onsemi

DATA/AUDIO Low-Voltage Dual DPDT Analog Switch

FSA2466

Description

The FSA2466 is a dual Double–Pole, Double–Throw (DPDT) analog switch. The FSA2466 operates from a single 1.65 V to 4.45 V supply and features an ultra–low on resistance of 2 Ω at a +2.7 V supply and T_A = 25°C. This device is fabricated with sub–micron CMOS technology to achieve fast switching speeds and is designed for break–before–make operation.

FSA2466 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This allows mobile handset applications direct interface with the baseband processor general-purpose I/Os.

Features

Switch Type	DPDT (2x)
Input Type	Data / Audio Switch
Input Signal Range	0 to V _{CC}
V _{CC}	1.65 to 4.45 V
R _{ON}	2.5 Ω at 2.7 V
R _{FLAT}	0.8 Ω at 2.7 V
ESD	8 kV HBM
Bandwidth	245 MHz
C _{ON} at 240 MHz	16 pF
C _{OFF} at 240 MHz	6.0 pF
Features	Low I _{CTT}
Package	16-Lead UMLP 1.80 x 2.60 x 0.55 mm, 0.40 mm pitch
Top Mark	КА
Ordering Information	FSA2466UMX

Applications

- MP3 Portable Media Players
- Cellular Phones, Smartphones

UQFN16 1.8x2.6, 0.4P CASE 523BF

MARKING DIAGRAM

KA = Specific Device Code

- &K = 2-Digits Lot Run Traceability Code
- &2 = 2-Digit Date Code
- &Z = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FSA2466

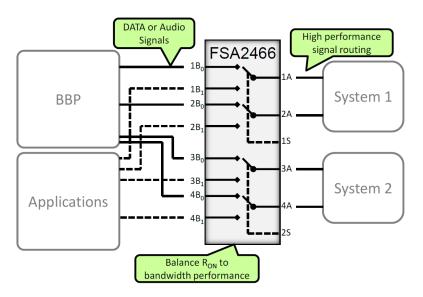


Figure 1. Typical Mobile Phone Application

ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature Range	Package	Shipping [†]
FSA2466UMX	KA	−40 to 85°C	16-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 1.8 x 2.6 mm	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin Configuration

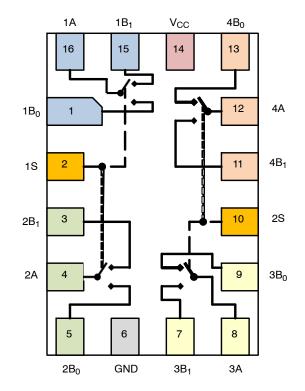


Figure 2. FSA2466UMX (Top View)

PIN DESCRIPTIONS

Pin #	Name	Туре	Description								
1	1 B 0	I/O	Data / Audio Port								
2	1S	loout	Control Input for Data & Common Data 1 & 0	0	$1B_0 = 1A \& 2B_0 = 2A$						
2	1S Input Control Input for Data & Common Ports 1 & 2			1	1B1 = 1A & 2B1 = 2A						
3	2B1	I/O	Data / Audio Port								
4	2A	I/O	Data / Audio Common Port								
5	2B0	I/O	Data / Audio Port								
6	GND	GND									
7	3B1	I/O	Data / Audio Port								
8	ЗA	I/O	Data / Audio Common Port								
9	3B 0	I/O	Data / Audio Port								
10	2S	loout	Control Input for Data & Common Data 2.8.4	0	$3B_0 = 3A \& 4B_0 = 4A$						
10	25	Input	Control Input for Data & Common Ports 3 & 4	1	3B1 = 3A & 4B1 = 4A						
11	4B1	I/O	Data / Audio Port								
12	4A	I/O	Data / Audio Common Port								
13	4B 0	I/O	Data / Audio Port								
14	Vcc	Supply	Voltage supply	Voltage supply							
15	1B1	I/O	Data / Audio Port	Data / Audio Port							
16	1A	I/O	Data / Audio Common Port								

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Supply Voltage		-0.50	5.25	V
VS	Switch Voltage		-0.5	V _{CC} + 0.3	V
V _{IN}	Input Voltage		-0.5	5.0	V
Ι _{ΙΚ}	Input Diode Current	-50		mA	
I _{SW}	Switch Current		350	mA	
I _{SWPEAK}	Peak Switch Current (Pulsed at 1 ms Duration,		500	mA	
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature			+150	°C
ΤL	Lead Temperature, Soldering 10 seconds			+260	°C
ESD	Human Body Model, JESD22-A114	I/O to GND		8	kV
			8		
		All Other Pins		8	
	Charged Device Model, JEDEC: JESD22-C10		2		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage (Note 1)	1.65	4.45	V
V _{IN}	Control Input Voltage (Note 2)	0	V _{CC}	V
V _S	Switch Input Voltage	0	V _{CC}	V
TA	Operating Temperature	-40	+85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
For 4.45 V operation, SEL frequency (pins 1S & 2S) should not exceed 100 Hz and 100 ns edge rate.
Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTRICAL CHARACTERISTICS

(Typical values are at $T_A = 25^{\circ}C$ unless otherwise specified.)

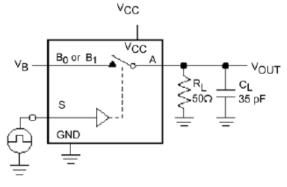
				T _A = +25°C			T _A = -40	to +85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min.	Тур.	Max.	Min.	Max.	Unit	
VIH	Input Voltage High		4.30				1.4		V	
			2.70 to 3.60				1.3			
			2.30 to 2.70				1.1			
			1.65 to 1.95				0.9			
V _{IL}	Input Voltage Low		4.30					0.7	V	
			2.70 to 3.60					0.5		
			2.30 to 2.70					0.4		
			1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage	$V_{IN} = 0 V \text{ to } V_{CC}$	1.65 to 4.30				-0.5	0.5	μA	
I _{NO(OFF)} I _{NC(OFF)}	Off Leakage Current of Port nBo and nB1	nA=0.3 V, V _{CC} -0.3V	1.95 to 4.30	-10		10	-50	50	nA	
100(011)		nB0 or nB1=0.3 V, V _{CC} –0.3V or Floating								
I _{A(ON)}	On Leakage Current of Port A	nA = 0.3 V, V _{CC} -0.3V	1.95 to 4.30	-10		10	-50	50	nA	
		$nB_0 \text{ or } nB_1 = 0.3 \text{ V},$ V_{CC} -0.3V or Floating								
R _{ON}	Switch On Resistance	I _{OUT} =100 mA	4.30		1.6			2.0	Ω	
	(Note 3)	I _{OUT} =100 mA, nB ₀ or	2.70		2.0			2.5		
		nB1=0 V, 0.7 V, 1.2 V, V _{CC}	2.30		2.2			2.7		
		I _{OUT} =100mA, nB0 or nB1=0.7 V	1.80		4.3			6.0		
ΔR_{ON}	On Resistance Matching Between Channels (Note 4)	I _{OUT} =100 mA, nB₀ or nB1=0.8 V	2.70		0.04			0.20	Ω	
		I _{OUT} =100 mA, nB ₀ or nB1=0.7 V	2.30		0.03			0.30		
D	On Resistance Flatness	I _{OUT} =100 mA, nB ₀ or	2.70		0.60			0.8	Ω	
R _{FLAT(ON)}	(Note 5)	$nB1 = 0V \rightarrow V_{CC}$	2.30		0.75			0.9		
I _{CC}	Quiescent Supply Current	V _{IN} =0 V to V _{CC} , I _{OUT} =0 V	4.30	-100		100	-500	500	nA	
		V _{IN} =1.8 V	4.30		7	12		15		
ICCT	Increase in I _{CC} Current per Control Voltage	V _{IN} =2.6 V	4.30		3	6		7	μA	

3. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.

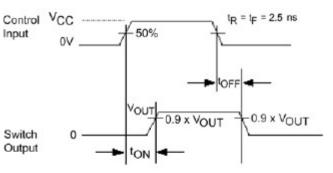
4. $\Delta R_{ON} = R_{ON} \max - R_{ON} \min$ measured at identical V_{CC}, temperature, and voltage. 5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC ELECTRICAL CHARACTERISTICS

(Typical values are are at $T_A = 25^{\circ}C$ unless otherwise specified.)

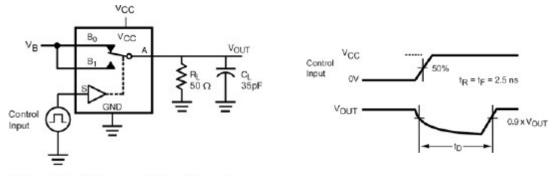

				г		С	T _A = -40	to +85°C		
Symbol	Parameter	Condition	V _{cc}	Min.	Тур.	Max.	Min.	Max.	Unit	Figure
t _{ON}	Turn–On Time	nB₀ or nB1=1.5 V R _L =50 Ω, C _L =35 pF	3.6 to 4.3			50		60	ns	Figure 3
			2.7 to 3.6			65		75		
			2.3 to 2.7			80		90		
t _{OFF}	Turn–Off Time	nB0 or nB1=1.5 V	3.6 to 4.3			32		40	ns	Figure 3
		R _L =50 Ω, C _L =35 pF	2.7 to 3.6			42		50		
			2.3 to 2.7			52		60		
t _{BBM}	Break-Before- Make Time	nB ₀ or nB ₁ =1.5 V	3.6 to 4.3		15				ns	Figure 4
	(Note 6)	R _L =50 Ω, C _L =35 pF	2.7 to 3.6		15					
			2.3 to 2.7		15					
Q	Charge Injection	C _L =100 pF, V _{GEN} =0 V, R _{GEN} =0 Ω	3.6 to 4.3		8				рС	Figure 6
		C _L =100 pF, V _{GEN} =0 V, R _{GEN} =0 Ω	2.7 to 3.6		6					
		C _L =100 pF, V _{GEN} =0 V, R _{GEN} =0 Ω	2.3 to 2.7		3					
OIRR	Off Isolation	on f=100 KHz, RL=50 Ω , CL=5 pF	3.6 to 4.3		-90				dB	Figure 5
			2.7 to 3.6		-90					
			2.3 to 2.7		-90					
Xtalk	Crosstalk	f=100 KHz, R _L =50 Ω,	3.6 to 4.3		-90				dB	Figure 5
		C _L =5 pF	2.7 to 3.6		-90					
			2.3 to 2.7		-90					
BW	-3dB Bandwidth	$R_L=50 \Omega$	2.3 to 4.3		245				MHz	Figure 8
THD	Total Harmonic	$R_L=32 \Omega$, $V_{IN}=2V_{PP}$,	3.6 to 4.3		0.21				%	Figure 9
	Distortion	f=20 to 20 kHz	2.7 to 3.6		0.17				-	
			2.3. to 2.7		0.26					
		R _L =600 Ω, V _{IN} =2 V _{PP} ,	3.6 to 4.3		0.01					
		f=20 to 20 kHz	2.7 to 3.6		0.008					
			2.3. to 2.7		0.012					

6. Guaranteed by characterization, not production tested.


CAPACITANCE

Symbol	Parameter	Condition	V _{CC}	T _A = +25°C Typical	Unit	Figure
C _{IN}	Control Pin Input Capacitance	f = 1 MHz	0	1.3	pF	Figure 3
C _{OFF}	B Port Off Capacitance	f = 1 MHz	3.3	6.0	рF	
COFF	B Fort On Capacitance	f = 240 MHz	3.3	6.0	рг	Figure 3
Cau	A Port On Capacitance	f = 1 MHz	3.3	21.0	рF	Figure 3
C _{ON}	A FUIL OIL CAPACITATICE	f = 240 MHz	3.3	16.0	μr	r igule S

AC Loadings and Waveforms



CL includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

Figure 3. Turn-On / Turn-Off Timing

CL Includes Fixture and Stray Capacitance

Figure 4. Break-Before-Make Timing

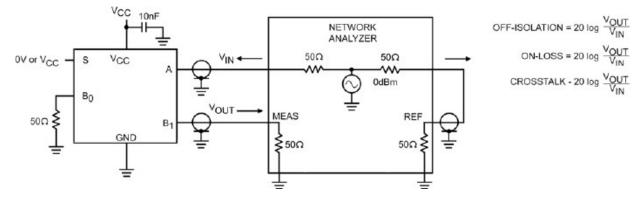


Figure 5. Off Isolation and Crosstalk

FSA2466

AC Loadings and Waveforms (Continued)

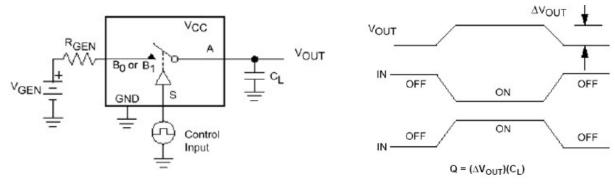


Figure 6. Charge Injection

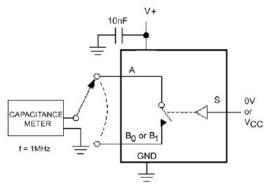
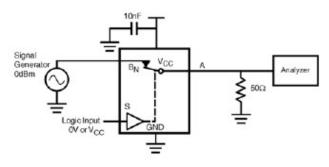



Figure 7. On / Off Capacitance Measurement Setup

Figure 8. Bandwidth

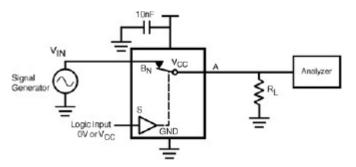
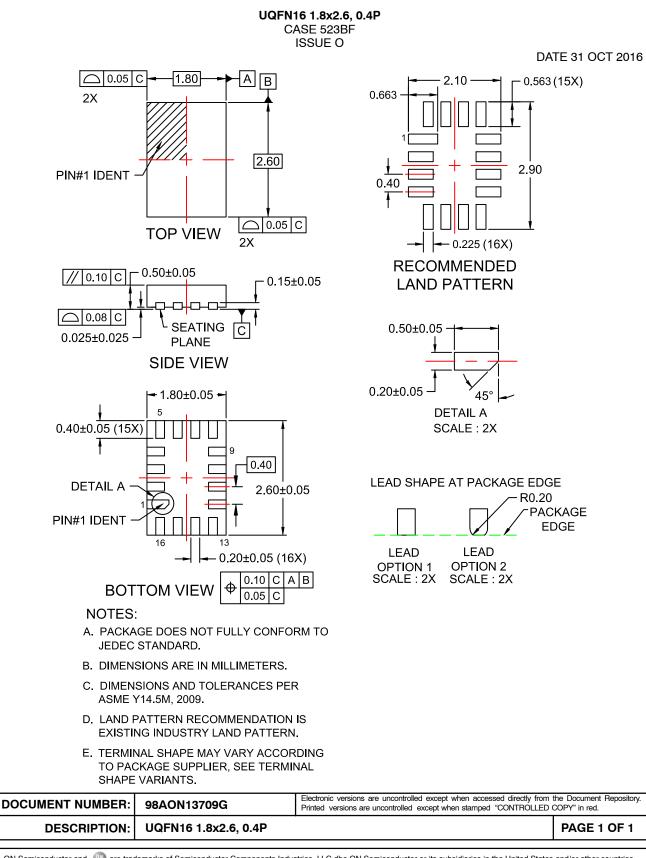



Figure 9. Harmonic Distortion

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

ON Semiconductor

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative