

DATASHEET

Description

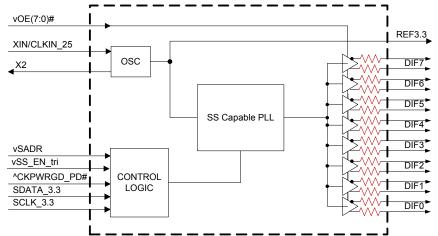
The 9FGL0841/51/P1 are members of IDT's 3.3V Low-Power (LP) PCIe family. The devices have 8 output enables for clock management and support 2 different spread spectrum levels in addition to spread off. The 9FGL0841/51/P1 supports both Common Clock (CC) with or without spread spectrum and Separate Reference no-Spread (SRnS) PCIe clocking architectures. The 9FGL08P1 can be programmed with a user-defined power up default SMBus configuration.

Recommended Application

3.3V PCIe Gen1-2-3 Clock Generator

Output Features

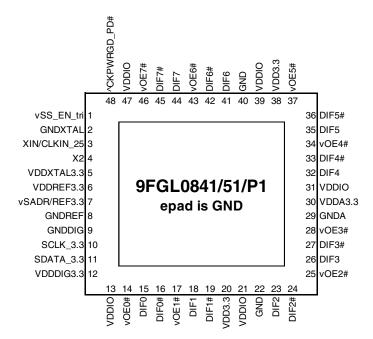
- 8 100 MHz Low-Power HCSL (LP-HCSL) DIF pairs
 - 9FGL0841 default Zout = 100Ω
 - 9FGL0851 default Zout = 85Ω
 - 9FGL08P1 factory programmable defaults
- 1 3.3V LVCMOS REF output w/Wake-On-LAN (WOL) support


Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <50ps
- DIF phase jitter is PCle Gen1-2-3 compliant with SSC on or off
- DIF 12k-20M phase jitter is <2ps rms when SSC is off
- REF phase jitter is <300fs rms, SSC off, and <1.5ps rms, SSC is On
- ±100ppm frequency accuracy on all clocks

Features/Benefits

- Direct connection to 100Ω (xx41) or 85Ω (xx51) transmission lines; saves 32 resistors compared to standard PCIe devices
- 130mW typical power consumption; eliminates thermal concerns
- · SMBus-selectable features allows optimization to customer requirements:
 - control input polarity
 - control input pull up/downs
 - slew rate for each output
 - differential output amplitude
 - 33, 85 or 100Ω output impedance for each output
 - spread spectrum amount
- 41 and 51 devices contain default configuration; SMBus interface not required for device operation
- P1 device allows factory programming of customer-defined SMBus power up default; allows exact optimization to customer requirements
- Outputs can optionally be supplied from any voltage between 1.05 and 3.3V; maximum power savings
- · OE# pins; support DIF power management
- 8MHz 40MHz input frequency (25MHz default); flexibility
- Pin/SMBus selectable 0%. -0.25% or -0.5% spread on DIF outputs %; minimize EMI and phase jitter for each application
- DIF outputs blocked until PLL is locked; clean system start-up
- Two selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 48-pin 6x6mm VFQFPN; minimal board


Block Diagram

Note: Resistors default to internal on 41/51 devices. P1 devices have programmable default impedances on an output-by-output basis.

Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- vv prefix indicates internal 60KOhm pull down resistor
- v prefix indicates internal 120KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

SMBus Address Selection Table

	SADR	Address	+ Read/Write Bit
State of SADR on first application	0	1101000	Х
of CKPWRGD PD#	1	1101010	x

Power Management Table³

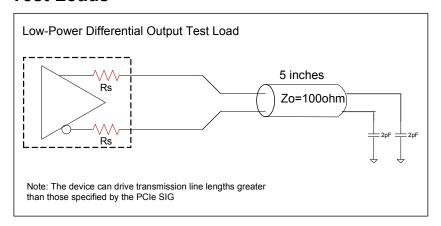
CKPWRGD_PD#	PD# SMBus OEx# Pin DIFx/DIFx#		IFx#	REF	
CKFWKGD_FD#	OE bit	OLX# FIII	True O/P	Comp. O/P	INLI
0	Х	Х	Low ¹	Low ¹	Hi-Z ²
1	1	0	Running	Running	Running
1	1	1	Disabled ¹	Disabled ¹	Running
1	0	Х	Disabled ¹	Disabled ¹	Disabled ⁴

- 1. The output state is set by B11[1:0] (Low/Low default)
- 2. REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5]=1, in which case REF is running..
- 3. Input polarities defined at default values for 9FGL0841/0851.
- 4. See SMBus description for Byte 3, bit 4

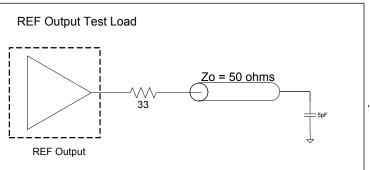
Power Connections

Pin Number			Description
VDD	VDDIO	GND	Description
5		2	XTAL OSC
6		8	REF Power
12		9	Digital (dirty) Power
20,38	13,21,31,39, 47	22,29,40, 49	DIF outputs
30		29	PLL Analog

Pin Descriptions (9FGL0841/51 Configuration)


PIN#	PIN NAME	TYPE	DESCRIPTION
		LATCHED	Latched select input to select spread spectrum amount at initial power up :
1	vSS_EN_tri	IN	1 = -0.5% spread, M = -0.25%, 0 = Spread Off
2	GNDXTAL	GND	GND for XTAL
3	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25MHz.
4	X2	OUT	Crystal output.
5	VDDXTAL3.3	PWR	Power supply for XTAL, nominal 3.3V
6	VDDREF3.3	PWR	VDD for REF output. nominal 3.3V.
7	vSADR/REF3.3	LATCHED I/O	Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin
8	GNDREF	GND	Ground pin for the REF outputs.
9	GNDDIG	GND	Ground pin for digital circuitry
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	VDDDIG3.3	PWR	3.3V digital power (dirty power)
13	VDDIO	PWR	Power supply for differential outputs
14	vOE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
15	DIF0	OUT	Differential true clock output
16	DIF0#	OUT	Differential Complementary clock output
17	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
20	VDD3.3	PWR	Power supply, nominal 3.3V
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	DIF2	OUT	Differential true clock output
24	DIF2#	OUT	Differential Complementary clock output
25	vOE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
26	DIF3	OUT	Differential true clock output
27	DIF3#	OUT	Differential Complementary clock output
28	vOE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
29	GNDA	GND	Ground pin for the PLL core.
30	VDDA3.3	PWR	3.3V power for the PLL core.
31	VDDIO	PWR	Power supply for differential outputs
32	DIF4	OUT	Differential true clock output
33	DIF4#	OUT	Differential Complementary clock output
34	vOE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
35	DIF5	OUT	Differential true clock output
36	DIF5#	OUT	Differential Complementary clock output
37	vOE5#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
38	VDD3.3	PWR	Power supply, nominal 3.3V
39	VDDIO	PWR	Power supply for differential outputs

Pin Descriptions (9FGL0841/51 Configuration), cont.


PIN#	PIN NAME	TYPE	DESCRIPTION
40	GND	GND	Ground pin.
41	DIF6	OUT	Differential true clock output
42	DIF6#	OUT	Differential Complementary clock output
43	vOE6#	IN	Active low input for enabling DIF pair 6. This pin has an internal pull-down.
43	VOE0#	IIN	1 =disable outputs, 0 = enable outputs
44	DIF7	OUT	Differential true clock output
45	DIF7#	OUT	Differential Complementary clock output
46	vOE7#	IN	Active low input for enabling DIF pair 7. This pin has an internal pull-down.
40	VOE7#	IIN	1 =disable outputs, 0 = enable outputs
47	VDDIO	PWR	Power supply for differential outputs
			Input notifies device to sample latched inputs and start up on first high
48	^CKPWRGD_PD#	IN	assertion. Low enters Power Down Mode, subsequent high assertions exit
			Power Down Mode. This pin has internal pull-up resistor.
49	EPAD	GND	Connect to Ground.

Test Loads

Terminations

Device	Ζο (Ω)	Rs (Ω)
9FGL0841	100	None needed
9FGL0851	100	7.5
9FGL08P1	100	Prog.
9FGL0841	85	N/A
9FGL0851	85	None needed
9FGL08P1	85	Prog.

Alternate Terminations

The 9FGL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9FGL08. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Supply Voltage	VDDxx	Applies to VDD, VDDA and VDDIO, if present.	-0.5		3.9	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	V _{IHSMB}	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

71WD, 117 0							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DDAOP}	VDDA, All outputs active @100MHz		13	16	mA	
Operating Supply Current	I _{DDOP}	All VDD, except VDDA and VDDIO, All outputs active @100MHz		17	22	mA	
	I _{DDIOOP}	VDDIO, All outputs active @100MHz		30	36	mA	
Wake-on-LAN Current	I _{DDAPD}	VDDA, DIF outputs off, REF output running		0.8	1	mA	1
(Power down state and Byte 3, bit 5 = '1')	I _{DDPD}	All VDD, except VDDA and VDDIO, DIF outputs off, REF output running		5.9	8.0	mA	1
Byte 3, bit 3 = 1)	I _{DDIOPD}	VDDIO, DIF outputs off, REF output running		0.04	0.1	mA	1
Powerdown Current (Power down state and	I _{DDAPD}	VDDA, all outputs off		0.8	1.1	mA	
	I_{DDPD}	All VDD, except VDDA and VDDIO, all outputs off		1.7	3	mA	
Byte 3, bit 5 = '0')	I _{DDIOPD}	VDDIO, all outputs off		0.04	0.1	mA	

¹ This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1)

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 4.5V.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA = T_{AMR}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

per normai c	peration conditions, see rest Loads for Loading Cor	iditions				
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
VDDxxx	Supply voltage for core, analog and single-ended LVCMOS outputs.	3.135	3.3	3.465	٧	
VDDIO	Supply voltage for differential Low Power outputs.	0.9975	1.05-3.3	3.465	V	
T _{AMB}	Industrial range	-40	25	85	°C	
V _{IH}	Single-ended inputs, except SMBus	0.75xV _{DD}		V _{DD} +0.3	٧	
V_{IM}	Single-ended tri-level inputs ('_tri' suffix)	$0.4xV_{DD}$	0.5 V _{DD}	$0.6xV_{DD}$	V	
V _{IL}	Single-ended inputs, except SMBus	-0.3		0.25xV _{DD}	٧	
I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200		200	uA	
F _{in}	XTAL, or X1 input	8	25	40	MHz	4
L _{pin}				7	nΗ	1
C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
C _{OUT}	Output pin capacitance			6	pF	1
T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.3	1.8	ms	1,2
f _{MOD}	(Triangular Modulation)	30	31.6	33	kHz	1
t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
t _F	Fall time of single-ended control inputs			5	ns	1,2
t _R	Rise time of single-ended control inputs			5	ns	1,2
	SYMBOL VDDxxx VDDIO T _{AMB} V _{IH} V _{IM} V _{IL} I _{IN} I _{INP} F _{in} L _{pin} C _{OUT} T _{STAB} f _{MOD} t _{LATOE#} t _{DRVPD} t _F	SYMBOL VDDxxx Supply voltage for core, analog and single-ended LVCMOS outputs. VDDIO Supply voltage for differential Low Power outputs. TAMB Industrial range VIH Single-ended inputs, except SMBus VIL Single-ended tri-level inputs ('_tri' suffix) VIL Single-ended inputs, except SMBus IIN Single-ended inputs, VIN = GND, VIN = VDD Single-ended inputs VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors VIN = VDD; Inputs with internal pull-down resistors Fin XTAL, or X1 input Lpin CIN COUT Output pin capacitance TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock (Triangular Modulation) DIF start after OE# assertion DIF stop after OE# deassertion DIF output enable after PD# de-assertion TBII time of single-ended control inputs	VDDxxx Supply voltage for core, analog and single-ended LVCMOS outputs. 3.135 VDDIO Supply voltage for differential Low Power outputs. 0.9975 TAMB Industrial range -40 VIH Single-ended inputs, except SMBus 0.75xVDD VIM Single-ended tri-level inputs ('_tri' suffix) 0.4xVDD VIL Single-ended inputs, except SMBus -0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD -5 Single-ended inputs -200 -5 IINP VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fin XTAL, or X1 input 8 Lpin Logic Inputs, except DIF_IN 1.5 COUT Output pin capacitance TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 1 fMOD (Triangular Modulation) 30 tLATOE# DIF stop after OE# deassertion 1 DIF stop after OE# deassertion 1 DIF output enable after PD# de-assertion Fall time of single-ended control inputs	SYMBOL CONDITIONS MIN TYP VDDxxx Supply voltage for core, analog and single-ended LVCMOS outputs. VDDIO Supply voltage for differential Low Power outputs. Industrial range Joseph Jose	SYMBOLCONDITIONSMINTYPMAXVDDxxxSupply voltage for core, analog and single-ended LVCMOS outputs.3.1353.33.465VDDIOSupply voltage for differential Low Power outputs.0.99751.05-3.33.465TAMBIndustrial range-402585VIHSingle-ended inputs, except SMBus0.75xVDDVDD+0.3VIMSingle-ended tri-level inputs ('_tri' suffix)0.4xVDD0.5 VDD0.6xVDDVILSingle-ended inputs, except SMBus-0.30.25xVDDIINSingle-ended inputs, VIN = GND, VIN = VDD-55Single-ended inputs-200200VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors-200200FinXTAL, or X1 input82540Lpin755COUTOutput pin capacitance66TSTABFrom VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock0.31.8fMOD(Triangular Modulation)3031.633tLATOE#DIF start after OE# assertion DIF stop after OE# deassertion13DIF output enable after PD# de-assertionDIF output enable after PD# de-assertion5Fall time of single-ended control inputs5	SYMBOL CONDITIONS MIN TYP MAX UNITS VDDxxx Supply voltage for core, analog and single-ended LVCMOS outputs. 3.135 3.3 3.465 V VDDIO Supply voltage for differential Low Power outputs. 0.9975 1.05-3.3 3.465 V TAMB Industrial range -40 25 85 °C VIH Single-ended inputs, except SMBus 0.75xV _{DD} V _{DD} +0.3 V V _{IM} Single-ended inputs, except SMBus -0.3 0.25xV _{DD} V V _{IL} Single-ended inputs, except SMBus -0.3 0.25xV _{DD} V I _{IN} Single-ended inputs, vin = GND, Vin = VDD -5 5 uA Single-ended inputs, vin = GND, Vin = VDD -5 5 uA I _{IN} Single-ended inputs with internal pull-down resistors Vin = VDD; Inputs

¹ Guaranteed by design and characterization, not 100% tested in production.

 $^{^{2}}$ Control input must be monotonic from 20% to 80% of input swing.

 $^{^3}$ Time from deassertion until outputs are >200 mV

⁴ The 9FGLxxP1 devices can be programmed for various input frequencies from 8 to 40MHz. The 9FGLxx41/51 devices use

Electrical Characteristics-DIF Low-Power HCSL Outputs

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on, fast setting	2.2	3.3	4.5	V/ns	2,3
Siew rate	111	Scope averaging, slow setting	1.4	2.2	3.2	V/ns	2,3
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	417	550	mV	1,4,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		13	140	mV	1,4,9
Avg. Clock Period Accuracy	T _{PERIOD_AVG}		-100	0.0	+2600	ppm	2,10,13
Absolute Period	T _{PERIOD_ABS}	Includes jitter and Spread Spectrum Modulation	9.94906	10.0	10.1011	ns	2,6
Jitter, Cycle to cycle	t _{jcyc-cyc}			37	50	ps	2
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	751	850	mV	1
Voltage Low	V_{LOW}	averaging on)	-150	-18	150	1110	1
Absolute Max Voltage	Vmax	Measurement on single ended signal using		810	1150	mV	1,7,15
Absolute Min Voltage	Vmin	absolute value. (Scope averaging off)			IIIV	1,8,15	
Duty Cycle	t _{DC}		45	49.3	55	%	2
Slew rate matching	∆Trf			15	20	%	1,14
Skew, Output to Output	t _{sk3}	Averaging on, $V_T = 50\%$		32	50	ps	2

¹ Measured from single-ended waveform.

² Measured from differential waveform.

³ Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

⁴ Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

⁵ Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

⁶ Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum modulation.

⁷ Defined as the maximum instantaneous voltage including overshoot.

⁸ Defined as the minimum instantaneous voltage including undershoot.

 $^{^9}$ Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.

¹⁰ Refer to Section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding PPM considerations.

¹¹ System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2 pF.

¹² T_{STABLE} is the time the differential clock must maintain a minimum ±150 mV differential voltage after rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range.

¹³ PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly or 100 Hz. For 300 PPM, then we have an error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a frequency counter with measurement window set to 100 ms or greater. The ±300 PPM applies to systems that do not employ Spread Spectrum Clocking, or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500 PPM nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,800 PPM.

¹⁴ Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

¹⁵ At default SMBus amplitude settings.

Electrical Characteristics-SMBus Parameters

 $TA = T_{AMB}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SMBus Input Low Voltage	V_{ILSMB}	$V_{DDSMB} = 3.3V$			0.8	V	
SMBus Input High Voltage	V _{IHSMB}	$V_{DDSMB} = 3.3V$	2.1		3.6	V	
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V_{DDSMB}		2.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency	400			kHz	2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-DIF LP-HCSL Output Phase Jitter Parameters

 $TA = T_{AMB}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						IND.		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		19	23	86	ps (p-p)	1,3,4,6
Phase Jitter, PCI Express (Common Clock		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.5	0.7	3	ps (rms)	1,3,6
Architecture) ¹	^I jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.2	1.8	3.1	ps (rms)	1,3,6
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.3	0.5	1	ps (rms)	1,3,6
Phase Jitter, 12k-20M	t _{jph12k20M}	100MHz, REF output enabled		1.5	2	N/A	ps (rms)	2

¹ Defined for Spread Spectrum On or Off

^{2.} The device must be powered up for the SMBus to function.

² Only defined for Spread Spectrum Off.

³ See http://www.pcisig.com for complete specs

⁴ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁵ Calculated from Intel-supplied Clock Jitter Tool

⁶ Applies to all differential outputs

Electrical Characteristics- REF

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

7 (WID, 117							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values		0	•	ppm	1,2
Clock period	T _{period}	REF output		40		ns	2
High output Voltage	V_{HIGH}	$I_{OH} = -2mA$	0.8xV _{DDREF}		V		
Low output Voltage	V_{LOW}	$I_{OL} = 2mA$			0.2xV _{DDREF}	V	
	t _{rf1}	Byte 3 = 1F, $V_{OH} = 0.8*VDD$, $V_{OL} = 0.2*VDD$	0.5	0.8	1.2	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 5F, VOH = 0.8*VDD, VOL = 0.2*VDD	1.0	1.4	2.0	V/ns	1,3
	t _{rf1}	Byte 3 = 9F, VOH = 0.8*VDD, VOL = 0.2*VDD	1.5	2.0	2.6	V/ns	1
	t _{rf1}	Byte 3 = DF, VOH = 0.8*VDD, VOL = 0.2*VDD	2.0	2.6	3.2	V/ns	1
Duty Cycle	d _{t1X}	$V_T = VDD/2 V$	45	49.8	55	%	1,4
Duty Cycle Distortion	d _{tcd}	$V_T = VDD/2 V$	-1	-0.5	0	%	1,5
Jitter, cycle to cycle	t _{icyc-cyc}	$V_T = VDD/2 V$		70	150	ps	1,4
Noise floor	t _{jdBc1k}	1kHz offset		-145	-135	dBc	1,4
Noise Hoor	t _{jdBc10k}	10kHz offset to Nyquist		-150	-140	dBc	1,4
littor phase	t _{jphREF}	12kHz to 5MHz, DIF SSC Off		0.13	0.3	ps (rms)	1,4
Jitter, phase	t _{jphREF}	12kHz to 5MHz, DIF SSC On		1.4	1.5	ps (rms)	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

³ Default SMBus Value

⁴ When driven by a crystal.

⁵ When driven by an external oscillator via the X1 pin, X2 should be floating.

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Bl	ock '	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		×	
0		X Byte	0
0		ė	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: SMBus Address is Latched on SADR pin. Unless otherwise indicated, default values are for the xx41 and xx51. P1 devices are fully factory programmable.

How to Read

- Controller (host) will send a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		ē	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Type	0	1	Default
Bit 7	DIF OE7	Output Enable	RW		Enabled	1
Bit 6	DIF OE6	Output Enable	RW		Enabled	1
Bit 5	DIF OE5	Output Enable	RW		Enabled	1
Bit 4	DIF OE4	Output Enable	RW	See B11[1:0]	Enabled	1
Bit 3	DIF OE3	Output Enable	RW	366 0 11[1.0]	Enabled	1
Bit 2	DIF OE2	Output Enable	RW	1	Enabled	1
Bit 1	DIF OE1	Output Enable	RW		Enabled	1
Bit 0	DIF OE0	Output Enable	RW		Enabled	1

^{1.} A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: SS Readback and Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	00' for SS_EN_tri =	0, '01' for SS_EN_tri	Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R	= 'M', '11 for S	S_EN_tri = '1'	Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW	SS control locked	Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ¹	00' = SS Off, '0'	1' = -0.25% SS,	0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ¹	'10' = Reserved	'11'= -0.5% SS	0
Bit 2	Reserved					Χ
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.55V	01= 0.65V	1
Bit 0	AMPLITUDE 0	Controls Catput Amplitude	RW	10 = 0.7V	11 = 0.8V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7	SLEWRATESEL DIF7	Adjust Slew Rate of DIF7	RW	Slow Setting	Fast Setting	1
Bit 6	SLEWRATESEL DIF6	Adjust Slew Rate of DIF6	RW	Slow Setting	Fast Setting	1
Bit 5	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	Slow Setting	Fast Setting	1
Bit 4	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow Setting	Fast Setting	1
Bit 3	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	Slow Setting	Fast Setting	1
Bit 2	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	Slow Setting	Fast Setting	1
Bit 1	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	Slow Setting	Fast Setting	1
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	Slow Setting	Fast Setting	1

Note: See "Low-Power HCSL Outputs" table for slew rates.

SMBus Table: Nominal Vhigh Amplitude Control/ REF Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7	REF	Slew Rate Control	RW	00 = Slowest	01 =Slow	0
Bit 6		Siew Nate Control	RW	10 = Fast	11 = Fastest	1
Bit 5	REF Power Down Function	Wake-on-Lan Enable for REF	RW	REF disabled in Power Down	REF runs in Power Down	0
Bit 4	REF OE	REF Output Enable	RW	Disabled ¹	Enabled	1
Bit 3		Reserved				X
Bit 2	Reserved					Х
Bit 1	Reserved					Х
Bit 0		Reserved				Χ

^{1.} The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=Hlgh

Byte 4 is Reserved

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R	A rev = 0000		0
Bit 6	RID2	Revision ID	R			0
Bit 5	RID1	Kension ID	R			0
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001	– IDT	0
Bit 1	VID1] VENDOR ID	R	0001 = IDT		0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Type	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = FGx,	01 = DBx,	0
Bit 6	Device Type0	Device Type	R	10 = DMx, $11 = DBx w/oPLL$		0
Bit 5	Device ID5		R		0	
Bit 4	Device ID4		R			0
Bit 3	Device ID3	Device ID	R	001000 bina	ny or 08 hay	1
Bit 2	Device ID2	Device iD	R	001000 51118	ry or oo nex	0
Bit 1	Device ID1		R	1		0
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				Χ
Bit 6		Reserved				
Bit 5	Reserved					Х
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	read back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Bytes 8 and 9 are Reserved.

SMBus Table: PLL MN Enable, PD_Restore

Byte 10	Name	Control Function	Type	0	1	Default	
Bit 7	PLL M/N En	M/N Programming Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0	
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1	
Bit 5		Reserved					
Bit 4		Reserved				Χ	
Bit 3		Reserved				Χ	
Bit 2		Reserved					
Bit 1	Reserved					Χ	
Bit 0		Reserved				Х	

Byte 11	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				Х
Bit 6		Reserved				Χ
Bit 5		Reserved				
Bit 4		Reserved				
Bit 3		Reserved				
Bit 2		Reserved				
Bit 1	STP[1]	True/Complement DIF Output	RW	00 = Low/Low	10 = High/Low	0
Bit 0	STP[0]	Disable State	RW	01 = HiZ/HiZ	11 = Low/High	0

SMBus Table: Impedance Control

Byte 12	Name	Control Function	Type	0	1	Default
Bit 7	DIF3_imp[1]	DIF3 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 6	DIF3_imp[0]	DIF3 Zout	RW	01=85& DIF Zout	11 = Reserved	
Bit 5	DIF2_imp[1]	DIF2 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 4	DIF2_imp[0]	DIF2 Zout	RW	01=85& DIF Zout	11 = Reserved	see Note
Bit 3	DIF1_imp[1]	DIF1 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	SCC NOIC
Bit 2	DIF1_imp[0]	DIF1 Zout	RW	01=85& DIF Zout	11 = Reserved	
Bit 1	DIF0_imp[1]	DIF0 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 0	DIF0_imp[0]	DIF0 Zout	RW	01=85& DIF Zout	11 = Reserved	

SMBus Table: Impedance Control

	more impediance control					
Byte 13	Name	Control Function	Type	0	1	Default
Bit 7	DIF7_imp[1]	DIF7 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 6	DIF7_imp[0]	DIF7 Zout	RW	01=85& DIF Zout	11 = Reserved	
Bit 5	DIF6_imp[1]	DIF6 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 4	DIF6_imp[0]	DIF6 Zout	RW	01=85& DIF Zout	11 = Reserved	see Note
Bit 3	DIF5_imp[1]	DIF5 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	SEE NOIE
Bit 2	DIF5_imp[0]	DIF5 Zout	RW	01=85& DIF Zout	11 = Reserved	
Bit 1	DIF4_imp[1]	DIF4 Zout	RW	00=33& DIF Zout	10=100& DIF Zout	
Bit 0	DIF4_imp[0]	DIF4 Zout	RW	01=85& DIF Zout	11 = Reserved	,

SMBus Table: Pull-up Pull-down Control

Byte 14	Name	Control Function	Туре	0	1	Default
Bit 7	OE3_pu/pd[1]	OE3 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE3_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE2_pu/pd[1]	OE2 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE2_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE1_pu/pd[1]	OE1 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE1_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	OE0_pu/pd[1]	OE0 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function		0	1	Default
Bit 7	OE7_pu/pd[1]	OE7 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE7_pu/pd0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE6_pu/pd[1]	OE6 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE6_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE5_pu/pd[1]	OE5 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE5_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	OE4_pu/pd[1]	OE4 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE4_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Type	0	1	Default		
Bit 7	Reserved							
Bit 6		Reserved				Х		
Bit 5		Reserved				Х		
Bit 4	Reserved							
Bit 3	Reserved							
Bit 2	Reserved							
Bit 1	CKPWRGD_PD_pu/pd[1]	CKPWRGD_PD Pull-up(PuP)/	RW	00=None	10=Pup	1		
Bit 0	CKPWRGD_PD_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	0		

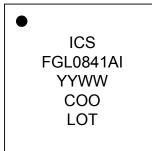
Bytes 17 is Reserved

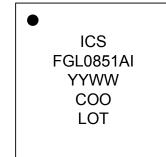
SMBus Table: Polarity Control

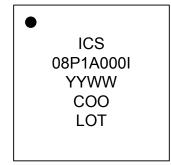
Byte 18	Name	Control Function	Type	0	1	Default
Bit 7	OE7_polarity	Sets OE7 polarity	RW		Enabled when High	
Bit 6	OE6_polarity	Sets OE6 polarity	RW	Enabled when Low	Enabled when High	0
Bit 5	OE5_polarity	Sets OE5 polarity	RW	Enabled when Low	Enabled when High	0
Bit 4	OE4_polarity	Sets OE4 polarity	RW		Enabled when High	
Bit 3	OE3_polarity	Sets OE3 polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	OE2_polarity	Sets OE2 polarity	RW	Enabled when Low	Enabled when High	0
Bit 1	OE1_polarity	Sets OE1 polarity	RW	Enabled when Low	Enabled when High	0
Bit 0	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0

SMBus Table: Polarity Control

Byte 19	Name	Control Function	Type	0	1	Default		
Bit 7	Reserved							
Bit 6		Reserved				Х		
Bit 5	Reserved							
Bit 4	Reserved							
Bit 3	Reserved							
Bit 2	Reserved							
Bit 1	Reserved							
Bit 0	CKPWRGD_PD	Determines CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0		


Recommended Crystal Characteristics (3225 package)


PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	ı	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	±20	PPM Max	1
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	1
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

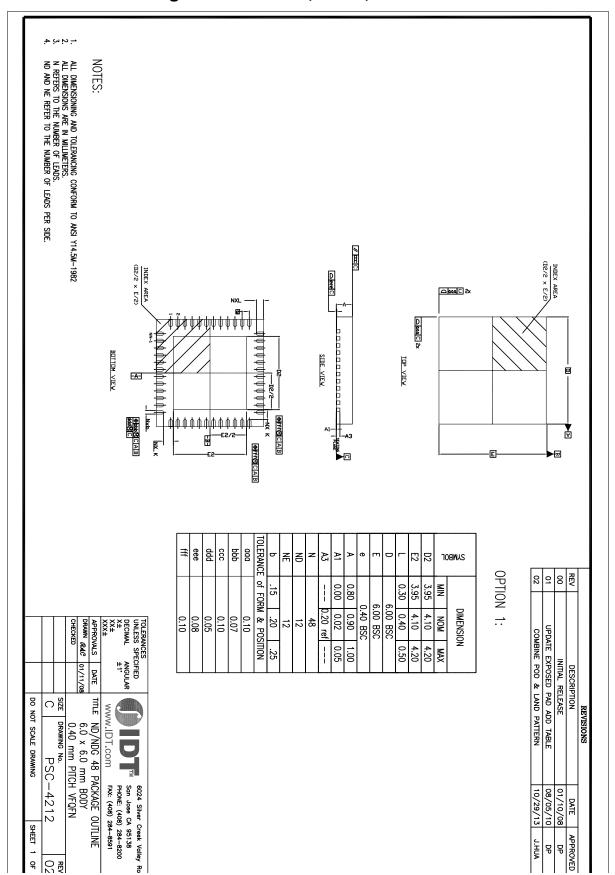

Notes

1. IDT 603-25-150JA4C or 603-25-150JA4I

Marking Diagrams

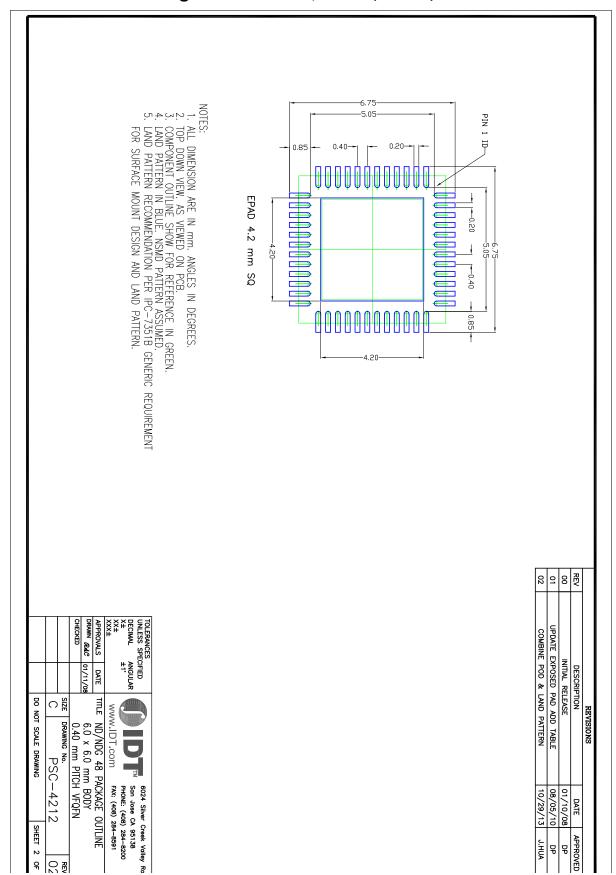
Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. YYWW is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "L" denotes RoHS compliant package.
- 6. "I" denotes industrial temperature range device.
- 7. "P" denotes factory programmable defaults


Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ_{JC}	Junction to Case		33	°C/W	1
	θ_{Jb}	Junction to Base		2.1	°C/W	1
Thermal Resistance	$\theta_{JA0\theta}$	Junction to Air, still air	NDG48	37	°C/W	1
Theimai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NDG46	30	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		27	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		26	°C/W	1

¹ePad soldered to board



Package Outline and Package Dimensions (NDG48)

Package Outline and Package Dimensions, cont. (NDG48)

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9FGL0841AKILF	Trays	48-pin VFQFPN	-40 to +85° C
9FGL0841AKILFT	Tape and Reel	48-pin VFQFPN	-40 to +85° C
9FGL0851AKILF	Trays	48-pin VFQFPN	-40 to +85° C
9FGL0851AKILFT	Tape and Reel	48-pin VFQFPN	-40 to +85° C
9FGL08P1A000KILF	Trays	48-pin VFQFPN	-40 to +85° C
9FGL08P1A000KILFT	Tape and Reel	48-pin VFQFPN	-40 to +85° C
9FGL08P1AxxxKILF	Trays	48-pin VFQFPN	-40 to +85° C
9FGL08P1AxxxKILFT	Tape and Reel	48-pin VFQFPN	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

Rev.	Issue Date	Intiator	Description	Page #
А	6/9/2015	RDW	 Updated electrical tables to final Updated Power management table and SMBus to final Updated Pin Description title Updated RS values in test loads Added note for Byte 3, bit 4, changed definition of '0' condition. Updated ordering information for '000' part. 	2-4, 6-9, 11, 18
В	7/17/2015	RDW	 Added Voh and Ioh to REF table. Minor formatting updates for readability and consistency. Added I-temp crystal part number to crystal characteristics table Added reference to AN-891 for terminating to other logic families. Removed LVDS termination drawing (now in AN-891) 	Various

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

[&]quot;000" is a blank device.

[&]quot;xxx" is a unique factory assigned number to identify a particular default configuration.

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.IDT.com

Tech Support

email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.