

Multilayer Chip Inductor is an electronic part that uses in resonance circuit, for noise suppression and for impedance matching in the electrical circuit.

SAMSUNG Electro-mechanics has 2 series of chip inductors; CIL and CIH series.

CIL series is ordinary type chip inductor. It composed of magnetic body (ferrite material), conducting material (Ag) and electrodes (solder plating). It has excellent Q characteristics ans eliminate crosstalk.

CIH series is high frequency type chip inductor. It composed of ceramic body (dielectric material), conducting material (Ag) and electrodes (solder plating). It has high Q and IZI at high frequencies. It is possible to use for high frequencies over 100 MHz.

■ FEATURE AND APPLICATION

• Feature

CIL Series

- Highly Reliable Performance.
- Excellent solderability and high heat resistance for either flow and reflow soldering.
- Closed magnetic circuit configuration avoids crosstalk and is suitable for high density PCBs.

CIH Series

- Highly Reliable Performance.
- Lowest value of specific resistivity, good property of Q and SRF.
- Possible to use at range above 100 MHz.

Application

CIL Series

- General electronic equipments.
- Resonance circuits, PLL circuits, Noise suppression etc.

CIH Series

- Mobile communication systems.
- Noise suppression at high frequency.
- Impedance matching.

■ APPEARANCE AND DIMENSION

• CIL Series

CODE		DIMENSION (mm)							
CODE	EIA CODE	L	W	т	d				
10	0603	1.6 ± 0.15	$0.8~\pm~0.15$	0.8 ± 0.15	0.3 ± 0.2				
21	0805	2.0 ± 0.2	1.25 ± 0.2	0.85 ± 0.2 1.25 ± 0.2	0.5+0.2/-0.3				
31	1206	3.2 ± 0.2	1.6 ± 0.2	$\begin{array}{rrr} 0.6 \ \pm \ 0.2 \\ 1.1 \ \pm \ 0.2 \end{array}$	0.5+0.2/-0.3				

• CIH Series

CODE		DIMENSION (mm)							
CODE	EIA CODE	L	W	т	d				
05	0402	1.0 ± 0.05	$0.5~\pm~0.05$	$0.5~\pm~0.05$	0.25 ± 0.1				
10	0603	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	0.3 ± 0.2				
21	0805	2.0+0.3/-0.1	1.25 ± 0.2	0.85 ± 0.2 1.0+0.2/-0.3	0.5 ± 0.3				

PART NUMBERING

2 SERIES CODE

CODE	DESCRIPTION OF CODE
L	Chip Inductor for Low frequency
н	Chip Inductor for High frequency

O DIMENSION

CODE	DIMENSION(L×T)
05	1.0×0.5
10	1.6×0.8
21	2.0×1.25
31	3.2×1.6

4 MATERIAL CODE

CODE	DESCRIPTION OF CODE	APPLICATION		
N				
J	Characteristics of Farrita materials			
Y	Charactenstics of Fernie materials	CIL series		
S				
Т	Characteristics of Dielectric glass powder	CIH series		

O NOMINAL INDUCTANCE

The nominal inductance value is expressed in micro-Henry(μ H) or nano-Henry(nH) and identified by three-digit number, first two digits represent significant figures and last digit specifies the number of zeros to follow. The letter 'R' means the μ H and is used as the decimal point. The letter 'N' means the nH.

example)
$100 : 10 \times 10^{\circ} = 11 \mu H$
1R5 : 1.5 μH
R10 : 0.1 µH = 100 nH
4N7 : 4.7 nH

6 INDUCTANCE TOLERANCE

CODE	DESCRIPTION OF CODE	CODE	DESCRIPTION OF CODE
S	± 0.3 nH	J	± 5%
К	± 10%	М	± 20%

O THICKNESS OPTION

CODE	DESCRIPTION OF CODE
N	Standard thickness
Α	Thinner than standard thickness
В	Thicker than standard thickness

B PACKAGING TYPE

CODE	DESCRIPTION OF CODE
С	Paper taping type
Е	Embossed (Plastic) taping type

PACKAGING

• CARDBOARD PAPER TAPE

TYPE	Α	В	С	D	Е	F	G	Η	J	t max.
05	0.65 ±0.1	1.15 ±0.1	8.0	3.5	1.75	2.0 ±0.05	2.0	4.0	Ф1.5	0.8
10	1.0 ±0.2	1.80 ±0.2	±0.2	±0.05	±0.1	4.0 ±0.1	±0.1	±0.1	+0.1/-0	1.1

• EMBOSSED PLASTIC TAPE

unit : mm

т	YPE	Α	В	С	D	Е	F	G	Η	J	t max.
	0.85T										1.5
21	1.0T	1.50 ±0.2	2.3 ±0.2	8.0 ±0.3	3.5 ±0.05						2.0
	1.25T					1.75 ±0.1	4.0 ±0.1	2.0 ±0.1	4.0 ±0.1	Ф1.5 +0.1/-0	2.0
24	0.6T	1.90	4.9	12.0	5.5						1.15
31	31	±0.2	±0.2	±0.3	±0.05						1.4

• TAPING SIZE

Symbol	05	10		21	31		
Symbol	05	10	0.85T	1.0T	1.25T	0.6T	1.1T
7" Reel	10,000	4,000	4,000	3,000	2,000	4,000	3,000

• REEL DIMENSION

unit : mm

Tape Width	Α	В	С	D	E	w	t	R
8 mm	¢178± 2.0	\$50±1.0	\$13±0.5	21±0.8	2.0±0.5	10±1.5	1.2±0.5	1.0

■ CHARACTERISTIC MAP

• INDUCTANCE RANGE

SERIES	SIZE	INDUCTANCE RANGE (Ω)							
		1nH	10nH	100nH	1µH	10µH			
СІН	05 (0402)			120n	Н				
	10 (0603)			27	0nH				
	21 (0805)				■ 470nH				
CIL	10 (0603)		-			33µH			
	21 (0805)					33µH			
	31 (1206)		-			33µH			

■ RELIABILITY TEST DATA

ITEM	Р	ERFORMANCE				
	CIL CIH10/21		CIH05			
1. OPERATING TEMPERATURE RANGE	-40 to	+85 ℃	-55 to +125℃	-		
2. STORAGE TEMPERATURE RANGE	-40 to	+85℃	-			
3. INDUCTANCE / Q	SEE THE SECTIO	ON OF ELECTRICAL	PROPERTIES.	 MEASURING FREQUENCY : 1 to 100MHz (DEPENDS ON THE ITEMS) MEASURING EQUIPMENT, TEST FIXTURE : HP4291A/B + HP16193A (CIL SERIES) HP4291A/B + HP16092A + IN-HOUSE MADE JIG (CIH 10/21 SERIES) HP4291A/B + HP16192A (CIH 05 SERIES) SOURCE OSC LEVEL : 30 mV (CIL SERIES) 112 mV (CIH SERIES) 		
4. DC RESISTANCE	SEE THE SECTIO	ON OF ELECTRICAL	PROPERTIES.	- MEASURING EQUIPMENT : HP4338A/B		
5. SELF RESONANCE FREQUENCY (SRF)	SEE THE SECTIO	ON OF ELECTRICAL	. PROPERTIES.	- MEASURING EQUIPMENT : HP4291A + HP16193A (CIL SERIES) HP8719C (CIH SERIES)		
6. HIGH TEMPERATURE TEST	NO APPARENT D INDUCTANCE CH/ THE INITIAL.	AMAGE. ANGE TO BE WITH	SOLDER THE SAMPLE ON PCB. EXPOSURE AT (T) * [°] C FOR 500 HOURS. 1-2 HOURS EXPOSURE AT ROOM TEMPERATURE AND HUMIDITY PRIOR TO			
	Q VARIATION : WITHIN \pm 30%.	Q VARIATION : V	VITHIN ±20%.	MEASUREMENT. (*) T= 85±3 (CIL, CIH10/21) 125±3 (CIH05)		
7. SOLDER HEAT RESISTANCE	NO MECHANICAL REMAINING TERM INDUCTANCE CHA THE INITIAL.	DAMAGE. 11NAL ELECTRODE ANGE TO BE WITH	: 70% MIN. IN ±10% TO	AFTER BEING DIPPED IN FLUX FOR 4 ± 1 SECONDS, AND PREHEATED AT $150 \sim 180$ °C FOR $2 \sim 3$ MIN , THE SPECIMEN SHALL BE IMMERSED IN 60/40 TIN-LEAD ALLOY SOLDER AT 260 ± 5 °C FOR 10 ± 0.5 SECONDS.		
	Q VARIATION : WITHIN ±30%.	Q VARIATION : V	VITHIN ±20%.			
8. SOLDERABILITY	MORE THAN 95% OF TERMINAL ELECTRODE SHOULD BE SOLDERED NEWLY.			AFTER BEING DIPPED IN FLUX FOR 4 ± 1 SECONDS, AND PREHEATED AT $150 \sim 180^{\circ}$ C FOR $2 \sim 3$ MIN , THE SPECIMEN SHALL BE IMMERSED IN SOLDER AT 230 $\pm5^{\circ}$ C FOR 4 ± 1 1 SECONDS.		

ITEM	PI	ERFORMANCE	E	TEST CONDITION		
	CIL CIH10/21 CIH05			TEST CONDITION		
9. THERMAL SHOCK	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	/ITHIN ±10%	- CIL SERIES -25 ↔ +85℃, 60 MINUTES EACH. 100 CYCLES. - CIH 10/21 SERIES		
	Q VARIATION : WITHIN ±30%.	Q VARIATION :	WITHIN $\pm 20\%$.	-40 ↔ +85 °C, 60 MINUTES EACH. 100 CYCLES. - CIH 05 SERIES -55 ↔ +125 °C, 60 MINUTES EACH. 100 CYCLES.		
10. MOISTURE LOADING TEST	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	/ITHIN ±10%	- TEMPERATURE : 40±2℃ (CIL, CIH 10/21) 60±2℃ (CIH 05) - HUMIDITY : 90 ~ 95 %RH		
	Q VARIATION : WITHIN ±30%.	Q VARIATION :	WITHIN $\pm 20\%$.	- DURATION : 500±5 HRS. - CURRENT : RATED CURRENT		
11. HIGH TEMPERATURE LOADING	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	/ITHIN ±10%	- TEMPERATURE : 85±2℃ (CIL, CIH 10/21) 125±2℃ (CIH 05)		
	Q VARIATION : WITHIN ±30%.	Q VARIATION :	WITHIN $\pm 20\%$.	- DURATION : 500±5 HRS. - CURRENT : RATED CURRENT		
12. LOW TEMPERATURE RESISTANCE	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	/ITHIN ±10%	- TEMPERATURE : -40±2℃ (CIL, CIH 10/21) -55±2℃ (CIH 05)		
	Q VARIATION : WITHIN ±30%.	Q VARIATION :	WITHIN $\pm 20\%$.	- DURATION : 500±5 HRS.		
13. BENDING TEST	NO APPARENT [DAMAGE.		SOLDER THE SAMPLE ON PCB, BEND TO 2mm.		
		45		20 Unit : mm R340 2 \downarrow \downarrow 45 \downarrow		

ITCM	P	ERFORMANCE	E	TEST CONDITION			
	CIL	CIH10/21	CIH05				
14. VIBRATION TEST	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	ITHIN ±10%	APPLY VIBRATIONS IN EACH OF THE X, Y AND Z DIRECTIONS. - FREQUENCY : 10 ~ 55 ~ 10Hz - TOTAL AMPLITUDE : 1.52mm - TIME : 2 HRS. EACH (TOTAL 6 HRS.)			
	Q VARIATION : WITHIN ±30%.	Q VARIATION : \	WITHIN $\pm 20\%$.				
15. DROP TEST	NO APPARENT INDUCTANCE C TO THE INITIAL.	DAMAGE. HANGE TO BE W	ITHIN ±10%	DROP THE SAMPLE FROM A HEIGHT OF 1m TO CONCRETE GROUND 10 TIMES.			
	Q VARIATION : WITHIN ±30%.	Q VARIATION : \	WITHIN $\pm 20\%$.				
				SIZE	W(Kgf)	TIME(SEC)	
					0.1	30±5	
	NO INDICATION OF PEELING SHALL OCCUR ON THE TERMINAL ELECTRODE.			10			
16. TERMINAL TEST				21	0.5 10±	10±1	
				31			

