

MGN1 Series

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

FEATURES

- Patent protected
- Optimised output voltages designed to meet leading GaN devices requirements
- Reinforced insulation to UL62368 recognition pending
- 3kVAC isolation test voltage 'Hi Pot Test'
- Ultra low isolation capacitance
- Surface mount package style
- 5V & 12V inputs
- +8V, +12V & +6V/-3V outputs
- Operation up to 105°C
- Short circuit protection
- Reverse polarity protection
- Characterised CMTI >200kV/µS
- Continuous barrier withstand voltage 1.1kV
- Characterised partial discharge performance

									W
	•	_	_	•		-	•	 _	

The MGN1 series of DC-DC converters is ideal for powering 'high side' and 'low side' gate drive circuits for GaN in bridge circuits. A choice of output voltages allows optimum drive levels for best system efficiency. The MGN1 series is characterised for high isolation requirements commonly seen in bridge circuits used in motor drives and inverters, while the MGN1 industrial grade temperature rating and construction gives long service life and reliability.

SELECTION GUID	E									
		-	2	-	2		Outp	out 1	Outp	out 2
Order Code ¹	Nominal Input Voltage	Output Voltage	Output Voltage	Output Current	Output Current	Input Current at Rated Load	Load Regulation (Typ)	Load Regulation (Max)	Load Regulation (Typ)	Load Regulation (Max)
	V	V	V		mA			9	6	
MGN1S0508MC	5	8	-	125	-	310	2.5	4	-	-
MGN1S0512MC	5	12	-	83.3	-	310	1.7	4	-	-
MGN1S1208MC	12	8	-	125	-	130	2.5	4	-	-
MGN1S1212MC	12	12	-	83.3	-	120	1.7	4	-	-
MGN1D050603MC	5	6	-3	111	111	320	0.3	1	7	10
MGN1D120603MC	12	6	-3	111	111	130	0.3	1	6	8

SELECTION GUID	F (Continue	ed)					
Order Code ¹	Ripple & Noise (Typ) ³	Ripple & Noise (Max) ³	Efficiency (Min)	Efficiency (Typ)	Isolation Capacitance	î H	L
	mV	n_n	9	6	pF	MIL.	Tel.
	1110	РР	70		рі	kHrs	
MGN1S0508MC	20	50	58	61	2.5	2542	32674
MGN1S0512MC	20	50	58	62.5	2.5	2263	30885
MGN1S1208MC	20	50	62	67.5	2.5	2128	34861
MGN1S1212MC	20	50	65	69	2.5	2484	38343
MGN1D050603MC	20	50	58	62	2.5	1503	24882
MGN1D120603MC	20	50	64	68.5	2.5	1696	31467

Parameter	Conditions	Min.	Тур.	Max.	Units
Voltage range	Continuous operation, 5V input types	4.5	5	5.5	V
	Continuous operation, 12V input types	10.8	12	13.2	V
	MGN1S0508MC, MGN1D050603MC		120		
	MGN1S0512MC		130		
Input short circuit	MGN1S1208MC		70		mA
current I _{sc}	MGN1S1212MC		60		
	MGN1D120603MC		65		
	MGN1S0508MC, MGN1S0512MC, MGN1S1208MC, MGN1D120603MC		35		mA
Input reflected ripple	MGN1S1212MC		30		р-р
	MGN1D050603MC		40		

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Cusitahing fraguancy	5V input type	150		kHz	
Switching frequency	12V input type		160		КПZ

- Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are MGN1SXXXXMC-R7/MGN1DXXXXXXMC-R7 (155 pieces per reel), or MGN1SXXXXMC-R13/MGN1DXXXXXXMC-R13 (620 pieces per reel).
- $2. \ \, \text{Calculated using MIL-HDBK-217 FN2} \ \, \text{and Telcordia SR-332 calculation model with nominal input voltage at full load.}$
- 3. See ripple & noise test method.
- All specifications typical at T_A=25°C, nominal input voltage and rated output current unless otherwise specified.

OUTPUT CHARACTERISTICS	1		Min.	Тур.	Mari	Halta
Parameter		Conditions			Max.	Units
Rated Power	T _A =-40°C to 105°C				1	W
Minimum load			1			mA
		-3V output			-5	
Maximum output voltage ¹	1mA external load	6V output			6.25	V
waxiiiuiii output voitaye	TITIA external loau	8V output			10	V
		12V output			15	
	MGN1S0508MC	-6		-1		
	MGN1S0512MC	MGN1S0512MC			2	
	MGN1S1208MC	3		7	%	
/altana Cat Daint Assumany?	MGN1S1212MC	1		5		
Voltage Set Point Accuracy ²	MGN1D050603MC	0P1	-3		4	76
		OP2	-6		5	
	MONIA DA 00000M0	OP1	-2		5	
	MGN1D120603MC	OP2	16		26	
	MGN1S0508MC, MGN1S0512M	C & MGN1S1212MC		1.1	1.2	
	MGN1S1208MC			1.2	1.25	
Line regulation	MONG DOCOCOMO	OP1		0.1	0.2	%/%
	MGN1D050603MC	OP2		3.2	3.5	
	MONADAGGGGAAG	OP1		0.1	0.2	
	MGN1D120603MC	OP2		3.2	3.5	

ISOLATION CHARACTERISTICS							
Parameter	er Conditions			Min.	Тур.	Max.	Units
la eletica destrucita de		Production tested for 1 second		3000			VAC
Isolation test voltage		Qualification tested for 1 minute	3000			VAC	
Resistance		Viso= 1000VDC		10			GΩ
Continuous barrier withstand voltage		Non-safety barrier application	Non-safety barrier application			1100	VDC
Safety standard ³ UL62368-1	Reinforced	Creepage and clearance 6.5mm			250	Vrms	
	UL02308-1	Basic	Greepage and clearance 6.5mm			650	VDC

TEMPERATURE CHARACTE	RISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units	
Specification	see derating curves		-40		105	
Storage			-40		125	
	MGN1S0508MC	1 Layer PCB		31		
	MIGINTSUSUOIVIC	4 Layer PCB		15		
	MGN1S0512MC	1 Layer PCB		34		
	IVIGIN 1303 12IVIC	4 Layer PCB		17		
	MGN1S1208MC	1 Layer PCB		27		°C
Product Temperature above		4 Layer PCB		15		
ambient		1 Layer PCB		23		
	MGN1S1212MC	4 Layer PCB		10		
	MGN1D050603MC	1 Layer PCB		29		
	MIGNIDUSUOUSINIC	4 Layer PCB		15		
	MCN1D120C02MC	1 Layer PCB		22		
	MGN1D120603MC	4 Layer PCB		12		
Cooling	Free air convection					

ABSOLUTE MAXIMUM RATINGS					
Short-circuit protection		See graphs			
Input voltage V _{IN} , MGN1X05		7V			
Input voltage V _{IN} , MGN1X12		15V			
MGN1X05		5.5V			
Reverse polarity	MGN1X12	13.2V			

- 1. Most gate drive circuits will have at least 1mA of standby current, if this is not the case an external bleed resistor may be necessary.
- 2. T_A=25°C, nominal input voltage and 75% load. 3. UL62368-1 recognition is currently pending.

www.murata.com

KDC_MGN1_A03 Page 2 of 21

MGN1 Series

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions MGN1 series of DC-DC converters are all 100% production tested at 3kVAC for 1 second and have been qualification tested at 3kVAC for 1 minute.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

When the insulation in the MGN1 series is not used as a safety barrier, i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 1.1kV are sustainable. Long term reliability testing at these voltages continues. Peak Inception voltages measured were in excess of 1.1kV when testing for partial discharge in accordance with IEC 60270. Please contact Murata for further information.

The MGN1 series is pending recognition by Underwriters Laboratory to 250VAC Reinforced Insulation, please see safety approval section below.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

UL62368-1

The MGN1 series is pending recognition by Underwriters Laboratory (UL) to UL62368-1 for reinforced insulation to a working voltage of 250Vrms and for basic insulation to a working voltage of 650Vrms.

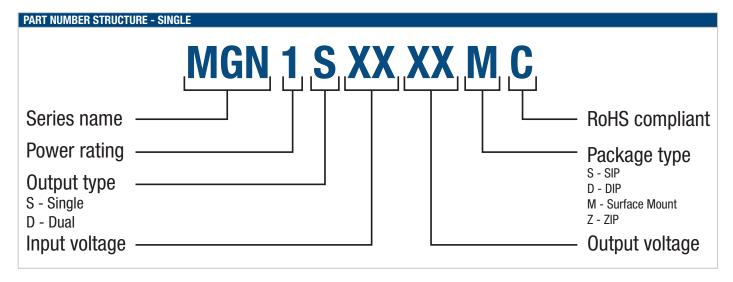
Creepage and clearance 6.5mm.

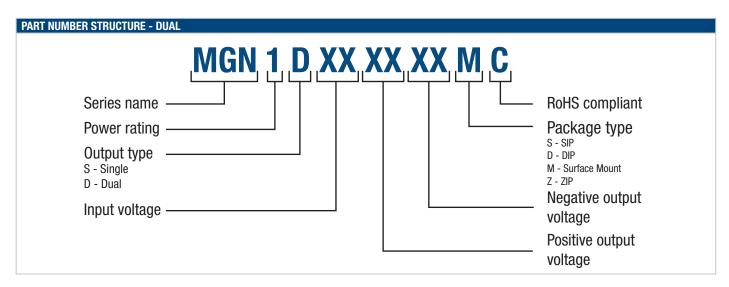
Working altitude OVC II 5000m

FUSING

The MGN1 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.

Input Voltage, 5V 0.5A Input Voltage, 12V 0.25A


All fuses should be Anti-Surge and UL rated.

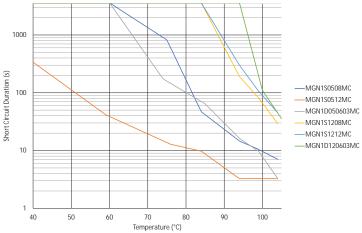

ROHS COMPLIANCE AND MSL INFORMATION

This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems. The series can be soldered in accordance with J-STD-020. Please refer to <u>application notes</u> for further information. This series have a classification temperature of 260°C and moisture sensitivity level 2. The termination finish on this product is Gold with plating thickness 0.12 microns.

ENVIRONMENTAL 1	VALIDATION TESTING						
The following tests ha	The following tests have been conducted on this product series, please contact Murata if further information about the tests is required.						
Test	Standard	Condition					
Temperature cycling	JEDEC JESD22-A104	500 cycles in a dual zone chamber from -40 $(+5/-10)^{\circ}$ C to 105 $(+10/-5)^{\circ}$ C. 15mins dwell at each (inclusive of ramps). 2 cycles per hour					
HAST (unbiased)	JEDEC JESD22-A118	130±2°C, 85±5% R.H. for 96 (+2/-0) hours					
Storage life (high temperature)	JEDEC JESD22-A103, Condition A	125°C +10/-0°C for ≥1000 hours					
Storage life (low temperature)	JEDEC JESD22-A119	-40°C -10/+0°C for ≥1000 hours					
MSL	IPC/JEDEC J-STD-020	Bake samples at $125 + 5/-0^{\circ}$ C for 24hours minimum before conditioning in the temperature/humidity chamber for 168 hours at 85° C/60%RH and Pb Free JEDEC Max profile conditioning with electrical testing, co-planarity, visual inspection before and after.					
Vibration	JEDEC JESD22-B103	20Hz to 2 kHz to 20Hz (logarithmic variation) in >4 minutes, 4 times in each orientation (i.e. 12times), 50G (\pm 10%) peak acceleration. Sinusoidal Vibration.					
Shock	JEDEC JESD22 B110	5 pulses half sine pulses of 0.5msec (\pm 15%)duration, 1500g (\pm 10%) peak acceleration. This equates to free state test level B in JESD22-B110 which states an Equivalent drop height of 112cm and a Velocity change 468cm/s (\pm 10%).					
Solvent cleaning	Resistance to cleaning agents.	Solvent – Novec 71IPA & Topklean EL-20A. Pulsed ultrasonic immersion 45°C - 65°C					

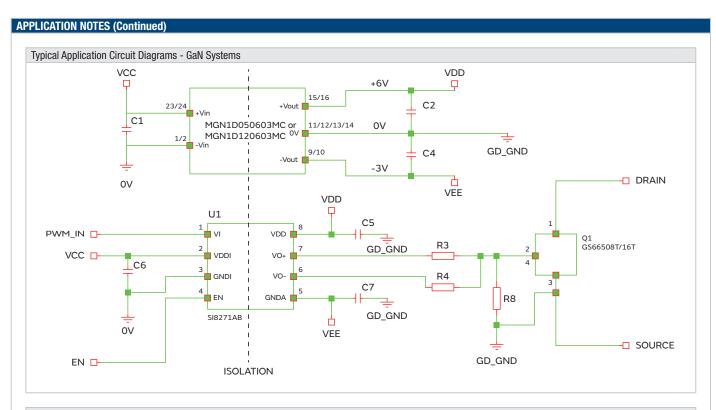
Gan Manufactures gate drive voltage					
GaN manufactures	Gate voltage	MGN1 part number			
GaN Systems	+6V/-3V	MGN1D050603MC & MGN1D120603MC			
Infineon	8V	MGN1D0508MC & MGN1D1208MC			
Texas Instruments	12V	MGN1D0512MC & MGN1D1212MC			
GanPower international	+6V/-3V	MGN1D050603MC & MGN1D120603MC			
Nexperia	12V	MGN1D0512MC & MGN1D1212MC			
Navitas	12V	MGN1D0512MC & MGN1D1212MC			
Transphorm	12V	MGN1D0512MC & MGN1D1212MC			

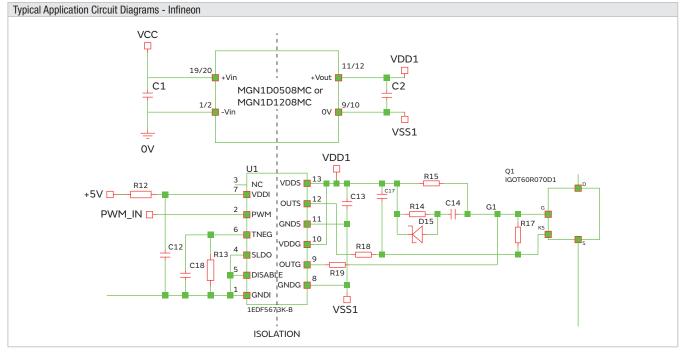
CHARACTERISATION TEST METHODS Ripple & Noise Characterisation Method Ripple and noise measurements are performed with the following test configuration. 1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter 10µF tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less C2than 100mΩ at 100 kHz C3 100nF multilayer ceramic capacitor, general purpose 450Ω resistor, carbon film, $\pm 1\%$ tolerance R1 50Ω BNC termination R2 3T of the coax cable through a ferrite toroid T1 RLOAD Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires Measured values are multiplied by 10 to obtain the specified values. **Differential Mode Noise Test Schematic** DC/DC Converter OSCILLOSCOPE C1 C2 C3 R2 T1 Y INPUT Output R LOAD

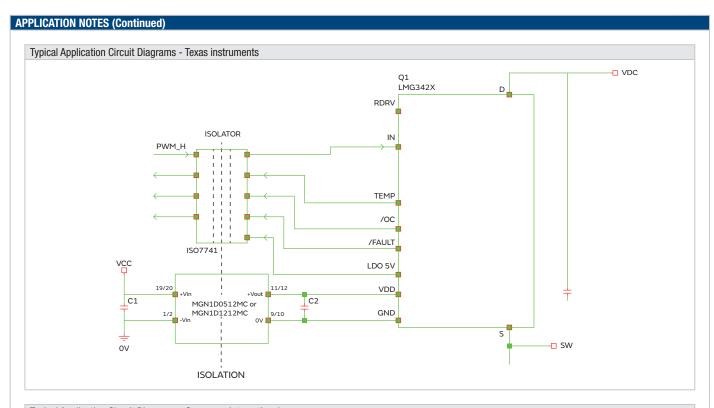

APPLICATION NOTES

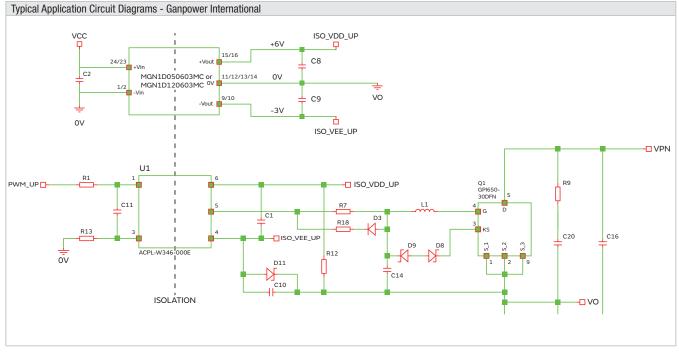
Gate Drive Applications Advisory Note

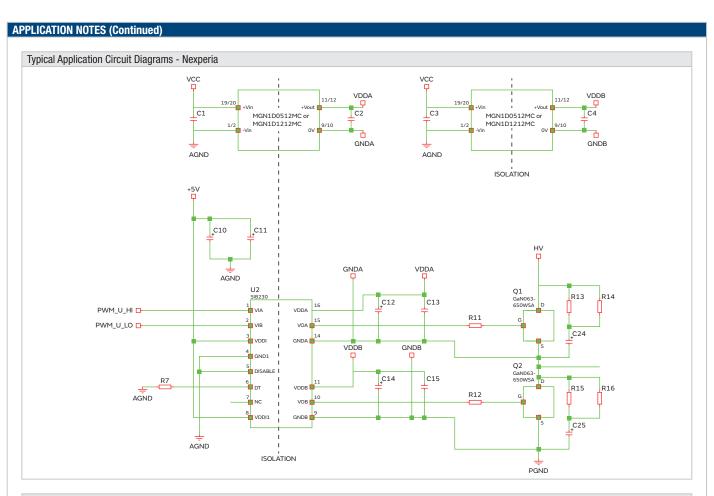
For general guidance for product usage in gate drive applications please refer to "gate drive application notes".

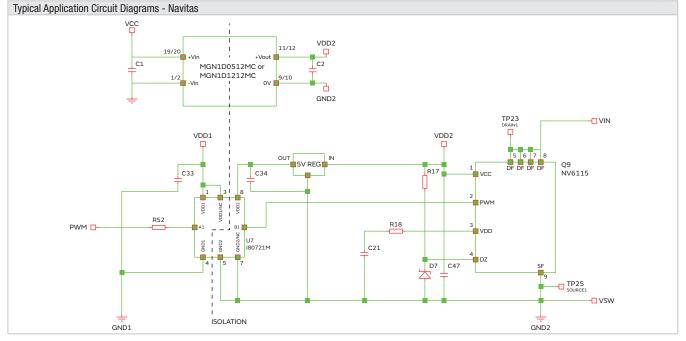

Short Circuit Performance

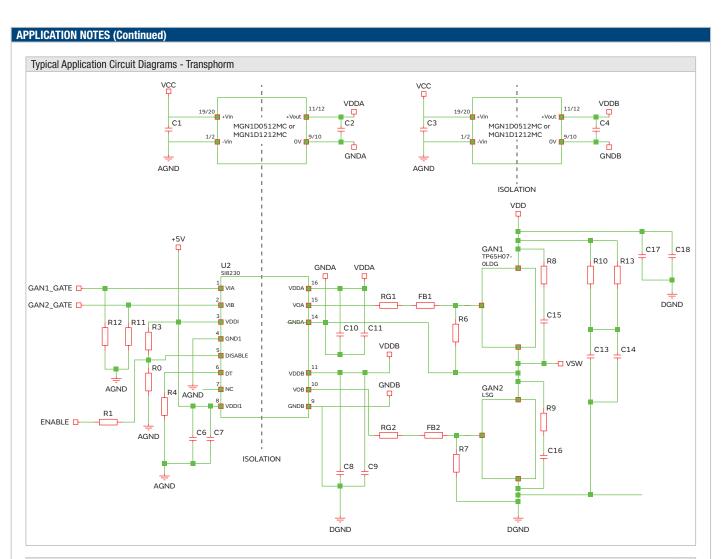

Below an ambient temperature of 40°C, the MGN1 short circuit protection is continuous. Above 40°C, short circuit duration time is reduced as shown in the following graph:



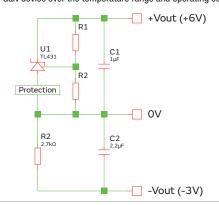

Typical Application Circuit Diagrams


The following circuit diagrams are intended to provide guidance on how to connect the MGN1 series to GaN drivers for GaN devices. Please refer to GaN manufactures datasheets for full application circuits.





www.murata.com

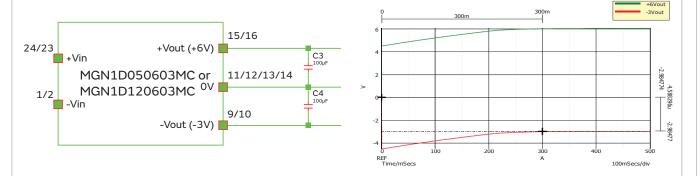

KDC_MGN1_A03 Page 9 of 21

Dual Output Configuration

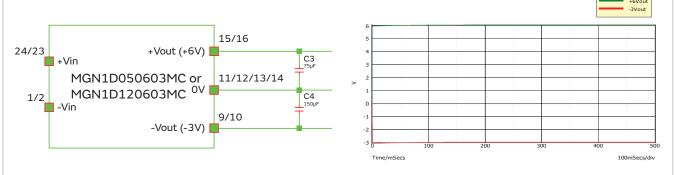
The MGN1D050603MC and MGN1D120603MC are dual output DC-DC converters specifically designed for gate drive applications and are not suitable for general purpose dual output use. However, each can be used as a general purpose single 9V output converter, by loading from +Vout to -Vout.

The MGN1D050603MC and MGN1D120603MC provide a dual output by using a reference IC and resistor divider network circuit with patented short circuit protection. This is important to maintain an accurate 6V to the gate of the GaN device over the temperature range and operating conditions, something a Zener diode cannot guarantee.

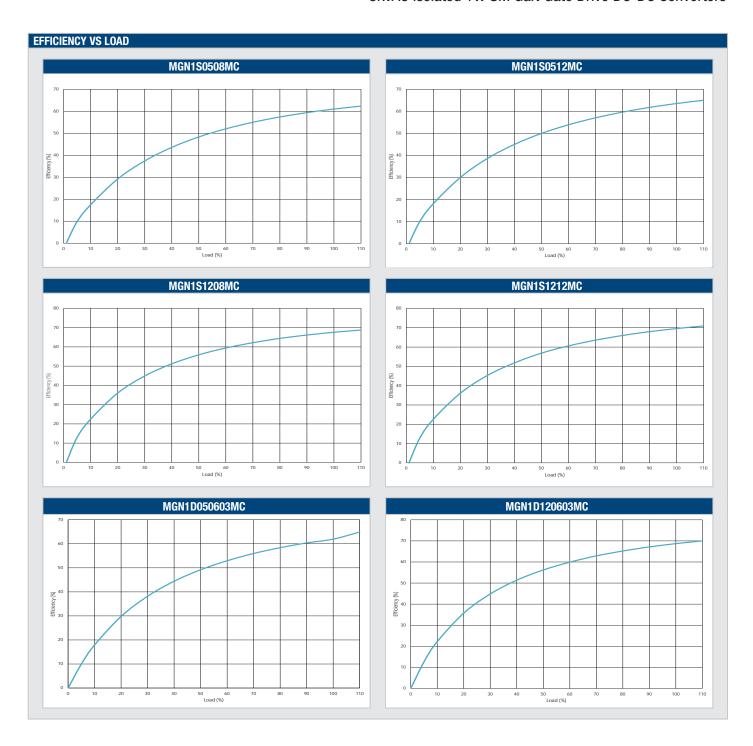
APPLICATION NOTES (Continued)


Capacitive loading and start up

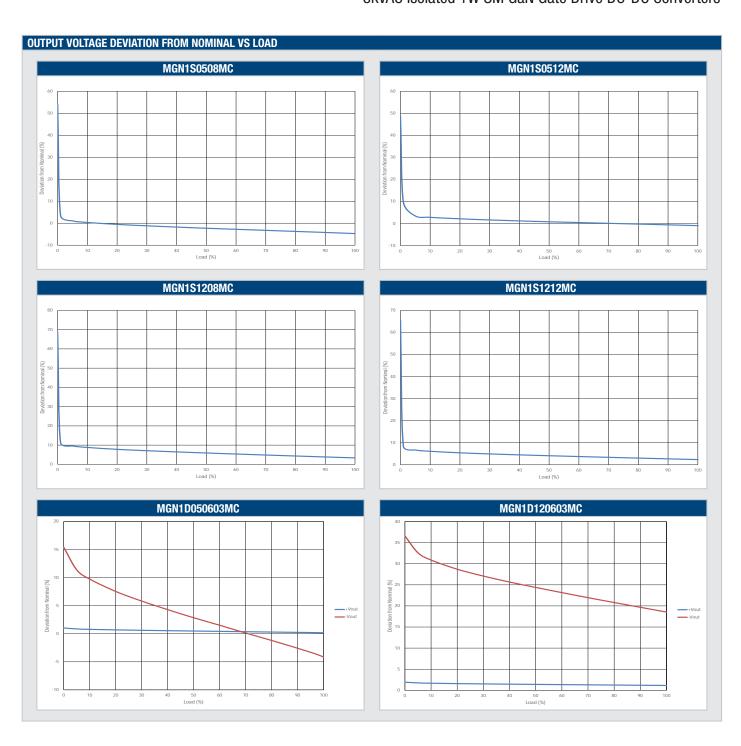
The typical start up for single output variants, using a 56uF capacitor is 10mS. The start up behaviour of the +Vout and -Vout rails of a dual output DC-DC using a divider network depends significantly on the additional capacitance added to the outputs. This is because the two capacitors behave as a capacitive divider. If the two capacitors are equal and 9V is applied across them the outputs will initially start as +/-4.5V.


There will be a settling time while the divider circuit adjusts to the correct voltages, to calulcate the approixmate value please refer to the following formula.

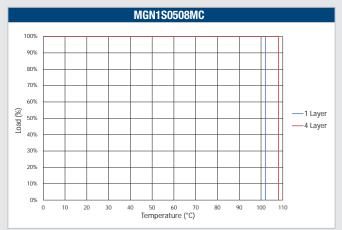
Settling time ≈ 3000 x C (s)

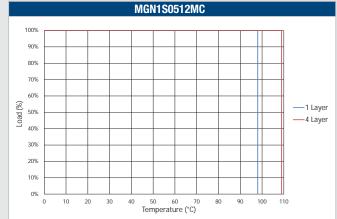

So, for instance if a maximum capacitance of 100uF is applied to each output the settling time will be about 300ms.

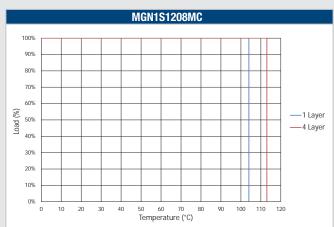
To avoid spurious gate pulses it is recommended that the PWM gate signal is not applied until after the settling time has ended. An alternative method to reduce the settling time is to adjust the values of the additional capacitance so that the CV products are equal. i.e. $C3 \times 6V = C4 \times 3V$. So, for instance if a maximum capacitance of 75uF is applied to the +6V output and 150uF is applied to the -3V output the settling time is greatly reduced.

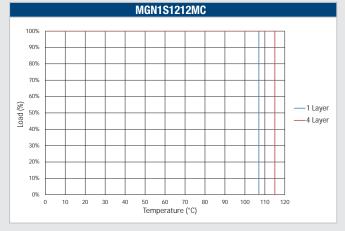


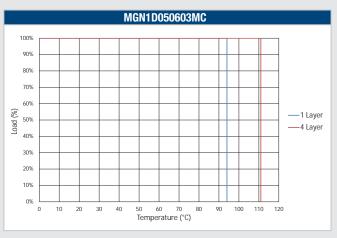
NB: The total maximum series capacitance across 9V = 50uF.

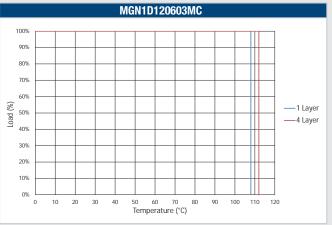

MGN1 Series

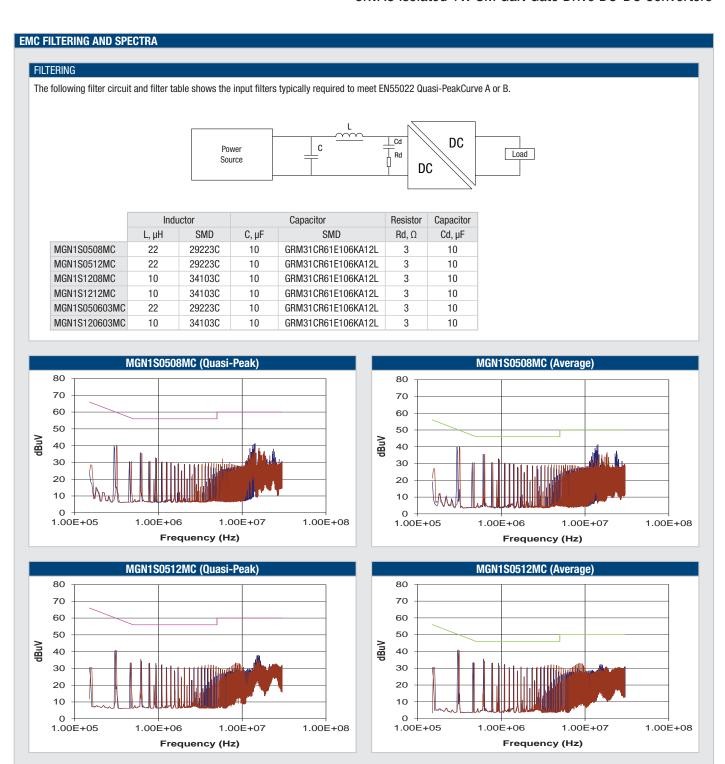

muRata Ps Murata Power Solutions

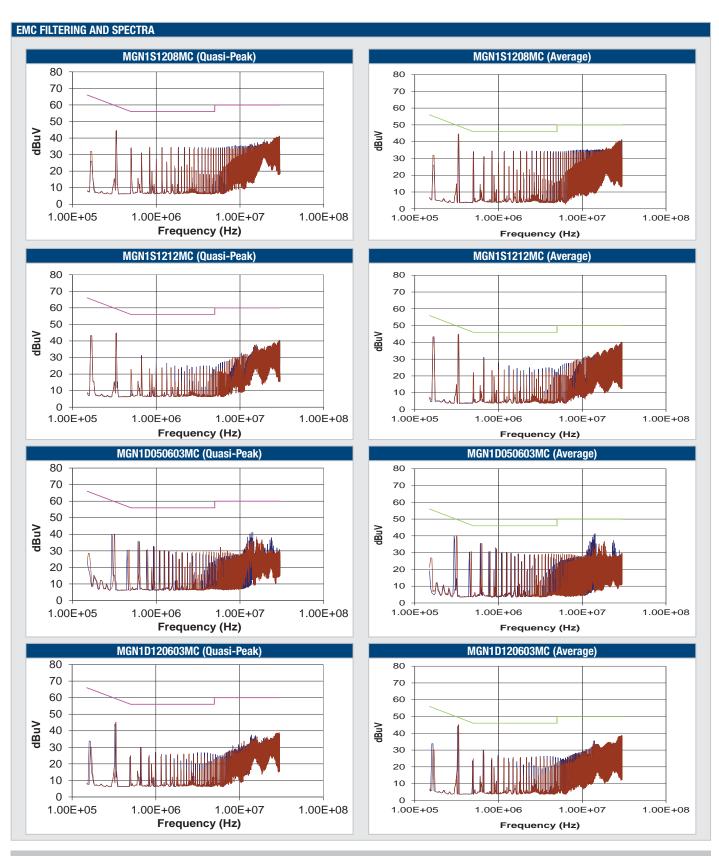


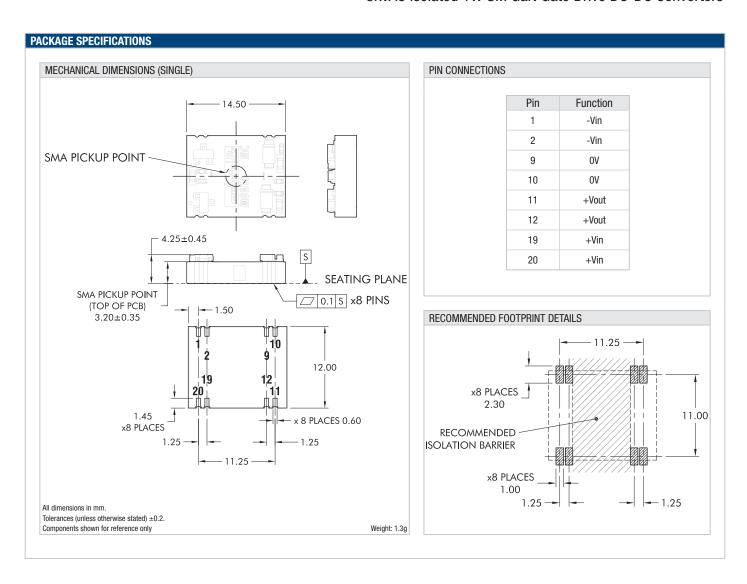

TEMPERATURE DERATING

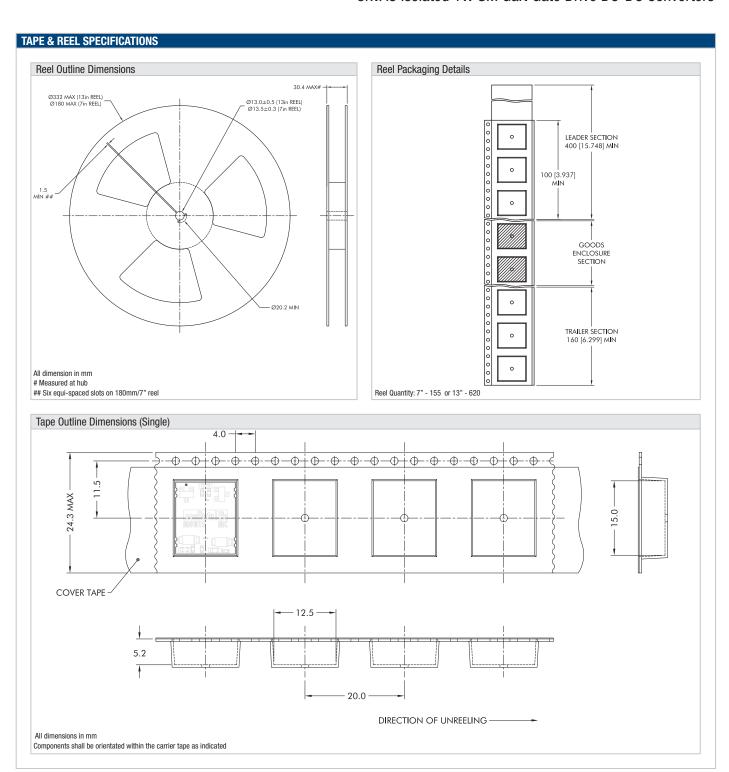

The MGN1 series has been designed to minimise the thermal impedance when mounted onto a customers application PCB by using multiple surface mount pads for each connection. All thermal measurements were carried out in still air using a test pcb designed in accordance with standard JESD51-9 (Test Boards for Area Array Surface Mount Package Thermal Measurements). A single layer and a 4 layer have been used and this demonstrates that a higher operating temperature can be achieved when the customers application pcb is designed to incorporate multiple layers and large copper planes. Please contact Murata for further information.

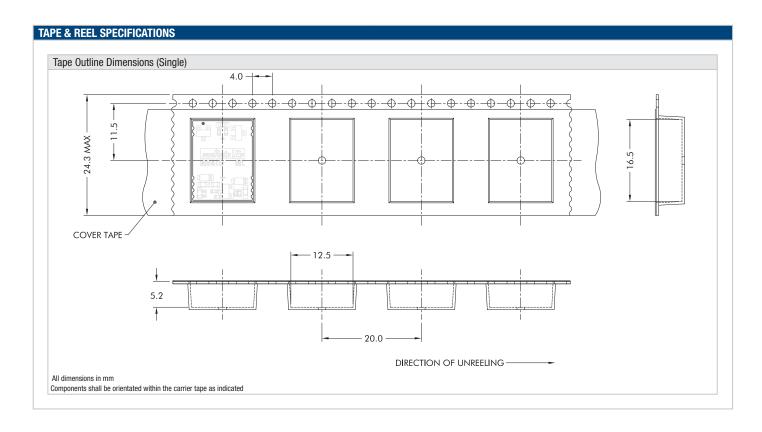












PACKAGE SPECIFICATIONS MECHANICAL DIMENSIONS (DUAL) PIN CONNECTIONS 16.00 **Function** Pin Function -Vin 13 0V 1 SMA PICKUP POINT -2 -Vin 14 0V 9 -Vout 15 +Vout 10 -Vout 16 +Vout 11 0V 23 +Vin 4.25±0.45 12 0V 24 +Vin S SEATING PLANE SMA PICKUP POINT (TOP OF PCB) 1.50 3.20±0.35 RECOMMENDED FOOTPRINT DETAILS 10 12 11.25 12.00 x12 PLACES _ 2.30 1.45 x 12 PLACES 0.60 11.00 x12 PLACES RECOMMENDED 1.25 1.25 ISOLATION BARRIER - 13.75 x12 PLACES 1.00 All dimensions in mm. Tolerances (unless otherwise stated) ± 0.2 . Components shown for reference only Weight: 1.5g

MGN1 Series

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: https://www.murata.com/en-eu/products/power/requirements

Murata Power Solution(Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein on timply the granting of licenses to make, use, or sell equipment constructed in accordance thereints. Specifications are subject to change without notice.

2023 Murata Power Solution(Milton Keynes) Ltd.

www.murata.com

KDC_MGN1_A03 Page 21 of 21