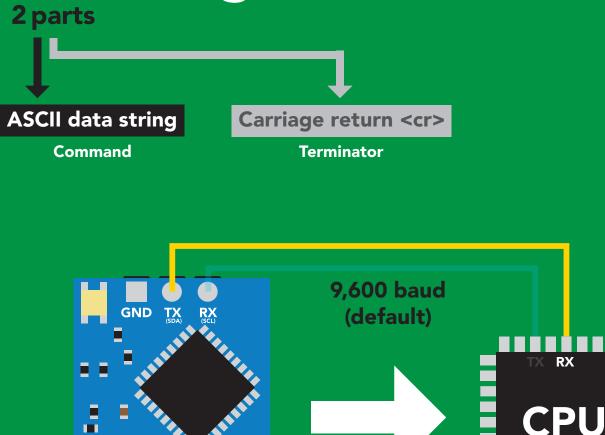
Settings that are **NOT** retained if power is cut

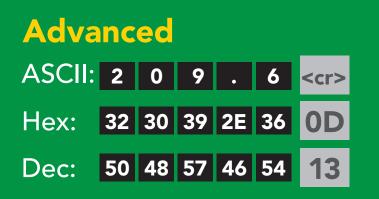
Find Sleep mode

UART mode 8 data bits no parity

Data format

Reading	ORP
Units	mV
Encoding	ASCII
Format	string
Terminator	carriage returi


Data type Decimal places Smallest string Largest string


floating point 1 2 characters 40 characters

Receiving data from device

209.6 <cr>

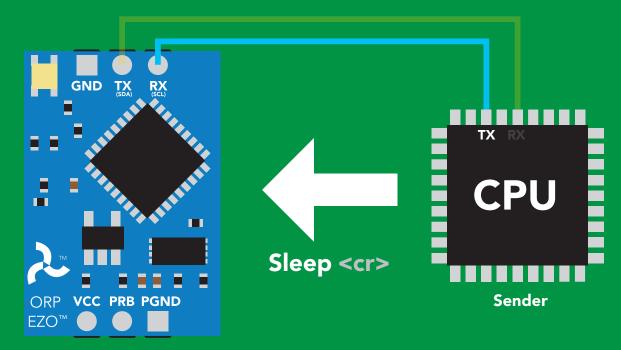
VCC PRB PGND

Sender

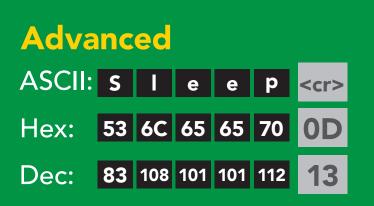
Receiver

ORP

EZO™

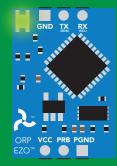

Sending commands to device ^{2 parts}

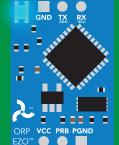
Command (not case sensitive)

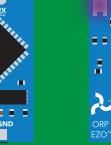

Carriage return <cr>

ASCII data string

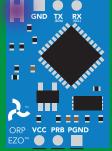
Terminator



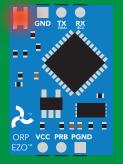

Receiver



LED color definition



Green Cya UART standby Taking r



Cyan Taking reading

Purple

Changing baud rate

Red Command

not understood

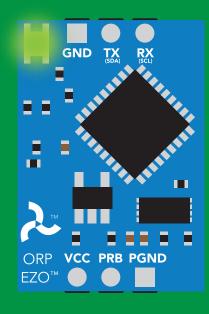
White Find

5V	LED ON +2.2 mA	
3.3V	+0.6 mA	

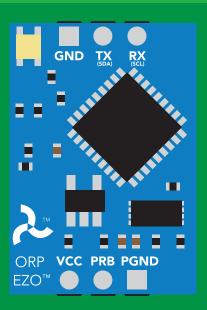
UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Baud	change baud rate	pg. 34	9,600
С	enable/disable continuous reading	pg. 24	enabled
Cal	performs calibration	pg. 26	n/a
Export	export calibration	pg. 27	n/a
Factory	enable factory reset	pg. 36	n/a
Find	finds device with blinking white LED	pg. 23	n/a
i	device information	pg. 30	n/a
12C	change to I ² C mode	pg. 37	not set
Import	import calibration	pg. 28	n/a
L	enable/disable LED	pg. 22	enabled
Name	set/show name of device	pg. 29	not set
Plock	enable/disable protocol lock	pg. 35	disabled
R	returns a single reading	pg. 25	n/a
Sleep	enter sleep mode/low power	pg. 33	n/a
Status	retrieve status information	pg. 32	n/a
*OK	enable/disable response codes	pg. 31	enable


LED control

Command syntax


L,1 <cr> LED on defau</cr>	ılt
----------------------------	-----

- L,0 <cr>> LED off
- L,? <cr> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

L,1

L,0

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr>> LED rapidly blinks white, used to help find device

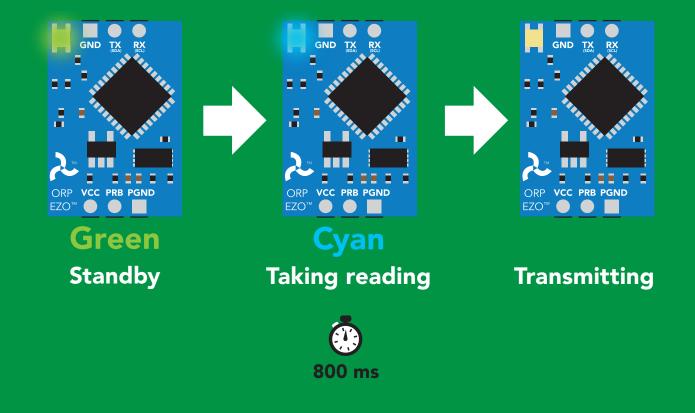
ExampleResponseFind <cr>*OK <cr>

Continuous reading mode

Command syntax

- C,1 <cr> enable continuous readings once per second default
- C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)
- C,0 <cr> disable continuous readings
- C,? <cr> continuous reading mode on/off?

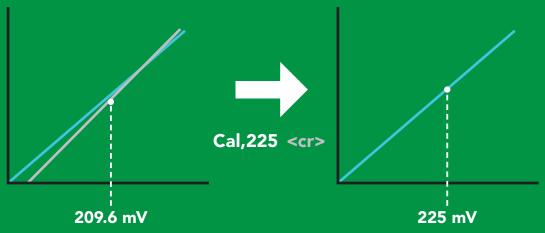
Example	Response
C,1 <cr></cr>	*OK <cr> ORP (1 sec) <cr> ORP (2 sec) <cr> ORP (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> ORP (30 sec) <cr> ORP (60 sec) <cr> ORP (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>



Single reading mode

Command syntax

R <cr> takes single reading


ExampleResponseR <cr>209.6 <cr>*OK <cr>

Calibration

Command syntax		The EZO™ ORP circuit can be calibrated to any known ORP value
Cal,clear < <r> de</r>	ibrates the ORP circu lete calibration data vice calibrated?	uit to a set value
Example	Response	
Cal,225 <cr></cr>	*OK <cr></cr>	
Cal,clear < <r></r>	*OK <cr></cr>	
Cal,? <cr></cr>	?Cal,0 <cr> or ?Cal, *OK <cr></cr></cr>	1 <cr></cr>
I		

Export calibration

Commanday		
Command sy	Export: U	se this command to download calibration settings
Export,? <cr> calibration string info Export <cr> export calibration string from calibrated device</cr></cr>		
Example	Response	
Export,? <cr></cr>	10,120 <cr></cr>	Response breakdown10, 120*# of strings to export# of strings to export# of bytes to exportExport strings can be up to 12 characters long,and is always followed by <cr></cr>
Export < <r></r>	59 6F 75 20	61 72 <cr> (1 of 10)</cr>
Export < <r></r>	65 20 61 20 63 6F < <r>< (2 of 10)</r>	
(7 more)	:	
Export <cr></cr>	6F 6C 20 67	75 79 <cr> (10 of 10)</cr>
Export < <r></r>	*DONE	Disabling *OK simplifies this process
Export < <r></r>		
GND TX RX		TX RX MCU

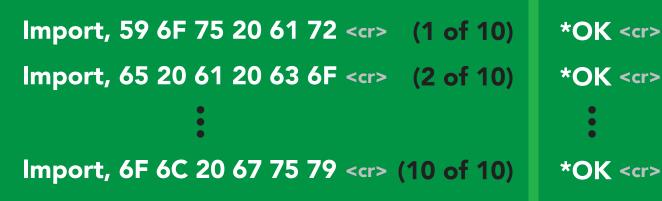
10

[10,120]

G

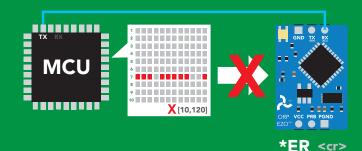
ORP VCC PRB PGND EZO™ ● ● ***DONE**

Import calibration


Command syntax

Import: Use this command to upload calibration settings to one or more devices.

Import,n <cr> import calibration string to new device


Example

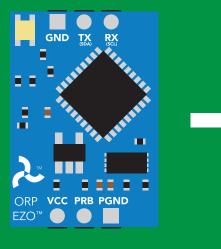
Response

 Import,n <cr>
 Import,n <cr
 <td>Import,n <cr
 <td>I

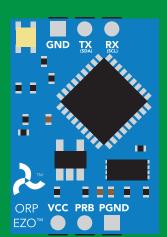
*OK <<r>
system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Naming device


Command syntax

Do not use spaces in the name


Name,n <cr>set namen =$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 16 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 16 \ 10 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 10 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10$</cr>			
Example	Response		
Name, <cr></cr>	*OK <cr> name has been cleared</cr>		
Name,zzt <cr></cr>	*OK <cr></cr>		
Name,? <cr></cr>	<pre>?Name,zzt <cr> *OK <cr></cr></cr></pre>		

Name,zzt

Name,?

*OK <cr>

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

ExampleResponsei <<r>?i,ORP,1.97 <<r>

*OK <cr>

Response breakdown

Response codes

Command syntax

*OK,1 <cr></cr>	enable response	default
*OK,0 <cr></cr>	disable response	

<u>*OK,? <cr> response on/off?</u>

Example	Response
R <cr></cr>	209.6 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	209.6 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other response codes

- *ER unknown command
- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example	Re	sponse	
Status <cr></cr>		?Status,P,5.038 <cr> *OK <cr></cr></cr>	
Respons	e break	down	
?Status, Reas	P, ↑ son for restart	5.038 ↑ Voltage at Vcc	
	re reset		
B brown W watchd			

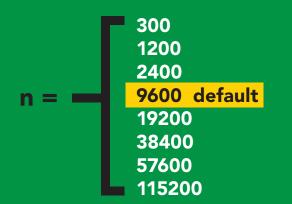
U unknown

Sleep mode/low power

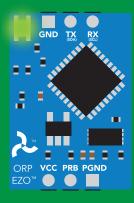
Command syntax

Send any character or command to awaken device.

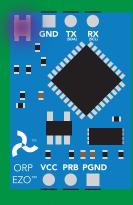
Environmental Robotics


Examp	ble	Response	
Sleep <	cr>	*OK <cr> *SL <cr></cr></cr>	
Any con	nmand	*WA < <r> wakes up</r>	device
5V	standb` 16 mA		
3.3V	13.9 m/	A 0.995 mA	
			Sleep 1.16 mA

Change baud rate


Command syntax

Baud,n <cr> change baud rate


Example	Response
Baud,38400 <cr></cr>	*OK <cr></cr>
Baud,? <cr></cr>	?Baud,38400 <cr> *OK <cr></cr></cr>

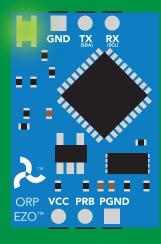
Baud,38400 <cr>

Standby

Changing baud rate

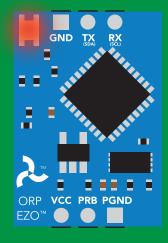
*OK <cr>

Standby


Protocol lock

Command syntax

Locks device to UART mode.


Plock,1 <cr> Plock,0 <cr> Plock,? <cr></cr></cr></cr>	disable Plock <mark>default</mark>
Example	Response
Plock,1 <cr></cr>	*OK <cr></cr>
Plock,0 <cr></cr>	*OK <cr></cr>
Plock,? <cr></cr>	?Plock,1 < <r> or ?Plock,0 <<r></r></r>

Plock,1



*OK <cr>

I2C,100

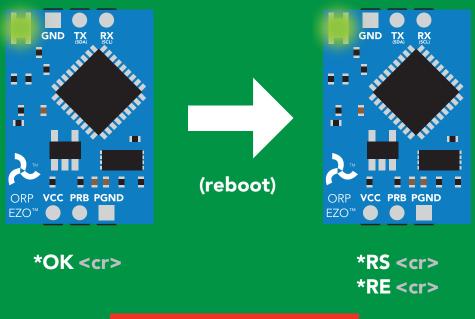
cannot change to I²C *ER <cr> Short

cannot change to I²C

Factory reset

Command syntax

Example

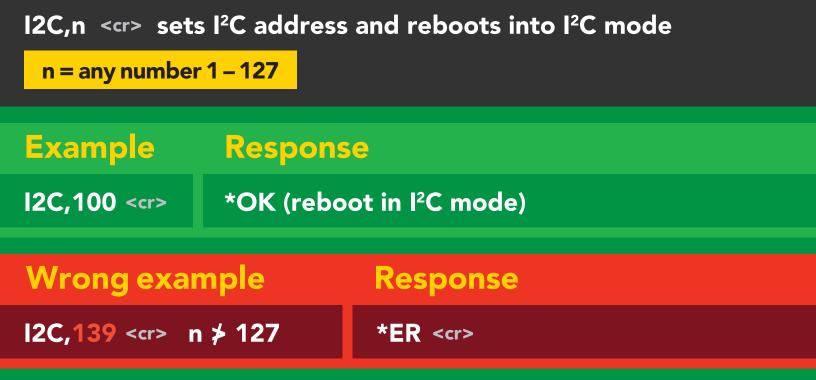

Factory <<r> enable factory reset

Clears calibration LED on "*OK" enabled

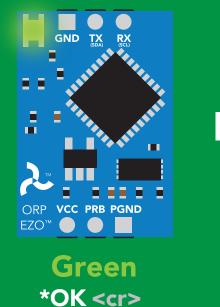
Factory <cr> *OK <cr>

Response

Factory <cr>


Baud rate will not change

Change to I²C mode

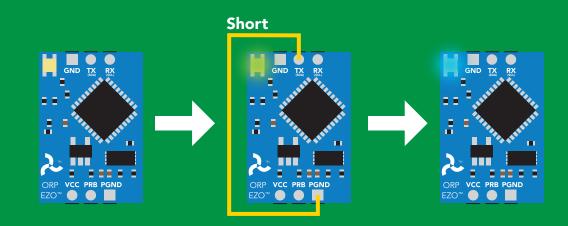

Command syntax

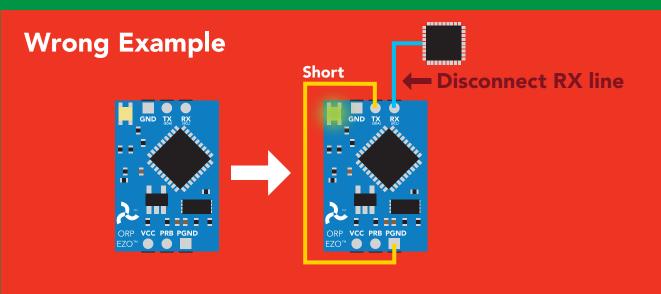
Default I²C address 98 (0x62)

(reboot)

I2C,100

Blue now in I²C mode




Manual switching to I²C

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 98 (0x62)

Example

l²C mode

The I²C protocol is <u>considerably more complex</u> than the UART (RS–232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO[™] device into I²C mode click here

Settings that are retained if power is cut

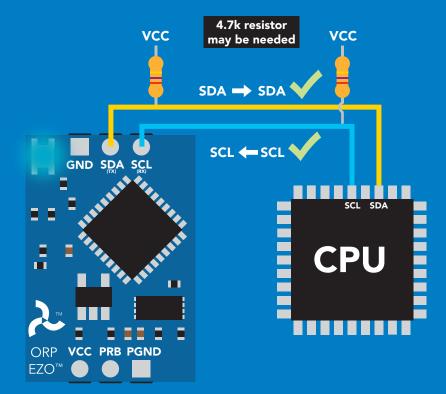
Calibration Change I²C address Hardware switch to UART mode LED control Protocol lock Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

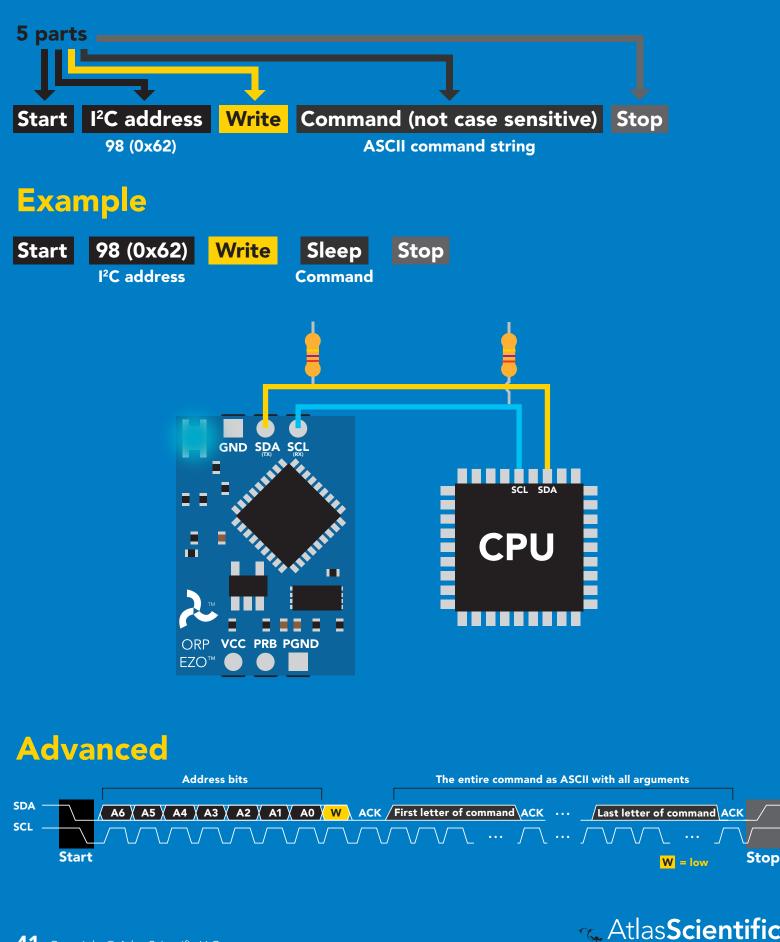
I²C mode

I²C address (0x01 - 0x7F)98 (0x62) default

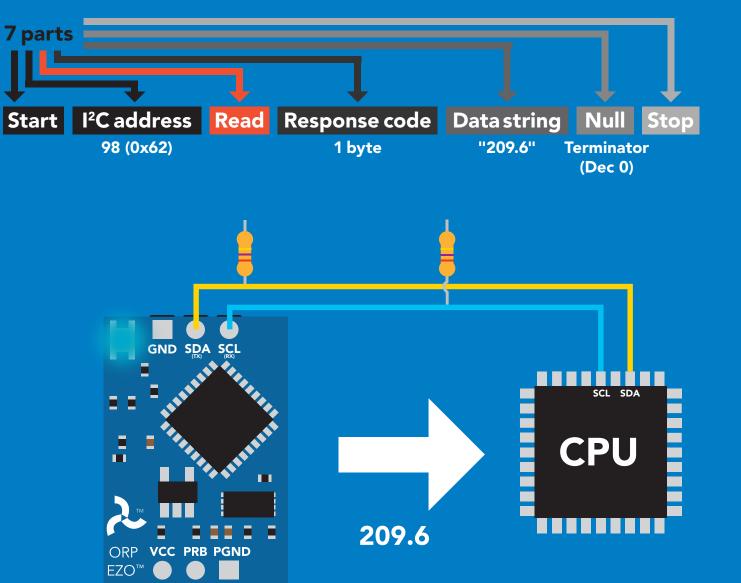

3.3V - 5.5V Vcc

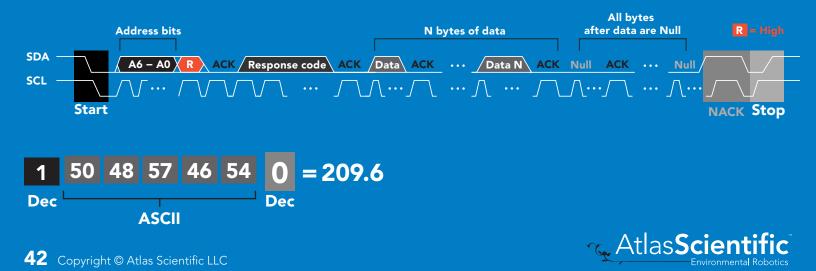
Clock speed 100 – 400 kHz

Data format

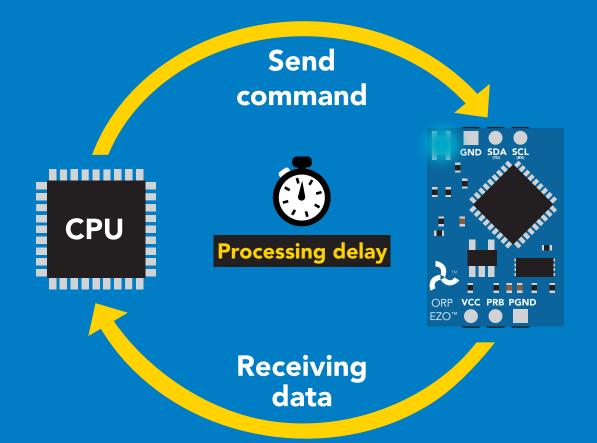

Reading	ORP
Units	mV
Encoding	ASCII
Format	string

Data type **Decimal places** 1 Smallest string 2 characters Largest string


floating point **40 characters**


Sending commands to device

Requesting data from device


Advanced

Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

delay(300);

I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes Single byte, not string

- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

LED color definition

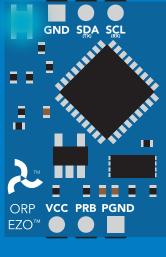
GIND SDA SC GIND SDA SC ORP VCC PRB PGN ZO" O Blue I ² C stand		RB PAND RE PAND	GND SDA SCL UND SCL UND SDA SCL UND SC	Red Command not understood	GND SDA SCL UPP VCC PRB PGND 2000 White Find
5V	LED ON +2.2 mA				
3.3V	+0.6 mA				

I²C mode command quick reference

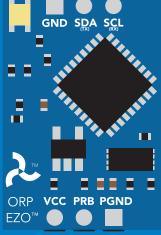
All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 59
Cal	performs calibration	pg. 49
Export	export calibration	pg. 50
Factory	enable factory reset	pg. 58
Find	finds device with blinking white LED	pg. 47
i	device information	pg. 53
12C	change I ² C address	pg. 57
Import	import calibration	pg. 51
L	enable/disable LED	pg. 46
Name	set/show name of device	pg. 52
Plock	enable/disable protocol lock	pg. 56
R	returns a single reading	pg. 48
Sleep	enter sleep mode/low power	pg. 55
Status	retrieve status information	pg. 54

LED control


Command syntax

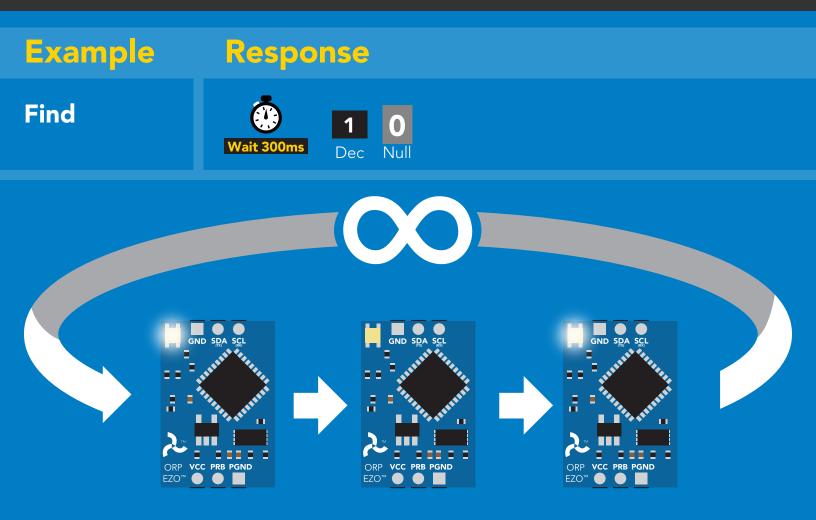
L,1 LED on default


- L,0 LED off
- L,? LED state on/off?

Example Response L,1 0 1 Dec Nul L,0 T 0 Null Dec Wait 300ms L,? ?L,1 0 ?L,0 🛈 1 1 or ASCII Null Dec ASCII Null Dec Wait 300ms

L,1

L,0



300ms 🕐 processing delay

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find LED rapidly blinks white, used to help find device

Taking reading

Command syntax

900ms 🕐 processing delay

R return 1 reading

R

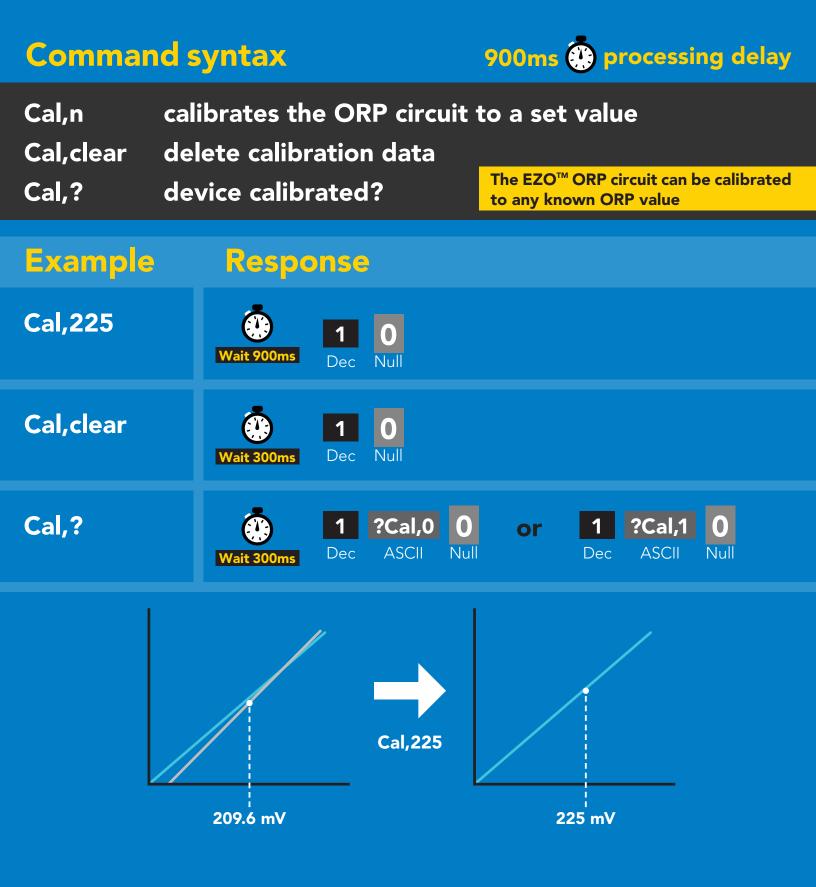
Example Response

Image: Wait 900msImage: Mail 209.6Image: Open set of the set of t

 Image: Substant state
 Image: Substant state

 Image: Substant state
 Image: Substant state</td

Taking reading


Transmitting

Standby

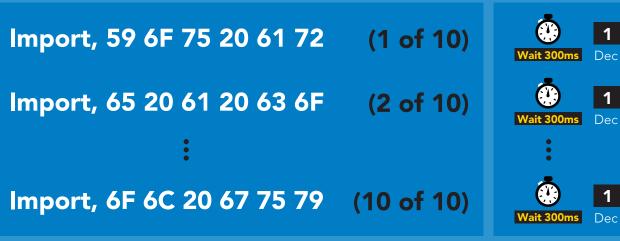
Calibration

Export calibration

300ms 💮 processing delay Command syntax Export: Use this command to download calibration settings calibration string info Export,? export calibration string from calibrated device **Export** Example Response (optional) **Response breakdown** Export,? 10,120 $(\mathbf{0})$ 10, 120 ASCI Nul Dec # of strings to export # of bytes to export 300ms Export strings can be up to 12 characters long 59 6F 75 20 61 72 (1 of 10) $(\mathbf{0})$ **Export** Null Dec ASCII Wait 300ms 65 20 61 20 63 6F (2 of 10)0 **Export** ASCI Dec • (7 more) 6F 6C 20 67 75 79 (10 of 10) [1] 0 Export Nul ASCII Wait 300ms Dec ***DONE** Export ASCI Dec Nul

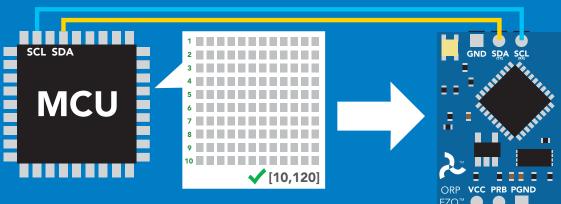
Import calibration 300ms (*) processing delay

Command syntax

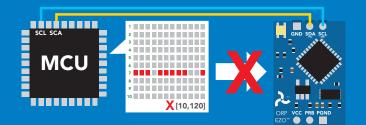

Import: Use this command to upload calibration settings to one or more devices.

Import,n import calibration string to new device

Example


Response

Null



reboot

1 *Pending 0 Dec ASCII Null system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import and reboot.

Naming device

Command syntax

300ms 🕐 processing delay

Do not use spaces in the name

-	ame $n = \frac{1}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16}$ s name Up to 16 ASCII characters name
Example	Response
Name,	Image: Wait 300msImage: Dec leared NullImage: Dec leared Null
Name,zzt	Wait 300ms10Null
Name,?	Image: Name,zztImage: Name,zztImage: Name,zztWait 300msDecASCIINull
Name	,zzt Name,?
ا الم	GND SDA SCL GND SDA SCL FRB PGND
E	0 1 ?Name,zzt 0

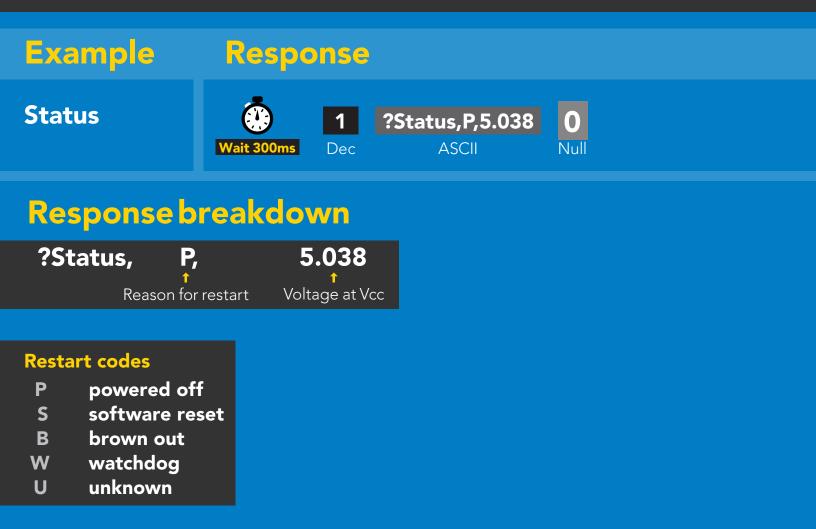
Device information

Command syntax

300ms 🕐 processing delay

i device information

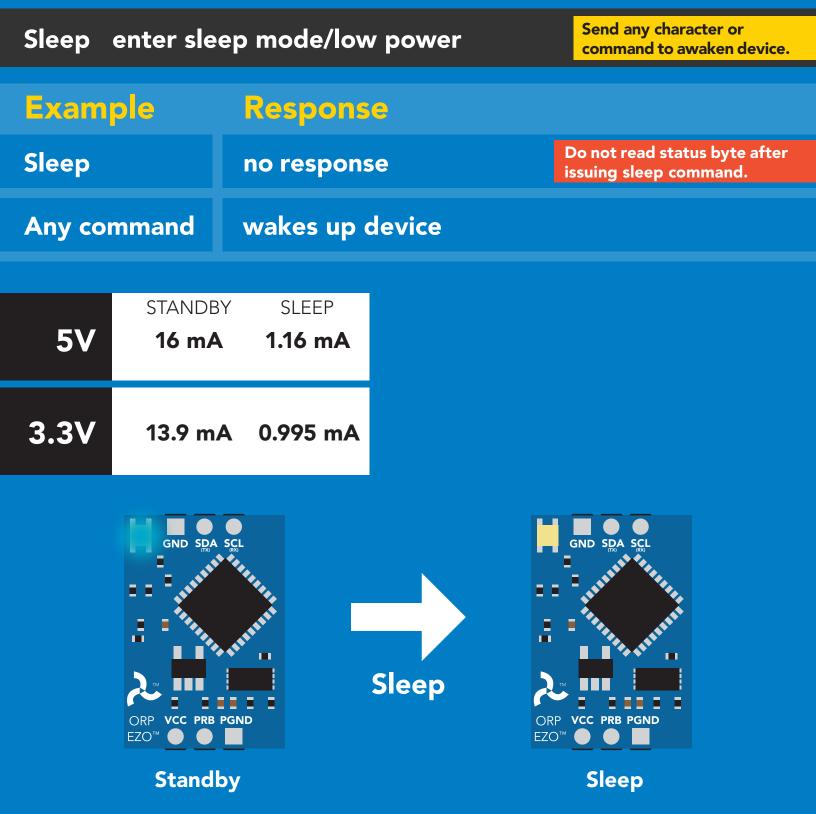
Response breakdown

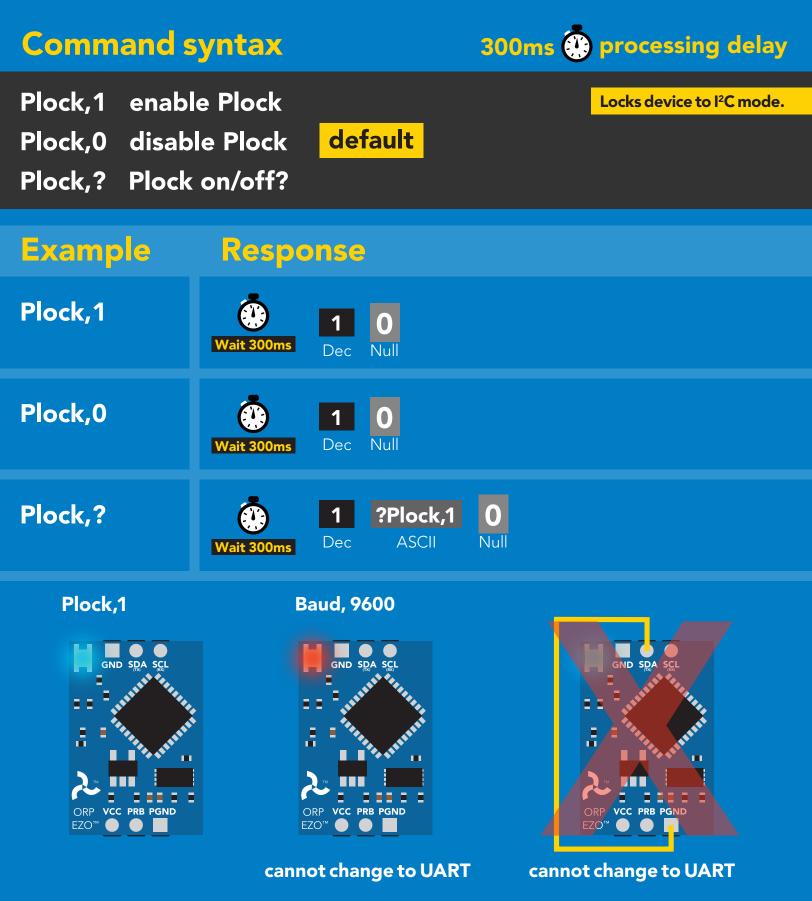


Reading device status

Command syntax

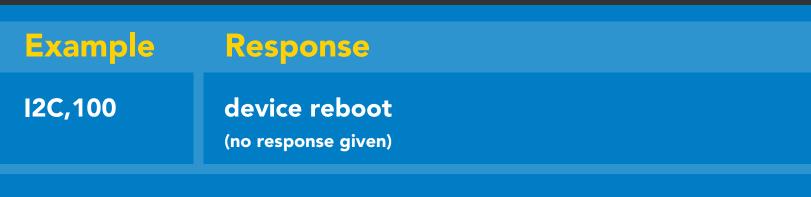
300ms 💮 processing delay


Status voltage at Vcc pin and reason for last restart


Sleep mode/low power

Command syntax

Protocol lock

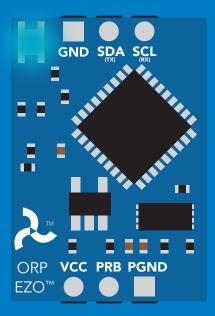


I²C address change

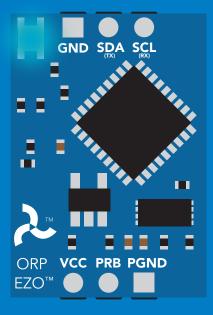
Command syntax

300ms 💮 processing delay

I2C,n sets I²C address and reboots into I²C mode

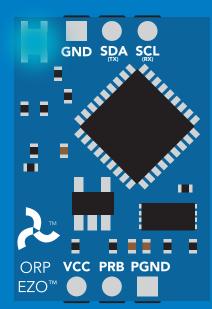


Warning!

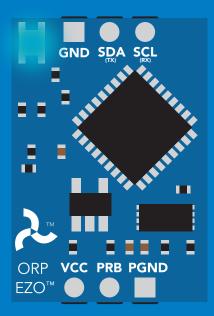

Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address. n = any number 1 – 127

Default I²C address is 98 (0x62).

I2C,100



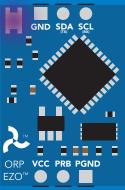
Factory reset


Command s	syntax	Factory reset will not take the device out of I ² C mode.	
Factory enable factory rese			
Example	Response	-	
Factory	device rebo (no response giv		
Clears calibration	_		

Clears calibration LED on Response codes enabled

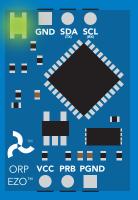
Factory

Change to UART mode

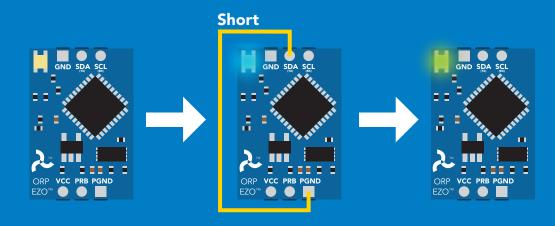

Command syntax

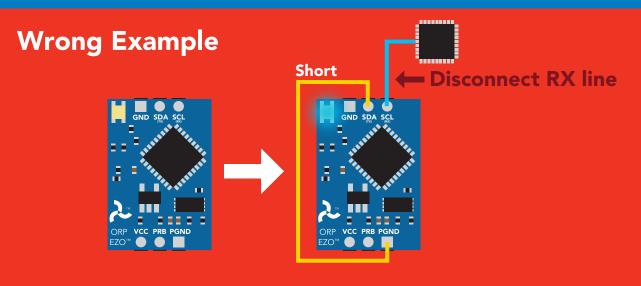
Baud,n switch from I²C to UART

ExampleResponseBaud,9600reboot in UART mode
(no response given)



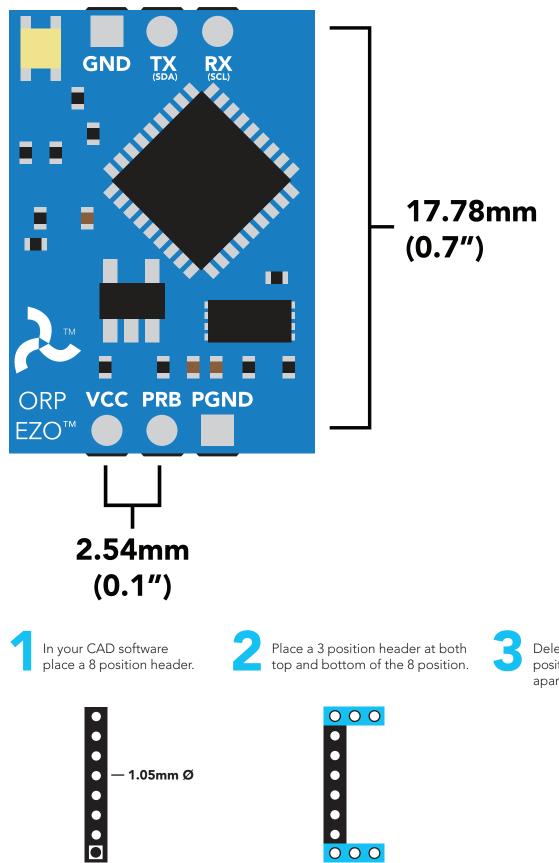
Changing to UART mode

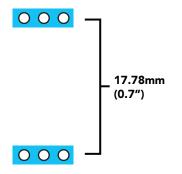




Manual switching to UART

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power


Example



EZO[™] circuit footprint

Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 5.0

Revised naming device info on pages 29 & 52.

Datasheet V 4.9

Revised single point calibration information and art on pg 13.

Datasheet V 4.8

Moved Default state to pg 14.

Datasheet V 4.7

Updated firmware to V2.11 on pg 63.

Datasheet V 4.6

Revised response for the sleep command in UART mode on pg 33.

Datasheet V 4.5

Revised calibration theory on page 12, and added more information on the Export calibration and Import calibration commands.

Datasheet V 4.4

Revised isolation schematic on pg. 10

Datasheet V 4.3

Changed "Max rate" to "Response time" on cover page.

Datasheet V 4.2

Removed note from certain commands about firmware version.

Datasheet V 4.1

Added information to calibration theory on pg 8.

Datasheet V 4.0

Revised definition of response codes on pg 42.

Datasheet V 3.9

Revised isolation information on pg 9.

Datasheet V 3.8

Revised Plock pages to show default value.

Datasheet V 3.7

Added new commands:

"Find" pages 23 (UART) & 46 (I²C). "Export/Import calibration" pages 27 (UART) & 49 (I²C). Added new feature to continous mode "C,n" pg 24.

Datasheet V 3.6

Revised circuit illustrations throughout datasheet.

Datasheet V 3.5

Added accuracy range on cover page, and revised isolation info on pg 10.

Datasheet V 3.4

Revised entire datasheet.

Firmware updates

V1.5 – Baud rate change (Nov 6, 2014)

- Change default baud rate to 9600
- V1.6 I²C bug (Dec 1, 2014)
- Fixed I²C bug where the circuit may inappropriately respond when other I²C devices are connected.
- V1.7 Factory (April 14, 2015)
- Changed "X" command to "Factory"

V1.95 – Plock (March 31, 2016)

Added protocol lock feature "Plock"

V1.96 – EEPROM (April 26, 2016)

• Fixed bug where EEPROM would get erased if the circuit lost power 900ms into startup

V1.97 - EEPROM (Oct 10, 2016)

- Fixed bug in the cal clear command, improves how it calculates the ORP
- Added calibration saving and loading

V2.10 – (May 9, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.

V2.11 – (July 17, 2017)

• Fixed bug where calibration would restore itself after restart, despite being cleared.

V2.12 - (Oct 18, 2021)

• Internal update for new part compatibility.

V2.13 - (Nov 12, 2021)

• Fixed bug in I2C mode with timing and sleep mode.

Warranty

Atlas Scientific[™] Warranties the EZO[™] class ORP circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO[™] class ORP circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific^M is the time period when the EZO^M class ORP circuit is inserted into a bread board, or shield. If the EZO^M class ORP circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO^M class ORP circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO^M class ORP circuit exclusively and output the EZO^M class ORP circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO[™] class ORP circuit warranty:

- Soldering any part of the EZO[™] class ORP circuit.
- Running any code, that does not exclusively drive the EZO[™] class ORP circuit and output its data in a serial string.
- Embedding the EZO[™] class ORP circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO[™] class ORP circuit, against the thousands of possible variables that may cause the EZO[™] class ORP circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class ORP circuits continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

