

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluating the AD5753 Single-Channel, 16-Bit Current and Voltage Output DAC with Dynamic Power Control and HART Connectivity

FEATURES

Fully featured evaluation board for the AD5753 On-board, 2.5 V ADR4525 reference SPI communication

EVALUATION KIT CONTENTS

EVAL-AD5753SDZ evaluation board Analog Devices, Inc., EVAL-SDP-CS1Z (SDP-S) board

EQUIPMENT NEEDED

PC EVAL-SDP-CS1Z (SDP-S) board Bench top power supply and connector cables

DOCUMENTS NEEDED

AD5753 data sheet EVAL-AD5753SDZ board user guide ACE user manual

SOFTWARE NEEDED

ACE software

GENERAL DESCRIPTION

This user guide explains how to use the EVAL-AD5753SDZ to evaluate the AD5753, a single-channel, 16-bit voltage and current output, digital-to-analog converter (DAC) with on-chip positive and negative dynamic power control (DPC) that minimizes package power dissipation.

The EVAL-SDP-CS1Z system demonstration platform (SDP-S) board is required when using the EVAL-AD5753SDZ board. The EVAL-AD5753SDZ (see Figure 1) interfaces to the USB port of the PC via the EVAL-SDP-CS1Z (SDP-S). Analysis Control Evaluation (ACE) software is available to use with the EVAL-AD5753SDZ, and allows the programming of the AD5753.

For full details on the AD5753, refer to the AD5753 data sheet. Consult the AD5753 data sheet in conjunction with this user guide when using the EVAL-AD5753SDZ. The configuration of the various link options is explained in the Evaluation Board Hardware section. The installation of the companion software is discussed in the Software Quick Start Procedures section.

TABLE OF CONTENTS

Features 1
Evaluation Kit Contents1
Equipment Needed1
Documents Needed 1
Software Needed 1
General Description
Revision History
Evaluation Board Photograph
Evaluation Board Hardware 4
Power Supplies 4
Serial Communication
AD5753 Address Pins4
Software Quick Start Procedures
Installing the ACE Software and AD5753 Plugins
Initial Setup

REVISION HISTORY

5/2019—Revision 0: Initial Version

EVAL-AD5753SDZ User Guide

AD5753 Block Diagram and Functions
Configuring the Evaluation Board10
DC-to-DC Converter Settings10
Configuring the DAC Output11
Writing to the ADC Configuration Register11
Updating Diagnostic Results11
Example Sequences 12
ACE Tool Views14
Macro Tool14
Register Debugger Tool14
Events Tool 14
Evaluation Board Schematics and Artwork15
Ordering Information 21
Bill of Materials

17332-001

EVALUATION BOARD PHOTOGRAPH

Figure 1.

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-AD5753SDZ requires power supply inputs for the AV_{DD1}, AV_{DD2}, AV_{SS}, and V_{LOGIC} supplies. If there is only one positive rail available, connect the AV_{DD2} pin to the AV_{DD1} pin via the AVDD1-AVDD2-SHRT link. Select the V_{LOGIC} supply from the 3.3V_SDP evaluation board pin or the V_{LD0} pin through the VLOGIC_SOURCE link. See Table 1 for the default link positions and see Table 2 for more linking options.

The EVAL-AD5753SDZ operates with a power supply range of -33 V on AV_{SS} to +33 V on AV_{DD1}, with a maximum voltage of 60 V between the two rails. AV_{DD2} requires a voltage between 5 V and 33 V. To bypass the positive dc-to-dc circuitry, connect the V_{DPC+} pin directly to AV_{DD1} via the JP6 jumper. To bypass the negative dc-to-dc circuitry, connect the V_{DPC-} pin directly to the AV_{SS} pin via the JP5 jumper. The recommended supply voltages are AV_{DD2} = +5 V, AV_{DD1} = +24 V, and AV_{SS} = -24 V.

SERIAL COMMUNICATION

The EVAL-SDP-CS1Z (SDP-S) handles communication to the EVAL-AD5753SDZ via the PC. The EVAL-SDP-CS1Z (SDP-S) handles the serial port interface (SPI) communication, controls the RESET pin and the LDAC pin, and monitors the FAULT pin of the AD5753.

Remove the appropriate links on P2 to disconnect the EVAL-AD5753SDZ from the EVAL-SDP-CS1Z (SDP-S) and drive the digital signals from an external source. The S1 link and the JP11 link allow the user to tie RESET and LDAC to high or low levels.

AD5753 ADDRESS PINS

The AD0 address pin and the AD1 address pin are used in conjunction with the address bits within the SPI frame to determine which AD5753 device is being addressed by the system controller. Configure the AD0 pin and the AD1 pin through the JP12 link and the JP14 link.

Link	Default Position	Function
AVDD1-AVDD2-SHRT	Not inserted	Connects AV _{DD2} to AV _{DD1} .
VLOGIC_SOURCE	A	Position A selects 3.3 V from the EVAL-SDP-CS1Z (SDP-S). Position B selects 3.3 V from the V_{LDO} pin of the AD5753.
JP1	A	Position A powers the ADR4525 reference (ADR-REF) from the V_{LDO} pin. Position B powers the ADR-REF from AV _{DD2} . The maximum supply for the ADR4525 is 15 V.
JP2	Inserted	Selects the ADR-REF pin as the input to the REFIN pin.
JP4	Not inserted	Selects the REFOUT pin as the input to the REFIN pin.
JP5	Not inserted	Shorts the V_{DPC-} pin to the AV _{SS} pin to bypass the negative dc-to-dc circuitry.
JP6	Not inserted	Shorts the V_{DPC+} pin to the AV _{DD1} pin to bypass the positive dc-to-dc circuitry.
JP7	Inserted	Shorts the ADC2 pin to the +V _{SENSE} pin.
JP8	Inserted	Connects the VI _{OUT} pin to the +V _{SENSE} pin.
JP9	Not inserted	Connects the RETURN signal to the GND position on the EVAL-AD5753SDZ.
JP10	Inserted	Connects the –V _{SENSE} pin to the RETURN signal.
JP11	A	Position A connects the $\overline{\text{LDAC}}$ pin to the GND position. Position B connects the $\overline{\text{LDAC}}$ pin to the V _{LOGIC} pin.
JP12	А	Position A connects the AD0 pin to the GND position. Position B connects the AD0 pin to the V_{LOGIC} pin.
JP13	В	Position A connects the GPIO_0 pin to the GND position. Position B connects the GPIO_0 pin to the V_{LOGIC} pin.
JP14	A	Position A connects the AD1 pin to the GND position. Position B connects the AD1 pin to the V_{LOGIC} pin.
JP15	В	Position A connects the GPIO_2 pin to the GND position. Position B connects the GPIO_2 pin to the V_{LOGIC} pin.
JP16	В	Position A connects the GPIO_1 pin to the GND position. Position B connects the GPIO_1 pin to the V_{LOGIC} pin.
JP17	Not inserted	Connects the AV _{ss} pin to the GND position for the unipolar supply option (current output only).
P2	Inserted	Provides options to disconnect from the EVAL-SDP-CS1Z (SDP-S) and to drive digital signals from an external source. See Table 2 for the specific link options.
S1	2-3	Position 2-1 (on position to the right of off) connects the $\overline{\text{RESET}}$ pin to the GND position. Position 2-3 (on position to the left of off) connects the $\overline{\text{RESET}}$ pin to the VLOGIC pin.

Table 1. EVAL-AD5753SDZ Link Option Functions

Table 2. Link Options for P2

Pin Number	Position	Function
1, 2	Inserted	Connects the FAULT signal from the EVAL-SDP-CS1Z (SDP-S) to the FAULT pin on the AD5753.
	Not inserted	Disconnects the FAULT signal from the EVAL-SDP-CS1Z (SDP-S) to the FAULT pin on the AD5753.
3, 4	Inserted	Connects the RESET signal from the EVAL-SDP-CS1Z (SDP-S) to the RESET pin on the AD5753.
	Not inserted	Disconnects the RESET signal from the EVAL-SDP-CS1Z (SDP-S) to the RESET pin on the AD5753.
5, 6	Inserted	Connects the LDAC signal from the EVAL-SDP-CS1Z (SDP-S) to the LDAC pin on the AD5753.
	Not inserted	Disconnects the LDAC signal from the EVAL-SDP-CS1Z (SDP-S) to the LDAC pin on the AD5753.
7, 8	Inserted	Connects the SCLK signal from the EVAL-SDP-CS1Z (SDP-S) to the SCLK pin on the AD5753.
	Not inserted	Disconnects the SCLK signal from the EVAL-SDP-CS1Z (SDP-S) to the SCLK pin on the AD5753.
9, 10	Inserted	Connects the SDO signal from the EVAL-SDP-CS1Z (SDP-S) to the SDO pin on the AD5753.
	Not inserted	Disconnects the SDO signal from the EVAL-SDP-CS1Z (SDP-S) to the SDO pin on the AD5753.
11, 12	Inserted	Connects the SDI signal from the EVAL-SDP-CS1Z (SDP-S) to the SDI pin on the AD5753.
	Not inserted	Disconnects the SDI signal from the EVAL-SDP-CS1Z (SDP-S) to the SDI pin on the AD5753.
13, 14	Inserted	Connects the SYNC signal from the EVAL-SDP-CS1Z (SDP-S) to the SYNC pin on the AD5753.
	Not inserted	Disconnects the SYNC signal from the EVAL-SDP-CS1Z (SDP-S) to the SYNC pin on the AD5753.

SOFTWARE QUICK START PROCEDURES INSTALLING THE ACE SOFTWARE AND AD5753 PLUGINS

The EVAL-AD5753SDZ software uses the Analog Devices ACE software. For instructions on how to install and use the ACE software, go to www.analog.com/ACE.

When the installation is finished, open the ACE software to open the EVAL-AD5753SDZ plugin (see Figure 2).

INITIAL SETUP

To set up the EVAL-AD5753SDZ with the ACE software, take the following steps:

- 1. Connect one end of the USB cable to the PC, and connect the other end to the EVAL-SDP-CS1Z (SDP-S).
- 2. Connect the EVAL-SDP-CS1Z (SDP-S) to the EVAL-AD5753SDZ. The PC recognizes the EVAL-AD5753SDZ.
- 3. Power up the EVAL-AD5753SDZ with the power supplies described in the Power Supplies section.
- 4. If not opened already, open the ACE software. The EVAL-AD5753SDZ appears in the **Attached Hardware** section of the ACE software window.
- 5. The first time the EVAL-AD5753SDZ is set up, the plugin may need to be installed. If the plugin appears as shown in Figure 6, then go to Step 7. If the plugin appears as shown in Figure 3, click on the button circled in red to open the pop-up window shown in Figure 4, then click **Yes**.
- A new window (see Figure 5) opens. Select the Board.AD5753 plugin and click the Install Selected button. The installed EVAL-AD5753SDZ plugin displays as shown in Figure 6.

Figure 3. EVAL-AD5753SDZ Plugin Not Installed

Analysis	Control Evaluation - Plug-in Not Installed	83	
()	One or more of the systems selected has no matching plug-in installed. Do you want to launch the Plug-in Manager to search online? Note: 1. The Plug-in Manager requires an internet connection. 2. Selecting no to add systems to the system view anyway.		
	<u>Y</u> es <u>N</u> o		

Figure 4. Installing the Plugin Pop-Up Window

Installed Packages	Board.AD5675 AD5675 Evaluation Board	Available	1	P
Al	Board.AD5675R AD9675R Evaluation Board	Available		
Master Repository	Board.AD5676 AD5676 Evaluation Board	Available		
	Board.AD5676R AD5676R Evaluation Board	Available		
	Board.AD5683R AD5683R Evaluation Board	Available		
	Board.AD5686R AD5686R Evaluation Board	Available		
	Board.AD5693R AD5696R Evaluation Board	Available		
	Board.AD5696R AD5696R Evaluation Board	Available		
	Board.AD5766 AD5766 Evaluation Board	Available		
	Board.AD6688 AD6688 Evaluation Board	Available		
	Board.AD738X The AD738X ACE Plugin supports the EVAL-AD7360FMCZ and the EVAL-AD7381FMCZ	Available		
	Board.AD9152 Plugin for evaluating the AD9152 high-speed DAC.	Available		
	Board AD9172 Board plug-in for AD9171. AD9172. AD9173. AD9174 and AD9176	Available		
Refresh Cattinos	betal felected			-

Figure 5. Plugin Manager Window

7332-005

EVAL-AD5753SDZ User Guide

Figure 6. Attached Hardware Section with Connected EVAL-AD5753SDZ

7. Double-click EVAL-AD5753SDZ to open the AD5753 block diagram (see Figure 7). The INITIAL CONFIGURATION menu appears on the left side of the window. Several register settings can be configured under this menu, and are written to the device in the appropriate order. The DIG_DIAG_STATUS, RESET_OCCURED, and CAL_MEM_UNREFRESHEDLED indicators are highlighted red. Write the initial configuration values to clear the error flags. If the device is power cycled, or if the USB cable is disconnected and reconnected while the ACE software is open, contact with the EVAL-AD5753SDZ is lost. If contact is lost, click the System tab, click the USB symbol on the EVAL-AD5753SDZ, and then click Acquire to restore communication with the EVAL-AD5753SDZ.

Figure 7. AD5753 Block Diagram in ACE Software

17 332-008

AD5753 BLOCK DIAGRAM AND FUNCTIONS

The AD5753 ACE plugin appears similar to the block diagram shown in the AD5753 data sheet. This similarity allows the user to correlate the functions on the EVAL-AD5753SDZ to the descriptions in the AD5753 data sheet.

A full description of each block and register setting is available in the AD5753 data sheet. The full screen AD5753 block diagram is shown in Figure 8 with all blocks labeled. Table 3 describes the functionality of each block.

Figure 8. AD5753 Block Diagram with Labels

EVAL-AD5753SDZ User Guide

Table 3. AD5753	Block Diagram	Label Functions	(See Figure 8)
			(

Label	Function
А	Apply Changes. Applies any changes made to the block diagram or to register values in the memory map to the device.
В	Read All. Click to read back all of the registers of the device.
С	Reset Chip. Click to reset the AD5753. Reset Chip has the same functionality as the software reset of the AD5753.
D	Diff . Click to show the registers that are different from the data stored on the device. This function shows changes from the last time the registers were read.
E	Software Defaults . Click to load the software defaults of the device. These values are not written to the hardware. Click Apply Changes (Label A) to write the software default values to the hardware.
F	AD0 and AD1 . These check boxes set the address of the device and must correspond to the JP12 link and the JP14 link on the hardware. When either box is checked, this represents a high state. When either box is unchecked, this represents a low state.
G	/RESET. Check the EVAL-SDP-CS1Z (SDP-S) to set the RESET pin high. Otherwise, the EVAL-SDP-CS1Z (SDP-S) pulls RESET low.
Н	/LDAC. Check the EVAL-SDP-CS1Z (SDP-S) to set the LDAC pin high. Otherwise, the EVAL-SDP-CS1Z (SDP-S) pulls LDAC low.
I	/FAULT. Indicator LED lights up red if the FAULT pin is low. The ACE plugin monitors the FAULT pin.
К	VI_OUT. Displays the calculated output at VI_OUT and shows if the output is in voltage, milliamps, or is high impedance (high-Z).
Lx	Graphical user interface (GUI) access on several registers. Pop-up windows, dropdown menus, and hexadecimal textboxes are available in the GUI to configure several registers of the AD5753. To write the changes to the device, click the Apply Changes button (Label A). The functions within the GUI that control various registers (Label L1 through Label L15) are described in Table 4.
М	Calibration Memory Refresh button. Initiates a write to the key register to perform a calibration memory refresh.
Ν	SW LDAC button. Initiates a write to the key register to perform a software LDAC command.
0	NOP Command button. Initiates a write to Address 0x00 for a no operation (NOP) command.
Р	Configure ADC button. Writes the data selected in the ADC Config menu (Label L15) to the ADC configuration register.
Q	Two Stage Readback menu. Initiate two-stage readback through the two-stage readback select register. Click the Readback button to initiate a write to the two-stage readback select register and issue a no operation command.
R	DIGITAL DIAGNOSTIC RESULTS menu. Click the Update and Readback digital diagnostic result button to trigger a write of 1 to clear operation and a readback from the digital diagnostic results register.
S	ANALOG DIAGNOSTIC RESULTS menu. Click the Update and Readback analog diagnostic result button to trigger a write of 1 to clear operation and a readback from the analog diagnostic results register.
Т	HART_EN box. Check this box to allow the HART_EN bit = 1 in the General-Purpose Configuration 1 register.
U	Proceed to Memory Map button. Click this button to open the AD5753 memory map (see Figure 9).
V	Example Sequences button. Click this button to open the example sequences window (see Figure 15).

Table 4. Register Controls Accessible via the GUI (See Label Lx in Table 3 and in Figure 8)

Label	Function
L1	Diagnostic Configuration button. Click this button to open the associated pop-up menu.
L2	GP Config menu. Click this menu to open the associated pop-up menu.
L3	Key register menu. Click this menu to open the associated dropdown menu.
L4	Fault Pin Config button. Click this button to open the associated pop-up menu.
L5	WDT Config button. Click this button to open the associated pop-up menu.
L6	Frequency Monitor menu. This menu displays the value in the frequency monitor when read.
L7	Clear Code menu. Use the textbox in this menu to insert a clear code value in hexadecimal format.
L8	User Gain menu. Use the textbox in this menu to insert a user gain value in hexadecimal format.
L9	User Offset menu. Use the textbox in this menu to insert a user offset value in hexadecimal format.
L10	DAC Input Reg menu. Use the textbox in this menu to insert the DAC value in hexadecimal format.
L11	16 Bit DAC symbol. Click this button to open the associated pop-up menu.
L12	DAC Output Reg menu. This menu displays the hexadecimal value currently set in the DAC output register.
L13	DC-DC Converter. Click this button to open the dc-to-dc configuration pop-up menu.
L14	Status Register menu. This menu displays the contents of the status register.
L15	ADC Config menu. This menu contains a combination of dropdown menus and a textbox to enter the sequence data.
L16	GPIO Config/Data. Click this button to bring up a pop-up menu that allows control of the GPIOs.

EVAL-AD5753SDZ User Guide

stem • Subsystem_1 • EVAL-A	D5753	SDZ •	AD5753 + AD	5753 Memory Map 🛛 😭 🔛 🕻	5 =											AH	EAD O		/IC	ES
t × System × AD5753 ×	AD575	3 Memo	ry Map 🗙																	
Apply Apply Selected	d All	Read	Selected Reset	t Chip Diff Software Defaults																
Select View	· F	Registers	*			_													_	5
Registers 🔘 Bit Fields		+/-	Address (Hex)	Name	Data (Hex)	Dat	a (Bin	ary)											_	
Register Maps Filter		+	0007	* SW_LDAC	000000	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	•
		+	0008	* KEY	000000	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	
Functional Groups Filter		+	0009	* GP_CONFIG1	000204	0	0	0	0	0	0	0 (0	0	0	0	1	0	0	
Bit Field Search		+	000A	* GP_CONFIG2	000200	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	
rch Bit Fields		+	000B	* DCDC_CONFIG1	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
ults:		+	000C	* DCDC_CONFIG2	000100	0	0	0	0	0	0	0 (0 0	0	0	0	0	1	0	
00: REGISTER_ADDRESS 00: FAULT_PIN_STATUS		+	000D	* GPIO_CONFIG	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	I.
001: DAC_INPUT_DATA 001: REGISTER_ADDRESS		+	000E	* GPIO_DATA	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	I.
001: FAULT_PIN_STATUS 002: DAC_OUTPUT_DATA		+	000F	* WDT_CONFIG	000009	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	I.
002: REGISTER_ADDRESS 002: FAULT_PIN_STATUS		+	0010	* DIGITAL_DIAG_CONFIG	00005D	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	H
003: CLEAR_CODE 003: REGISTER_ADDRESS		+	0011	* ADC_CONFIG	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	H
003: FAULT_PIN_STATUS 004: USER_GAIN		+	0012	* FAULT_PIN_CONFIG	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	I.
004: REGISTER_ADDRESS 004: FAULT_PIN_STATUS		+	0013	* TWO_STAGE_READBACK_SELECT	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
005: USER_OFFSET 005: REGISTER_ADDRESS		+	0014	* DIGITAL_DIAG_RESULTS	00A000	0	0	0	0	0	0	1 () 1	0	0	0	0	0	0	I.
005: FAULT_PIN_STATUS 006: RANGE		+	0015	* ANALOG_DIAG_RESULTS	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
006: OVRNG_EN 006: INT_EN		+	0016	* STATUS	100000	0	1	0	0	0	0	0 (0 0	0	0	0	0	0	0	
006: OUT_EN 006: RSET_EXT_EN		+	0017	* CHIP_ID	000101	0	0	0	0	0	0	0 (0 0	0	0	0	0	1	0	
006: SR_EN 006: SR_CLOCK		+	0018	* FREQ_MONITOR	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
006: SR_STEP 006: REGISTER_ADDRESS		+	0019	* RESERVED	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
006: FAULT_PIN_STATUS 007: LDAC_COMMAND		+	001A	* RESERVED.	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
007: REGISTER_ADDRESS 007: FAULT_PIN_STATUS		+	001B	* RESERVED.	000000	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	
008: KEY_CODE		1			ł	-		_	_	-	-	-	-	-	-		-	-		4

Figure 9. AD5753 Memory Map in ACE Software

CONFIGURING THE EVALUATION BOARD

An initial configuration wizard is available when opening the AD5753 plugin. The initial configuration wizard allows configuration of the AD5753 and provides configuration of the clock output in the General-Purpose Configuration Register 1, the dc-to-dc settings, the DAC configuration, and the DAC input register. Click the **Apply** button to initiate the configured settings in the order of the recommended power-up sequence described in the AD5753 data sheet.

DC-TO-DC CONVERTER SETTINGS

If the V_{DPC+} pin is not tied directly to the AVDD1 pin, enable the dc-to-dc converter for correct operation. Complete this step before configuring the DAC output. The **DC-DC Configuration** pop-up menu, shown in Figure 10, contains the dc-to-dc settings required to configure the AD5753 output correctly. After the proper settings are selected, click the **Close** button and then click **Apply Changes.**

Figure 10. DC-DC Configuration Pop-Up Menu

CONFIGURING THE DAC OUTPUT

To configure the DAC output, use the pop-up menu for the DAC configuration register (see Figure 11), available in the GUI. Click the **16 Bit DAC** (Label L11, Figure 8) symbol in the GUI to display the DAC configuration register. Select the appropriate settings and then click **Apply Changes** (Label A, Figure 8). It is recommended to disable the output until the correct value in the DAC input register is written to the device.

To change the DAC voltage or current output level, write the appropriate hexadecimal code to the DAC input register and then click **Apply Changes**. Issue a software LDAC command using the **SW LDAC** (Label N, Figure 8) button, or pull the LDAC pin low to update the DAC output register with the values in the DAC input register. Select the **OUT_EN** checkbox to enable the DAC output and then click **Apply Changes**. The programmed voltage or current is reflected at the VI_{OUT} pin.

Figure 11. AD5753 DAC Config Register Pop-Up Menu

WRITING TO THE ADC CONFIGURATION REGISTER

The procedure to set up and configure the ADC sequencer is discussed in the AD5753 data sheet. Writing to the ADC configuration register is simplified because of the multiple configuration modes.

Dropdown menus and a hexadecimal textbox are available within the GUI (see Figure 12) to access the ADC configuration register. Click the **Configure ADC** button instead of the **Apply Changes** button to write to the ADC configuration register.

Figure 12. AD5753 ADC Configuration Register

UPDATING DIAGNOSTIC RESULTS

The AD5753 has a digital diagnostic results register and an analog diagnostic results register, both of which contain error flags for the on-chip digital and analog diagnostic features. Write 1 to the respective error flags to update the error flag status.

The **Update and Readback** button shown in Figure 13 is available on the ACE GUI to update the digital and analog diagnostic results registers. Click this button to initiate a write of 1 (by selecting the box) to the selected error flag, and then read back the updated diagnostic result. Figure 13 shows the digital diagnostic results register. Figure 14 shows the analog diagnostic results register.

Figure 13. AD5753 Digital Diagnostic Results Register

O VLDO_ERR O INT_AVCC_ERR O REFIN_ERR O REFOUT_ERR O MAIN_DIE_TEMS	OCDC_DIE_TEMP_ERR OVDUT_SC_ERR OUDUT_OC_ERR ODCDC_P_PWR_ERR P_ERR	O DCDC_N_PWR_ERF O DCDC_P_SC_ERR O DCDC_N_SC_ERR O DCDC_N_SC_ERR
	Update and Readback	

Figure 14. AD5753 Analog Diagnostic Results Register

EXAMPLE SEQUENCES

There are several example sequences available. Click the **Example Sequences** button (Label V, Figure 8) and the window shown in Figure 15 appears. To enable any of the sequences, click on the relevant sequence button, as shown in Figure 16. The sequence runs immediately and the output changes accordingly. To return to the main window, click the **Back to AD5753** button.

(Untitled Session) - Analysis Control Evaluation 1.11.2 jile <u>V</u> iew <u>T</u> ools <u>H</u> elp F <u>e</u> edback	702.1155			
System Subsystem_1 EVAL-AD5753SDZ AD57	753 • AD5753 Seq	uence View 🕋 🗱 🗑 🔜 🐼 🐼		AHEAD OF WHAT'S POSSIBLE*
Start × System × AD5753 ×				
Apply Changes Read All Reset Chip Diff	Software Defaults			
INITIAL CONFIGURATION				_
Restore Software Defaults	Í	Sample AD5753 Sequences		
CONFIGURE CLOCKOUT		Current Output		
CLKOUT_FREQ: 500 kHz 🔹		Positive & Negative DPC Enabled	Positive DPC Enabled	
CLKOUT_CONFIG: CLKOUT Disabled		+-20mA Range full-scale output	0 to 20mA Range full-scale output	
CONFIGURE DC-DC SETTINGS		+-20mA Range zero-scale output	4 to 20mA Range full-scale output	
DCDC_LLIMIT: 150 mA		1 to 22mA Dense full code submit		
		-1 to 22mA Range full-scale output	4 to 20mA Range zero-scale output	
DCDC_VPROG: 0x 0		-1 to 22mA Range zero-scale output		
CONFIG DAC SETTINGS	4	+-24mA Range full-scale output		
Range: 0V to 5V		Voltage Output		
OVRNG_EN:		Positive & Negative DPC Enabled	Positive DPC Enabled	
Enable Buffer: 🗹 RSET_EXT_EN: 🗐		+-10V Range full-scale output	0 to 5V Range full-scale output	
SR_EN:		+-10V Range zero-scale output	0 to 5V Range mid-scale output	
SR_CLOCK: 16 kHz •			0 to 10V Range mid-scale output	
Enable Output:				
	l		0 to 10V Range full-scale output	
DAC Input: Ox 0				
Summary Apply	Back to	AD5753 Example Sequences	Proceed to M	Aemory Map
ate=Good, AD5753 - CheckState, Finished at 13:09:48				<u>.</u>

Figure 15. Example Sequences Window

EVAL-AD5753SDZ User Guide

Positive & Negative DPC Enabled	Positive DPC Enabled
+-20mA Range full-scale output	0 to 20mA Range full-scale output
+-20mA Range zero-scale output	4 to 20mA Range full-scale output
-1 to 22mA Range full-scale output	4 to 20mA Range zero-scale output
-1 to 22mA Range zero-scale output	
+ 24mA Pange full scale output	
+-24mA Range run-scale output	
oltage Output Positive & Negative DPC Enabled	Positive DPC Enabled
Control Ange full-scale output Costive & Negative DPC Enabled +-10V Range full-scale output	Positive DPC Enabled 0 to 5V Range full-scale output
	Positive DPC Enabled 0 to 5V Range full-scale output 0 to 5V Range mid-scale output

Figure 16. Selecting an Example Sequence

17332-016

ACE TOOL VIEWS

The ACE software provides additional functionality to the main view described in this user guide. Open these views from the view menu item on the application toolbar. The ACE software features a macro tool, a register debugger tool, and an events tool.

MACRO TOOL

The macro tool records and saves commands as an ACE macro file. This feature is useful when sharing macros with other users to perform the same task multiple times. The user can import and run an ACE macro file.

REGISTER DEBUGGER TOOL

The register debugger tool performs raw writes to, and reads from, the device. The register debugger only affects the hardware and does not write to the memory map of the ACE software.

EVENTS TOOL

The events tool view contains a list of errors, warnings, and information messages generated within the application software.

EVALUATION BOARD SCHEMATICS AND ARTWORK

VLOGIC SOURCE OPTIONS

GROUND PLANE APPROACH = SHORT AGND, DGND, PGND1 AND PGND2 TO PRODUCE "GND" REFGND "ISLAND" PINNED TO OTHER GND PLAIN AT 1 POINT

Figure 17. AD5753 Supplies and Reference Options

EVAL-AD5753SDZ User Guide

810-26671

OPTION TO DRIVE VDPC+ WITH AVDD1 (BYPASS POSITIVE DC-DC)

EVAL-AD5753SDZ User Guide

EVAL-AD5753SDZ User Guide

Figure 23. Ground and Power Plane, Layer 2, and Layer 3

ORDERING INFORMATION

BILL OF MATERIALS

Table 5. Bill of Materials

Reference Designator	Description	Manufacturer	Part Number
+VSENSE, -VSENSE, FAULT, LDAC,	Test points, green	Vero Technologies	20-313138
RESET, SYNC, ADC1, ADC2, CLKOUT,			
C_HART, GPIO0, GPIO1, GPIO2,			
KTN_TERMINAL, SCLK, SDI, SDO, VLOUT VLOUT TERMINAL			
	Test points red	Vero Technologies	20-313137
REFOUT, VDPC+, VDPC-, VLDO,		vero reennoiogies	20 515157
VLOGIC			
AVDD1-AVDD2-SHRT, JP2, JP4, JP5, JP6, JP7, JP8, JP9, JP10, JP17	Jumpers, male, 2-position, 1X M000385	Amphenol FCI	69157-102
AV _{DD1} /AV _{ss}	Terminal block, 3-position	Phoenix Contact	1727023
AV _{DD2}	Terminal block, 2-position, green	Phoenix Contact	1727010
C1	Ceramic capacitor, X7R, general-purpose	Yageo	CC1206KKX7R9BB105
C8, C11	Ceramic capacitors, X5R, general-purpose	AVX Corporation	06033D105KAT2A
C12, C13, C14, C15, C16	Ceramic capacitors, X7R	TDK	CGA2B3X7R1H104K050BB
C2, C3, C4, C17, C18	Ceramic capacitors, X7R, general-purpose	Murata	GRM31CR71H475KA12L
C20, C21	Ceramic capacitors, 2.2 μF, 50 V, 10%, X7R, 1206 automotive	Murata	GCM31CR71H225KA55K
C25	Ceramic capacitor, X7B, 1206	AVX Corporation	12065C154KAT2A
C26	Ceramic capacitor, X7R, 1206	AVX Corporation	12065C473JAT2A
C5, C6, C7	Ceramic capacitors, X7R	KEMET	C0805C104J5RACTU
C9	Ceramic capacitor, 0603 X7R	KEMET	C0603C104K3RACTU
D1	Zener voltage regulator	NXP Semiconductors	BZX585-C15
DS1	LED surface mount device (SMD), 0603,	Vishay	TLMS1000-GS08
	red		
DS2, DS3, DS4, DS5	LED SMD, 0603, green	Lumex	SML-LX0603GW-TR
GND, TP3 to TP12	Test points, black	Vero Technologies	20-2137
JP1, JP11 to JP16, VLOGIC_SOURCE	Position male HDR unshrouded, single row, 2.54 mm pitch, 3 mm solder tail	Harwin	M20-9990345
L1, L2	Inductors, shielded power	Coilcraft, Inc.	LPS4018-473MRB
P1	Vertical type for SDP-S breakout board	HRS	FX8-120S-SV(21)
P2	Header, male 20-position	Samtec	TSW-110-08-G-D
P3	Term block, 5-position, green	Phoenix Contact	1727049
P4, P5, P6, P7	Pin sockets	Vero Technologies	66-3472
R1, R10, R13	Thick film chip resistors	Multicomp	MC0063W060311K
R11	Precision thick film chip resistor	Panasonic	ERJ-6ENF10R0V
R12	Thin film chip resistor, high reliability	Panasonic	ERA-6AEB202V
R5, R14, R30, R31, R32	Thick film chip resistors	Vishay	CRCW06031K00FKEAHP
R2, R15 to R17, R19 to R25	Film resistors, SMD, 0603	Multicomp	MC0603WG00000T5E-TC
R18, R27, R28	Thick film chip resistors, 0603, 1%, 100 k Ω	Multicomp	MC 0.063W
R3	Precision thin film chip resistor	TE Connectivity	CPF0603B20RE1
R6	Chip SMD resistor, precision power	Vishay	CRCW06030000Z0EA
R8	Thin film precision resistor	TE Connectivity	RN73C1J13K7BTG
S1	Switch tiny washable toggle switches	Apem Components	TL39P0050
U1	IC, Analog Devices ultralow noise, high accuracy VREF	Analog Devices	AD5752BRZ
U2	IC-ADI single-channel, 16-bit current or voltage output DAC, dynamic power control, highway addressable remote	Analog Devices	AD5753BCPZ-RL7
	transducer (HART) [®] connectivity		
U3	IC 32-kBit serial EEPROM	Microchip Technology	24LC32A/SN

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG17332-0-5/19(0)

www.analog.com

Rev. 0 | Page 22 of 22