FEATURES

24 GHz VCO with 250 MHz frequency range
2 Channel 24 GHz PA with +8 dBm output
Single-Ended Outputs
2 Channel Muxed Outputs with Mute Function
Programmable Output Power
N Divider TX Output (Frequency Discriminator)
24GHz LO Output Buffer
250MHz Signal Bandwidth
Power Control Detector
Auxiliary 8 Bit ADC
± 5 Degree Temperature Sensor
4 wire SPI Interface
Electric static distortion (ESD) performance
Human body model (HBM): 2000 V
Charged device model (CDM): 250 V
Qualified for automotive applications

APPLICATIONS

Automotive Radar

Industrial radars
Microwave ($\mu \mathrm{W}$) radar sensors

General Description

The ADF5901 is a 24 GHz TX MMIC with on-chip 24 GHz VCO with PGA and dual TX channels for Radar Systems. The onchip 24 GHz VCO generates the 24 GHz signal for the 2 TX channels and the LOout. Each TX channel contains a power control circuit. There is also an on-chip temperature sensor. Control of all the on-chip registers is through a simple 4-wire interface.
The ADF5901 comes in a compact 32-lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP package.

PrH
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features ... 1
Applications... 1
Functional Block Diagram ... 1
General Description ... 1
Revision History ... 2
Specifications.. 3
Absolute Maximum Ratings 6
ESD Caution. 6
Pin Configuration and Function Descriptions. 7
Outline Dimensions 25
Ordering Guide 25

REVISION HISTORY

SPECIFICATIONS

$\mathrm{AHI}=\mathrm{TX} _\mathrm{AHI}=\mathrm{RF} _\mathrm{AHI}=\mathrm{VCO} _\mathrm{AHI}=\mathrm{DVDD}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{dBm}$ referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Operating temperature range is $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$.

Table 1.

Parameter	Min	Typ	Max	Unit	Condition
OPERATING CONDITIONS RF Frequency Range	24		24.25	GHz	
VCO CHARACTERISITICS $V_{\text {TUNE }}$ $V_{\text {TUNE }}$ Impedance VCO Phase Noise Performance @100kHz Offset @1MHz Offset @10MHz Offset Amplitude Noise Static Pulling Fvco Change vs. Load Dynamic Pulling TX ON/OFF Switch Change Dynamic Pulling TX to TX Switch Change Pushing Fvco Change vs. AHI Change Spurious Level Harmonics Spurious Level Non Harmonics	1	$\begin{aligned} & 100 \\ & -88 \\ & -108 \\ & -128 \\ & -150 \\ & \pm 2 \\ & \pm 10 \\ & \pm 5 \\ & \pm 5 \\ & -30 \\ & <-70 \end{aligned}$	2.8	V $\mathrm{k} \Omega$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ MHz MHz MHz $\mathrm{MHz} / \mathrm{V}$ dBC dBC	@ 1MHz Offset Open Loop into 2:1 VSWR Ioad Open Loop Open Loop Open Loop
POWER SUPPLIES AHI TX_AHI, RF_AHI, VCO_AHI, DVDD $I_{\text {total }}{ }^{1}$ Software Power Down Mode Hardware Power Down Mode	3.135	$\begin{aligned} & 3.3 \\ & \text { AHI } \\ & 170 \\ & 500 \\ & 200 \end{aligned}$	3.465	V mA $\mu \mathrm{A}$ $\mu \mathrm{A}$	
TX OUTPUT Output Power Output Impedance ON/OFF Isolation TX to TX Isolation Power Up/Down Time	2	$\begin{aligned} & 8 \\ & 50 \\ & 30 \\ & 25 \\ & 200 \end{aligned}$	10	dBm Ω dB dB ns	Single TX output switched ON/OFF
LO OUTPUT Output Power Output Impedance ON/OFF Isolation	-7	$\begin{aligned} & -1 \\ & 50 \\ & 30 \end{aligned}$	5	$\begin{aligned} & \mathrm{dBm} \\ & \Omega \\ & \mathrm{~dB} \end{aligned}$	
AUX OUTPUT Output Power Output Frequency Divide by 2 Output Divide by 4 Output Output Impedance ON/OFF Isolation AUX to LO Isolation	$\begin{aligned} & -9 \\ & 12 \\ & 6 \end{aligned}$	$\begin{aligned} & -5 \\ & \\ & 200 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 12.125 \\ & 6.0625 \end{aligned}$	dBm GHz GHz Ω dB dB	Single Ended Differential
TEMPERATURE SENSOR Analog Accuracy Digital Accuracy Sensitivity		$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & 6.4 \end{aligned}$		${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$	Following one-point calibration Following one-point calibration
ADC Number of Bits INL		$\begin{aligned} & 8 \\ & \pm 1 \\ & \operatorname{PrH} \mid \mathrm{F} \end{aligned}$	$\text { e } 3 \text { of } 25$	LSB	

$\left.\begin{array}{l|lll|l|l}\hline \text { Parameter } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } & \text { Condition } \\ \hline \text { DNL } & & \pm 1 & & \text { LSB } & \\ \text { LSB } & & 7.4 & & \mathrm{mV} & \\ \hline \text { REFIN CHARACTERISITICS } & 10 & & 260 & \mathrm{MHz} & -5 \mathrm{dBm} \text { min to }+9 \mathrm{dBm} \text { max biased at AHI/2 (ac } \\ \text { REFIN Input Frequency } & & & & \begin{array}{l}\text { coupling ensures } 1.8 / 2 \text { bias); for frequencies }< \\ 10 \mathrm{MHz}, ~ u s e ~ a ~ d c-c o u p l e d, ~ C M O S-c o m p a t i b l e ~\end{array} \\ \text { square wave with a } \\ \text { slew rate }>25 \mathrm{~V} / \mu \mathrm{S}\end{array}\right]$
${ }^{1} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{AHI}=3.3 \mathrm{~V} ; \mathrm{f}_{\text {REFIN }}=100 \mathrm{MHz} ; \mathrm{RF}=24.125 \mathrm{GHz}$ following initialization sequence in Table 6.
${ }^{2} \mathrm{~V}_{\mathrm{DD}}$ selected from IO Level (DB9 in Register 8)

Preliminary Technical Data

TIMING SPECIFICATIONS

$\mathrm{AHI}=\mathrm{TX} _\mathrm{AHI}=\mathrm{RF} _\mathrm{AHI}=\mathrm{VCO} _\mathrm{AHI}=\mathrm{DVDD}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{dBm}$ referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Operating temperature range is $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$.

Table 2. Write Timing

Parameter	Limit at $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	Unit	Test Conditions/Comments
t_{1}	20	ns min	LE setup time
t_{2}	10	ns min	DATA to CLK setup time
t_{3}	10	ns min	DATA to CLK hold time
t_{4}	25	ns min	CLK high duration
t_{5}	25	ns min	CLK low duration
t_{6}	10	ns min	CLK to LE setup time
t_{7}	20	ns min	LE pulse width
t_{8}	10	ns max	LE setup time to DOUT
t9	15	ns max	CLK setup time to DOUT

Write Timing Diagram

Figure 2. Write Timing Diagram

Figure 3. Load Circuit for DOUT/MUXOUT Timing, $C_{L}=10 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
AHI to GND	-0.3 V to +3.9 V
AHI to TX_AHI	-0.3 V to +0.3 V
AHI to RF_AHI	-0.3 V to +0.3 V
AHI to VCO_AHI	-0.3 V to +0.3 V
AHI to DVDD	-0.3 V to +0.3 V
Vtune to GND	-0.3 V to +3.6 V
Digital I/O Voltage to GND	-0.3 V to $\mathrm{DVDD}+0.3 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
ӨנA Thermal Impedance ${ }^{1}$ (Paddle	$40.83^{\circ} \mathrm{C} / \mathrm{W}$
\quad Soldered)	
Reflow Soldering	$260^{\circ} \mathrm{C}$
\quad Peak Temperature	40 sec
\quad Time at Peak Temperature	
Transistor Count	177381
CMOS	2315
Bipolar	
ESD	250 V
Charged Device Model	2000 V
Human Body Model	

${ }^{1} 2$ signal planes (i.e. on top and bottom surfaces of the board), 2 buried planes and 9 vias

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4.
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$\begin{aligned} & 1,3,6,8,10 \\ & 12,13,19, E P \end{aligned}$	GND	RF Ground. All ground pins should be tied together.
2	TXout1	24GHz TX Output
4,5	TX_AHI	Voltage Supply for the TX Section. Decoupling capacitors ($0.1 \mu \mathrm{~F}, 1 \mathrm{nF}$ and 10 pF) TX_AHI must be the same value as AHI.
7	TXout2	24 GHz TX Output
9	ATEST	Analog Test Pin
11	LOOUT	LO Output.
14	RF_AHI	Voltage Supply for the RF Section. Decoupling capacitors ($0.1 \mu \mathrm{FF}, 1 \mathrm{nF}$ and 10 pF) RF_AHI must be the same value as AHI.
15	REFIN	Reference Input. This is a CMOS input with a nominal threshold of $D V_{D D} / 2$ and a dc equivalent input resistance of $100 \mathrm{k} \Omega$. See Figure 14. This input can be driven from a TTL or CMOS crystal oscillator or it can be ac-coupled.
16	AHI	Voltage Supply for the Analog Section. Decoupling capacitors ($0.1 \mu \mathrm{~F}, 1 \mathrm{nF}$ and 10pF)
17	DVDD	Digital Power Supply. This may range from 3.135 V to 3.465 V . Decoupling capacitors ($0.1 \mu \mathrm{~F}, 1 \mathrm{nF}$ and 10 pF) to the ground plane should be placed as close as possible to this pin. $\mathrm{DV}_{D D}$ must be the same value as AHI.
18	VREG	Internal 1.8 V regulator output pin. A 220 nF capacitor to ground should be placed as close as possible to this pin.
20	CE	Chip Enable. A logic low on this pin powers down the device. Taking the pin high powers up the device, depending on the status of the power-down bit, PD1.
21	CLK	Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the 32 -bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
22	DATA	Serial Data Input. The serial data is loaded MSB first with the four LSBs being the control bits. This input is a high impedance CMOS input.
23	LE	Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the 16 latches with the latch being selected using the control bits.
24	DOUT	Serial Data Output.
25	MUXOUT	This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to be accessed externally.
26	RSET	Connecting a $5.1 \mathrm{k} \Omega$ resistor between this pin and GND sets an internal current. The nominal voltage potential at the $\mathrm{R}_{\text {SEt }}$ pin is 0.62 V .
27	AUX	Auxiliary Output. The VCO/ 2 output or VCO/ 4 is available.
28	$\overline{\text { AUX }}$	Complementary Auxiliary Output. The VCO/2 output or VCO/4 is available.
29	$V_{\text {tune }}$	Control Input to the VCO. This voltage determines the output.
30	VCO_AHI	Voltage Supply for the VCO Section. Decoupling capacitors ($0.1 \mu \mathrm{FF}, 1 \mathrm{nF}$ and 10 pF) VCO_AHI must be the same value as AHI.
31	C_{1}	Decoupling Capacitor. A 47 nF capacitor to ground should be placed as close as possible to this pin.
32	C_{2}	Decoupling Capacitor. A 220 nF capacitor to ground should be placed as close as possible to this pin.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. TX Output Power vs Frequency

Figure 6. TX1 Output Power variation with temperature and supply vs Frequency

Figure 7. TX Output Power vs TX Reference Code

Figure 8. LO Output Power vs Frequency

Figure 9. AUX/AUXB Output Power vs Frequency with DIV2 selected

Figure 10. AUX/AUXB Output Power vs Frequency with DIV4 selected

Figure 11. Vtune Frequency Range

Figure 12. Open Loop Phase Noise on TX1 Output @ 24.125GHz

Figure 13. ATEST Voltage and ADC CODE vs Temperature

THEORY OF OPERATION

REFERENCE INPUT SECTION

The reference input stage is shown in Figure 14. SW1 and SW2 are normally closed switches. SW3 is normally open. When power-down is initiated, SW3 is closed and SW1 and SW2 are opened. This ensures that there is no loading of the REF ${ }_{\text {IN }}$ pin on power-down.

Figure 14. Reference Input Stage

RF INT DIVIDER

The RF INT counter allows a division ratio in the PLL feedback counter. Division ratios from 75 to 4095 are allowed.

INT, FRAC, AND R RELATIONSHIP

The INT and FRAC values in conjunction with the R-counter make it possible to generate the RF VCO frequency (RFout) equation is

$$
\begin{equation*}
R F_{\text {OUT }}=f_{R E F} \times\left(I N T+\left(F R A C / 2^{25}\right)\right) \times 2 \tag{1}
\end{equation*}
$$

where:
$R F_{\text {out }}$ is the output frequency of internal voltage controlled oscillator (VCO).
INT is the preset divide ratio of the binary 12-bit counter (75 to 4095).
$F R A C$ is the numerator of the fractional division (0 to $2^{25}-1$).

$$
\begin{equation*}
F_{R E F}=R E F_{I N} \times[(1+D) /(R \times(1+T))] \tag{2}
\end{equation*}
$$

where:
$R E F_{I N}$ is the reference input frequency.
D is the $\mathrm{REF}_{\text {IN }}$ doubler bit (0 or 1).
T is the $\mathrm{REF}_{\text {IN }}$ divide-by- 2 bit (0 or 1).
R is the preset divide ratio of the binary, 5-bit, programmable reference counter (1 to 32).

Figure 15. RFN-Divider

Figure 16. Reference Divider

R-COUNTER

The 5-bit R-counter allows the input reference frequency ($\mathrm{REF}_{\mathrm{IN}}$) to be divided down to supply the reference clock to the VCO calibration block. Division ratios from 1 to 32 are allowed.

INPUT SHIFT REGISTER

The ADF5901 digital section includes a 5-bit RF R-counter, a 12 -bit RF N-counter, and a 25 -bit FRAC counter. Data is clocked into the 32-bit input shift register on each rising edge of CLK. The data is clocked in MSB first. Data is transferred from the input shift register to one of 12 latches on the rising edge of LE. The destination latch is determined by the state of the five control bits ($\mathrm{C} 5, \mathrm{C} 4, \mathrm{C} 3, \mathrm{C} 2$, and C 1) in the input shift register. These are the five LSBs (DB4, DB3, DB2, DB1, and DB0, respectively), as shown in Figure 2. The truth table for these bits is shown in Table 5. Figure 17 and Figure 18 show a summary of how the latches are programmed.

PROGRAM MODES

Table 5 and Figure 19 through Figure 29 show how to set up the program modes in the ADF5901.
Several settings in the ADF5901 are double buffered. These include the LSB fractional value, R -counter value, reference doubler, RDIV2 and MUXOUT. This means that two events must occur before the part uses a new value for any of the double-buffered settings. First, the new value is latched into the device by writing to the appropriate register. Second, a new write must be performed on Register R5.
For example, updating the fractional value can involve a write to the 13 LSB bits in R6 and the 12 MSB bits in R5. R6 should be written to first, followed by the write to R5. The frequency change begins after the write to R0. Double buffering ensures that the bits written to in R6 do not take effect until after the write to R5.

Table 5. C5, C4, C3, C2, and C1 Truth Table

Control Bits					Register
C5	C4	C3	C2	C1	
0	0	0	0	0	R0
0	0	0	0	1	R1
0	0	0	1	0	R2
0	0	0	1	1	R3
0	0	1	0	0	R4
0	0	1	0	1	R5
0	0	1	1	0	R6

Preliminary Technical Data					
0	0	1	1	1	R 7
0	1	0	0	0	R 8
0	1	0	0	1	R 9
0	1	0	1	0	R 10
0	1	0	1	1	R 11

REGISTER MAPS
 REGISTER 0 (R0)

	reserved							aux bufferGAN			$\begin{aligned} & \frac{2}{2} \\ & \frac{\text { x }}{4} \end{aligned}$	Reserved					$\begin{array}{\|l\|l} \frac{1}{2} \\ \frac{2}{2} \\ \frac{3}{2} \end{array}$			$\begin{array}{\|l\|l} \mathbf{t} \\ 0 \\ 0 \\ \vdots \\ \bar{z} \\ \bar{z} \end{array}$	$\begin{aligned} & 8 \\ & \frac{8}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{c} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \tilde{x} \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{x} \\ & \vdots \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & \frac{2}{3} \\ & \frac{3}{2} \end{aligned}$					
${ }^{\text {ов }} 1$	овз3	D829	D828	${ }^{\text {DB27 }}$	D826	DB25	O824	D823	D822	DB21	82	ob	рв18	DB17	DB16	O815	¢814	${ }^{\text {p13 }}$	D812	0811	810	рв9	D88	D87	D86	D85	D84	ов 3	DB2	DB1	ово
1	\bigcirc	0	0	-	-	0	0	AG2	AG1	Ago	AD	1	1	1	1	PrC	PNC	1	Tx2C	Tx1c	,	,			Tx1	plo	c5(0)	(0)	c3(0)	c210)	${ }^{110}$

${ }^{1}$ DBR = DOUBLE BUFFERED REGISTER-BUFFERED BY THE WRITE TO REGISTER 5.

Figure 17. Register Summary.

REGISTER 10 (R10)

${ }^{1}$ DBR = DOUBLE BUFFERED REGISTER-BUFFERED BY THE WRITE TO REGISTER 5.
Figure 18. Register Summary

Figure 19. Register O (RO)

Figure 20. Register 1 (R1)

Figure 21. Register 2 (R2)

Figure 22. Register 3 (R3)

Figure 23. Register 4 (R4)

THE FRAC VALUE IS MADE UP OF THE 12 -BIT MSB STORED IN REGISTER R5, AND THE 13-BIT LSB REGISTER STORED IN

Figure 24. Register 5 (R5)

Figure 25. Register 6 (R6)

Figure 26. Register 7 (R7)

Figure 27. Register 8 (R8)

Figure 28. Register 9 (R9)

reserved																												$\begin{aligned} & \text { control } \\ & \text { BITs } \end{aligned}$				
ов31	$3^{\text {D830 }}$	O829	D828	-827	O826	D825	D824	D823	D822	D821	0820	081	DB1	0817	17	316	815	0814	D8 13	D812	081	0810	ов9	рв	087		obs	084	ов3	DB2	D81	D80
0	\bigcirc	0	1	1	1	0	1	\bigcirc	0	1	1	0	0	,	0	\bigcirc	1	0	,	0	0	,	1	0	0	1	0	c50]		c310)	c2(1)	$c^{1} 10$

Figure 29. Register 10 (R10)

Figure 30. Register 11 (R11)

REGISTER 0

Control Bits

With Bits[C5:C1] set to $0,0,0,0,0$, Register R0 is programmed. Figure 19 shows the input data format for programming this register.

AUX Buffer Gain

Bits[DB23:DB21] set the auxiliary output buffer gain (see Figure 19).

AUX Divide-by-2

DB20 selects the auxiliary output divider. Setting this bit to 0 selects divide-by- 2 (6 GHz output), setting the bit to 1 selects divide-by-1 (12GHz output)

Power-Up R Counter

DB15 provides the power-up bit for the R counter block. Setting this bit to 0 performs a power-down of the counter block. Setting this bit to 1 returns the counter block to normal operation.

Power-Up N Counter

DB14 provides the power-up bit for the N counter block. Setting this bit to 0 performs a power-down of the counter block. Setting this bit to 1 returns the counter block to normal operation.

TX2 Amplitude Calibration

DB12 provides the control bit for amplitude calibration of TX2 output. Set this bit to 0 for normal operation. Setting this bit to 1 performs an amplitude calibration of TX2 output.

TX1 Amplitude Calibration

DB11 provides the control bit for amplitude calibration of TX1 output. Set this bit to 0 for normal operation. Setting this bit to 1 performs an amplitude calibration of TX1 output.

Power-Up VCO

DB10 provides the power-up bit for the VCO. Setting this bit to 0 performs a power-down of the VCO. Setting this bit to 1 performs a power-up of the VCO.

VCO CAL

DB9 provides the control bit for frequency calibration of the VCO. Set this bit to 0 for normal operation. Setting this bit to 1 performs a VCO frequency calibration.

Power-Up ADC

DB8 provides the power-up bit for the ADC. Setting this bit to 0 performs a power-down of the ADC. Setting this bit to 1 performs a power-up of the ADC.

Power-Up TX2 Output

DB7 provides the power-up bit for TX2 output. Setting this bit to 0 performs a power-down of TX2 output. Setting this bit to 1 performs a power-up of TX2 output. Only one TX output can be powered up at any time, either TX1 DB6 or TX2 DB7.

Power-Up TX1 Output

DB6 provides the power-up bit for TX1 output. Setting this bit to 0 performs a power-down of TX1 output. Setting this bit to 1 performs a power-up of TX1 output. Only one TX output can be powered up at any time, either TX1 DB6 or TX2 DB7.

Power-Up LO Output

DB5 provides the power-up bit for LO output. Setting this bit to 0 performs a power-down of LO output. Setting this bit to 1 performs a power-up of LO output.

REGISTER 1

Control Bits

With Bits[C5:C1] set to $0,0,0,0,1$, Register R1 is programmed. Figure 20 shows the input data format for programming this register.

TX Amplitude Calibration Reference Code

Bits[DB12:DB5] set TX Amplitude Calibration Reference Code (see Figure 20) for the 2 TX outputs during calibration. The output power on the TX outputs can be calibrated from -20 dBm to 8 dBm by setting the TX Amplitude Calibration Reference Code.

REGISTER 2

Control Bits

With bits[C5:C1] set to $0,0,0,1,0$, Register R2 is programmed. Figure 21 shows the input data format for programming this register.

ADC Start

DB15 is used to start the ADC conversion. Setting this bit to 1 starts an ADC conversion.

ADC Average

Bits[14:13] program the ADC average, which is the number of averages of the ADC output. (see Figure 21)

ADC Clock Divider

$\mathrm{DB}[12: 5]$ programs the clock divider, which is used as the sampling clock for the ADC. (see Figure 21) The output of the R divider block is the clock used to clock the ADC clock divider, a divider value should be programmed to ensure the ADC sampling clock is 1 MHz .

REGISTER 3

Control Bits

With Bits[C5:C1] set to $0,0,0,1,1$, Register R3 is programmed. Figure 22 shows the input data format for programming this register.

MUXOUT Control

The on-chip multiplexer of the ADF5901 is controlled by bits DB [15:12]. See Figure 22 for the truth table.

IO Level

$\mathrm{DB}[11]$ controls the DOUT logic levels. Setting this bit to 0 sets the DOUT logic level to 1.8 v . Setting this bit to 1 sets the DOUT logic level to 3.3 v .

Readback Control

Bits DB[11:5] controls the readback data to DOUT on the ADF5901. See Figure 22 for the truth table.

REGISTER 4

Control Bits

With Bits[C5:C1] set to 0, $0,1,0,0$, Register R4 is programmed. Figure 23 shows the input data format for programming this register.

Test Bus to ADC

$\mathrm{DB}[16]$ controls the ATEST pin. Set this bit to 0 for normal operation. Setting this bit to 1 connects the ADC input to the ATEST Bus.

Test Bus to Pin

$\mathrm{DB}[15]$ controls the ATEST pin. Setting this bit to 0 sets the ATEST pin to high impedance. Setting this bit to 1 connects the analog test bus to the ATEST pin.

Analog Test Bus

Bits DB[14:5] controls the Analog Test Bus. This allows access to internal test signals for the temperature sensor and power detectors. See Figure 23 for the truth table.

REGISTER 5

Control Bits

With Bits[C5:C1] set to $0,0,1,0,1$, Register R5 is programmed. Figure 24 shows the input data format for programming this register.

12-Bit Integer Value (INT)

These 12 bits $\mathrm{DB}[28: 17]$ set the INT value, which determines the integer part of the RF division factor. This is used in Equation 1 (see RF Synthesis: A Worked Example section). All integer values from 75 to 4095 are allowed.

12-Bit MSB Fractional Value (FRAC)

These 12 bits $\mathrm{DB}[16: 5$], along with bits $\mathrm{DB}[17: 5$] in the LSB FRAC register (Register R6), control what is loaded as the FRAC value into the fractional interpolator. This is part of what determines the overall RF division factor. It is also used in Equation 1. These 12 bits are the most significant bits (MSB) of the 25-bit FRAC value, and bits DB [17:5] in the LSB FRAC register (Register R6) are the least significant bits (LSB). See the RF Synthesis: A Worked Example section for more information.

REGISTER 6

Control Bits

With Bits[C5:C1] set to $0,0,1,1,0$, Register R6 is programmed. Figure 25 shows the input data format for programming this register.

13-Bit LSB FRAC Value

These 13 bits DB [17:5], along with bits $\mathrm{DB}[16: 5]$ in the FRAC/INT register (Register R5), control what is loaded as the FRAC value into the fractional interpolator. This is part of what determines the overall RF division factor. It is also used in Equation 1. These 13 bits are the least significant bits (LSB) of the 25-bit FRAC value, and Bits DB[14:3] in the INT/FRAC register are the most significant bits (MSB). See RF Synthesis: A Worked Example section for more information.

REGISTER 7

Control Bits

With Bits[C5:C1] set to 0, $0,1,1,1$, Register R7 is programmed. Figure 26 shows the input data format for programming this register.

Master Reset

DB25 provides a master reset bit for the part. Setting this bit to 1 performs a reset of the part and all the register map. Setting this bit to 0 returns the part to normal operation.

Clock Divider

Bits[DB22:DB1] set a divider for the VCO frequency calibration. The divider should be loaded such that the time base is 10 usec (see Figure 26).

RDIV2

Setting the DB11 bit to 1 inserts a divide-by-2 toggle flip-flop between the R counter and VCO CAL block.

Reference Doubler

Setting DB10 to 0 feeds the REF $_{\text {IN }}$ signal directly to the 5 -bit R counter, disabling the doubler. Setting this bit to 1 multiplies the $\mathrm{REF}_{\text {IN }}$ frequency by a factor of 2 before feeding into the 5 -bit R counter.
The maximum allowable REF $_{\text {IN }}$ frequency when the doubler is enabled is 50 MHz .

5-Bit R Counter

The 5-bit R counter allows the input reference frequency ($\mathrm{REF}_{\text {IN }}$) to be divided down to produce the reference clock to the VCO CAL block. Division ratios from 1 to 31 are allowed.

REGISTER 8

Control Bits

With Bits[C5:C1] set to $0,1,0,0,0$, Register R8 is programmed. Figure 27 shows the input data format for programming this register.

Frequency Calibration Clock

Bits[DB18:DB9] set a divider for the VCO frequency calibration clock. The divider should be loaded such that the time base is 10usec (see Figure 27).

REGISTER 9

Control Bits

With Bits[C5:C1] set to $0,1,0,0,1$, Register R9 is programmed.
Figure 28 shows the input data format for programming this register.

REGISTER 10

Control Bits

With Bits[C5:C1] set to $0,1,0,1,0$, Register R10 is programmed. Figure 29 shows the input data format for programming this register.

REGISTER 11

Control Bits

With Bits[C5:C1] set to $0,1,0,1,1$, Register R11 is programmed. Figure 30 shows the input data format for programming this register.

Counter Reset

DB5 provides a counter reset bit for the counters. Setting this bit to 1 performs a counter reset of the part counters. Setting this bit to 0 returns the part to normal operation.

INITIALIZATION SEQUENCE

After powering up the part, administer the following programming sequence. Sequence is locking the VCO to 24.125 GHz with 100 MHz reference and 50 MHz reference divider frequency.

Step	Register	HEX Code	Description
1	R7	02000007	Master Reset
2	R11	0000002B	Counter Reset
3	R11	0000000B	Counters Enabled
4	R10	1D32A64A	
5	R9	2A20B929	
6	R8	40003E88	Frequency Calibration Divider Clock 100kHz
7	R0	809FE520	Power-Up Part and LO (10us)
8	R7	011F4827	R Counter Clock 50MHz, Calibration Clock 100kHz
9	R6	00000006	LSB FRAC $=0$
10	R5	01E28005	$\begin{aligned} & \text { INT }=241, \text { MSB FRAC = } \\ & 1024, \Rightarrow>N=240.25 \end{aligned}$
11	R4	00200004	ATEST High Impedance
12	R3	01890803	IO level 3.3V
13	R2	00020642	ADC Clock 1MHz
14	R1	FFF7FFE1	TX Amplitude Level
15	R0	809FE720	VCO Frequency Calibration (800us)
16	R0	809FE560	TX1 ON, TX2 OFF, LO ON
17	R0	809FED60	TX1 Amplitude Calibration (400us)
18	R0	809FE5A0	TX1 OFF, TX2 ON, LO ON
19	R0	809FF5A0	TX2 Amplitude Calibration (400us)
20	R9	2800B929	
21	R0	809F25A0	Disabled Counters

Table 6. Initialization Sequence

RE-CALIBRATION SEQUENCE

The ADF5901 can be re-calibrated once the initialization sequence has been completed and the parts is powered up.

Step	Register	HEX Code	Description
1	R0	819FE520	Enable Counters. TX1 OFF, TX2 OFF, LO ON
2	R9	2A20B929	

3	R1	FFF7FFE1	Set TX Amplitude Level
4	R0	819 FE720	VCO Frequency Calibration (800us)
5	R0	819 FE560	TX1 ON, TX2 OFF, LO ON
6	R0	819 FED60	TX1 Amplitude Calibration (400us)
7	R0	819 FE5A0	TX1 OFF, TX2 ON, LO ON
8	R0	809 FF5A0	TX2 Amplitude Calibration (400us)
9	R9	2800B929	
10	R0	819 F25A0	Disabled Counters

Table 7. Re-Calibration Sequence

TEMPERATURE SENSOR

The ADF5901 has an on-chip temperature sensor that can be accessed on ATEST pin or as a digital word on DOUT following an ADC conversion. The temperature sensor operates over the full operating temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. The accuracy can be improved by doing a 1-point calibration at room temperature and storing the result in memory.
With Temperature Sensor on the Analog Test Bus and Test Bus connected to ATEST pin (Register 4 0000A064) the ATEST voltage can be converted to temperature with the following.

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\frac{\left(V_{\text {ATEST }}-V_{\text {off }}\right)}{V_{\text {gain }}}
$$

where
$\boldsymbol{V}_{\boldsymbol{A T E S T}}=$ Voltage on ATEST pin
$\boldsymbol{V}_{\boldsymbol{o f f}}=$ Offset Voltage $=0.699$
$\boldsymbol{V}_{\text {gain }}=$ Voltage Gain 6.4 m
The temperature sensor result can be converted to a digital word with the ADC and readback on DOUT with the following sequence.

Step	Register	HEX Code	Description
1	R0	809FA5A0	Enable Counters
2	R4	00012064	Test Bus to ADC and V TEMP to Test Bus
3	R2	$00028 C 82$	Start ADC Conversion
4	R3	018902 C 3	ADC to DOUT
5			Readback DOUT
6	R0	809F25A0	Disabled Counters

Table 8. Temperature Sensor to ADC
The DOUT word can be converted to temperature with the following.

Preliminary Technical Data

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\frac{\left(\left(A D C \times V_{L S B}\right)-V_{\text {off }}\right)}{V_{\text {gain }}}
$$

where
ADC $=\mathrm{ADC}$ code read back on DOUT
$\boldsymbol{V}_{\text {LSB }}=$ ADC LSB Voltage 7.33 m
$\boldsymbol{V}_{\text {off }}=$ Offset Voltage $=0.699$
$\boldsymbol{V}_{\text {gain }}=$ Voltage Gain 6.4 m

RF SYNTHESIS: A WORKED EXAMPLE

The following equation governs how the ADF5901 should be programmed:

$$
\begin{equation*}
R F_{\text {OUT }}=\left[N+\left(F R A C / 2^{25}\right)\right] \times\left[f_{R E F}\right] \times 2 \tag{4}
\end{equation*}
$$

where:
$R F_{\text {out }}$ is the RF frequency output.
N is the integer division factor.
FRAC is the fractionality.

$$
\begin{equation*}
f_{R E F}=R E F_{I N} \times[(1+D) /(R \times(1+T))] \tag{5}
\end{equation*}
$$

where:
$R E F_{I N}$ is the reference frequency input.
D is the REF ${ }_{\text {IN }}$ doubler bit, DB10 in Register R7 (0 or 1).
R is the reference division factor.
T is the reference divide-by-2 bit, DB11 in Register R7 (0 or 1).
For example, in a system where a 24.125 GHz RF frequency output ($\mathrm{RF}_{\text {out }}$) is required and a 100 MHz reference frequency input (REF $_{\text {IN }}$) is available. frefis sis set to 50 MHz
From Equation 5,

$$
f_{R E F}=[100 \mathrm{MHz} \times(1+0) /(1 \times(1+1)]=50 \mathrm{MHz}
$$

From Equation 4,

$$
24.125 \mathrm{GHz}=50 \mathrm{MHz} \times\left(N+F R A C / 2^{25}\right) \times 2
$$

Calculating the N and FRAC values,

$$
\begin{aligned}
& N=\operatorname{int}\left(R F_{\text {ouI }} /\left(f_{\text {REF }} \times 2\right)\right)=241 \\
& F R A C=F_{\text {MSB }} \times 2^{13}+F_{\text {LSB }} \\
& F_{\text {MSB }}=\operatorname{int}\left(\left(\left(R F_{\text {ouI }} /\left(f_{\text {REF }} \times 2\right)\right)-\mathrm{N}\right) \times 2^{12}\right)=1024 \\
& F_{\text {LSB }}=\operatorname{int}\left(\left(\left(\left(\left(R F_{\text {out }} /\left(f_{\text {REF }} \times 2\right)\right)-\mathrm{N}\right) \times 2^{12}\right)-F_{\text {MSB }}\right) \times 2^{13}\right)=0
\end{aligned}
$$

where:
$F_{\text {MSB }}$ is the 12 -bit MSB FRAC value in Register R5.
$F_{\text {LSB }}$ is the 13 -bit LSB FRAC value in Register R6.
int() makes an integer of the argument in parentheses.

APPLICATIONS INFORMATION APPLICATION OF THE ADF5901 IN FMCW RADAR

Figure 31 shows the application of the ADF5901 in a frequency modulated continuous wave (FMCW) radar system.
In the FMCW radar system, the ADF4159 generates the sawtooth or triangle ramps necessary for this type of radar to operate.
The ADF4159 controls the VTUNE pin on the ADF5901 (Tx) monolithic microwave integrated circuit (MMIC) and thus the frequency of the voltage controlled oscillator (VCO) and the Tx
output signal on TXOUT1 or TXOUT2. The LO signal from the ADF5901 is fed to the LO input on the ADF5904.
The ADF5904 downconverts the signal from the four receiver antennas to baseband with the LO signal from the Tx MMIC.
The downconverted baseband signals from the four receiver channels on the ADF5904 are fed to the ADAR7251 4-channel, continuous time (CT), $\Sigma-\Delta$ analog-to-digital converter (ADC). A digital signal processor (DSP) follows the ADC to handle the target information processing.

Figure 31. FMCW Radar with ADF5901

Preliminary Technical Data

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5 WITH EXCEPTION TO EXPOSED PAD DIMENSION.

Figure 32. 32-Lead Lead Frame Chip Scale Package [LFCSP_LQ] (CP-32-12)
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADF5901WCCPZ-U6	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
ADF5901WCCPZ-U6-RL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
EV-ADF5901SD2Z-U6		Evaluation Board	

PRODUCTS

The ADF5901W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

