Features:

- 128K x 36 Synchronous Bank-Switchable Dual-ported SRAM Architecture
- 64 independent $2 K x 36$ banks
- 4 megabits of memory on chip
- Bank access controlled via bank address pins
- High-speed data access
- Commercial: 3.4ns (200MHz)/3.6ns (166MHz)/ 4.2ns (133MHz) (max.)
- Industrial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)
- Selectable Pipelined or Flow-Through output mode
- Counter enable and repeat features
- Dual chip enables allow for depth expansion without additional logic
- Full synchronous operation on both ports
- 5 ns cycle time, 200 MHz operation (14Gbps bandwidth)
- Fast 3.4ns clock to data out
- $1.5 n s$ setup to clock and $0.5 n$ n hold on all control, data, and address inputs @ 200MHz
- Data input, address, byte enable and control registers
- Self-timed write allows fast cycle time
- Separate byte controls for multiplexed bus and bus matching compatibility
- LVTTL- compatible, $3.3 \mathrm{~V}(\pm 150 \mathrm{mV})$ power supply for core
- LVTTL compatible, selectable $3.3 \mathrm{~V}(\pm 150 \mathrm{mV})$ or $2.5 \mathrm{~V}(\pm 100 \mathrm{mV})$ power supply for l/Os and control signals on each port
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available at 166 MHz and 133 MHz
- Available in a 208-pin Plastic Quad Flatpack (PQFP), 208-pin fine pitch Ball Grid Array (fpBGA), and 256-pin Ball Grid Array (BGA)
- Supports JTAG features compliant with IEEE 1149.1
- Green parts available, see ordering information

Functional Block Diagram

JUNE 2015

Description:

The IDT70V7599 is a high-speed 128 Kx 36 (4Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent 2 Kx 36 banks. The device has two independent ports with separate control, address, and I/O pins for each port, allowing each portto access any 2 Kx 36 memory block not already accessed by the other port. Accesses by the ports into specific banks are controlled via the bank address pins under the user's direct control.

Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data
register, the IDT70V7599 has been optimized for applications having unidirectional orbidirectional dataflowinbursts. An automatic powerdown feature, controlled by CE 0 and CE1, permits the on-chip circuitry of each portto enter a very low standby powermode. The dual chip enables also facilitate depthexpansion.

The 70 V 7599 can supportan operating voltage of either 3.3 V or 2.5 V on one or both ports, controllable by the OPT pins. The power supply for the core of the device(VDD) remains at 3.3V. Please refer also to the functional description on page 19.

Pin Configuration ${ }^{(1,2,3,4)}$

$\begin{array}{\|l\|} \hline \text { A1 } \\ \text { IO19L } \end{array}$	$\begin{aligned} & \hline \text { A2 } \\ & \text { IO18L } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A3 } \\ \text { Vss } \end{array}$	$\begin{aligned} & \hline \text { A4 } \\ & \text { TDO } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A5 } \\ \text { NC } \end{array}$	$\begin{array}{\|l\|} \hline \text { A6 } \\ \text { BA5L } \end{array}$	$\begin{array}{\|l\|} \hline \text { A7 } \\ \text { BA1L } \end{array}$	$\begin{array}{\|l\|} \hline \text { A8 } \\ \text { A8L } \end{array}$	$\overline{\mathrm{A} 9} \overline{\mathrm{BE}}_{1 \mathrm{~L}}$	$\begin{array}{\|l\|} \hline \text { A10 } \\ \text { VDD } \end{array}$	A11 CLKL	$\begin{array}{\|l\|} \hline \text { A12 } \\ \hline \text { CNTEN } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{A} 13 \\ \mathrm{~A} 4 \mathrm{~L} \end{array}$	$\begin{array}{\|c\|} \hline \text { A14 } \\ \text { AoL } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{A} 15 \\ \mathrm{OPTL} \end{array}$	$\begin{array}{\|l\|} \hline \text { A16 } \\ \text { I/O17L } \end{array}$	$\begin{array}{\|l\|l\|} \text { A17 } \\ \text { VSS } \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{I} / \mathrm{O}_{20 \mathrm{R}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline B 3 \\ \text { I/O18R } \end{array}$	$\begin{array}{\|c} \hline \text { B4 } \\ \text { TDI } \end{array}$	$\begin{array}{\|l} \hline \mathrm{B} 5 \\ \mathrm{NC} \end{array}$	$\begin{aligned} & \hline \text { B6 } \\ & \text { BA2L } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B7 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \overline{B E}_{2 L} \\ \hline \end{array}$	$\overline{\mathrm{B} 9}$	$\begin{array}{\|l\|} \hline \text { B10 } \\ \text { Vss } \end{array}$	$\overline{\mathrm{B} 11} \overline{\mathrm{~A} \overline{D S L}}$	$\begin{array}{\|r\|} \hline \text { B12 } \\ \text { A5L } \end{array}$	$\begin{array}{\|c\|} \hline \text { B13 } \\ \text { A1L } \end{array}$	$\begin{array}{\|c\|} \hline \text { B14 } \\ \text { VSS } \end{array}$	B15 VDDQR	$\begin{array}{\|l\|} \hline \mathrm{B} 16 \\ \mathrm{I} / \mathrm{O}_{16 \mathrm{~L}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{B} 17 \\ \mathrm{I} / \mathrm{O}_{15 R} \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{C} 1 \\ \mathrm{VDDQL} \end{array}$	$\begin{aligned} & \hline C_{2} \\ & \mathrm{I} / \mathrm{O}_{19 R} \end{aligned}$	C3 VDDQR	$\begin{aligned} & \hline \mathrm{C4} \\ & \mathrm{PL} / \overline{\mathrm{F}} \mathrm{~L} \end{aligned}$	$\mathrm{C}_{\mathrm{C}}^{\mathrm{NC}}$	$\begin{aligned} & \hline \text { C6 } \\ & \text { ВАЗ } \end{aligned}$	$\begin{gathered} \hline \text { C7 } \\ \text { A10L } \end{gathered}$	$\overline{\mathrm{CB}} \overline{\mathrm{BE}_{3 L}}$	C9 CE1L	$\begin{array}{\|c\|} \hline \text { C10 } \\ \text { Vss } \end{array}$	$\begin{aligned} & \hline \mathrm{C} 11 \\ & \mathrm{R} / \overline{\mathrm{W}} \mathrm{~L} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{C} 12 \\ \mathrm{~A} 6 \mathrm{~L} \end{array}$	$\begin{array}{\|c\|} \hline \text { C13 } \\ \text { A2L } \end{array}$	$\begin{gathered} \hline \mathrm{C} 14 \\ \mathrm{VDD} \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{C} 15 \\ \mathrm{I} / \mathrm{O}_{16 \mathrm{R}} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{C} 16 \\ \mathrm{I} / \mathrm{O}_{15 \mathrm{~L}} \end{array}$	$\begin{gathered} \mathrm{C} 17 \\ \mathrm{VSS} \end{gathered}$
$\begin{array}{\|l\|} \hline \mathrm{D} 1 \\ \mathrm{I} / \mathrm{O}_{22 \mathrm{~L}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { D2 } \\ \hline \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{D} 3 \\ \mathrm{I} / \mathrm{O}_{21 \mathrm{~L}} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{D} 4 \\ \mathrm{I} / \mathrm{O}_{20 \mathrm{~L}} \end{array}$	D5 BA4L	$\begin{aligned} & \hline \text { D6 } \\ & \text { BAoL } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{D7} \\ \mathrm{~A} 7 \mathrm{~L} \end{array}$	$\overline{\mathrm{DB}} \overline{\mathrm{BE}}_{0 \mathrm{~L}}$	$\begin{array}{\|l\|} \hline \text { D9 } \\ \text { VDD } \end{array}$	$\overline{\mathrm{D} 10} \mathrm{O}$	$\begin{aligned} & \mathrm{D11} \\ & \hline \text { REPEATL } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { D12 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { D13 } \\ \text { VDD } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { D14 } \\ \text { I/O17R } \end{array}$	D15 VdDQL	D16 I/O14L	$\begin{array}{\|l\|} \hline \mathrm{D} 17 \\ \mathrm{I} / \mathrm{O}_{14 \mathrm{R}} \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{E}_{1} \\ \mathrm{I} / \mathrm{O}_{23 \mathrm{~L}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{E} 2 \\ & \mathrm{I} / \mathrm{O}_{22 \mathrm{R}} \end{aligned}$	E3 VddQR	E4 I/O21R										$\begin{aligned} & \hline \mathrm{E} 14^{\mathrm{I}} \mathrm{O}_{12 \mathrm{~L}} \end{aligned}$	E15 I/O13R	$\begin{array}{\|c\|} \hline \text { E16 } \\ \text { Vss } \end{array}$	$\begin{aligned} & \mathrm{E} 17 \\ & \mathrm{I} / \mathrm{O}_{13 \mathrm{~L}} \end{aligned}$
VDDQL	$\begin{aligned} & \mathrm{F} 2 \\ & \mathrm{I} / \mathrm{O}_{23 \mathrm{R}} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { F3 } \\ \text { I/O24L } \end{array}$	$\begin{array}{\|l\|} \hline \text { F4 } \\ \text { Vss } \end{array}$										$\begin{array}{\|l\|} \hline \text { F14 } \\ \text { VSS } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{F} 15 \\ \mathrm{I} / \mathrm{O}_{12 \mathrm{R}} \end{array}$	$\begin{array}{\|l\|} \hline F 16 \\ \text { I/O } 11 \mathrm{~L} \end{array}$	$\begin{array}{\|l\|} \hline \text { F17 } \\ \text { VDDQR } \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{G} 1 \\ \mathrm{I} / \mathrm{O}_{26 \mathrm{~L}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { G2 } \\ \text { Vss } \end{array}$	G3 I/O25L	G4 I/O24R										G14 I/O9L	G15 VdDQL	G16 I/O10L	$\begin{array}{\|l\|} \hline \mathrm{G} 17 \\ \mathrm{I} / \mathrm{O}_{11 \mathrm{R}} \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{H} 1 \\ \mathrm{VDD} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{H} 2 \\ \mathrm{I} / \mathrm{O}_{26 \mathrm{R}} \end{array}$	H3 VddQR	$\begin{array}{\|l\|} \hline \mathrm{H} 4 \\ \mathrm{I} / \mathrm{O} 25 \mathrm{R} \\ \hline \end{array}$				$70 \mathrm{~V}$	$\begin{aligned} & \text { V759 } \\ & \text { F208 } \end{aligned}$	BF 5)				$\begin{array}{\|c} \hline \text { H14 } \\ \text { VDD } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{H} 15 \\ \text { IO9R } \end{array}$	$\begin{array}{\|c\|} \hline \text { H16 } \\ \text { VSS } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{H} 17 \\ \mathrm{I} / \mathrm{O}_{10 \mathrm{R}} \end{array}$
J1 VDDQL	$\begin{array}{\|l\|} \hline \mathrm{J} 2 \\ \mathrm{VDD} \end{array}$	$\begin{array}{\|l\|} \hline \text { J3 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J4} \\ \text { Vss } \end{array}$										$\begin{array}{\|l\|} \hline \mathrm{J} 14 \\ \text { VSS } \end{array}$	$\begin{array}{\|l\|} \hline J 15 \\ \text { VDD } \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 16 \\ & \text { Vss } \end{aligned}\right.$	J17 VDDQR
$\left\|\begin{array}{l} \mathrm{K} 1 \\ \mathrm{I} / \mathrm{O} 28 \mathrm{R} \end{array}\right\|$	$\mathrm{K}_{\mathrm{K} 2}$	$\left\lvert\, \begin{aligned} & \mathrm{K} 3 \\ & \mathrm{I} / \mathrm{O}_{27 \mathrm{R}} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { K4 } \\ \text { Vss } \end{array}$						$\begin{aligned} & \text { BGA } \\ & v^{(6)} \end{aligned}$				$\begin{array}{\|l\|} \hline \mathrm{K} 14 \\ \mathrm{I} / \mathrm{O}_{7 \mathrm{R}} \end{array}$	K15 VddQL	$\begin{aligned} & \mathrm{K} 16 \\ & \mathrm{I} / \mathrm{O}_{8 \mathrm{R}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { K17 } \\ & \text { VSS } \end{aligned}\right.$
$\begin{array}{\|l\|} \hline \mathrm{L} 1 \\ \mathrm{I} / \mathrm{O}_{29 \mathrm{R}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{I} / \mathrm{O}_{28 \mathrm{~L}} \end{aligned}$	L3 VdDQR	$\begin{array}{\|l\|} \hline \mathrm{L} 4 \\ \mathrm{l} / \mathrm{O}_{27 \mathrm{~L}} \end{array}$										$\begin{aligned} & \hline \text { L14 } \\ & \mathrm{I} / \mathrm{O}_{6 \mathrm{R}} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { L15 } \\ \text { I/O7L } \end{array}$	$\begin{array}{\|l\|} \hline \text { L16 } \\ \text { VSS } \end{array}$	$\begin{array}{\|l\|} \hline \text { L17 } \\ \mathrm{I} / \mathrm{O} 8 \mathrm{~L} \end{array}$
M1 VddQL	$\begin{aligned} & \hline \text { M2 } \\ & \mathrm{I} / \mathrm{O}_{29 \mathrm{~L}} \end{aligned}$	M3 I/O30R	$\begin{aligned} & \mathrm{M} 4 \\ & \mathrm{~V} \text { Vs } \end{aligned}$										$\begin{array}{\|c\|} \hline \text { M14 } \\ \text { Vss } \end{array}$	M15 I/O6L	M16 I/O5R	M17 VdDQR
N1 I/O31L	$\begin{array}{\|l\|} \hline \text { N2 } \\ \text { Vss } \end{array}$	N3 I/O31R	N4 I/O30L										$\begin{aligned} & \hline \text { N14 } \\ & \mathrm{I} / \mathrm{O}_{3 \mathrm{R}} \end{aligned}$	N15 Vddal	$\begin{aligned} & \hline \mathrm{N} 16 \\ & \mathrm{I} / \mathrm{O}_{4 \mathrm{R}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{N} 17 \\ & \mathrm{I} / \mathrm{O}_{5 \mathrm{~L}} \end{aligned}$
$\begin{array}{\|l\|} \hline \mathrm{P} 1 \\ \mathrm{I} / \mathrm{O}_{32 \mathrm{R}} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{P} 2 \\ & \mathrm{I} / \mathrm{O}_{32 \mathrm{~L}} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P3 } \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{P} 4 \\ \mathrm{I} / \mathrm{O}_{35 \mathrm{R}} \end{array}$	$\begin{array}{\|l\|} \hline \text { P5 } \\ \hline \text { TRST } \end{array}$	$\begin{aligned} & \hline \text { P6 } \\ & \mathrm{BA}_{5 R} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P7 } \\ \text { BA1R } \end{array}$	$\begin{aligned} & \text { P8 } \\ & \text { A8R } \end{aligned}$	$\overline{\mathrm{P} 9} \overline{\mathrm{BE}}_{1 \mathrm{R}}$	$\begin{array}{\|l\|} \hline \text { P10 } \\ \text { VDD } \end{array}$	$\begin{aligned} & \text { P11 } \\ & \text { CLKR } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{P} 12 \\ \overline{\mathrm{CNTEN}} \end{array}$	$\begin{array}{\|l\|} \hline \text { P13 } \\ \text { A4R } \end{array}$	$\begin{aligned} & \hline \text { P14 } \\ & \text { I/OLL } \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 15 \\ & \mathrm{I} / \mathrm{O}_{3 \mathrm{~L}} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P16 } \\ \text { Vss } \end{array}$	$\begin{aligned} & \hline \text { P17 } \\ & \mathrm{I} / \mathrm{O}_{4 \mathrm{~L}} \end{aligned}$
$\begin{aligned} & \mathrm{R1} \\ & \text { Vss } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { R2 } \\ \mathrm{I} / \mathrm{O}_{33 \mathrm{~L}} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R} 3 \\ \mathrm{I} / \mathrm{O}_{34 \mathrm{R}} \end{array}$	$\begin{aligned} & \text { R4 } \\ & \hline \text { TCK } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { R5 } \\ \text { NC } \end{array}$	R6 BA2R	$\begin{array}{\|l\|} \hline \text { R7 } \\ \hline \text { A9R } \end{array}$	$\begin{aligned} & \mathrm{RB} \\ & \overline{\mathrm{BE}}{ }_{2 R} \end{aligned}$	$\overline{\mathrm{R} 9} \mathrm{CE}_{0 \mathrm{R}}$	$\begin{array}{\|l\|} \hline \text { R10 } \\ \text { Vss } \end{array}$	$\frac{\mathrm{R} 11}{\mathrm{ADS}} \mathrm{R}$	$\begin{aligned} & \hline \mathrm{R} 12 \\ & \mathrm{~A}_{5 \mathrm{R}} \end{aligned}$	$\begin{array}{\|l\|} \hline R 13 \\ A_{1 R} \end{array}$	$\begin{array}{\|l\|} \hline \text { R14 } \\ \text { VSS } \end{array}$	R15 Vddol	$\begin{array}{\|l} \hline \mathrm{R} 16 \\ \mathrm{I} / \mathrm{O}_{1 R} \end{array}$	R17 VdDQR
$\begin{array}{\|l\|} \hline \mathrm{T} 1 \\ \mathrm{I} / \mathrm{O}_{33 \mathrm{R}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{T} 2 \\ \mathrm{I} / \mathrm{O}_{34 \mathrm{~L}} \end{array}$	$\begin{aligned} & \text { T3 } \\ & \text { VDDQL } \end{aligned}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{TMS} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{T} 5 \\ \mathrm{NC} \end{array}$	T6 BA3R	$\begin{aligned} & \hline \mathrm{T7} \\ & \mathrm{~A} 10 \mathrm{R} \end{aligned}$	$\overline{\mathrm{T} 8}$	$\begin{aligned} & \text { T9 } \\ & \mathrm{CE}_{1 R} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{T} 10 \\ \text { Vss } \end{array}$	$\begin{aligned} & \mathrm{T} 11 \bar{W}_{R} \\ & \mathrm{R} / \overline{\mathrm{W}}^{2} \end{aligned}$	$\begin{gathered} \hline \mathrm{T} 12 \\ \mathrm{~A} 6 \mathrm{R} \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{T} 13 \\ \mathrm{~A} 2 \mathrm{R} \end{array}$	$\begin{array}{\|c\|} \hline \text { T14 } \\ \text { VSS } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{T} 15 \\ \mathrm{I} / \mathrm{O} 0 \mathrm{R} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{T} 16 \\ \text { VSS } \end{array}$	$\begin{aligned} & \hline \mathrm{T} 17 \\ & \mathrm{I} / \mathrm{O}_{2 \mathrm{R}} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U1 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{U2} \\ \mathrm{I} / \mathrm{O}_{35 \mathrm{~L}} \end{array}$	U3 PL/FTR	$\mathrm{U4} \mathrm{NC}$	U5 BA4R	U6 BAor	$\begin{array}{\|l\|} \hline \text { U7 } \\ \hline \end{array}$	$\overline{U B}_{0 R}$	$\begin{aligned} & \text { U9 } \\ & \text { VDD } \end{aligned}$	$\overline{U 10}_{\mathrm{OE}}^{\mathrm{R}}$	$\begin{array}{\|l\|} \hline \text { U11 } \\ \text { REPEA } \end{array}$	$\begin{array}{\|l\|} \hline U 12 \\ T_{R} A_{3 R} \end{array}$	U13 Aor	$\begin{array}{\|c\|} \hline \text { U14 } \\ \text { VDD } \end{array}$	U15 OPTR	U16 I/OoL	$\begin{array}{\|l\|} \hline \mathrm{U17} \\ \mathrm{I} / \mathrm{O}_{1 \mathrm{~L}} \end{array}$

NOTES:
5626 drw 02c

1. All VDD pins must be connected to 3.3 V power supply.
2. All VDDQ pins must be connected to appropriate power supply: 3.3 V if OPT pin for that port is set to $\mathrm{VIH}(3.3 \mathrm{~V})$, and 2.5 V if OPT pin for that port is set to VIL (0 V).
3. All Vss pins must be connected to ground supply.
4. Package body is approximately $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ with 0.8 mm ball pitch.
5. This package code is used to reference the package diagram.

6 . This text does not indicate orientation of the actual part-marking.

Pin Configuration ${ }^{(1,2,3,4)}$ (con't.)

70V7599BC
 BC256 ${ }^{(5)}$

256-Pin BGA
Top View
Top View ${ }^{(6)}$

NC	$\begin{array}{\|c} \hline \text { A2 } \\ \text { TDI } \end{array}$	$\begin{aligned} & \text { A3 } \\ & \text { NC } \end{aligned}$	$\left.\right\|^{\mathrm{A} 4} \mathrm{NC}$	$\begin{array}{\|l\|} \hline \text { А5 } \\ \text { BAзL } \end{array}$	$\begin{array}{\|l\|} \hline \text { A6 } \\ \text { BAOL } \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{A7} \\ \mathrm{~A} 8 \mathrm{~L} \end{array}$	$\frac{\mathrm{A} 8}{\mathrm{BE}} 2 \mathrm{~L}$	$\stackrel{\mathrm{A9}}{\mathrm{CE} 1 \mathrm{~L}}$	$\frac{\mathrm{A}_{10}}{\mathrm{OE}}$	$\left\|\frac{\mathrm{A} 11}{\mathrm{CNTENL}}\right\|$	${ }^{12} \text { A5L }$	$\begin{gathered} 13 \\ \text { A2 } \end{gathered}$	Aol	15	$\begin{aligned} & 16 \\ & \text { NC } \end{aligned}$
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { B1 } \\ 1 / O 18 \end{array} \\ \hline \end{array}$	B2 NC	$\begin{aligned} & \hline \text { B3 } \\ & \text { TDO } \end{aligned}$	${ }^{\text {B4 }} \mathrm{N}$	$\begin{array}{\|l\|} \hline 85 \\ B A . \end{array}$	$\begin{array}{\|c\|} \hline B 6 \\ B A_{1} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{B7} \\ \hline \text { A9L } \end{array}$	$\begin{array}{\|l\|} \hline B 8 \\ \hline \mathrm{BE} \\ \hline \end{array}$	$\overline{B 9} \overline{\mathrm{CE}} \mathrm{~L}$	$\mathrm{R} \overline{\mathrm{~W}} \mathrm{~L}$	$\left\lvert\, \frac{\mid B_{11}}{\text { REPEATL }}\right.$	$\begin{array}{\|c} B^{B 12} \\ A 4 L \end{array}$	$\begin{gathered} \hline \text { B13 } \\ \text { A }_{11} \end{gathered}$	$\begin{aligned} & \hline \text { B14 } \\ & \text { VDD } \end{aligned}$	$\begin{aligned} & \hline 815 \\ & 1 / O_{17 L} \end{aligned}$	$\widehat{B 16}$
$\begin{aligned} & \overline{C_{1}} \\ & 1 / O_{18} \end{aligned}$	$\begin{aligned} & \hline \mathrm{c} 2 \\ & 1 / \mathrm{O}_{19} \end{aligned}$	Vss	BA	$\begin{aligned} & \hline \mathrm{C5} \\ & \mathrm{BA} 2 \end{aligned}$	$\begin{aligned} & \hline \text { C6 } \\ & \text { A10L } \end{aligned}$	A_{7}	$\overline{\mathrm{BE}}_{1 \mathrm{~L}} \mid$	BEOL	CLKL	$\frac{\mathrm{C11}}{\overline{\mathrm{~A} D S L}}$	$\begin{gathered} \hline \mathrm{C} 12 \mathrm{~A} \\ \mathrm{~A} 6 \mathrm{~L} \end{gathered}$	$\begin{gathered} \hline 13 \\ \text { Аз } \end{gathered}$	$\left.\begin{array}{\|c\|} \hline \mathrm{C} 14 \\ \mathrm{OPTL} \end{array} \right\rvert\,$	$\begin{array}{l\|} \hline C_{15} \\ 1 / O_{178} \end{array}$	$\begin{array}{l\|l\|} \hline C_{16} \\ 1 / O_{16 L} \end{array}$
$\left\|\begin{array}{l} \mathrm{D} 1 \\ \mathrm{I} / \mathrm{O} 20 \mathrm{R} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \mathrm{D} 2 \\ \mathrm{I} / \mathrm{O}_{19} \mathrm{R} \end{array}$	$\left\|1 / \mathrm{O}_{20 \mathrm{~L}}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{DA} \\ & \mathrm{PL} / \overline{\mathrm{FL}} \mathrm{~L} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { D5 } \\ \text { VDDQ } \end{array}$	Vddal	$\begin{array}{\|l\|} \hline \mathrm{DT} \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline \text { D8 } \\ \text { VDDQR } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{Dg} \\ \hline \end{array}$	VdDQL	$\begin{array}{\|l\|} \hline \mathrm{D} 11 \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline D 12 \\ \hline \text { VDDR } \end{array}$	$\begin{aligned} & \hline \mathrm{D} 13 \\ & \mathrm{VDD} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{D} 14 \\ 1 / \mathrm{O}_{15 R} \end{array}$	$\begin{array}{\|l\|} \hline D_{15} \\ 1 / O_{15} \end{array}$	$\begin{array}{l\|} \hline 16 \\ O_{16 R} \end{array}$
$\left\lvert\, \begin{aligned} & \mathrm{E} 1 \\ & 1 / O \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathrm{E} 2 \\ \mathrm{l} / \mathrm{O} 2 \end{array}$		$\begin{array}{\|l\|} \hline \text { E4 } \\ \text { VDDQL } \end{array}$	$\text { E5 }{ }^{\text {VDD }}$	$\begin{array}{\|c\|} \hline \text { E6 } \\ \text { VDD } \end{array}$	$\begin{array}{\|l\|} \hline \text { E7 } \\ \hline \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \text { E8 } \\ \text { Vss } \end{array}$	$\begin{array}{\|c\|} \hline \text { E9 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \text { E10 } \\ \text { Vss } \end{array}$	$\begin{array}{\|c} \hline E 11 \\ \text { VDD } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{E} 12 \\ \mathrm{VDD} \end{array}$	$\begin{array}{\|l\|} \hline \text { E13 } \\ \text { VDDQR } \end{array}$	$\left\|\begin{array}{l} \mathrm{E} 1 / 4 \\ 1 / \mathrm{O}_{13 L} \end{array}\right\|$	$\left\lvert\, \begin{array}{l\|l\|} \hline E_{14 L} \end{array}\right.$	$\left\lvert\, \begin{aligned} & E_{16} / O_{14 R} \end{aligned}\right.$
$\left\lvert\, \begin{aligned} & \text { F1 } \\ & \text { I/O23L } \end{aligned}\right.$	$\left\|1 / O_{22 R}\right\|$	$\left\|1 / \mathrm{O}_{23 \mathrm{R}}\right\|$	VdDQL	VdD	Vss	Vss	Vss	$\begin{array}{\|c\|} \hline \text { Fs } \\ \text { Vss } \end{array}$	$\begin{gathered} \hline \text { F10 } \\ \text { Vss } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { F11 } \\ & \text { Vss } \end{aligned}\right.$	$\begin{gathered} \hline F 12 \\ V_{D D} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { F13 } \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline F 14 \\ 1 / O 12 R \end{array}$	$\left\|1 / O_{13 R}\right\|$	I/O12L
$\begin{aligned} & \hline \mathrm{G}_{1} \\ & \mathrm{I} / \mathrm{O}_{24 \mathrm{~F}} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{G}^{\mathrm{G} 2} \\ 1 / \mathrm{O}_{24 \mathrm{~L}} \\ \hline \end{array}$	$\left\|\begin{array}{l} \text { G3 } \\ 1 / O_{2 L L} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { G4 } \\ \text { VDDQR } \end{array}$	G5	$\left.\right\|^{\mathrm{G} 6} \mathrm{Vss}$	Gss	$\left.\right\|^{\text {G8 }} \mathrm{Vs}$	$\begin{gathered} \hline \mathrm{G9} \\ \mathrm{Vss} \end{gathered}$	Vss	Vs	$\begin{aligned} & \text { G12 } \\ & \text { Vss } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { G13 } \\ & \text { VDDQL } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { G14 } \\ 1 / O_{10 L} \end{array}$	$\left.\right\|_{1 / O_{11 L}} ^{G 15}$	$\left\|\begin{array}{l} G_{16} /{ }_{11 R} \end{array}\right\|$
$\begin{array}{\|l\|} \hline \mathrm{H} 1 \\ \mathrm{I} / \mathrm{O} 26 \mathrm{~L} \end{array}$	$\left\|\begin{array}{l} \mathrm{H} 2 \\ 1 / \mathrm{O} 25 \mathrm{R} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{H} 3 \\ 1 / \mathrm{O} 26 \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { H4 } \\ \text { VDDQR } \end{array}$	$\sqrt[35]{\mathrm{Vss}}$	$\left.\right\|^{\mathrm{H} 6} \mathrm{~V} \text { ss }$	$\mathrm{H}_{\mathrm{Hzs}}$	$\begin{array}{\|l\|} \hline \text { H8 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \text { H9 } \\ \text { Vss } \end{array}$	$\begin{aligned} & \mathrm{H10} \\ & \text { Vss } \end{aligned}$	$\begin{gathered} \mathrm{H} 11 \\ \mathrm{Vss} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{H} 12 \\ \mathrm{Vss} \end{array}$	$\begin{array}{\|l\|} \hline \text { H13 } \\ \text { VDDQL } \end{array}$	$\begin{aligned} & \hline \text { H14 } \\ & \text { I/O9R } \end{aligned}$		$\begin{array}{l\|} \hline{ }^{H} 16 \\ I / O_{10 R} \end{array}$
$\left\|\begin{array}{l} \mathrm{J} 1 \\ 1 / \mathrm{O}_{27} \end{array}\right\|$	$\begin{aligned} & \mathrm{J} 2 \\ & \mathrm{I} / \mathrm{O} 28 \mathrm{R} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{J} 3 \\ 1 / \mathrm{O} 27 \mathrm{R} \end{array}\right\|$	$\left\|\begin{array}{\|l\|} \mathrm{JA} \\ \mathrm{VDDQL} \end{array}\right\|$	${ }^{\text {J5 }}$ Vss	$\left.\right\|^{\mathrm{J} 6} \mathrm{Vss}$	$\left.\right\|^{37} \text { Vss }$	$\left.\right\|^{\mathrm{J} 8} \mathrm{~V} \text { Ss }$	$\left.\right\|^{\mathrm{sg}} \mathrm{~V} s \mathrm{~s}$	Vss	Vss	$\left.\right\|^{\mathrm{J} 12} \text { Vss }$	VdDQR	$2\left\|\begin{array}{l} \mathrm{J} 1 / \mathrm{O} 8 \mathrm{R} \end{array}\right\|$		1/O8L
$\left\lvert\, \begin{aligned} & \mathrm{k} 1 \\ & \mathrm{l} / \mathrm{O}_{29 F} \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \mathrm{K} 2 \\ 1 / \mathrm{O} 29 \mathrm{~L} \end{array}$	$\left.\right\|_{1 / \mathrm{O} 28 \mathrm{~L}} ^{\mathrm{K} 3}$	$\left.\right\|^{K} \mathrm{~K}_{\mathrm{DDO}} \mid$	$\hat{K}_{5}{ }^{2 s s}$	$\stackrel{\mathrm{K} 6}{\mathrm{Vss}}$	$\left.\right\|^{\mathrm{K7}} \mathrm{Vss}$	$\begin{array}{\|l\|} \hline \text { K8 } \\ \text { Vss } \end{array}$	$\stackrel{\text { K } 9 \mathrm{Vss}}{ }$	Vss	Vss	$\begin{aligned} & { }^{12} \\ & \text { Vss } \end{aligned}$	VdD	I/O6R	I/O6L	$\begin{aligned} & \text { <16 } \\ & \text { I/O7L } \end{aligned}$
$\left\|\begin{array}{\|c\|} L 1 / \text { B }_{30} \end{array}\right\|$	$\left\|\begin{array}{\|l\|l\|l\|} \mathrm{L} 2 \\ 1 / \mathrm{O}_{12} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{L} 3 \\ 1 / \mathrm{O}_{20} \end{array}\right\|$	$\left\|\begin{array}{\|l\|} \mathrm{L} 4 \\ \mathrm{DDOR} \end{array}\right\|$	$\sqrt{25}_{\text {VD }}$	$\left.\right\|^{\text {L6 }} \mathrm{V} \text { ss }$	$\left.\right\|^{\text {L7 }} \text { Vss }$	$\stackrel{L}{28}^{\text {Vss }}$	$\left.\right\|^{\llcorner 9} \mathrm{Vss}$	Vss	Vss	VDD	Vddal	$L_{1 / 0}^{L 1 / 24}$	$\left\|\begin{array}{l} \text { L15 } \\ 1 / O_{4 R} \end{array}\right\|$	I/O5R
$\begin{aligned} & \text { M1 } \\ & 1 / \mathbf{O}_{32 R} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M2 } \\ 1 / O_{32 L} \\ \hline \end{array}$	$\left\|\begin{array}{l} \text { M3 } \\ \text { I/O31L } \end{array}\right\|$	$\left\|\begin{array}{l} \text { M4 } \\ \text { VDDR } \end{array}\right\|$	$\sqrt{\text { M5 }}$	$\left.\right\|^{\mathrm{M} 6} \mathrm{VDD}$	$\begin{array}{\|c\|} \hline \text { M7 } \\ \text { Vss } \end{array}$	$\begin{array}{\|l\|} \hline \text { M8 } \\ \text { Vss } \end{array}$	$\begin{gathered} \hline \text { M9 } \\ \text { Vss } \end{gathered}$	Vss	VDD	VDD	M13 VDDQL	$\begin{aligned} & \text { M14 } \\ & \text { I/O3R } \end{aligned}$	$\begin{aligned} & \hline \text { M15 } \\ & \text { I/O } \end{aligned}$	M16 I/O4L
$\left\lvert\, \begin{aligned} & \mathrm{N} 1 \\ & \mathrm{I} \text { /Оза } \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{N} 2 \\ 1 / \mathrm{O}_{34 \mathrm{R}} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { N3 } \\ \text { I/Oзз } \end{array}$	$\|\mid$	$\begin{array}{\|l\|} \hline \text { N5 } \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline N 6 \\ \text { VDDQR } \end{array}$	$\begin{array}{\|l\|} \hline N 7 \\ \text { VDDQL } \end{array}$	$\left\lvert\, \begin{array}{\|c\|} \hline N 8 \\ \text { VDDQL } \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline \text { N9 } \\ \text { VDDQR } \end{array}$	N10	N11 VdDQL	$\begin{array}{\|l\|} \hline \text { N12 } \\ \text { VDDQL } \end{array}$	$\begin{array}{\|c} \hline N 13 \\ V D D \end{array}$	$\begin{array}{\|l\|} \hline \text { N14 } \\ \text { I/O2L } \end{array}$	$\begin{aligned} & \hline N 15 \\ & 1 / O_{18} \end{aligned}$	$\begin{aligned} & \mathrm{N} 16 \\ & \mathrm{I} / \mathrm{O} 2 \mathrm{R} \end{aligned}$
$\left\lvert\, \begin{aligned} & \mathrm{P} 1 \\ & \mathrm{I} \mathrm{O}_{35 \mathrm{R}} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{P} 2 \\ & 1 / O_{34} \end{aligned}\right.$	$\stackrel{\text { P3 }}{ }$	$\left\lvert\, \begin{aligned} & \text { P4 } \\ & \text { BAR } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { P5 } \\ & \mathrm{BA} \mathrm{~A}_{2 R} \end{aligned}\right.$	$\begin{array}{\|l\|} \text { P6 } \\ \text { A10R } \end{array}$	$\left.\right\|^{\mathrm{PF}} \mathrm{~A} 7 \mathrm{R}$	$\left\lvert\, \frac{P 8}{B E_{1 R}}\right.$	$\overline{P g}$	$\begin{aligned} & \text { P10 } \\ & \text { CLKR } \end{aligned}$	$\frac{\overline{A D S}_{R}}{}$	A6R	$\left\lvert\, \begin{gathered} \text { P13 } \\ \text { A3R } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { P14 } \\ & \text { 1/OOL } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { P15 } \\ & \text { I/Oor } \end{aligned}\right.$	$\begin{aligned} & \text { P1/ } 1 / \mathrm{O}_{1} \end{aligned}$
$\left\lvert\, \begin{aligned} & \mathrm{R} 1 / \mathrm{O}_{35} \\ & \text { 2 } \end{aligned}\right.$	${ }^{\mathrm{R} 2} \mathrm{NC}$	$\frac{\mathrm{RB}}{\mathrm{TRST}}$	$\left.\right\|^{R 4} \mathrm{NC}$	$\left\lvert\, \begin{aligned} & \mathrm{RS} \\ & \mathrm{BA} \end{aligned}\right.$	$\begin{array}{\|l\|} \mathrm{R} 6 \\ \mathrm{BA} \mathrm{AR}^{2} \end{array}$	$\left.\right\|^{\mathrm{R7}} \mathrm{A9R}$	$\left\|\frac{R 8}{B E_{3 R}}\right\|$	$\frac{\mathrm{R} 9}{\mathrm{C}} \mathrm{E}$	$\begin{aligned} & \mathrm{R} 10 \\ & \mathrm{R} / \bar{W}_{\mathrm{F}} \end{aligned}$	$\left\|\frac{R 11}{\left\|\frac{R E P E A T}{}\right\|}\right\|$	$\int_{\text {R12 }}^{R 12}$	A1R	$\left\|\begin{array}{\|l\|l\|} \hline 124 \\ \text { PPTR } \end{array}\right\|$	${ }^{15} \mathrm{NC}$	${ }^{216}$
${ }^{T 1} \mathrm{NC}$	TCK	NC	${ }^{\mathrm{T} 4} \mathrm{NC}$	BA3R	$\begin{array}{\|l\|} \hline \text { T6 } \\ \text { BAor } \end{array}$	$\left.\right\|_{\mathrm{A} 8 \mathrm{R}} ^{\mathrm{T}}$	$\left\lvert\, \begin{array}{\|l\|} \hline \frac{\mathrm{TB}}{\mathrm{BE}} 2 \mathrm{R} \end{array}\right.$	${ }^{\text {T9 }} \mathrm{CE}_{12}$	$\overline{\mathrm{T}}_{\mathrm{OE}}^{\mathrm{O}}$	$\left\|\frac{\mathrm{T}_{11}}{\text { CNTENR }}\right\|$	$\underbrace{T 12} A_{5 R}$	$\left.\right\|_{\mathrm{A} 2 \mathrm{R}} ^{\mathrm{T} 3}$	$\left.\right\|_{\text {AoR }} ^{\text {T14 }}$	${ }^{515}$	$\begin{aligned} & \mathrm{T} 16 \\ & \text { NC } \end{aligned}$

NOTES:

5626 drw 02d

1. All VDD pins must be connected to 3.3 V power supply.
2. All VDdo pins must be connected to appropriate power supply: 3.3 V if OPT pin for that port is set to V IH (3.3 V), and 2.5 V if OPT pin for that port is set to VIL (OV).
3. All Vss pins must be connected to ground supply
4. Package body is approximately $17 \mathrm{~mm} \times 17 \mathrm{~mm} \times 1.4 \mathrm{~mm}$, with 1.0 mm ball-pitch.
5. This package code is used to reference the package diagram.
6. This text does not indicate orientation of the actual part-marking.

Pin Configuration ${ }^{(1,2,3,4)}$ (con't.)

NOTES:

1. All Vod pins must be connected to 3.3 V power supply.
2. All VDDQ pins must be connected to appropriate power supply: 3.3 V if OPT pin for that port is set to $\mathrm{VIH}(3.3 \mathrm{~V})$, and 2.5 V if OPT pin for that port is set to VIL (OV).
3. All Vss pins must be connected to ground supply.
4. Package body is approximately $28 \mathrm{~mm} \times 28 \mathrm{~mm} \times 3.5 \mathrm{~mm}$.
5. This package code is used to reference the package diagram.
6. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
$\overline{\mathrm{CE}}$ 0L, $\mathrm{CE}_{1} 1$	$\overline{\mathrm{CE}} \mathrm{OR}^{\text {, }} \mathrm{CE} 1 \mathrm{R}$	Chip Enables
$\mathrm{R} / \bar{W} \mathrm{~L}$	R / \bar{W}_{R}	Read/Write Enable
$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$ R	Output Enable
BA0L - BA5L	BAor - BA5R	Bank Address ${ }^{(4)}$
A0L - A10L	A0R - A10R	Address
I/O0L - I/O35L	I/OOR - I/O35R	Data Input/Output
CLKL	CLKR	Clock
PL/FTL	$\mathrm{PL} / \overline{\mathrm{FTR}}_{\mathrm{R}}$	Pipeline/Flow-Through
$\overline{\mathrm{ADS}} \mathrm{L}$	$\overline{\mathrm{AD}} \bar{S}_{R}$	Address Strobe Enable
$\overline{\text { CNTEN }}$	$\overline{\text { CNTEN }}^{\text {R }}$	Counter Enable
$\overline{\text { REPEATL }}$	$\overline{\text { REPEATR }}^{\text {R }}$	Counter Repeat ${ }^{(3)}$
$\overline{\mathrm{BE}} 0 \mathrm{~L}-{\overline{\mathrm{B}} \overline{\mathrm{E}}_{3} \mathrm{~L}}$	$\overline{\mathrm{BE}}_{0} \mathrm{R}-{\overline{\mathrm{B}} \mathrm{E}_{3 R}}$	Byte Enables (9-bit bytes)
VDDQL	VDDQR	Power (//O Bus) (3.3V or 2.5 V$)^{(1)}$
OPTL	OPTR	Option for selecting VDDQx ${ }^{(1,2)}$
VDD		Power (3.3V) ${ }^{(1)}$
Vss		Ground (OV)
TDI		Test Data Input
TDO		Test Data Output
TCK		Test Logic Clock (10MHz)
TMS		Test Mode Select
$\overline{\text { TRST }}$		Reset (Initialize TAP Controller)

NOTES:

1. VDD, OPTX, and VDDQx must be set to appropriate operating levels prior to applying inputs on the I/Os and controls for that port.
2. OPTX selects the operating voltage levels for the I/Os and controls on that port. If OPTx is set to $\mathrm{VIH}(3.3 \mathrm{~V})$, then that port's I / Os and controls will operate at 3.3 V levels and Vodox must be supplied at 3.3 V . If OPTx is set to $\mathrm{VIL}(\mathrm{OV})$, then that port's I/Os and address controls will operate at 2.5 V levels and Vodax must be supplied at 2.5 V . The OPT pins are independent of one another-both ports can operate at 3.3 V levels, both can operate at 2.5 V levels, or either can operate at 3.3 V with the other at 2.5 V .
3. When REPEAT x is asserted, the counter will reset to the last valid address loaded via $\overline{\mathrm{ADS}} \mathrm{x}$.
4. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array that is not currently being accessed by the opposite port (i.e., BAoL - BA5L = BAor - BA5R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case that either or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

Truth Table I-Read/Write and Enable Control ${ }^{(1,2,3,4)}$

$\overline{\mathrm{OE}}^{3}$	CLK	$\overline{\mathrm{C}} \mathrm{E}_{0}$	CE1	$\overline{\mathrm{BE}}{ }_{3}$	$\overline{\mathrm{B}} \mathrm{E}_{2}$	$\overline{\mathrm{B}} \mathrm{E}_{1}$	$\overline{\mathrm{BE}} 0$	$\mathrm{R} / \overline{\mathrm{W}}$	Byte 3 1/O27-35	Byte 2 I/O18-26	Byte 1 1/O9-17	Byte 0 I/O0-8	MODE
X	\uparrow	H	X	X	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Deselected-Power Down
X	\uparrow	X	L	X	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Deselected-Power Down
X	\uparrow	L	H	H	H	H	H	X	High-Z	High-Z	High-Z	High-Z	All Bytes Deselected
X	\uparrow	L	H	H	H	H	L	L	High-Z	High-Z	High-Z	Din	Write to Byte 0 Only
X	\uparrow	L	H	H	H	L	H	L	High-Z	High-Z	DiN	High-Z	Write to Byte 1 Only
X	\uparrow	L	H	H	L	H	H	L	High-Z	DIN	High-Z	High-Z	Write to Byte 2 Only
X	\uparrow	L	H	L	H	H	H	L	DIN	High-Z	High-Z	High-Z	Write to Byte 3 Only
X	\uparrow	L	H	H	H	L	L	L	High-Z	High-Z	Din	Din	Write to Lower 2 Bytes Only
X	\uparrow	L	H	L	L	H	H	L	DIN	DIN	High-Z	High-Z	Write to Upper 2 bytes Only
X	\uparrow	L	H	L	L	L	L	L	DiN	DiN	Din	Din	Write to All Bytes
L	\uparrow	L	H	H	H	H	L	H	High-Z	High-Z	High-Z	Dout	Read Byte 0 Only
L	\uparrow	L	H	H	H	L	H	H	High-Z	High-Z	Dout	High-Z	Read Byte 1 Only
L	\uparrow	L	H	H	L	H	H	H	High-Z	Dout	High-Z	High-Z	Read Byte 2 Only
L	\uparrow	L	H	L	H	H	H	H	Dout	High-Z	High-Z	High-Z	Read Byte 3 Only
L	\uparrow	L	H	H	H	L	L	H	High-Z	High-Z	Dout	Dout	Read Lower 2 Bytes Only
L	\uparrow	L	H	L	L	H	H	H	Dout	Dout	High-Z	High-Z	Read Upper 2 Bytes Only
L	\uparrow	L	H	L	L	L	L	H	Dout	Dout	Dout	Dout	Read All Bytes
H	X	X	X	X	X	X	X	X	High-Z	High-Z	High-Z	High-Z	Outputs Disabled

NOTES:

1. "H" = Vін, "L" = VIL, "X" = Don't Care.
2. $\overline{\mathrm{ADS}}, \overline{\mathrm{CNTEN}}, \overline{\mathrm{REPEAT}}$ are set as appropriate for address access. Refers to Truth Table II for details.
3. $\overline{\mathrm{OE}}$ is an asynchronous input signal.
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.

Truth Table II—Address and Address Counter Control ${ }^{(1,2,7)}$

Address	Previous Address	Addr Used	CLK	$\overline{\text { ADS }}$	$\overline{\text { CNTEN }}$	$\overline{\mathrm{R} E P E A T}{ }^{(6)}$	$1 / 0^{(3)}$	MODE
An	X	An	\uparrow	$L^{(4)}$	X	H	Dro (n)	External Address Used
X	An	An + 1	\uparrow	H	$L^{(5)}$	H	Dro($\mathrm{n}+1$)	Counter Enabled-Internal Address generation
X	An +1	An + 1	\uparrow	H	H	H	Dro($\mathrm{n}+1$)	External Address Blocked-Counter disabled (An +1 reused)
X	X	An	\uparrow	X	X	L^{4}	Dro(0)	Counter Set to last valid $\overline{A D S}$ load

NOTES:
5626 tbl 03

1. "H" = VIH, "L" = VIL, "X" = Don't Care.
2. Read and write operations are controlled by the appropriate setting of $R / \bar{W}, \overline{C E}_{0}, C_{1}, \overline{\mathrm{BE}}$ n and $\overline{\mathrm{OE}}$.
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.
4. $\overline{\mathrm{ADS}}$ and $\overline{\mathrm{REPEAT}}$ are independent of all other memory control signals including $\overline{\mathrm{CE}} 0, \mathrm{CE} 1$ and $\overline{\mathrm{BE}}$ n
5. The address counter advances if $\overline{\operatorname{CNTEN}}=\mathrm{VIL}$ on the rising edge of CLK, regardless of all other memory control signals including $\overline{\mathrm{CE}} 0, \mathrm{CE}_{1}, \overline{\mathrm{BE}} \mathrm{n}$.
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via $\overline{A D S}$. This value is not set at power-up: a known location should be loaded via $\overline{\operatorname{ADS}}$ during initialization if desired. Any subsequent $\overline{\text { ADS }}$ access during operations will update the $\overline{\text { REPEAT }}$ address location.
7. The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0 , at address FFFh, and is advanced one location, it will move to address Oh in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to Oh in Bank 0 . Refer to Timing Waveform of Counter Repeat, page 18. Care should be taken during operation to avoid having both counters point to the same bank (i.e., ensure BAoL - BA5L $\left.\neq B A_{0 R}-A_{5 R}\right)$, as this condition will invalidate the access for both ports. Please refer to the functional description on page 19 for details.

Recommended Operating Temperature and Supply Voltage ${ }^{(1)}$

Grade	Ambient Temperature	GND	VDD
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 150 \mathrm{mV}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 150 \mathrm{mV}$

NOTE:

1. This is the parameter TA. This is the "instant on" case temperature.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial \& Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage ith Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
LOUT	DC Output Current	50	mA

NOTES:

5626 tol 06

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vterm must not exceed VDD +150 mV for more than 25% of the cycle time or 4 ns maximum, and is limited to $\leq 20 \mathrm{~mA}$ for the period of $\mathrm{V}_{\text {TERM }} \geq$ VDD +150 mV .

Recommended DC Operating
 Conditions with Vdda at 2.5V

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vdd	Core Supply Voltage	3.15	3.3	3.45	V
VdDQ	I/O Supply Voltage ${ }^{(3)}$	2.4	2.5	2.6	V
Vss	Ground	0	0	0	V
VIH	Input High Voltage (Address \& Control Inputs)	1.7	-	VDDQ $+100 \mathrm{mV}{ }^{(2)}$	V
VIH	Input High Voltage - $1 / \mathrm{O}^{(3)}$	1.7	-	VDDQ $+100 \mathrm{mV}{ }^{(2)}$	V
VIL	Input Low Voltage	$-0.3{ }^{(1)}$	-	0.7	V

NOTES:

1. Undershoot of $\mathrm{VIL} \geq-1.5 \mathrm{~V}$ for pulse width less than 10 ns is allowed.
2. Vterm must not exceed VdDQ +100 mV .
3. To select operation at 2.5 V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIL (OV), and VDDQx for that port must be supplied as indicated above.

Recommended DC Operating Conditions with Vdda at 3.3V

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vdd	Core Supply Voltage	3.15	3.3	3.45	V
VDDQ	I/O Supply Voltage ${ }^{(3)}$	3.15	3.3	3.45	V
Vss	Ground	0	0	0	V
V_{H}	Input High Voltage (Address \& Control Inputs) ${ }^{(3)}$	2.0	-	$V D D Q+150 \mathrm{mV}{ }^{(2)}$	V
VIH	Input High Voltage - I/ $\mathrm{O}^{(3)}$	2.0	-	VDDQ $+150 \mathrm{mV}{ }^{(2)}$	V
VIL	Input Low Voltage	$-0.3{ }^{(1)}$	-	0.8	V

NOTES:

1. Undershoot of $\mathrm{VIL} \geq-1.5 \mathrm{~V}$ for pulse width less than 10 ns is allowed.
2. Vterm must not exceed VddQ +150 mV .
3. To select operation at 3.3 V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to $\mathrm{V} \mathrm{VH}(3.3 \mathrm{~V})$, and V DDQx for that port must be supplied as indicated above.

Capacitance ${ }^{(1)}$

(TA $=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$) PQFP ONLY

Symbol	Parameter	Conditions $^{(2)}$	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	8	pF
Cout $^{(3)}$	Output Capacitance	Vout $=3 \mathrm{dV}$	10.5	pF

NOTES:

1. These parameters are determined by device characterization, but are not production tested.
2. 3dV references the interpolated capacitance when the input and output switch from OV to 3 V or from 3 V to OV .
3. Cout also references C/oo.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VdD $=\mathbf{3 . 3 V} \pm 150 \mathrm{mV}$)

Symbol	Parameter	Test Conditions	70V7599S		Unit		
			Min.	Max.			
\| $ا$ ㄴ	Input Leakage Current ${ }^{(1)}$	VdDQ $=$ Max., $\mathrm{V}^{\prime}=0 \mathrm{~V}$ to VdDQ	-	10	$\mu \mathrm{A}$		
\|	LO		Output Leakage Current ${ }^{(1)}$		-	10	$\mu \mathrm{A}$
Vol (3.3V)	Output Low Voltage ${ }^{(2)}$	$\mathrm{IOL}=+4 \mathrm{~mA}, \mathrm{VDDQ}=\mathrm{Min}$.	-	0.4	V		
Vон (3.3V)	Output High Voltage ${ }^{(2)}$	$1 \mathrm{OH}=-4 \mathrm{~mA}, \mathrm{VDDQ}=\mathrm{Min}$.	2.4	-	V		
Vol (2.5V)	Output Low Voltage ${ }^{(2)}$	$\mathrm{IOL}=+2 \mathrm{~mA}, \mathrm{VDDQ}=\mathrm{Min}$.	-	0.4	V		
Vor (2.5V)	Output High Voltage ${ }^{(2)}$	$1 \mathrm{OH}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DDQ}}=\mathrm{Min}$.	2.0	-	V		

NOTES:

5626 tbl 08

1. At $\mathrm{VDD} \leq 2.0 \mathrm{~V}$ leakages are undefined.
2. VDDQ is selectable $(3.3 \mathrm{~V} / 2.5 \mathrm{~V})$ via OPT pins. Refer to p .5 for details.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ${ }^{(5)}$ ($\mathrm{VDD}=3.3 \mathrm{~V} \pm 150 \mathrm{mV}$)

Symbol	Parameter	Test Condition	Version	$70 \mathrm{~V} 7599 \mathrm{~S} 200^{(7)}$ Com'I Only		70V7599S166 ${ }^{(6)}$ Com'l \& Ind		70V7599S133 Com'l \& Ind		Unit
				Typ. ${ }^{(4)}$	Max.	Typ. ${ }^{(4)}$	Max.	Typ. ${ }^{(4)}$	Max.	
IDD	Dynamic Operating Current (Both Ports Active)	$\overline{\mathrm{CE}} \mathrm{L}$ and $\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{VIL}$, Outputs Disabled, $\mathrm{f}=\mathrm{fmax}{ }^{(1)}$	COM'L S	815	950	675	790	550	645	mA
			IND S	-	-	675	830	550	675	
ISB1	Standby Current (Both Ports - TTL Level Inputs)	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{~L}=\overline{\mathrm{CE}} \mathrm{R}=\mathrm{V} \mathbb{H} \\ & \mathrm{f}=\mathrm{fMAX}{ }^{(1)} \end{aligned}$	COM'L S	340	410	275	340	250	295	mA
			IND S	-	-	275	355	250	310	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{\mathrm{CE}}{ }^{\prime \prime} \mathrm{A}^{\prime}=\mathrm{VIL}$ and $\overline{\mathrm{CE}}{ }^{\prime \prime} \mathrm{B}^{\prime \prime}=\mathrm{VIH}^{(3)}$ Active Port Outputs Disabled, $f=f m A X^{(1)}$	COM'L S	690	770	515	640	460	520	mA
			IND S	-	-	515	660	460	545	
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	$\begin{aligned} & \text { Both Ports } \overline{C E} L \text { and } \overline{C E} R \geq V D D Q-0.2 \mathrm{~V} \text {, } \\ & \mathrm{VIN} \geq \mathrm{VDDQ}-0.2 \mathrm{~V} \text { or } \mathrm{VIN} \leq 0.2 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{O}^{(2)} \end{aligned}$	COM'L S	10	30	10	30	10	30	mA
			IND S	-	-	10	40	10	40	
ISB4	Full Standby Current (One Port - CMOS Level Inputs)	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{"A}^{\prime} \leq 0.2 \mathrm{~V} \text { and } \overline{\mathrm{CE}} \mathrm{E} \mathrm{~B}^{2} \geq \mathrm{VDDQ}-0.2 \mathrm{~V}^{(5)} \\ & \mathrm{VIN} \geq \mathrm{VDDQ}-0.2 \mathrm{~V} \text { or VIN } \leq 0.2 \mathrm{~V}, \\ & \text { Active Port, Outputs Disabled, } \\ & \mathrm{f}=\text { fmax }^{(1)} \end{aligned}$	COM'L S	690	770	515	640	460	520	mA
			IND S	-	-	515	660	460	545	

NOTES:

1. At $f=$ fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of $1 / t \mathrm{tcyc}$, using "AC TEST CONDITIONS" at input levels of GND to 3 V .
2. $f=0$ means no address, clock, or control lines change. Applies only to input at CMOS level standby.
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
4. $V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for Typ, and are not production tested. $\operatorname{IDD} \mathrm{DC}(\mathrm{f}=0)=120 \mathrm{~mA}$ (Typ).
5. $\overline{\mathrm{CE}} \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ means $\overline{\mathrm{CE}} 0 \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE}_{1 \mathrm{X}}=\mathrm{V}_{\mathrm{IH}}$
$\overline{\mathrm{CE}} \mathbf{X}=\mathrm{V}_{\mathrm{IH}}$ means $\overline{\mathrm{CE}} 0 \mathrm{X}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE} 1 \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\mathrm{CE}} \mathrm{X} \leq 0.2 \mathrm{~V}$ means $\overline{\mathrm{CE}} 0 \mathrm{X} \leq 0.2 \mathrm{~V}$ and $\mathrm{CE} 1 \mathrm{X} \geq \mathrm{VDDQ}-0.2 \mathrm{~V}$
$\overline{\mathrm{CE}} \mathrm{x} \geq \mathrm{VDDQ}-0.2 \mathrm{~V}$ means $\overline{\mathrm{CE}} 0 \mathrm{x} \geq \mathrm{VDDQ}-0.2 \mathrm{~V}$ or $\mathrm{CE} 1 \mathrm{X} \leq 0.2 \mathrm{~V}$
"X" represents "L" for left port or " R " for right port.
6. 166 MHz Industrial Temperature not available in BF208 package.
7. This speed grade available when $V_{D D Q}=3.3 . V$ for a specific port (i.e., $O P T x=V_{I H}$). This speed grade available in $B C 256$ package only.

IDT70V7599S

High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM
AC Test Conditions (VddQ-3.3V/2.5V)

Input Pulse Levels (Address \& Controls)	GND to 3.0V/GND to 2.4V
Input Pulse Levels (//Os)	GND to 3.0V/GND to 2.4 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	$1.5 \mathrm{~V} / 1.25 \mathrm{~V}$
Output Reference Levels	$1.5 \mathrm{~V} / 1.25 \mathrm{~V}$
Output Load	Figures 1 and 2
5626 tol 10	

Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcklz, tckhz, tolz, and tohz). *Including scope and jig.

Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) ${ }^{(2)}\left(\mathbf{V d D}=3.3 \mathrm{~V} \pm 150 \mathrm{mV}, \mathrm{TA}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\right.$ to $\left.+\mathbf{7 0} 0^{\circ} \mathrm{C}\right)$

		70V7599S200 ${ }^{(5)}$ Com'I Only		$\begin{gathered} \text { 70V7599S166 }{ }^{(3,4)} \\ \text { Com'I } \\ \text { \& Ind } \end{gathered}$		$\begin{gathered} \text { 70V7599S133 }{ }^{(3)} \\ \text { Com'I } \\ \text { \& Ind } \end{gathered}$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyC1	Clock Cycle Time (Flow-Through) ${ }^{(1)}$	15	-	20	-	25	-	ns
tCYC2	Clock Cycle Time (Pipelined) ${ }^{(1)}$	5	-	6	-	7.5	-	ns
tch1	Clock High Time (Flow-Through) ${ }^{(1)}$	5	-	6	-	7	-	ns
tcL1	Clock Low Time (Flow-Through) ${ }^{(1)}$	5	-	6	-	7	-	ns
tch2	Clock High Time (Pipelined) ${ }^{(2)}$	2.0	-	2.1	-	2.6	-	ns
tcL2	Clock Low Time (Pipelined) ${ }^{(1)}$	2.0	-	2.1	-	2.6	-	ns
tR	Clock Rise Time	-	1.5	-	1.5	-	1.5	ns
tF	Clock Fall Time	-	1.5	-	1.5	-	1.5	ns
tsA	Address Setup Time	1.5	-	1.7	-	1.8	-	ns
tha	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
tsc	Chip Enable Setup Time	1.5	-	1.7	-	1.8	-	ns
thc	Chip Enable Hold Time	0.5	-	0.5	-	0.5	-	ns
tSB	Byte Enable Setup Time	1.5	-	1.7	-	1.8	-	ns
thB	Byte Enable Hold Time	0.5	-	0.5	-	0.5	-	ns
tsw	R/W Setup Time	1.5	-	1.7	-	1.8	-	ns
tHw	R/W Hold Time	0.5	-	0.5	-	0.5	-	ns
tsD	Input Data Setup Time	1.5	-	1.7	-	1.8	-	ns
thD	Input Data Hold Time	0.5	-	0.5	-	0.5	-	ns
tSAD	$\overline{\text { ADS Setup Time }}$	1.5	-	1.7	-	1.8	-	ns
thad	$\overline{\text { ADS }}$ Hold Time	0.5	-	0.5	-	0.5	-	ns
tscn	CNTEN Setup Time	1.5	-	1.7	-	1.8	-	ns
thCN	$\overline{\text { CNTEN }}$ Hold Time	0.5	-	0.5	-	0.5	-	ns
tSRPT	REPEAT Setup Time	1.5	-	1.7	-	1.8	-	ns
tHRPT	REPEAT Hold Time	0.5	-	0.5	-	0.5	-	ns
toe	Output Enable to Data Valid	-	4.0	-	4.0	-	4.2	ns
tolz	Output Enable to Output Low-Z	0.5	-	0.5	-	0.5	-	ns
tohz	Output Enable to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tcD1	Clock to Data Valid (Flow-Through) ${ }^{(1)}$	-	10	-	12	-	15	ns
tcD2	Clock to Data Valid (Pipelined) ${ }^{(1)}$	-	3.4	-	3.6	-	4.2	ns
toc	Data Output Hold After Clock High	1	-	1	-	1	-	ns
tckHz	Clock High to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tckLz	Clock High to Output Low-Z	0.5	-	0.5	-	0.5	-	ns
Port-to-Port Delay								
tco	Clock-to-Clock Offset	5.0	-	6.0	-	7.5	-	ns

NOTES:
5626 tbl 11

1. The Pipelined output parameters (tcyc2, tcD2) apply to either or both left and right ports when $\overline{\mathrm{FT}} / \mathrm{PIPEx}=\mathrm{V} / \mathrm{H}$. Flow-through parameters (tcyc1, tcD1) apply when $\overline{\text { FT/PIPEX }}=$ VIL for that port.
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable ($\overline{\mathrm{OE}}$) and $\overline{\mathrm{FT}} / \mathrm{PIPE}$. $\overline{\mathrm{FT}} / \mathrm{PIPE}$ should be treated as a DC signal, i.e. steady state during operation.
3. These values are valid for either level of $\operatorname{VDDQ}(3.3 \mathrm{~V} / 2.5 \mathrm{~V})$. See page 5 for details on selecting the desired operating voltage levels for each port.
4. 166 MHz Industrial Temperature not available in $\mathrm{BF}-208$ package.
5. This speed grade available when $V_{D D Q}=3.3 . \mathrm{V}$ for a specific port (i.e., $\mathrm{OPTx}=\mathrm{V}_{\boldsymbol{H}}$). This speed grade available in BC 256 package only.

Timing Waveform of Read Cycle for Pipelined Operation ($\overline{\text { ADS Operation) }}$ ($\overline{\text { FT/PIPE' }}$ ' $=\mathbf{V I H})^{(2)}$

Timing Waveform of Read Cycle for Flow-through Output (FT/PIPE"X" = VIL) ${ }^{(2,6)}$

NOTES:

1. $\overline{\mathrm{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
2. $\overline{A D S}=V / I L, \overline{C N T E N}$ and $\overline{\text { REPEAT }}=\mathrm{VIH}$.
3. The output is disabled (High-Impedance state) by $\overline{C E}_{0}=\mathrm{V}_{I H}, \mathrm{CE}_{1}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{B}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{H}}$ following the next rising edge of the clock. Refer to Truth Table 1.
4. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=$ VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
5. If $\overline{B E}_{n}$ was HIGH, then the appropriate Byte of DATAout for $\mathrm{Qn}+2$ would be disabled (High-Impedance state).
6. "x" denotes Left or Right port. The diagram is with respect to that port.

Timing Waveform of a Multi-Device Pipelined Read ${ }^{(\mathbf{1 , 2})}$

Timing Waveform of a Multi-Device Flow-Through Read(1,2)

NOTES:

1. B1 Represents Device \#1; B2 Represents Device \#2. Each Device consists of one IDT70V7599 for this waveform, and are setup for depth expansion in this example. $\operatorname{ADDRESS}(\mathrm{B} 1)=\operatorname{ADDRESS}(\mathrm{B} 2)$ in this situation.
2. $\overline{\mathrm{BE}} \mathrm{n}_{\mathrm{n}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1(\mathrm{~B} 1)}, \mathrm{CE}_{1(\mathrm{~B} 2)}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{V}_{\mathrm{I}}$.

IDT70V7599S

High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Timing Waveform of Port A Write to Pipelined Port B Read ${ }^{(1,2,4)}$

NOTES:

1. $\overline{\mathrm{CE}} 0, \overline{\mathrm{BE}}_{\mathrm{n}}$, and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{L}} ; \mathrm{CE} 1, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{V}_{\mathrm{H}}$.
2. $\overline{O E}=V_{I L}$ for Port " B ", which is being read from. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ for Port " A ", which is being written to.
3. If tco < minimum specified, then operations from both ports are INVALID. If tco \geq minimum, then data from Port " B " read is available on first Port " B " clock cycle (ie, time from write to valid read on opposite port will be tco + tcyc2 + tcoz).
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"

Timing Waveform with Port-to-Port Flow-Through Read(1,2,4)

NOTES:

1. $\overline{\mathrm{CE}} 0, \overline{\mathrm{BE}} \mathrm{n}$, and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{V}_{\mathrm{IH}}$.
2. $\overline{\mathrm{OE}}=\mathrm{VIL}$ for the Right Port, which is being read from. $\overline{\mathrm{O}}=\mathrm{VIH}$ for the Left Port, which is being written to.
3. If tco < minimum specified, then operations from both ports are INVALID. If too \geq minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will be tco + tcol).
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".

Timing Waveform of Pipelined Read-to-Write-to-Read $\left(\overline{O E}=V_{\text {IL }}\right)^{(2)}$

 DATAIN\qquad

NOTES:

1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
2. $\overline{\mathrm{CE}}_{0}, \overline{\mathrm{BE}}_{\mathrm{n}}$, and $\overline{\mathrm{ADS}}=\mathrm{VIL}^{\prime} \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{VIH}^{\text {. "NOP" }}$ is "No Operation".
3. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=$ VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read-to-Write-to-Read ($\overline{\text { OE Controlled }}{ }^{(2)}$

NOTES:

1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
2. $\overline{\mathrm{CE}} 0, \overline{\mathrm{BE}} \mathrm{E}_{\mathrm{n}}$, and $\overline{\mathrm{ADS}}=\mathrm{VIL}^{\prime} ; \mathrm{CE} 1, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{VIH}$.
3. Addresses do not have to be accessed sequentially since $\overline{\text { ADS }}=$ VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.

Timing Waveform of Flow-Through Read-to-Write-to-Read ($\overline{\mathrm{OE}}=\mathrm{VIL})^{(\mathbf{2})}$

Timing Waveform of Flow-Through Read-to-Write-to-Read ($\overline{\text { OE Controlled) }}{ }^{(2)}$

NOTES:

1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
2. $\overline{\mathrm{CE}} 0, \overline{\mathrm{BE}}$, and $\overline{\mathrm{ADS}}=\mathrm{VIL}^{\prime} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{REPEAT}}=\mathrm{V}_{\mathrm{IH}}$.
3. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=$ VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance ${ }^{(1)}$

Timing Waveform of Flow-Through Read with Address Counter Advance ${ }^{(1)}$

NOTES:

1. $\overline{C E}{ }_{0}, \bar{O} \bar{E}, \overline{B E n}=V_{I L} ; C E 1, R \bar{W}$, and $\overline{R E P E A T}=V_{I H}$.
2. If there is no address change via $\overline{\operatorname{ADS}}=\mathrm{V}_{\mathrm{IL}}$ (loading a new address) or $\overline{\mathrm{CNTEN}}=\mathrm{V}_{\mathrm{IL}}$ (advancing the address), i.e. $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IH}}$ and $\overline{\mathrm{CNTEN}}=\mathrm{V}_{\mathrm{IH}}$, then the data output remains constant for subsequent clocks.

Timing Waveform of Write with Address Counter Advance (Flow-through or Pipelined Inputs) ${ }^{(1,6)}$

Timing Waveform of Counter Repeat for Flow Through Mode ${ }^{(2,6,7)}$

NOTES:

2. $\overline{C E} 0, \overline{B E}_{n}=V_{I L} ; C E 1=V_{I H}$.
3. The "Internal Address" is equal to the "External Address" when $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ and equals the counter output when $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IH}}$.
4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid $\overline{\text { ADS }}$ load will be accessed. For more information on REPEAT function refer to Truth Table II.
5. $\overline{C N T E N}=$ VIL advances Internal Address from 'An' to 'An +1 '. The transition shown indicates the time required for the counter to advance. The 'An +1 'Address is written to during this cycle.
6. The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0 , at address FFFh, and is advanced one location, it will move to address Oh in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to Oh in Bank 0.
7. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.

Functional Description

The IDT70V7599 is a high-speed $128 \mathrm{~K} \times 36$ (4 Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent $2 K \times 36$ banks. Based on astandardSRAM core instead ofatraditional true dual-portmemory core, this bank-switchable device offers the benefits of increased density and lower cost-per-bit while retaining many of the features oftrue dual-ports. Thesefeatures include simultaneous, random access to the shared array, separate clocks per port, 166 MHzoperating speed, full-boundary counters, and pinouts compatiblewiththe IDT70V3599 (128Kx36) dual-portfamily.

The two ports are permitted independent, simultaneous access into separate banks within the shared array. Access by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array thatis notcurrently being accessed by the opposite port(i.e., BAOL-BA5L $\neq B A 0 R-B A 5 R$). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case thateither or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

The IDT70V7599 provides atrue synchronous Dual-PortStatic RAM
interface. Registered inputs provide minimal setup and hold times on address, data and all critical control inputs.

An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation oftheaddress countersforfastinterleavedmemory applications.

AHIGH on $\overline{C E} 0$ or aLOW on CE1 forone clock cycle will power down the internal circuitry on each port (individually controlled) to reduce static power consumption. Dual chip enables alloweasier banking of multiple IDT70V7599S for depth expansion configurations. Two cycles are required with $\overline{\mathrm{E}} 0 \mathrm{LOW}$ and CE 1 HIGH to read valid data on the outputs.

Depth and Width Expansion

The IDT70V7599 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The IDT70V7599 canalso be used in applications requiring expanded width, as indicated in Figure 4 . Through combining the control signals, the devices can be grouped as necessary to accommodate applications needing 72 -bits or wider.

NOTE:

1. In the case of depth expansion, the additional address pin logically serves as an extension of the bank address. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory within the shared array that is not currently being accessed by the opposite port (i.e., BAOL - BAGL \neq BAor - BAbr). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the parts within that bank may be corrupted (in the case that either or both parts are writing) or may result in invalid output (in the case that both ports are trying to read).

JTAG Timing Specifications

Figure 5. Standard JTAG Timing
NOTES:

1. Device inputs = All device inputs except TDI, TMS, TRST, and TCK.
2. Device outputs $=$ All device outputs except TDO.

JTAG AC Electrical

Characteristics ${ }^{(1,2,3,4)}$

Symbol	Parameter	70V7599		
		Max.	Units	
tJCYC	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$3^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$3^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	25	ns
tJDC	JTAG Data Output Hold	0	-	ns
tJS	JTAG Setup	15	-	ns
tJH	JTAG Hold	15	-	ns

NOTES:

1. Guaranteed by design.
2. 30 pF loading on external output signals.
3. Refer to AC Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10 MHz). The base device may run at any speed specified in this datasheet.

Identification Register Definitions

Instruction Field	Value	Description
Revision Number (31:28)	0×0	Reserved for version number
IDT Device ID (27:12)	0×308	Defines IDT part number
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendor as IDT
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register

Scan Register Sizes

Register Name	Bit Size	
Instruction (IR)	4	
Bypass (BYR)	1	
Identification (IDR)	32	
Boundary Scan (BSR)	Note (3)	
5626 也1 14		

System Interface Parameters

Instruction	Code	Description
EXTEST	0000	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGHZ	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ${ }^{(2)}$ and outputs ${ }^{(1)}$ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do not use codes other than those identified above.

NOTES:

1. Device outputs $=$ All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, TRST, and TCK.
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

Ordering Information

NOTES:

1. Availablein BC 256 package only.
2. Industrial Temperatureat 166 Mhz notavailable in BF208 package.
3. Contactyour local sales office for industrial temp range forother speeds, packages and powers.
4. Green parts available. For specificspeeds, packages and powers contact yourlocal sales office.

Datasheet Document History:

01/05/00: 10/19/01:	Initial Public Offering
	Page 2, $3 \& 4$ Added date revision for pin configurations
	Page 9 Changed lsB3 values for commercial and industrial DC Electrical Characteristics
	Page 11 Changed toe value in AC Electrical Characteristics, please refer to Errata \#SMEN-01-05
	Page 20 Increased tjco from 20ns to 25ns, please refer to Errata \#SMEN-01-04
	Page 1\& 22 Replaced tm logo with ® logo
03/18/02:	Page 1, 9, 11\& 22 Added 200MHz specification
	Page 9 Tightened power numbers in DC Electrical Characteristics
	Page 14 Changed waveforms to show INVALID operation if too < minimum specified
	Page 1-22 Removed "Preliminary" status
12/04/02:	Page 9, 11 \& 22 Designated $200 \mathrm{Mhz} \mathrm{speed} \mathrm{grade} \mathrm{available} \mathrm{in} \mathrm{BC-256} \mathrm{package} \mathrm{only}$
01/16/04:	Page 11 Added byte enable setuptime and byte enable hold time parameters and values toall speed grades inthe AC Electrical Characteristics Table
07/25/08:	Page 9 Corrected a typo in the DC Chars table
01/29/09:	Page 22 Removed "IDT" from orderable partnumber
06/03/15:	Page 1 Added Green availability to Features
	Page $2,3,4$ \& 22 The package codes for BF-208 changed to BF208, BC-256 changed to BC256, and DR-208 changed to DR208 respectively to match the standard package codes
	Page $2,3 \& 4$ Removed the date from all of the pin configurations BF208, BC256 \& DR208
	Page 22 Added Green and T\&Rindicators and the correlating footnotes to Ordering Information

for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
408-284-2794
DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IDT (Integrated Device Technology):
70V7599S166BC8 70V7599S166BF8 70V7599S200BC8 70V7599S166BF 70V7599S166BC 70V7599S166DR 70V7599S200BC 70V7599S133BF8 70V7599S133BC8 70V7599S133BC 70V7599S133DR 70V7599S133BF 70V7599S133BFI 70V7599S133BCI 70V7599S133DRI 70V7599S166BCI8 70V7599S166BCI 70V7599S166DRI 70V7599S133BCI8 70V7599S133BFI8

