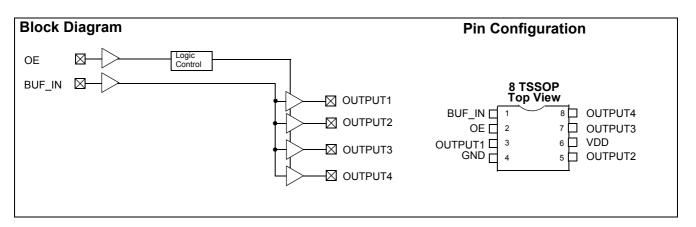


Features


- One input to four output buffer/driver
- General-purpose or PCI-X clock buffer
- Buffers all frequencies from DC to 140 MHz
- Output-to-output skew less than 100 ps
- Space-saving 8-pin TSSOP package
- 3.3V operation
- 60 ps typical output-output skew

Functional Description

The CY2304NZ is a low-cost buffer designed to distribute high-speed clocks for PCI-X and other applications. The device operates at 3.3V and outputs can run up to 140 MHz.

Table 1. Function Table

Inputs	Outputs	
BUF_IN OE		Output [1:4]
L	L	L
Н	L	L
L	Н	L
Н	Н	Н

Pin Description for CY2304NZ

Signal	Pin	Description
V _{DD}	6	3.3V voltage supply
GND	4	Ground
BUF_IN	1	Input clock
OUTPUT [1:4]	3, 5, 7, 8	Outputs
OE	2	Input pin for output enable, active HIGH.

3901 North First Street

San Jose, CA 95134 • 408-943-2600 Revised January 04, 2005

CY2304NZ

Maximum Ratings

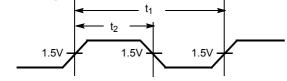
Supply Voltage to Ground Potential–0.5V to V_{DD} +0.5V
DC Input Voltage (Except REF)–0.5V to $\rm V_{DD}$ +0.5V
DC Input Voltage REF–0.5V to $\mathrm{V_{DD}}$ +0.5V

Storage Temperature65°C to +150	Э°С
Max. Soldering Temperature (10 sec.) 260	Э°С
Junction Temperature 150	Э°С
Static Discharge Voltage (per MIL-STD-883, Method 3015)> 2,00)0V

Operating Conditions

Parameter Description		Min.	Max.	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance	-	25	pF
C _{IN}	Input Capacitance	-	7	pF
BUF_IN, OUTPUT [1:4]	Operating Frequency	DC	140	MHz
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics

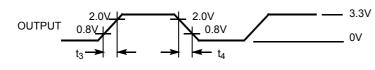

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[1]		-	0.8	V
V _{IH}	Input HIGH Voltage ^[1]		2.0	-	V
IIL	Input LOW Current	V _{IN} = 0V	-5	5	μΑ
IIH	Input HIGH Current	V _{IN} = V _{DD}	-5	5	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 24 mA	-	0.8	V
		I _{OL} = 12 mA	-	0.55	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = –24 mA	2.0	-	V
		I _{OH} = -12 mA	2.4	-	V
I _{DD}	Supply Current	Unloaded outputs at 66.66 MHz	-	25	mA

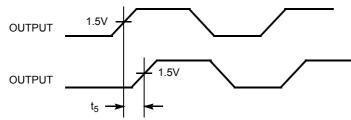
Switching Characteristics^[3] for Commercial and Industrial Temperature Devices

Parameter	Name	Description	Min.	Тур.	Max.	Unit	
	Duty Cycle ^[2] = $t_2 \div t_1$	Measured at 1.5V	40.0	50.0	60.0	%	
t ₃	Rise Time ^[2]	Measured between 0.8V and 2.0V	-	-	1.50	ns	
t ₄	Fall Time ^[2]	Measured between 0.8V and 2.0V	-	-	1.50	ns	
t ₅	Output to Output Skew ^[2]	All outputs equally loaded	-	60	100	ps	
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ^[2]	Measured at V _{DD} /2	2.5	3.5	5	ns	

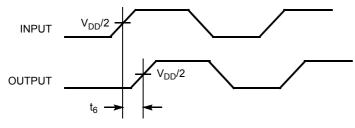
Switching Waveforms

Duty Cycle Timing


Notes:
1. BUF_IN input has a threshold voltage of V_{DD}/2.
2. Parameter is guaranteed by design and characterization. It is not 100% tested in production.
3. All parameters specified with loaded outputs.

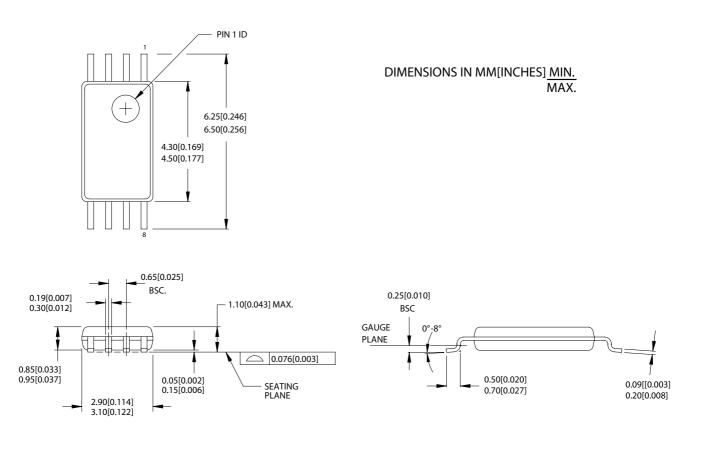

CY2304NZ

Switching Waveforms (continued)


All Outputs Rise/Fall Time

Output-Output Skew

Input-Output Propagation Delay


Ordering Information

Ordering Code	Package Type	Operating Range
Standard		
CY2304NZZC-1	8-pin TSSOP	Commercial, 0°C to 70°C
CY2304NZZC-1T	8-pin TSSOP – Tape and Reel	Commercial, 0°C to 70°C
CY2304NZZI-1	8-pin TSSOP	Industrial, –40°C to 85°C
CY2304NZZI-1T	8-pin TSSOP – Tape and Reel	Industrial, –40°C to 85°C
Lead-free		
CY2304NZZXC-1	8-pin TSSOP	Commercial, 0°C to 70°C
CY2304NZZXC-1T	8-pin TSSOP – Tape and Reel	Commercial, 0°C to 70°C
CY2304NZZXI-1	8-pin TSSOP	Industrial, –40°C to 85°C
CY2304NZZXI-1T	8-pin TSSOP – Tape and Reel	Industrial, –40°C to 85°C

Package Diagram

8-Lead Thin Shrunk Small Outline Package (4.40 MM Body) Z8

51-85093-*A

All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Downloaded from Arrow.com.

CY2304NZ

Document History Page

Document Title: CY2304NZ Four Output PCI-X and General Purpose Buffer Document Number: 38-07099					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	111420	02/12/02	IKA	New data sheet	
*A	118610	09/25/02	HWT	Added Industrial Temperature Range in the Ordering Information	
*B	121820	12/14/02	RBI	Power-up requirements added to Operating Conditions Information	
*C	291098	See ECN	RGL	Added Lead-free Devices Specified typical value for output-output skew	