

CY74FCT16652T CY74FCT162652T

SCCS061B - July 1994 - Revised September 2001

Features

- I_{off} supports partial-power-down mode operation
- Edge-rate control circuitry for significantly improved noise characteristics
- Typical output skew < 250 ps
- ESD > 2000V
- TSSOP (19.6-mil pitch) and SSOP (25-mil pitch) packages
- Industrial temperature range of -40°C to +85°C
- V_{CC} = 5V \pm 10%

CY74FCT16652T Features:

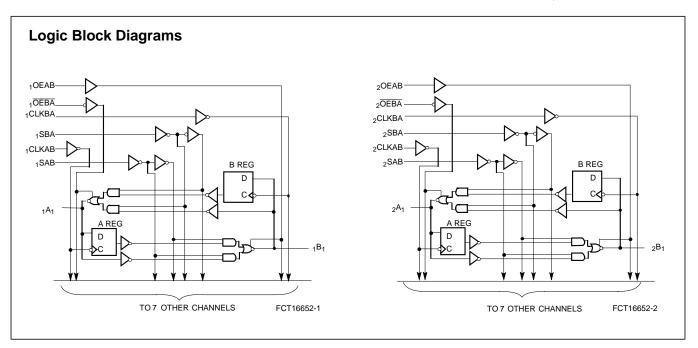
- 64 mA sink current, 32 mA source current
- Typical V_{OLP} (ground bounce) <1.0V at V_{CC} = 5V, $T_A = 25^{\circ}C$

CY74FCT162652T Features:

- Balanced 24 mA output drivers
- Reduced system switching noise
- Typical V_{OLP} (ground bounce) <0.6V at V_{CC} = 5V, T_{A} = 25 $^{\circ}C$

16-Bit Registered Transceivers

Functional Description


These 16-bit, high-speed, low-power, registered transceivers that are organized as two independent 8-bit bus transceivers with three-state D-type registers and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. OEAB and OEBA control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by LOW-to-HIGH transitions at the appropriate clock pins (CLKAB or CLKBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The CY74FCT16652T is ideally suited for driving high-capacitance loads and low-impedance backplanes.

The CY74FCT162652T has 24-mA balanced output drivers with current-limiting resistors in the outputs. This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce. The CY74FCT162652T is ideal for driving transmission lines.

CY74FCT16652T CY74FCT162652T

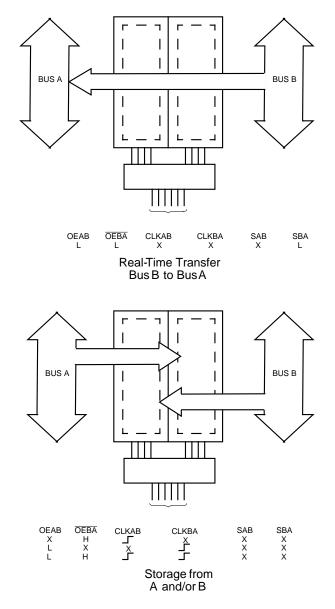
	• "	
Pi	n Config	
	SSOP/TS	
	Top Vi	ew
10EAB		56 1 10EBA
1CLKAB	2	55 🔲 1CLKBA
1SAB	Ц з	54 🔲 1SBA
GND	4	53 🔲 GND
1A1	5	52 1 ^{B1}
1 ^A 2	6	51 1 ^{B2}
V _{CC}	Π7	50 🗖 V _{CC}
1A3	8	49 1 ^{B3}
1A4	9	48 🔲 1B4
1A5	10	47 1 ^{B5}
GND	[11	46 🔲 GND
1A6	12	45 🔲 1 ^B 6
1A7	13	44 🔲 1 ^B 7
1A8	14	43 1 ^B 8
2A1	15	42 2 ^{B1}
2 ^A 2	16	41 2 ^{B2}
2A3	17	40 2 ^B 3
GND	18	39 🔲 GND
₂ A ₄	19	38 2 ^B 4
2A5	20	37 2 ^{B5}
₂ A ₆	21	36 2 ² B ₆
V _{CC}	22	35 🔲 V _{CC}
2 ^A 7	23	34 2 ^{B7}
2 ^A 8	24	33 2 ² B ₈
GND	25	32 🔲 GND
₂ SAB	26	31 2SBA
₂ CLKAB	27	30 2 2CLKBA
₂ OEAB	28	29 20EBA
		FCT16652-3

Pin Description

Name	Description
A	Data Register A Inputs Data Register B Outputs
В	Data Register B Inputs Data Register A Outputs
CLKAB, CLKBA	Clock Pulse Inputs
SAB, SBA	Output Data Source Select Inputs
OEAB, OEBA	Output Enable Inputs

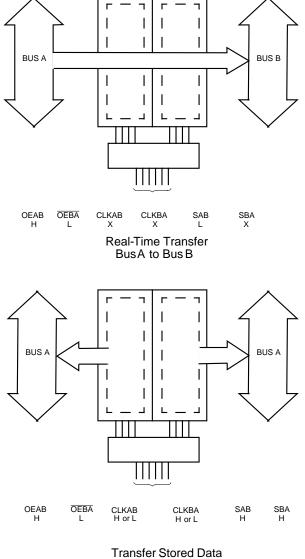
Function Table^[1]

		Inpu	its			Data	I/O ^[2]	
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A	В	Operation or Function
L	H H	HorL 	HorL 	X X	X X	Input	Input	Isolation Store A and B Data
X H	H H	л Г	H or L	X X ^[3]	X X	Input Input	Unspecified ^[2] Output	Store A, Hold B Store A in Both Registers
L	X L	H or L	ЧЧ	X X	X X ^[3]	Unspecified ^[2]	Input Input	Hold A, Store B Store B in both Registers
L	L	X	X	Х	L	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus
L	L	X	H or L	Х	Н			
Н	Н	X	Х	L	Х	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus
н	н	H or L	Х	н	Х			
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus


Notes:

1. H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

J = LOW-to-HIGH Transition
 2. The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.
 3. Select control=L; clocks can occur simultaneously. Select control=H; clocks must be staggered to load both registers.


CY74FCT16652T CY74FCT162652T

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature	Com'l	–55°C to +125°C
Ambient Temperature with Power Applied	Com'l	–55°C to +125°C
DC Input Voltage		–0.5V to +7.0V
DC Output Voltage		–0.5V to +7.0V
DC Output Current (Maximum Sink Current/Pin)		–60 to +120 mA

to A and/or B

Power Dissipation	1.0W
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	

Operating Range

Range	Ambient Temperature	v _{cc}
Industrial	–40°C to +85°C	$5V \pm 10\%$

Note:

4. Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
V _{IH}	Input HIGH Voltage	Logic HIGH Level	2.0			V
V _{IL}	Input LOW Voltage	Logic LOW Level			0.8	V
V _H	Input Hysteresis			100		mV
V _{IK}	Input Clamp Diode Voltage	V _{CC} =Min., I _{IN} =-18 mA		-0.7	-1.2	V
I _{IH}	Input HIGH Current	V _{CC} =Max., V _I =V _{CC}			±1	μA
IIL	Input LOW Current	V _{CC} =Max., V _I =GND			±1	μA
I _{OZH}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =2.7V			±1	μA
I _{OZL}	High Impedance Output Current (Three-State Output pins)	V _{CC} =Max., V _{OUT} =0.5V			±1	μA
I _{OS}	Short Circuit Current ^[8]	V _{CC} =Max., V _{OUT} =GND	-80	-140	-200	mA
I _O	Output Drive Current ^[8]	V _{CC} =Max., V _{OUT} =2.5V	-50		-180	mA
I _{OFF}	Power-Off Disable	$V_{CC}=0V, V_{OUT} \le 4.5V^{[7]}$			±1	μA

Output Drive Characteristics for CY74FCT16652T

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-3 mA	2.5	3.5		V
		V _{CC} =Min., I _{OH} =-15 mA	2.4	3.5		
		V _{CC} =Min., I _{OH} =-32 mA	2.0	3.0		
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =64 mA		0.2	0.55	V

Output Drive Characteristics for CY74FCT162652T

Parameter	Description	Test Conditions ^[5]	Min.	Typ. ^[6]	Max.	Unit
I _{ODL}	Output LOW Current ^[8]	V_{CC} =5V, V_{IN} =V _{IH} or V_{IL} , V_{OUT} =1.5V	60	115	150	mA
I _{ODH}	Output HIGH Current ^[8]	V_{CC} =5V, V_{IN} =V _{IH} or V_{IL} , V_{OUT} =1.5V	-60	–115	-150	mA
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-24 mA	2.4	3.3		V
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =24 mA		0.3	0.55	V

Capacitance ($T_A = +25^{\circ}C$, f = 1.0 MHz)

Parameter	Description ^[10]	Test Conditions	Тур.	Max.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4.5	6.0	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8.0	pF

Notes:

5. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. 6. Typical values are at V_{CC} =5.0V, +25°C ambient. 7. Tested at T_A = +25°C.

Not more than one output should be tested at one time. Duration of the test should not exceed one second.
Duration of the condition cannot exceed one second.
This parameter is measured at characterization but not tested.

Power Supply Characteristics

Param.	Description	Test Condition	ons ^[11]	Min.	Typ. ^[12]	Max.	Unit
I _{CC}	Quiescent Power Supply Current	V _{CC} =Max.	$V_{IN} \leq 0.2V$ $V_{IN} \geq V_{CC} = 0.2V$	-	5	500	μA
ΔI _{CC}	Quiescent Power Supply Current TTL Inputs HIGH	V _{CC} = Max. V _{IN} =3.4V ^[13]		-	0.5	1.5	mA
I _{CCD}	Dynamic Power Supply Current ^[14]	V _{CC} =Max. Outputs Open OEAB=OEAB=GND One Input Toggling 50% Duty Cycle	V _{IN} =V _{CC} or V _{IN} =GND	-	75	120	μΑ/ MHz
Ι _C	Total Power Supply Current ^[15]	V_{CC} =Max. Outputs Open f_0 =10 MHz (CLKBA) 50% Duty Cycle OEAB=OEBA=GND One-Bit Toggling f_1 =5 MHz 50% Duty Cycle	V _{IN} =V _{CC} or V _{IN} =GND	-	0.8	1.7	mA
			V _{IN} =3.4V or V _{IN} =GND	_	1.3	3.2	mA
		V _{CC} =Max. Outputs Open	V _{IN} =V _{CC} or V _{IN} =GND	-	3.8	6.5 ^[16]	mA
		Outputs Open f _o =10 MHz (CLKBA)	V _{IN} =3.4V or V _{IN} =GND	_	8.3	20.0 ^[16]	mA

Notes:

 Notes:

 11. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

 12. Typical values are at V_{CC} =5.0V +25° ambient.

 13. Per TTL driven input (V_{IN} =3.4V); all other inputs at V_{CC} or GND.

 14. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

 15. I_C = $I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$
 I_C = $I_{CC} + \Delta I_{CC} D_H NT + I_{CC} O(fo/2 + f_1 N_1)$
 I_{CC} = Quiescent Current with CMOS input levels

 Δ_{ICC} = Power Supply Current for a TTL HIGH input (V_{IN} =3.4V)

 D_H = Duty Cycle for TTL inputs HIGH

 N_T = Number of TTL inputs at D_H
 I_{CCD} = Dynamic Current caused by an input transition pair (HLH or LHL)

 f_0 = Clock frequency for registered devices, otherwise zero

 f_1 = Input signal frequency

 N_1 = Number of inputs changing at f_1

- f₁ N₁ = Number of inputs changing at f₁

All currents are in milliamps and all frequencies are in megahertz.

16. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested.

Switching Characteristics Over the Operating Range^[17]

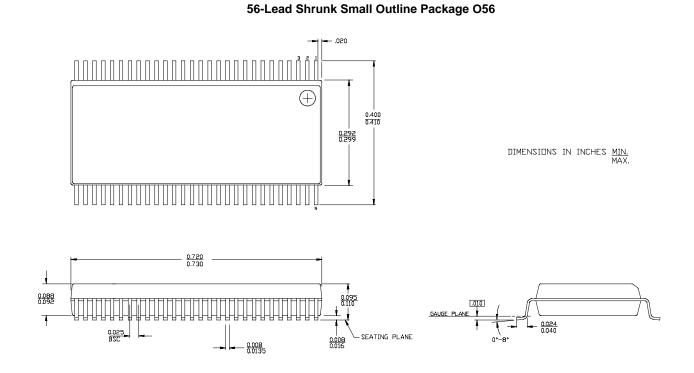
	CY74FCT16652AT CY74FCT162652AT				
Parameter	Description	Min.	Max.	Unit	Fig. No. ^[18]
t _{PLH} t _{PHL}	Propagation Delay Bus to Bus		6.3	ns	1, 3
t _{PZH} t _{PHL}	Output Enable Time OEAB or OEBA to Bus	1.5	9.8	ns	1, 7, 8
t _{PHZ} t _{PLZ}			6.3	ns	1, 7, 8
t _{PLH} t _{PHL}	Propagation Delay Clock to Bus		6.3	ns	1, 5
t _{PLH} t _{PHL}	Propagation Delay SBA or SAB to Bus		7.7	ns	1, 5
t _{SU}	Set-Up time HIGH or LOW Bus to Clock		—	ns	4
t _H	H Hold Time HIGH or LOW Bus to Clock		-	ns	4
t _W	Clock Pulse Width HIGH or LOW		- 1	ns	5
t _{SK(O)}	Output Skew ^[19]	—	0.5	ns	

Parameter	Description	CY74FCT16652CT CY74FCT162652CT			
		Min.	Max.	Unit	Fig. No. ^[18]
t _{PLH} t _{PHL}	Propagation Delay Bus to Bus	1.5	5.4	ns	1, 3
t _{PZH} t _{PHL}	Output Enable Time OEAB or OEBA to Bus	1.5	7.8	ns	1, 7, 8
t _{PHZ} t _{PLZ}	Output Disable Time OEAB or OEBA to Bus	1.5	6.3	ns	1, 7, 8
t _{PLH} t _{PHL}	Propagation Delay Clock to Bus	1.5	5.7	ns	1, 5
t _{PLH} t _{PHL}	Propagation Delay SBA or SAB to Bus	1.5	6.2	ns	1, 5
t _{SU}	Set-Up Time HIGH or LOW Bus to Clock	2.0	_	ns	4
t _H	Hold Time HIGH or LOW Bus to Clock	1.5	_	ns	4
t _W	Clock Pulse Width HIGH or LOW	5.0	-	ns	5
t _{SK(O)}	Output Skew ^[19]	_	0.5	ns	

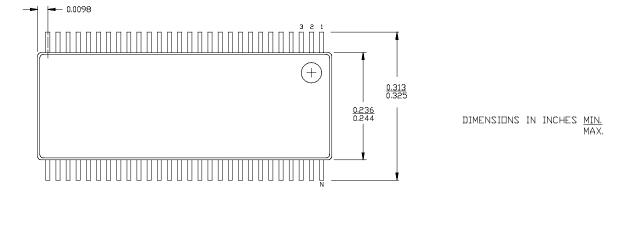
Notes:

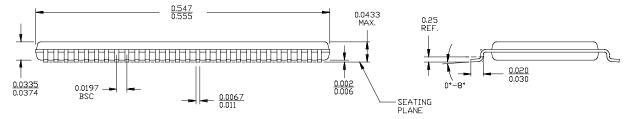
Minimum limits are specified, but not tested, on propagation delays.
 See "Parameter Measurement Information" in the General Information section.
 Skew between any two outputs of the same package switching in the same direction. This parameter ensured by design.

Ordering Information CY74FCT16652


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
5.4	CY74FCT16652CTPVC/PVCT	O56	56-Lead (300-Mil) SSOP	Industrial
6.3	CY74FCT16652ATPVC/PVCT	O56	56-Lead (300-Mil) SSOP	Industrial

Ordering Information CY74FCT162652


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
5.4	74FCT162652CTPACT	Z56	56-Lead (240-Mil) TSSOP	Industrial
	CY74FCT162652CTPVC	O56	56-Lead (300-Mil) SSOP	
	74FCT162652CTPVCT	O56	56-Lead (300-Mil) SSOP	
6.3	CY74FCT162652ATPVC	O56	56-Lead (300-Mil) SSOP	Industrial
	74FCT162652ATPVCT	O56	56-Lead (300-Mil) SSOP	



Package Diagrams

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated