

Datasheet

iNEMO inertial module with embedded Machine Learning Core: always-on 3D accelerometer and 3D gyroscope with digital output for industrial applications

LGA-14L (2.5 x 3.0 x 0.83 mm) typ.

Features

- 3D accelerometer with selectable full scale: ±2/±4/±8/±16 g
- 3D gyroscope with extended selectable full scale: ±125/±250/±500/±1000/±2000/±4000 dps
- Extended temperature range from -40 to +105 °C
- Embedded compensation for high stability over temperature
- SPI/I²C serial interface
- Auxiliary SPI serial interface for data output of gyroscope and accelerometer (OIS and other stabilization applications)
- Six-channel synchronized output
- · Sensor hub feature to efficiently collect data from additional external sensors
- Embedded smart FIFO up to 9 kbytes
- Programmable Finite State Machine to process data from accelerometer, gyroscope, and external sensors
- Machine Learning Core
- Smart embedded functions and interrupts: tilt detection, free-fall, wakeup, 6D/4D orientation, click and double-click
- · Embedded pedometer, step detector and counter for healthcare applications
- Analog supply voltage: 1.71 V to 3.6 V
- Embedded temperature sensor
- Embedded self-test both for gyroscope and accelerometer
- High shock survivability
- ECOPACK, RoHS and "Green" compliant

Applications

- Industrial IoT and connected devices
- Antennas, platforms, and optical image and lens stabilization
- Robotics, drones and industrial automation
- Navigation systems and telematics
- Vibration monitoring and compensation

Description

lectronics sales office

The ISM330DHCX is a system-in-package featuring a high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

Product status link						
ISM330DHCX						
Product summary						
Order code	ISM330DHCX	ISM330DHCXTR				
Temp. range [°C]	-40 to +105					
Package	LGA-14L (2.5 x 3.0 x 0.83 mm)					
Packing	Tray	Tape & Reel				

Product labels

Product resources

AN5398 (ISM330DHCX) AN5392 (Machine Learning Core) AN5388 (Finite State Machine) TN0018 (Design and soldering) In the ISM330DHCX the sensing elements of the accelerometer and of the gyroscope are implemented on the same silicon die, thus guaranteeing superior stability and robustness.

The ISM330DHCX has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and a wide angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps that enable its usage in a broad range of applications.

All the design aspects and the calibration of the ISM330DHCX have been optimized to reach superior accuracy, stability, extremely low noise and full data synchronization.

An unmatched set of embedded features (Machine Learning Core, programmable FSM, FIFO, sensor hub, event decoding and interrupts) are enablers for implementing smart and complex sensor nodes which deliver high performance at very low power.

The ISM330DHCX is available in a 14-lead plastic land grid array (LGA) package.

1 Overview

The ISM330DHCX is a system-in-package featuring a high-accuracy and high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

All the design aspects and the testing and calibration of the ISM330DHCX have been optimized to reach superior accuracy, stability, extremely low noise and full data synchronization.

The ISM330DHCX has a 3D accelerometer capable of wide bandwidth, ultra-low noise and a selectable full-scale range of $\pm 2/\pm 4/\pm 8/\pm 16 g$. The 3D gyroscope has an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps and offers superior stability over temperature and time along with ultra-low noise.

The unique set of embedded features (Machine Learning Core, programmable FSM, 9 kbytes smart FIFO, sensor hub, event decoding and interrupts) facilitate the implementation of smart and complex sensor nodes which deliver high performance at very low power.

The ISM330DHCX offers specific support, both for the gyroscope and the accelerometer, to applications requiring closed control loop (like OIS and other stabilization applications). The device, through a dedicated auxiliary SPI interface and a configurable signal processing path, can provide data for the control loop while, at the same time, a second fully independent path can output data for other applications.

Like the entire portfolio of MEMS sensor modules, the ISM330DHCX leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

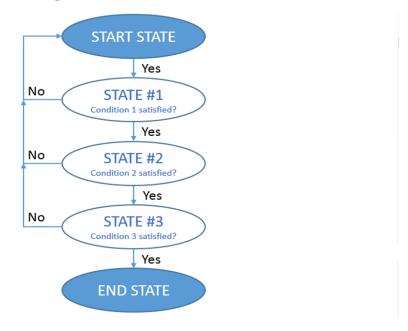
In the ISM330DHCX, the sensing elements of the accelerometer and of the gyroscope are implemented on the same silicon die, thus guaranteeing superior stability and robustness.

The ISM330DHCX is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.83 mm.

2 Embedded low-power features

The ISM330DHCX features the following on-chip functions:

- 9 kbytes data buffering, data can be compressed two or three times
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable):
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity/inactivity recognition
 - Stationary/Motion detection
 - Specific IP blocks with negligible power consumption and high-performance:
 - Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
 - Machine Learning Core (MLC)
 - Significant Motion Detection, tilt, pedometer, step detector and step counters
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors



2.1 Finite State Machine

The ISM330DHCX can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection and decoding.

Definition of Finite State Machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. The following figure shows a generic state machine.

Figure 1. Generic state machine

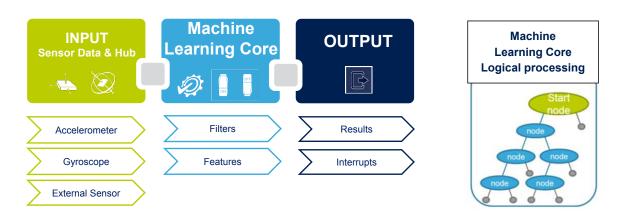
Finite State Machine in the ISM330DHCX

The ISM330DHCX works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine (Figure 2. State machine in the ISM330DHCX).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

Figure 2. State machine in the ISM330DHCX

2.2 Machine Learning Core


The ISM330DHCX embeds a dedicated core for machine learning processing that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

Machine Learning Core logic allows identifying if a data pattern (for example motion, pressure, temperature, magnetic data, etc.) matches a user-defined set of classes. Typical examples of applications could be anomalous vibration, complex movement or condition identification, activity detection, etc.

The ISM330DHCX Machine Learning Core works on data patterns coming from the accelerometer and gyro sensors, but it is also possible to connect and process external sensor data (like magnetometer) by using the Sensor Hub feature (Mode 2).

The input data can be filtered using a dedicated configurable computation block containing filters and features computed in a fixed time window defined by the user.

Machine learning processing is based on logical processing composed of a series of configurable nodes characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.

Figure 3. Machine Learning Core in the ISM330DHCX

The ISM330DHCX can be configured to run up to 8 flows simultaneously and independently and every flow can generate up to 256 results. The total number of nodes can be up to 512.

The results of the machine learning processing are available in dedicated output registers readable from the application processor at any time.

The ISM330DHCX Machine Learning Core can be configured to generate an interrupt when a change in the result occurs.

3 Pin description

57

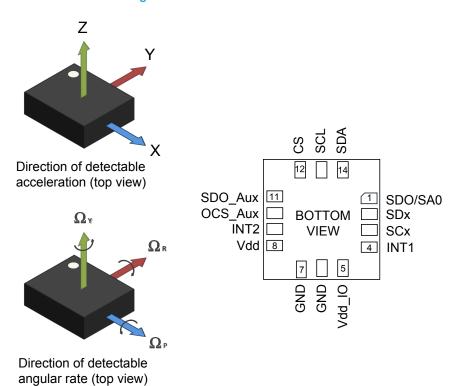
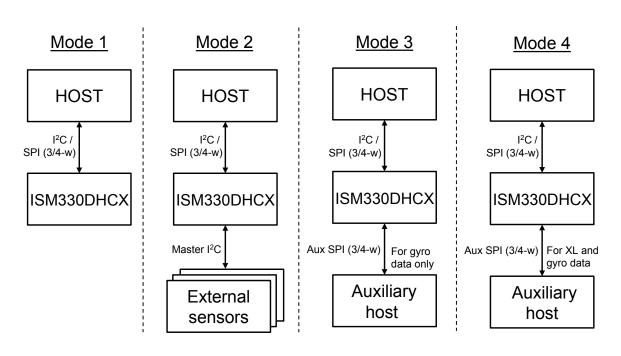


Figure 4. Pin connections

3.1 Pin connections

57


The ISM330DHCX offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

Mode 1: I²C slave interface or SPI (3- and 4-wire) serial interface is available;

Mode 2: I²C slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;

Mode 3: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the gyroscope ONLY;

Mode 4: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the accelerometer and gyroscope.

Figure 5. ISM330DHCX connection modes

In the following table each mode is described for the pin connections and function.

Table 1. Pin description

Pin #	Name	Mode 1 function	Mode 2 function	Mode 3/4 function
1	SDO/SA0	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)
	SDOISHU	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)
2	SDx	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)
3	SCx	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)
4	INT1		Programmable interrupt in I ² C and SPI	
5	Vdd_IO ⁽¹⁾		Power supply for I/O pins	
6	GND		0 V supply	
7	GND		0 V supply	
8	Vdd ⁽¹⁾		Power supply	
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)
10	OCS_Aux	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾	Auxiliary SPI 3/4-wire interface enable
11	SDO_Aux	Connect to Vdd_IO or leave unconnected ⁽²⁾	Connect to Vdd_IO or leave unconnected ⁽²⁾	Auxiliary SPI 3-wire interface: leave unconnected ⁽²⁾ Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)
12	CS	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
13	SCL	I ² C serial clock (SCL) SPI serial port clock (SPC)	I ² C serial clock (SCL) SPI serial port clock (SPC)	I ² C serial clock (SCL) SPI serial port clock (SPC)
		I ² C serial data (SDA)	I ² C serial data (SDA)	I ² C serial data (SDA)
14	SDA	SPI serial data input (SDI)	SPI serial data input (SDI)	SPI serial data input (SDI)
		3-wire interface serial data output (SDO)	3-wire interface serial data output (SDO)	3-wire interface serial data output (SDO)

1. Recommended 100 nF filter capacitor.

2. Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test conditions	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
				±2		
	Linear appleration measurement range			±4		~
LA_FS	Linear acceleration measurement range			±8		g
				±16		
				±125		
				±250		
G_FS	Angular rate magaurement range			±500		daa
G_FS	Angular rate measurement range			±1000		dps
				±2000		
				±4000		
		FS = ±2 g		0.061	+2%	mg/LSB
LA_So	Lincor coorderation constituity (3)	FS = ±4 g	-2%	0.122		
LA_30	Linear acceleration sensitivity ⁽³⁾	FS = ±8 g	-2 70	0.244		
		FS = ±16 <i>g</i>		0.488		
	Angular rate sensitivity ⁽³⁾	$FS = \pm 125 dps$	-2%	4.375		mdps/LSB
		$FS = \pm 250 \text{ dps}$		8.75		
G_So		$FS = \pm 500 \text{ dps}$		17.50	+2%	
0_00		$FS = \pm 1000 \text{ dps}$		35	1270	
		$FS = \pm 2000 \text{ dps}$		70	_	
		$FS = \pm 4000 \text{ dps}$		140		
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40 °C to +105 °C	-0.01	±0.005	+0.01	%/°C
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40 °C to +105 °C	-0.015	±0.007	+0.015	%/°C
LA_TyOff	Linear acceleration zero- g level offset accuracy ⁽⁵⁾		-65	±10	+65	m <i>g</i>
G_TyOff	Angular rate zero-rate level ⁽⁵⁾		-3	±1	+3	dps
LA_TCOff	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾		-0.5	±0.1	+0.5	mg/°C
G_TCOff	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾		-0.015	±0.005	+0.015	dps/°C
LA_Cx	Linear acceleration cross-axis sensitivity	T = 25 °C		±0.5		%
G_Cx	Angular rate cross-axis sensitivity	T = 25 °C		±1		%
Rn	Rate noise density in high-performance mode ⁽⁶⁾			5	8	mdps/√Hz
ARW	Angular random walk	T = 25 °C		0.21	0.34	deg/√h
BI	Bias instability	T = 25 °C		3		deg/h
RnRMS	Gyroscope RMS noise in low-power mode ⁽⁷⁾			70		mdps

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min. ⁽¹⁾	Тур. (2)	Max. ⁽¹⁾	Unit
An	Acceleration noise density in high-performance mode ⁽⁸⁾			60	100	µ <i>g</i> /√Hz
RMS	Acceleration RMS noise in low-power mode ⁽⁹⁾⁽¹⁰⁾			1.8		mg(RMS)
				1.6 ⁽¹¹⁾		
				12.5		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data rate			208		
				416		
				833		
				1666		
				3332		
				6667		Hz
				12.5		
				26		
				52		
				104 208		
G_ODR	Angular rate output data rate			416		
				833		
				1666		
				3332		
				6667		
		X,Y-axis		2.6		
LA_F0	Sensor resonant frequency	Z-axis		2.17		kHz
G_F0	Sensor resonant frequency			20		kHz
	Linear acceleration self-test output change ^{(12) (13) (14)}		40		1700	m <i>g</i>
Vst	(45V48)	$FS = \pm 250 \text{ dps}$	20		80	dps
	Angular rate self-test output change (15)(16)	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range		-40		+105	°C

1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed.

- 2. Typical specifications are not guaranteed.
- 3. Sensitivity values after factory calibration test and trimming.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR and full scale.
- 9. Accelerometer RMS noise in low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when the accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.

- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test conditions	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode			1.2	1.5	mA
IddNM	Gyroscope and accelerometer current consumption in normal mode	ODR = 208 Hz		0.7		mA
LA_IddHP	Accelerometer current consumption in high-performance mode			360	430	μA
		ODR = 52 Hz		32		
LA_IddLM	Accelerometer current consumption in low-power mode	ODR = 12.5 Hz		11		μA
		ODR = 1.6 Hz		5.5		
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μA
Ton	Turn-on time			35		ms
VIH	Digital high-level input voltage		0.7 * Vdd_IO			V
VIL	Digital low-level input voltage				0.3 * Vdd_IO	V
V _{OH}	Digital high-level output voltage	I _{OH} = 4 mA ⁽³⁾	Vdd_IO - 0.2			V
V _{OL}	Digital low-level output voltage	I _{OL} = 4 mA ⁽³⁾			0.2	V
Тор	Operating temperature range		-40		+105	°C

Table 3. Electrical characteristics

1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed.

2. Typical specifications are not guaranteed.

3. 4 mA is the minimum driving capability, i.e. the minimum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL}.

4.3 Temperature sensor characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
TODR ⁽³⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽⁴⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁵⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+105	°C

1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed.

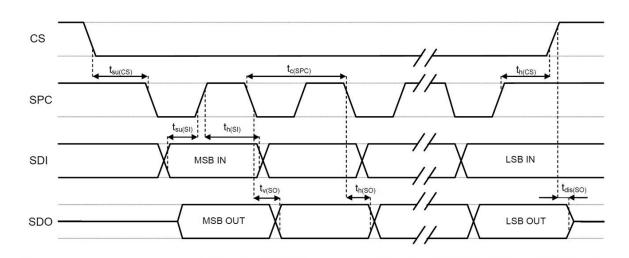
2. Typical specifications are not guaranteed.

- 3. When the accelerometer is in low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR up to 52 Hz.
- 4. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
- 5. Time from power ON to valid data. Based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

57


Subject to general operating conditions for Vdd and Top.

Symbol	Devenuetor	Val	Value ⁽¹⁾	
Symbol	Parameter	Min	Max	– Unit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Table 5. SPI slave timing values (in mode 3)

1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Note: Measurement points are done at 0.3.Vdd_IO and 0.7.Vdd_IO for both input and output ports.

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

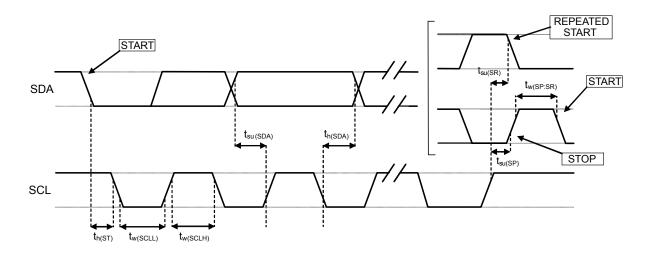

Symbol	Devemater	I ² C fast	I ² C fast mode ⁽¹⁾⁽²⁾		I ² C fast mode +(1)(2)	
Symbol	Parameter	Min	Max	Min	Max	- Unit
f _(SCL)	SCL clock frequency	0	400	0	1000	kHz
t _{w(SCLL)}	SCL clock low time	1.3		0.5		
t _{w(SCLH)}	SCL clock high time	0.6		0.26		– µs
t _{su(SDA)}	SDA setup time	100		50		ns
t _{h(SDA)}	SDA data hold time	0	0.9	0		
t _{h(ST)}	START/REPEATED START condition hold time	0.6		0.26		
t _{su(SR)}	REPEATED START condition setup time	0.6		0.26		
t _{su(SP)}	STOP condition setup time	0.6		0.26		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	1.3		0.5		
	Data valid time		0.9		0.45	_
	Data valid acknowledge time		0.9		0.45	
CB	Capacitive load for each bus line		400		550	pF

Table 6. I²C slave timing values

1. Data based on standard I²C protocol requirement, not tested in production.

2. Data for I²C fast mode and I²C fast mode+ have been validated by characterization, not tested in production.

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	20,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Table 7. Absolute maximum ratings

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, $\pm 1 g$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 2).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-*g* level change vs. temperature" in Table 2. The zero-*g* level tolerance (TyOff) describes the standard deviation of the range of zero-*g* levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 2).

5 Digital interfaces

5.1 I²C/SPI interface

57/

The registers embedded inside the ISM330DHCX may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
	SPI enable
CS	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled;
	0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C Serial Clock (SCL)
50L/5PC	SPI Serial Port Clock (SPC)
	I ² C Serial Data (SDA)
SDA/SDI/SDO	SPI Serial Data Input (SDI)
	3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO)
3D0/3A0	I ² C less significant bit of the device address

Table 8. Serial interface pin description

5.1.1 I²C serial interface

The ISM330DHCX I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 9. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with fast mode plus (1000 kHz).

In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

5.1.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the ISM330DHCX is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the ISM330DHCX behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 10. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 12. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer when master is receiving (reading) one byte of data from slave

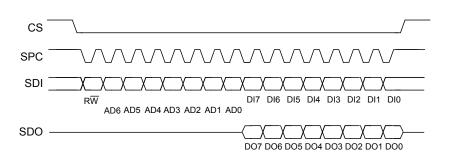
Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS13	012 - Rev 7	
ed from	Arrow.com.	

Downloade


Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge.

5.1.2 SPI bus interface

The ISM330DHCX SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates with the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

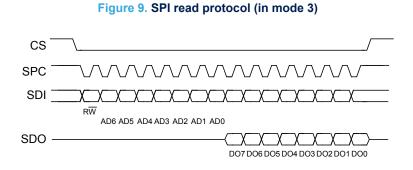
Figure 8. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.

bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

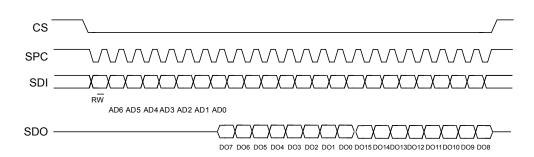

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

5.1.2.1 SPI read



The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

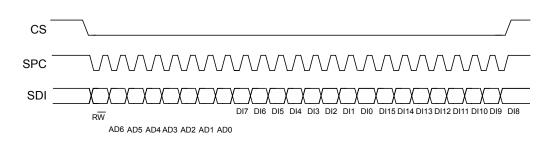
bit 0: READ bit. The value is 1.


bit 1-7: address AD(6:0). This is the address field of the indexed register. **bit 8-15**: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). **bit 16-**...: data DO(...-8). Further data in multiple byte reads.

Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)

5.1.2.2 SPI write

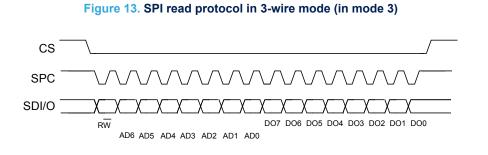
Figure 11. SPI write protocol (in mode 3)


The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register. **bit 8-15**: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). **bit 16-...** : data DI(...-8). Further data in multiple byte writes.

10-... . data DI(...-o). Further data in multiple byte writes.


Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)

5.1.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

The SPI read command is performed with 16 clock pulses: **bit 0**: READ bit. The value is 1. **bit 1-7**: address AD(6:0). This is the address field of the indexed register. **bit 8-15**: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode.

5.2 Master I²C interface

If the ISM330DHCX is configured in Mode 2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

Table 15. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

5.3 Auxiliary SPI interface

If the ISM330DHCX is configured in Mode 3 or Mode 4, the auxiliary SPI is available. The auxiliary SPI interface is mapped to the following dedicated pins.

Table 16. Auxiliary SPI pin details

Pin name	Pin description
OCS_Aux	Auxiliary SPI 3/4-wire enable
SDx	Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)
SCx	Auxiliary SPI 3/4-wire interface serial port clock
SDO_Aux	Auxiliary SPI 4-wire data output (SDO_Aux)

When the ISM330DHCX is configured in Mode 3 or Mode 4, the auxiliary SPI can be connected to a camera module for OIS/EIS support. In this configuration, the auxiliary SPI can write only to the dedicated registers INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h). All the registers are accessible in Read mode from both the primary interface and auxiliary SPI.

Mode 3 is enabled when the OIS_EN_SPI2 bit in CTRL1_OIS (70h) register is set to 1.

Mode 4 is enabled when both the OIS_EN_SPI2 bit and the Mode4_EN bit in CTRL1_OIS (70h) register are set to 1.

6 Functionality

6.1 Operating modes

In the ISM330DHCX, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

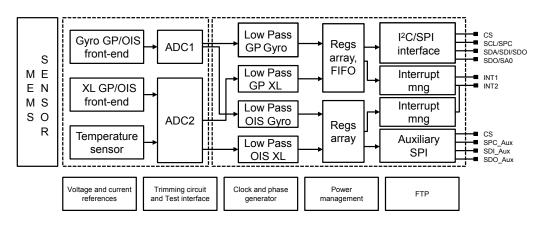
The ISM330DHCX has three operating modes available:

- only accelerometer active and gyroscope in power-down or sleep mode
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

6.2 Gyroscope power modes

In the ISM330DHCX, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).


To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

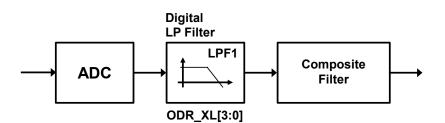
6.3 Accelerometer power modes

In the ISM330DHCX, the accelerometer can be configured in four different operating modes: power-down, lowpower, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

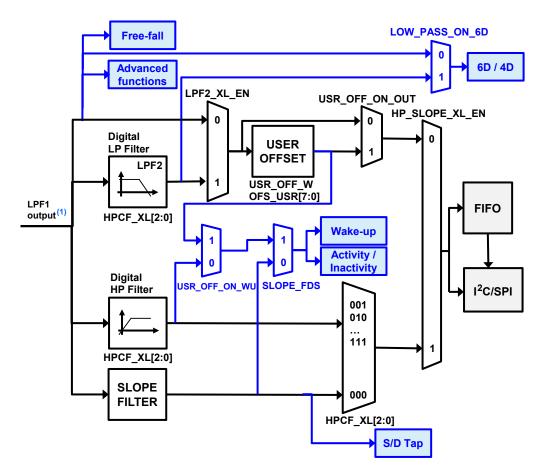
To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

6.4 Block diagram of filters

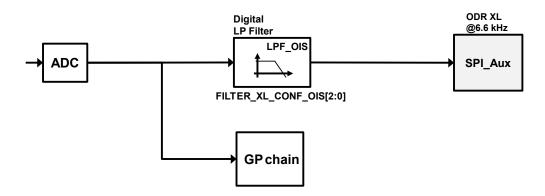
Figure 14. Block diagram of filters


6.4.1 Block diagrams of the accelerometer filters

In the ISM330DHCX, the filtering chain for the accelerometer part is composed of the following:

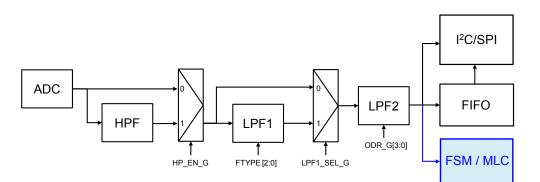

- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.



 The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz. This value is equal to 780 Hz when the accelerometer is in low-power or normal mode.
 Note: Advanced functions, relevant for healthcare applications, include pedometer, step detector and step counter, significant motion detection, tilt function, Finite State Machine and Machine Learning Core. The accelerometer filtering chain when Mode 4 is enabled is illustrated in the following figure.

Figure 17. Accelerometer chain with Mode 4 enabled


Note: Mode 4 is enabled when Mode4_EN = 1 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h). The configuration of the accelerometer GP chain is not affected by enabling Mode 4. Accelerometer output values are in registers OUTX_L_A (28h) and OUTX_H_A (29h) through OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) and ODR at 6.66 kHz.

6.4.2 Block diagrams of the gyroscope filters

In the ISM330DHCX, the gyroscope filtering chain depends on the mode configuration:

 Mode 1 (for General Purpose (GP) and Electronic Image Stabilization (EIS) functionality through primary interface) and Mode 2

Figure 18. Gyroscope digital chain - Mode 1 (GP) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see Table 58. Gyroscope LPF1 bandwidth selection.

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Gyroscope ODR [Hz]	LPF2 cutoff [Hz]
12.5	4.3
26	8.3
52	16.7
104	33
208	67
417	133
833	267
1667	539
3333	1137
6667	3333

Table 17. Gyroscope LPF2 bandwidth selection

Data can be acquired from the output registers and FIFO over the primary I²C/SPI interface.

Mode 3 / Mode 4 (for OIS functionality)

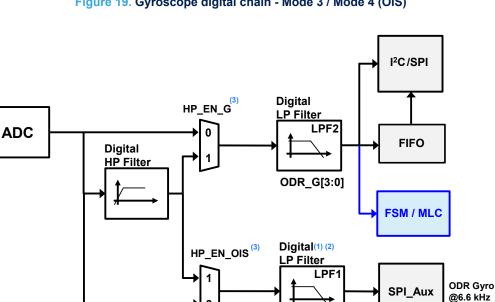


Figure 19. Gyroscope digital chain - Mode 3 / Mode 4 (OIS)

- 1. When Mode3/4 is enabled, the LPF1 filter is not available in the gyroscope GP chain.
- 2. It is recommended to avoid using the LPF1 filter in Mode1/2 when Mode3/4 is intended to be used.

0

HP_EN_OIS can be used to select the HPF on the OIS path only if the HPF is not used in the GP chain. If 3. both the HP_EN_G bit and HP_EN_OIS bit are set to 1, the HP filter is applied to the GP chain only. The auxiliary interface needs to be enabled in CTRL1 OIS (70h).

FTYPE[1:0]_OIS

In Mode 3/4 configuration, there are two paths:

the chain for General Purpose (GP) where the ODR is selectable from 12.5 Hz up to 6.66 kHz

 the chain for OIS where the ODR is at 6.66 kHz and the LPF1 is available. The LPF1 configuration depends on the setting of the FTYPE_[1:0]_OIS bit in register CTRL2_OIS (71h); for more details about the filter characteristics see Table 147. Gyroscope OIS chain digital LPF1 filter bandwidth selection. Gyroscope output values are in registers 22h to 27h with the selected full scale (FS[1:0]_G_OIS bit in CTRL1_OIS (70h)).

6.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The ISM330DHCX embeds 3 kbytes of data (up to 9 kbytes with the compression feature enabled) in FIFO to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Step counter
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- Sensor hub data-ready signal
- Step detection signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFOdedicated configurations: accelerometer, gyroscope and temperature sensor batch rates can be selected by the user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batch Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbytes data stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power consumption.

The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to six different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

6.5.1 Bypass mode

In Bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

6.5.2 FIFO mode

In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah) (FIFO_MODE_[2:0]) to '001'.

The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.5.3 Continuous mode

Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = '1'. A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = '1' or INT2_CTRL (0Eh) (INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO STATUS1 (3Ah) and FIFO STATUS2 (3Bh)(DIFF FIFO [9:0]).

6.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode. When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

6.5.6 Bypass-to-FIFO mode

57/

In Bypass-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode). FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

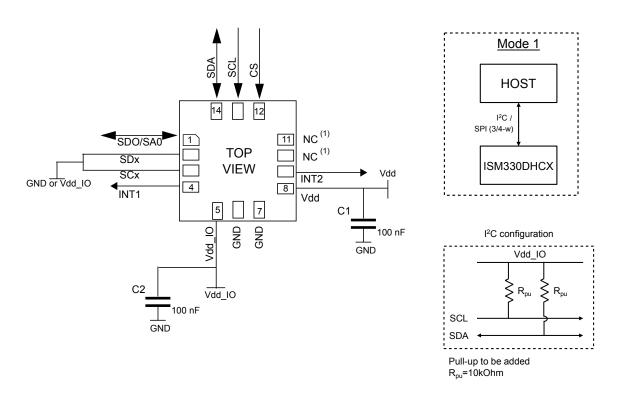
- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

6.5.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (78h)), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh)) and INT2_CNT_BDR of INT2_CTRL (0Eh)).

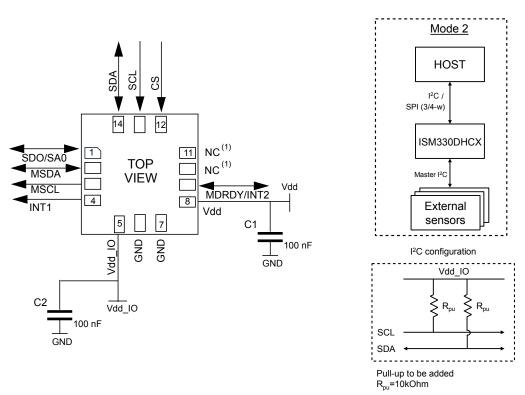

In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in EMB_FUNC_EN_B (05h) (embedded functions registers bank) and the FIFO_COMPR_RT_EN bit in FIFO_CTRL2 (08h). When compression is enabled, it is also possible to force writing non-compressed data at a selectable rate using the UNCOPTR_RATE_[1:0] field in FIFO_CTRL2 (08h).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR_CHG_EN bit in FIFO_CTRL2 (08h).

7 Application hints

7.1 ISM330DHCX electrical connections in Mode 1

Figure 20. ISM330DHCX electrical connections in Mode 1



1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice). The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the I²C/SPI interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the I²C/SPI interface.

7.2 ISM330DHCX electrical connections in Mode 2

Figure 21. ISM330DHCX electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the I²C/SPI primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the I^2C/SPI primary interface.

7.3 ISM330DHCX electrical connections in Mode 3 and Mode 4

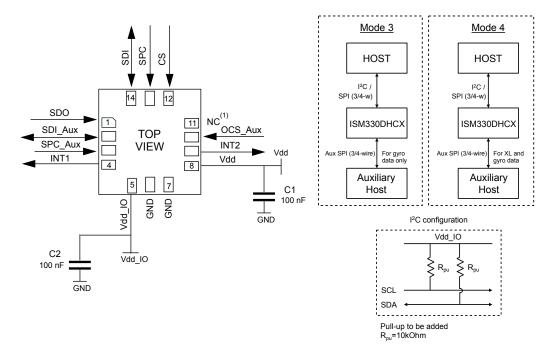


Figure 22. ISM330DHCX electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.

Note: When Mode 3 and 4 are used, the pull-up on pins 10 and 11 can be disabled (refer to Table 18. Internal pin status). To avoid leakage current, it is recommended to add pull-up resistors on the SPI lines unless the SPI master can be left on while the OIS system is off.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device is selectable and accessible through the I²C/SPI primary interface.

Measured acceleration/angular rate data is selectable and accessible through the I²C/SPI primary interface and auxiliary SPI.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the I²C/SPI interface.

The procedure to correctly initialize the device is as follows:

- 1. INT1: Leave unconnected or connect with external pull-down during power-on. Pull-up must be avoided on this pin
- 2. INT2: Recommended to not connect with external pull-up.
- 3. Properly configure the device:
 - a. SPI interface: I2C_disable = 1 in CTRL4_C (13h) and DEVICE_CONF = 1 in CTRL9_XL (18h).
 - b. I²C interface: I2C_disable = 0 (default) in CTRL4_C (13h) and DEVICE_CONF = 1 in CTRL9_XL (18h).

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2
1	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Default: input without pull-up.	Default: input without pull-u
1	SA0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.	Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02t
2	SDx	Connect to Vdd_IO or GND	I²C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14 ⁺ sensor hub registers (see Not enable pull-up).
3	SCx	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-u Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14 ⁺ sensor hub registers (see Not enable pull-up).
4	INT1	Programmable interrupt 1	Programmable interrupt 1	Programmable interrupt 1	Default: input with pull-down ⁽²⁾	Default: input with pull-down
5	Vdd_IO	Power supply for I/O pins	Power supply for I/O pins	Power supply for I/O pins		
6	GND	0 V supply	0 V supply	0 V supply		
7	GND	0 V supply	0 V supply	0 V supply		
8	Vdd	Power supply	Power supply	Power supply		
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: output forced to ground	Default: output forced to grou
10	OCS_Aux	Leave unconnected	Leave unconnected	Auxiliary SPI 3/4-wire interface enabled	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02t
11	SDO_Aux	Connect to Vdd_IO or leave unconnected	Connect to Vdd_IO or leave unconnected	Auxiliary SPI 3- wire interface: leave unconnected / Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02f
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled;	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled;	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled;	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and DEVICE_CONF = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h a DEVICE_CONF = 1 in reg 1

Table 18. Internal pin status

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2
		0: SPI communication mode / I ² C disabled)	0: SPI communication mode / I ² C disabled)	0: SPI communication mode / I ² C disabled)		
13	SCL	I ² C serial clock (SCL) / SPI serial port clock (SPC)	I ² C serial clock (SCL) / SPI serial port clock (SPC)	I ² C serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-u
14	SDA	I ² C serial data (SDA) / SPI serial data input (SDI) / 3- wire interface serial data output (SDO)	I ² C serial data (SDA) / SPI serial data input (SDI) / 3- wire interface serial data output (SDO)	I ² C serial data (SDA) / SPI serial data input (SDI) / 3- wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-u

1. Mode 3 is enabled when the OIS_EN_SPI2 bit in the CTRL1_OIS (70h) register is set to 1. Mode 4 is enabled when both the OIS_EN_SPI2 bit and the Mode4_EN bit in the CTRL1_OIS (70h) register are set to 1.

2. INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on Vdd_IO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

1. From the primary I²C/SPI interface : write 40h in register at address 01h (enable access to the sensor hub registers)

2. From the primary I²C/SPI interface : write 08h in register at address 14h (enable the pull-up on pins 2 and 3)

3. From the primary I²C/SPI interface : write 00h in register at address 01h (disable access to the sensor hub registers)

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

	_	Regis	ter address		Comment
Name	Туре	Hex	Binary	Default	
FUNC_CFG_ACCESS	RW	01	00000001	00000000	
PIN_CTRL	RW	02	00000010	00111111	
RESERVED	-	03-06			
FIFO_CTRL1	RW	07	00000111	00000000	
FIFO_CTRL2	RW	08	00001000	00000000	
FIFO_CTRL3	RW	09	00001001	00000000	
FIFO_CTRL4	RW	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	RW	0D	00001101	00000000	
INT2_CTRL	RW	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101011	R (SPI2)
CTRL1_XL	RW	10	00010000	00000000	R (SPI2)
CTRL2_G	RW	11	00010001	00000000	R (SPI2)
CTRL3_C	RW	12	00010010	00000100	R (SPI2)
CTRL4_C	RW	13	00010011	00000000	R (SPI2)
CTRL5_C	RW	14	00010100	00000000	R (SPI2)
CTRL6_C	RW	15	00010101	0000000	R (SPI2)
CTRL7_G	RW	16	00010110	00000000	R (SPI2)
CTRL8_XL	RW	17	00010111	0000000	R (SPI2)
CTRL9_XL	RW	18	00011000	11100000	R (SPI2)
CTRL10_C	RW	19	00011001	0000000	R (SPI2)
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
TAP_SRC	R	1C	00011100	output	
D6D_SRC	R	1D	00011101	output	
STATUS_REG ⁽¹⁾ /STATUS_SPIAux ⁽²⁾	R	1E	00011110	output	
RESERVED	-	1F			
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	

Table 19.	Registers	address	map
-----------	-----------	---------	-----

Nerro	Truce	Register address		Defeat	0
Name	Туре	Hex	Binary	Default	Comment
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-34			
EMB_FUNC_STATUS_MAINPAGE	R	35	00110101	output	
FSM_STATUS_A_MAINPAGE	R	36	00110110	output	
FSM_STATUS_B_MAINPAGE	R	37	00110111	output	
MLC_STATUS_MAINPAGE	R	38	00111000	output	
STATUS_MASTER_MAINPAGE	R	39	00111001	output	
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			
TIMESTAMP0	R	40	01000000	output	R (SPI2)
TIMESTAMP1	R	41	01000001	output	R (SPI2)
TIMESTAMP2	R	42	01000010	output	R (SPI2)
TIMESTAMP3	R	43	01000011	output	R (SPI2)
RESERVED	-	44-55			
TAP_CFG0	RW	56	01010110	00000000	
TAP_CFG1	RW	57	01010111	00000000	
TAP_CFG2	RW	58	01011000	00000000	
TAP_THS_6D	RW	59	01011001	00000000	
INT_DUR2	RW	5A	01011010	00000000	
WAKE_UP_THS	RW	5B	01011011	00000000	
WAKE_UP_DUR	RW	5C	01011100	00000000	
FREE_FALL	RW	5D	01011101	00000000	
MD1_CFG	RW	5E	01011110	00000000	
MD2_CFG	RW	5F	01011111	00000000	
RESERVED	RW	60-62			
INTERNAL_FREQ_FINE	R	63	01100011	output	
RESERVED	-	64-6E			
INT_OIS	R	6F	01101111	00000000	RW (SPI2)
CTRL1_OIS	R	70	01110000	00000000	RW (SPI2)
 CTRL2_OIS	R	71	01110001	00000000	RW (SPI2)

Name	Туре	Register address		Default	Comment
Name	Type	Hex	Binary	Derault	Comment
CTRL3_OIS	R	72	01110010	00000000	RW (SPI2)
X_OFS_USR	RW	73	01110011	00000000	
Y_OFS_USR	RW	74	01110100	0000000	
Z_OFS_USR	RW	75	01110101	0000000	
RESERVED	-	76-77			
FIFO_DATA_OUT_TAG	R	78	01111000	output	
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_Z_H	R	7E	01111110	output	

1. This register status is read using the primary interface for user interface data.

2. This register status is read using the auxiliary SPI for OIS data.

9 Register description

57/

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w)

Table 20. FUNC_CFG_ACCESS register

FUNC_CFG_ ACCESS	SHUB_REG_ ACCESS	O ⁽¹⁾	0 ⁽¹⁾				
---------------------	---------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 21. FUNC_CFG_ACCESS register description

FUNC_CFG_ACCESS	Enable access to the embedded functions configuration registers. Default value: $0^{\left(1\right)}$
SHUB_REG_ACCESS	Enable access to the sensor hub (I ² C master) registers. Default value: $0^{(2)}$

1. Details concerning the embedded functions configuration registers are available in Section 10 Embedded functions register mapping and Section 11 Embedded functions register description.

2. Details concerning the sensor hub registers are available in Section 14 Sensor hub register mapping and Section 15 Sensor hub register description.

9.2 PIN_CTRL (02h)

SDO, OCS_AUX, SDO_AUX pins pull-up enable/disable register (r/w)

Table 22. PIN_CTRL register

OIS_ PU_DIS	SDO_ PU_EN	1 ⁽¹⁾					
----------------	---------------	------------------	------------------	------------------	------------------	------------------	------------------

1. This bit must be set to '1' for the correct operation of the device.

Table 23. PIN_CTRL register description

	Disable pull-up on both OCS_Aux and SDO_Aux pins. Default value: 0
OIS_PU_DIS	(0: OCS_Aux and SDO_Aux pins with pull-up;
	1: OCS_Aux and SDO_Aux pins pull-up disconnected)
	Enable pull-up on SDO pin. Default value: 0
SDO_PU_EN	(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

9.3 FIFO_CTRL1 (07h)

FIFO control register 1 (r/w)

Table 24. FIFO_CTRL1 register

					-			
TW	TM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

Table 25. FIFO_CTRL1 register description

	FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h).
WTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
	Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

9.4 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 26. FIFO_CTRL2 register

STOP_ON COMPR_RT 0(1) ODRCHG ODDRCHG	0(1)	UNCOPTR _RATE_1	UNCOPTR _RATE_0	WTM8
--------------------------------------	------	--------------------	--------------------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 27. FIFO_CTRL2 register

	Sensing chain FIFO stop values memorization at threshold level
STOP_ON_WTM	(0: FIFO depth is not limited (default);
0.0.70	1: FIFO depth is limited to the threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)
FIFO_COMPR_RT_EN ⁽¹⁾	Enables/Disables compression algorithm runtime
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
	This field configures the compression algorithm to write non-compressed data at each rate.
	(0: Non-compressed data writing is not forced;
UNCOPTR_RATE_[1:0]	1: Non-compressed data every 8 batch data rate;
	2: Non-compressed data every 16 batch data rate;
	3: Non-compressed data every 32 batch data rate)
	FIFO watermark threshold, in conjunction with WTM[7:0] in FIFO_CTRL1 (07h).
WTM8	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
-	Watermark flag rises when the number of bytes written in FIFO is greater than or equal to the threshold level.

1. This bit is effective if the FIFO_COMPR_EN bit of EMB_FUNC_EN_B (05h) is set to 1.

9.5 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 28. FIFO_CTRL3 register

BDR_GY_3	BDR_GY_2	BDR_GY_1	BDR_GY_0	BDR_XL_3	BDR_XL_2	BDR_XL_1	BDR_XL_0

	Selects Batch Data Rate (write frequency in FIFO) for gyroscope data.
	(0000: Gyro not batched in FIFO (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
BDR_GY_[3:0]	0101: 208 Hz;
DDR_01_[0.0]	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011: 6.5 Hz;
	1100-1111: not allowed)
	Selects Batch Data Rate (write frequency in FIFO) for accelerometer data.
	(0000: Accelerometer not batched in FIFO (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
BDR_XL_[3:0]	0101: 208 Hz;
	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011: 1.6 Hz;
	1100-1111: not allowed)

Table 29. FIFO_CTRL3 register description

9.6 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 30. FIFO_CTRL4 register

DEC_TS_ DEC_TS_ ODR_T_ ODR_T_ BATCH_1 BATCH_0 BATCH_1 E	DR_T_	FIFO_	FIFO_	FIFO_
	ATCH_0 0 ⁽¹⁾	MODE2	MODE1	MODE0

1. This bit must be set to '0' for the correct operation of the device.

	·
	Selects decimation for timestamp batching in FIFO. Write rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder.
	(00: Timestamp not batched in FIFO (default);
DEC_TS_BATCH_[1:0]	01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz];
	10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz];
	11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
	Selects batch data rate (write frequency in FIFO) for temperature data
ODR_T_BATCH_[1:0]	(00: Temperature not batched in FIFO (default);
	01: 1.6 Hz;
	10: 12.5 Hz;
	11: 52 Hz)
	FIFO mode selection
	(000: Bypass mode: FIFO disabled;
	001: FIFO mode: stops collecting data when FIFO is full;
	010: Reserved;
FIFO_MODE[2:0]	011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode;
	100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode;
	101: Reserved;
	110: Continuous mode: if the FIFO is full, the new sample overwrites the older one;
	111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

Table 31. FIFO_CTRL4 register description

9.7 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 32. COUNTER_BDR_REG1 register

dataready_ RST_ TRIG_ pulsed COUNTER_BDR COUNTER_BDR	0(1)	0(1)	CNT_BDR_ TH_10	CNT_BDR_ TH_9	CNT_BDR_ TH_8
---	------	------	-------------------	------------------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 33. COUNTER_BDR_REG1 register description

dataready_pulsed	Enables pulsed data-ready mode (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 75 µs long)
RST_COUNTER_BDR	Resets the internal counter of batch events for a single sensor. This bit is automatically reset to zero if it was set to '1'.
TRIG_COUNTER_BDR	Selects the trigger for the internal counter of batch events between XL and gyro. (0: XL batch event; 1: GYRO batch event)
CNT_BDR_TH_[10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.

9.8 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 34. COUNTER_BDR_REG2 register

| CNT_BDR_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TH_7 | TH_6 | TH_5 | TH_4 | TH_3 | TH_2 | TH_1 | TH_0 |

Table 35. COUNTER_BDR_REG2 register description

CNT_BDR_TH_[7:0]	In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.
CNT_BDR_TH_[7:0]	internal counter of batch events. When this counter reaches the threshold, the counter is reset and t

9.9 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The output of the pad will be the OR combination of the signals selected here and in register MD1_CFG (5Eh).

Table 36. INT1_CTRL register

DEN_DRDY	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_
_flag	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	BOOT	DRDY_G	DRDY_XL

Table 37. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin.
INT1_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT1.
INT1_FIFO_FULL	Enables FIFO full flag interrupt on INT1 pin.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin.
INT1_BOOT	Enables boot status on INT1 pin.
INT1_DRDY_G	Enables gyroscope data-ready interrupt on INT1 pin.
INT1_DRDY_XL	Enables accelerometer data-ready interrupt on INT1 pin.

9.10 INT2_CTRL (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The output of the pad will be the OR combination of the signals selected here and in register MD2_CFG (5Fh).

Table 38. INT2_CTRL register

0 ⁽¹⁾	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_
	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	DRDY_TEMP	DRDY_G	DRDY_XL

1. This bit must be set to '0' for the correct operation of the device.

Table 39. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2 pin.
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin.
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin.
INT_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin.
INT2_DRDY_TEMP	Enables temperature sensor data-ready interrupt on INT2 pin.
INT2_DRDY_G	Enables gyroscope data-ready interrupt on INT2 pin.
INT2_DRDY_XL	Enables accelerometer data-ready interrupt on INT2 pin.

9.11 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Bh.

Table 40. WhoAml register

0	1	1	0	1	0	1	1

9.12 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 41. CTRL1_XL register

ODR_XL3 ODR_XL2 ODR_XL1 ODR_XL0 FS1_XL FS0_XL LP	F2_XL_EN 0 ⁽¹⁾
--	---------------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 42. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 43).
FS[1:0]_XL	Accelerometer full-scale selection. Default value: 00 (00: $\pm 2 \ q$; 01: $\pm 16 \ q$; 10: $\pm 4 \ q$; 11: $\pm 8 \ q$)
	Accelerometer high-resolution selection
LPF2_XL_EN	(0: output from first stage digital filtering selected (default);1: output from LPF2 second filtering stage selected)

Table 43. Accelerometer ODR selection

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	N.A.
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	x	x	Not allowed	Not allowed

9.13 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 44. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS1_G	FS0_G	FS_125	FS_4000

Table 45. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 46)
FS[1:0]_G	Gyroscope chain full-scale selection (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)
FS_125	Selects gyro chain full-scale ±125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to ±125 dps)
FS_4000 ⁽¹⁾	Selects gyro chain full-scale ±4000 dps (0: FS selected through bits FS[1:0]_G or FS_125; 1: FS set to ±4000 dps)

1. This bit has to be set to 0 when the OIS chain is ON (OIS_EN_SPI2 bit =1 in CTRL1_OIS (70h))

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR selection [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR selection [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power-down	Power-down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

Table 46. Gyroscope ODR configuration setting

9.14 CTRL3_C (12h)

Control register 3 (r/w)

Table 4	47. CTRL	3_C re	gister
---------	----------	--------	--------

	BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	0 ⁽¹⁾	SW_RESET
--	------	-----	-----------	-------	-----	--------	------------------	----------

1. This bit must be set to '0' for the correct operation of the device.

Table 48. CTRL3_C register description

	Reboots memory content. Default value: 0
BOOT	(0: normal mode; 1: reboot memory content)
	Note: the accelerometer must be ON. This bit is automatically cleared.
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
H_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pins. This bit must be set to '0' when H_LACTIVE is set to '1'. Default value: 0
	(0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0
SIIVI	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

9.15 CTRL4_C (13h)

Control register 4 (r/w)

Table 49. CTRL4_C register

0 ⁽¹⁾ SLEEP_G INT2_on _INT1	0 ⁽¹⁾	DRDY_MASK	I2C_disable	LPF1_SEL_G	0(1)
---	------------------	-----------	-------------	------------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 50. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0
	(0: disabled; 1: enabled) All interrupt signals available on INT1 pin enable. Default value: 0
INT2_on_INT1	(0: interrupt signals divided between INT1 and INT2 pins;1: all interrupt signals in logic or on INT1 pin)
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI, I ² C interfaces enabled (default); 1: I ² C interface disabled)
LPF1_SEL_G	Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE[2:0] in CTRL6_C (15h). (0: disabled; 1: enabled)

9.16 CTRL5_C (14h)

Control register 5 (r/w)

Table 51. CTRL5_C register

	0 ⁽¹⁾	ROUNDING1	ROUNDING0	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL
--	------------------	-----------	-----------	------------------	-------	-------	--------	--------

1. This bit must be set to '0' for the correct operation of the device.

Table 52. CTRL5_C register description

ROUNDING[1:0]	Circular burst-mode (rounding) read of the output registers. Default value: 00 (00: no rounding; 01: accelerometer only; 10: gyroscope only; 11: gyroscope + accelerometer)
ST[1:0]_G	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 53)
ST[1:0]_XL	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 54)

Table 53. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 54. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.17 CTRL6_C (15h)

Control register 6 (r/w)

Table 55. CTRL6_C register	

TRIG_EN LVL1_EN LVL2_EN	XL_HM_ MODE	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0
-------------------------	----------------	---------------	---------	---------	---------

Table 56. CTRL6_C register description						
TRIG_EN	Enables DEN data edge-sensitive trigger mode. Refer to Table 57.					
LVL1_EN	Enables DEN data level-sensitive trigger mode. Refer to Table 57.					
LVL2_EN	Enables DEN level-sensitive latched mode. Refer to Table 57.					
XL_HM_MODE	Disables high-performance operating mode for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)					
USR_OFF_W	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) (0 = $2^{-10} g/LSB$; 1 = $2^{-6} g/LSB$)					
FTYPE[2:0]	Gyroscope low-pass filter (LPF1) bandwidth selection. Table 58 shows the selectable bandwidth values.					

Table 57. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 58. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz
000	4.3	8.3	16.7	33	67	133	222	274	292	297
001	4.3	8.3	16.7	33	67	128	186	212	220	223
010	4.3	8.3	16.7	33	67	112	140	150	153	154
011	4.3	8.3	16.7	33	67	134	260	390	451	470
100	4.3	8.3	16.7	34	62	86	96	90	N	A
101	4.3	8.3	16.9	31	43	48	49	50	N	A
110	4.3	8.3	13.4	19	23	24.6	25	25	NA	
111	4.3	8.3	9.8	11.6	12.2	12.4	12.6	12.6	N	A

DS130	012 - Rev 7
Downloaded from	Arrow.com.

9.18 CTRL7_G (16h)

Control register 7 (r/w)

Table 59. CTRL7_G register

G_HM_ MODE HP_EN_G HPM1_G HPM0_G	0 ⁽¹⁾	OIS_ON_EN	USR_OFF_ ON_OUT	OIS_ON
-------------------------------------	------------------	-----------	--------------------	--------

1. This bit must be set to '0' for the correct operation of the device.

	Disables high-performance operating mode for gyroscope. Default: 0
G_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)
	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default value: 0
HP_EN_G	(0: HPF disabled; 1: HPF enabled)
	Gyroscope digital HP filter cutoff selection. Default: 00
	(00 = 16 mHz;
HPM_G[1:0]	01 = 65 mHz;
	10 = 260 mHz;
	11 = 1.04 Hz)
	Selects how to enable and disable the OIS chain, after first configuration and enabling through SPI2.
OIS_ON_EN ⁽¹⁾	(0: OIS chain is enabled/disabled with SPI2 interface;
	1: OIS chain is enabled/disabled with primary interface)
	Enables accelerometer user offset correction block; it's valid for the low-pass path - see Figure 16. Accelerometer composite filter. Default value: 0
USR_OFF_ON_OUT	(0: accelerometer user offset correction block bypassed;
	1: accelerometer user offset correction block enabled)
	Enables/disables the OIS chain from primary interface when the OIS_ON_EN bit is '1'.
OIS_ON	(0: OIS disabled; 1: OIS enabled)

1. First, enabling OIS and OIS configurations must be done through SPI2, with OIS_ON_EN and OIS_ON set to '0'.

9.19 CTRL8_XL (17h)

Control register 8 (r/w)

Table 60. CTRL8_XL register

HPCF_XL_2 HPCF_XL_1 HPCF_XL_0	HP_REF_ FASTSETTL	HP_SLOPE_	LOW_PASS_
	MODE_XL MODE_XL	XL_EN 0 ⁽¹⁾	ON_6D

1. This bit must be set to '0' for the correct operation of the device.

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 61.
HP_REF_MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 (0: disabled, 1: enabled ⁽¹⁾)
FASTSETTL_MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power- down mode. Default value: 0 (0: disabled, 1: enabled)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 23.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 23. Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)

1. When enabled, the first output data have to be discarded.

Table 61. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth ⁽¹⁾
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
		1	100	ODR/100
		110	101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010	ODR/20
Likele waara		- 011 100	011	ODR/45
High pass	1		100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

1. Typical value for ODR up to 833 Hz.

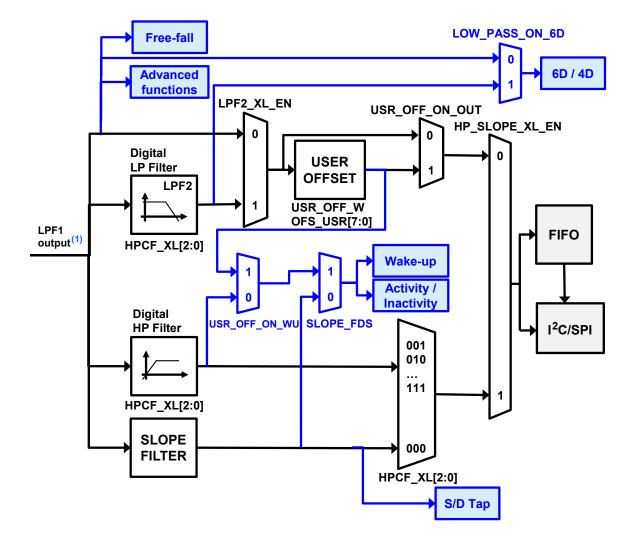


Figure 23. Accelerometer block diagram

1. The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode and ODR up to 833 Hz. This value is equal to 780 Hz when the accelerometer is in low-power or normal mode.

9.20 CTRL9_XL (18h)

Control register 9 (r/w)

Table	62 .	CTRL9	_XL	register
-------	-------------	-------	-----	----------

DEN_X	DEN_Y	DEN_Z	DEN_XL_G	DEN_XL_EN	DEN_LH	DEVICE_ CONF	0 ⁽¹⁾
-------	-------	-------	----------	-----------	--------	-----------------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 63. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1
Dell'_X	(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN Y	DEN value stored in LSB of Y-axis. Default value: 1
DEN_1	(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN Z	DEN value stored in LSB of Z-axis. Default value: 1
DEN_Z	(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
	DEN stamping sensor selection. Default value: 0
DEN_XL_G	(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5];
	1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
	Extends DEN functionality to accelerometer sensor. Default value: 0
DEN_XL_EN	(0: disabled; 1: enabled)
	DEN active level configuration. Default value: 0
DEN_LH	(0: active low; 1: active high)
	Enables the proper device configuration. Default value: 0
DEVICE_CONF	(0: default; 1: enabled)
	It is recommended to always set this bit to 1 during device configuration.

9.21 CTRL10_C (19h)

Control register 10 (r/w)

Table 64. CTRL10_C register

0(1)	0 ⁽¹⁾	TIMESTAMP _EN	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0(1)
------	------------------	------------------	------------------	------------------	------------------	------------------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 65. CTRL10_C register description

	Enables timestamp counter. Default value: 0
TIMESTAMP EN	(0: disabled; 1: enabled)
	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).

9.22 ALL_INT_SRC (1A)

Source register for all interrupts (r)

Table 66. ALL_INT_SRC register

TIMESTAMP _ENDCOUNT 0	SLEEP_ CHANGE_IA	D6D_IA	DOUBLE_ TAP	SINGLE_ TAP	WU_IA	FF_IA
--------------------------	---------------------	--------	----------------	----------------	-------	-------

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms
	Detects change event in activity/inactivity status. Default value: 0
SLEEP_CHANGE_IA	(0: change status not detected; 1: change status detected)
	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0
D6D_IA	(0: change in position not detected; 1: change in position detected)
DOUBLE_TAP	Double-tap event status. Default value: 0
	(0:event not detected, 1: event detected)
SINGLE TAP	Single-tap event status. Default value:0
SINGLE_TAP	(0: event not detected, 1: event detected)
WU IA	Wake-up event status. Default value: 0
	(0: event not detected, 1: event detected)
	Free-fall event status. Default value: 0
FF_IA	(0: event not detected, 1: event detected)

Table 67. ALL_INT_SRC register description

9.23 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 6	68.	WAKE_	UP_	SRC	register
---------	-----	-------	-----	-----	----------

0 SLEEP_ CHANGE_	A FF_IA	SLEEP_ STATE	WU_IA	x_wu	Y_WU	Z_WU
---------------------	---------	-----------------	-------	------	------	------

SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)
FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_STATE	Sleep event status. Default value: 0
WU IA	(0: sleep event not detected; 1: sleep event detected) Wakeup event detection status. Default value: 0
	(0: wakeup event not detected; 1: wakeup event detected.) Wakeup event detection status on X-axis. Default value: 0
X_WU	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

Table 69. WAKE_UP_SRC register description

9.24 TAP_SRC (1Ch)

Tap source register (r)

Table 70.	TAP_SRC	register
-----------	---------	----------

0	TAP_IA	SINGLE_ TAP	DOUBLE_ _TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
---	--------	----------------	-----------------	----------	-------	-------	-------

Table 71. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0
	(0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0
_	(0: single tap event not detected; 1: single tap event detected)
DOUBLE TAP	Double-tap event detection status. Default value: 0
DOODEL_IN	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X_TAP	Tap event detection status on X-axis. Default value: 0
A_1Ai	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP	Tap event detection status on Y-axis. Default value: 0
	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
7 740	Tap event detection status on Z-axis. Default value: 0
Z_TAP	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.25 DRD_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 72. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	YH	YL	XH	XL

Table 73. D6D_SRC register description

DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾
Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
(0: change position not detected; 1: change position detected)
Z-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
Z-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
Y-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over-threshold) detected)
Y-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
X-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
X-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)

1. The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

9.26 STATUS_REG (1Eh) / STATUS_SPIAux (1Eh)

The STATUS_REG register is read by the primary interface I²C/SPI (r)

Table 74. STATUS_REG register

0	0	0	0	0	TDA	GDA	XLDA

Table 75. STATUS_REG register description

	Temperature new data available. Default: 0
TDA	(0: no set of data is available at temperature sensor output;
	1: a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output;
	1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output;
	1: a new set of data is available at accelerometer output)

The STATUS_SPIAux register is read by the auxiliary SPI.

Table 76. STATUS_SPIAux register

0	0	0	0	0	GYRO SETTLING	GDA	XLDA
---	---	---	---	---	------------------	-----	------

Table 77. STATUS_SPIAux register description

GYRO_SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

9.27 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 78. OUT_TEMP_L register

	Temp4 Temp3	Temp2	Temp1	Temp0
--	-------------	-------	-------	-------

Table 79. OUT_TEMP_H register

Temp15 Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8
---------------	--------	--------	--------	--------	-------	-------

Table 80. OUT_TEMP register description

	Tomp[15:0]	Temperature sensor output data
Temp[15:0]	Temp[15.0]	The value is expressed as two's complement sign extended on the MSB.

9.28 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 81. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 82. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 83. OUTX_H_G register description

	Pitch axis (X) angular rate value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15:0]	SPI1/I ² C: Gyro GP chain pitch axis output
	SPI2: Gyro OIS chain pitch axis output

9.29 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 84. OUTY_L_G register

D7 D6 D5 D4 D3 D2 D1 D0

Table 85. OUTY_H_G register

_								
	D15	D14	D13	D12	D11	D10	D9	D8

Table 86. OUTY_H_G register description

	Roll axis (Y) angular rate value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15:0]	SPI1/I ² C: Gyro GP chain roll axis output
	SPI2: Gyro OIS chain roll axis output

9.30 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 87. OUTZ_L_G register

D7 D6 D5 D4 D3 D2 D1 D0

Table 88. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 89. OUTZ_H_G register description

	Yaw axis (Z) angular rate value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15.0]	SPI1/I ² C: Gyro GP chain yaw axis output
	SPI2: Gyro OIS chain yaw axis output

OUTX_L_A (28h) and OUTX_H_A (29h) 9.31

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (CTRL3 OIS (72h)).

Table 90. OUTX_L_A register

D7 D6 D5 D4 D3 D2 D1	D0	D1	D2	D3	D4	D5	D6	D7	

Table 91. OUTX_H_A register

D15	D14	D13	D12	D11	D10	D9	D8

Table 92. OUTX_H_A register description

	X-axis linear acceleration value.
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15.0]	SPI1/I ² C: Accelerometer GP chain X-axis output
	SPI2: Accelerometer OIS chain X-axis output

9.32 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1 XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (CTRL3_OIS (72h)).

			able 93. OUT	r_L_A registe	er.		
D7	D6	D5	D4	D3	D2	D1	D0

Table 93 OUTY I A register

Table 94. OUTY_H_A register

D15	D14	D13	D12	D11	D10	D9	D8

Table 95. OUTY_H_A register description

	Y-axis linear acceleration value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15.0]	SPI1/I ² C: Accelerometer GP chain Y-axis output
	SPI2: Accelerometer OIS chain Y-axis output

9.33 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

If this register is read by the auxiliary interface, data are according to the full-scale and ODR (6.66 kHz) settings of the OIS (CTRL3 OIS (72h)).

Table 96. OUTZ_L_A register

D7 D6 D5 D4 D3 D2 D1 T								
	D7	D6	D5	D4	D3	D2	D1	D0

Table 97. OUTZ_H_A register

				-			
D15	D14	D13	D12	D11	D10	D9	D8

Table 98. OUTZ_H_A register description

	Z-axis linear acceleration value
D[15:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15.0]	SPI1/I ² C: Accelerometer GP chain Z-axis output
	SPI2: Accelerometer OIS chain Z-axis output

9.34 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (r)

Table 99. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS SIGNUT	IS_IILI	IS_STEP_DET	0	0	0

Table 100. EMB_FUNC_STATUS_MAINPAGE register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

9.35 FSM_STATUS_A_MAINPAGE (36h)

Finite State Machine status register (r)

Table 101. FSM_STATUS_A_MAINPAGE register

IS FSM8	IS FSM7	IS FSM6	IS FSM5	IS FSM4	IS FSM3	IS FSM2	IS FSM1
13_F31010	13_F31017	13_F31010	13_F31013	15_F51014	13_F31013	13_F3IVIZ	13_F3IVI1

Table 102. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

9.36 FSM_STATUS_B_MAINPAGE (37h)

Finite State Machine status register (r)

Table 103. FSM_STATUS_B_MAINPAGE register

IS_FSM16	IS_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9

Table 104. FSM_STATUS_B_MAINPAGE register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

9.37 MLC_STATUS_MAINPAGE (38h)

Machine Learning Core status register (r)

Table 105. MLC_STATUS_MAINPAGE register

IS_MLC8	IS_MLC7	IS_MLC6	IS_MLC5	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1
					_		_

Table 106. MLC_STATUS_MAINPAGE register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7	Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6	Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

9.38 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (r)

Table 107. STATUS_MASTER_MAINPAGE register

WR_ONCE_ DONE	SLAVE3_ NACK	SLAVE2_ NACK	SLAVE1_ NACK	SLAVE0_ NACK	0	0	SENS_HUB_ ENDOP
------------------	-----------------	-----------------	-----------------	-----------------	---	---	--------------------

Table 108. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

9.39 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 109. FIFO_STATUS1 register

	DIFE FIEO 5	DIFE FIED A	DIFE FIED 3	DIFE FIED 2	DIFE FIEO 1	DIFF FIFO 0

Table 110. FIFO_STATUS1 register description

DIFF FIFO [7:0]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO	
	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).	

9.40 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 111. FIFO_STATUS2 register

FIFO_ WTM_IA	FIFO_ OVR_IA	FIFO_ FULL_IA	COUNTER_ BDR_IA	FIFO_OVR_ LATCHED	0	DIFF_FIFO_9	DIFF_FIFO_8
-----------------	-----------------	------------------	--------------------	----------------------	---	-------------	-------------

Table 112. FIFO_STATUS2 register description

	FIFO watermark status. Default value: 0
FIFO WTM IA	(0: FIFO filling is lower than WTM;
	1: FIFO filling is equal to or greater than WTM)
	Watermark is set through bits WTM[8:0] in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).
	FIFO overrun status. Default value: 0
FIFO_OVR_IA	(0: FIFO is not completely filled; 1: FIFO is completely filled)
	Smart FIFO full status. Default value: 0
FIFO_FULL_IA	(0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0
	This bit is reset when these registers are read.
	Latched FIFO overrun status. Default value: 0
FIFO_OVR_LATCHED	This bit is reset when this register is read.
	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00
DIFF_FIFO_[9:8]	In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah).

9.41 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 µs.

Table 113. TIMESTAMP3 register								
D31	D30	D29	D28	D27	D26	D25	D24	

Table 114. TIMESTAMP2 register							
D23	D22	D21	D20	D19	D18	D17	D16

Table 115. TIMESTAMP1 register

	D15	D14	D13	D12	D11	D10	D9	D8
--	-----	-----	-----	-----	-----	-----	----	----

Table 116. TIMESTAMP0 register

D7	D6	D5	D4	D3	D2	D1	D0

D[31:0] Timestamp output registers: 1LSB = 25 µs
--

The formula below can be used to calculate a better estimation of the actual timestamp resolution: $TS_Res = 1 / (40000 + (0.0015 * INTERNAL_FREQ_FINE * 40000))$ where INTERNAL_FREQ_FINE is the content of INTERNAL_FREQ_FINE (63h).

9.42 TAP_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and tap recognition functions (r/w)

Table 117. TAP_CFG0 register

0 ⁽¹⁾ INT_CLR_ SLEEP_STATUS SLOPE_ ON_READ _ON_INT FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
--	----------	----------	----------	-----

1. This bit must be set to '0' for the correct operation of the device.

Table 118. TAP_CFG0 register description

INT_CLR_ON_READ This bit allows immediately clearing the latched interrupts of an event detection upor the corresponding status register. It must be set to 1 together with LIR. Default value (0: latched interrupt signal cleared at the end of the ODR period; 1: latched interrupt signal immediately cleared)		
SLEEP_STATUS_ON_INT	Activity/inactivity interrupt mode configuration. If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on the INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins)	
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)	
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1: X direction enabled)	
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1: Y direction enabled)	
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1: Z direction enabled)	
LIR Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)		

9.43 TAP_CFG1 (57h)

Tap configuration register (r/w)

Table	119.	TAP_	_CFG1	register
-------	------	------	-------	----------

TAP_	TAP_	TAP_	TAP_	TAP_	TAP_	TAP_	TAP_
PRIORITY_2 P	PRIORITY_1	PRIORITY_0	THS_X_4	THS_X_3	THS_X_2	THS_X_1	THS_X_0

Table 120. TAP_CFG1 register description

TAP_PRIORITY_[2:0]	Selection of axis priority for TAP detection (see Table 121)			
TAP_THS_X_[4:0]	X-axis tap recognition threshold. Default value: 0			
	1 LSB = FS_XL / (2 ⁵)			

Table 121. TAP priority decoding

TAP_PRIORITY_[2:0]	Max. priority	Mid. priority	Min. priority
000	Х	Y	Z
001	Y	X	Z
010	Х	Z	Y
011	Z	Y	Х
100	Х	Y	Z
101	Y	Z	Х
110	Z	Х	Y
111	Z	Y	Х

9.44 TAP_CFG2 (58h)

Enables interrupt and inactivity functions, and tap recognition functions (r/w)

Table 122. TAP_CFG2 register

INTERRUPTS	INACT EN1	INACT EN0	TAP_	TAP_	TAP_	TAP_	TAP_
_ENABLE	INACT_ENT	INACT_ENU	THS_Y_4	THS_Y_3	THS_Y_2	THS_Y_1	THS_Y_0

Table 123. TAP_CFG2 register description

INTERRUPTS_ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0 (0: interrupt disabled; 1: interrupt enabled)
	Enable activity/inactivity (sleep) function. Default value: 00
	(00: stationary/motion-only interrupts generated, XL and gyro do not change;
INACT_EN[1:0]	01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;
	10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;
	11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
	Y-axis tap recognition threshold. Default value: 0
TAP_THS_Y_[4:0]	1 LSB = FS_XL / (2 ⁵)

9.45 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w)

Table 124. TAP_THS_6D register

D4D_EN SIXD_THS1 SIXD_THS0	TAP_	TAP_	TAP_	TAP_	TAP_
	THS_Z_4	THS_Z_3	THS_Z_2	THS_Z_1	THS_Z_0

Table 125. TAP_THS_6D register description

D4D_EN	Enables detection of 4D orientation. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
SIXD_THS[1:0]	Threshold for 4D/6D function: (00: 80 degrees (default); 01: 70 degrees; 10: 60 degrees; 11: 50 degrees)
TAP_THS_Z_[4:0]	Z-axis recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

9.46 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w)

Table 126. INT_DUR2 register

DUR3	DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0

Table 127. INT_DUR2 register description

	Duration of maximum time gap for double-tap recognition. Default: 0000
DUR[3:0]	When double-tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double-tap event. The default value of these bits is 0000b which corresponds to 16/ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32/ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
QUIET[1:0]	Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2/ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4/ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0]	Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4/ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8/ODR_XL time.

9.47 WAKE_UP_THS (5Bh)

Single/double-tap selection and wake-up configuration (r/w)

Table 128. WAKE_UP_THS register

SINGLE_USR_OFF_ DOUBLE_TAPON_WU	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0
------------------------------------	---------	---------	---------	---------	---------	---------

Table 129. WAKE_UP_THS register description

	Single/double-tap event enable. Default: 0
SINGLE_DOUBLE_TAP	(0: only single-tap event enabled;
	1: both single and double-tap events enabled)
USR_OFF_ON_WU	Sends the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

9.48 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 130. WAKE_UP_DUR register

FF_DUR5 WAKE_DUR1 WAKE_D	JR0 WAKE_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
	THS_W	DUR3	DUR2	DUR1	DUR0

Table 131. WAKE_UP_DUR register description

	Free fall duration event. Default: 0
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
	1 LSB = 1 ODR_time
WAKE DUR[1:0]	Wake up duration event. Default: 00
WARE_DOR[1.0]	1LSB = 1 ODR_time
	Weight of 1 LSB of wakeup threshold. Default: 0
WAKE_THS_W	(0: 1 LSB =FS_XL / (2 ⁶);
	1: 1 LSB = $FS_XL / (2^8)$)
SLEEP DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
SEEF_DOR[3.0]	1 LSB = 512 ODR

9.49 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w)

Table 132. FREE_FALL register

	FF_DUR4	FF_DUR3	FF_DUR2	FF_DUR1	FF_DUR0	FF_THS2	FF_THS1	FF_THS0
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 133. FREE_FALL register description

FF_DUR[4:0]	Free-fall duration event. Default: 0 For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration.
FF_THS[2:0]	Free-fall threshold setting: (000: 156 mg (default); 001: 219 mg; 010: 250 mg; 011: 312 mg; 100: 344 mg; 101: 406 mg; 110: 469 mg; 111: 500 mg)

9.50 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 134. MD1_CFG register

INT1_SLEEP INT1_	INT1_	INT1_
_CHANGE SINGLE_TAP INT1_WU INT1_FI	DOUBLE_TAP INT1_6D	EMB_FUNC INT1_SHUB

Table 135. MD1_CFG register description

	Routing of activity/inactivity recognition event on INT1. Default: 0				
INT1_SLEEP_CHANGE ⁽¹⁾	(0: routing of activity/inactivity event on INT1 disabled;				
	1: routing of activity/inactivity event on INT1 enabled)				
	Routing of single-tap recognition event on INT1. Default: 0				
INT1_SINGLE_TAP	(0: routing of single-tap event on INT1 disabled;				
	1: routing of single-tap event on INT1 enabled)				
	Routing of wakeup event on INT1. Default value: 0				
INT1_WU	(0: routing of wakeup event on INT1 disabled;				
	1: routing of wakeup event on INT1 enabled)				
	Routing of free-fall event on INT1. Default value: 0				
INT1_FF	(0: routing of free-fall event on INT1 disabled;				
	1: routing of free-fall event on INT1 enabled)				
	Routing of tap event on INT1. Default value: 0				
INT1_DOUBLE_TAP	(0: routing of double-tap event on INT1 disabled;				
	1: routing of double-tap event on INT1 enabled)				
	Routing of 6D event on INT1. Default value: 0				
INT1_6D	(0: routing of 6D event on INT1 disabled;				
	1: routing of 6D event on INT1 enabled)				
	Routing of embedded functions event on INT1. Default value: 0				
INT1_EMB_FUNC	(0: routing of embedded functions event on INT1 disabled;				
	1: routing embedded functions event on INT1 enabled)				
	Routing of sensor hub communication concluded event on INT1. Default value: 0				
INT1_SHUB	(0: routing of sensor hub communication concluded event on INT1 disabled;				
	1: routing of sensor hub communication concluded event on INT1 enabled)				

1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in the TAP_CFG0 (56h) register.

DS13012 - Rev 7				
Downloaded from	Arrow.com.			

9.51 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 136. MD2_CFG register

INT2_SLEEP INT2_	INT2_	INT2_ INT2_
_CHANGE SINGLE_TAP INT2_WU INT2_	DOUBLE_TAP INT2_6D	EMB_FUNC TIMESTAMP

	Routing of activity/inactivity recognition event on INT2. Default: 0			
INT2_SLEEP_CHANGE ⁽¹⁾	(0: routing of activity/inactivity event on INT2 disabled;			
	1: routing of activity/inactivity event on INT2 enabled)			
	Single-tap recognition routing on INT2. Default: 0			
INT2_SINGLE_TAP	(0: routing of single-tap event on INT2 disabled;			
	1: routing of single-tap event on INT2 enabled)			
	Routing of wakeup event on INT2. Default value: 0			
INT2_WU	(0: routing of wakeup event on INT2 disabled;			
	1: routing of wake-up event on INT2 enabled)			
	Routing of free-fall event on INT2. Default value: 0			
INT2_FF	(0: routing of free-fall event on INT2 disabled;			
	1: routing of free-fall event on INT2 enabled)			
	Routing of tap event on INT2. Default value: 0			
INT2_DOUBLE_TAP	(0: routing of double-tap event on INT2 disabled;			
	1: routing of double-tap event on INT2 enabled)			
	Routing of 6D event on INT2. Default value: 0			
INT2_6D	(0: routing of 6D event on INT2 disabled;			
	1: routing of 6D event on INT2 enabled)			
	Routing of embedded functions event on INT2. Default value: 0			
INT2_EMB_FUNC	(0: routing of embedded functions event on INT2 disabled;			
	1: routing embedded functions event on INT2 enabled)			
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms.			

Table 137. MD2_CFG register description

1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in the TAP_CFG0 (56h) register.

9.52 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 138. INTERNAL	FREQ_	FINE register
---------------------	-------	---------------

FREQ_FINE7 FREQ_FINE6	FREQ_FINE5	FREQ_FINE4	FREQ_FINE3	FREQ_FINE2	FREQ_FINE1	FREQ_FINE0
-----------------------	------------	------------	------------	------------	------------	------------

Table 139. INTERNAL_FREQ_FINE register description

The formula below can be used to calculate a better estimation of the actual ODR: ODR_Actual = (6667 + ((0.0015 * INTERNAL_FREQ_FINE) * 6667)) / ODR_Coeff

Selected_ODR	ODR_Coeff
12.5	512
26	256
52	128
104	64
208	32
416	16
833	8
1667	4
3333	2
6667	1

The Selected_ODR parameter has to be derived from the ODR_XL selection (Table 43. Accelerometer ODR selection) in order to estimate the accelerometer ODR and from the ODR_G selection (Table 46. Gyroscope ODR configuration setting) in order to estimate the gyroscope ODR.

9.53 INT_OIS (6Fh)

OIS interrupt configuration register and accelerometer self-test enable setting. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 140. INT_OIS register

INT2_ DRDY_OIS	LVL2_OIS	DEN_LH_OIS	-	-	0 ⁽¹⁾	ST1_XL_OIS	ST0_XL_OIS
-------------------	----------	------------	---	---	------------------	------------	------------

1. This bit must be set to '0' for the correct operation of the device.

INT2_DRDY_OIS	Enables OIS chain DRDY on INT2 pin. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0
	Indicates polarity of DEN signal on OIS chain
DEN_LH_OIS	(0: DEN pin is active-low;
	1: DEN pin is active-high)
	Selects accelerometer self-test - effective only if XL OIS chain is enabled. Default value: 00
	(00: Normal mode;
ST[1:0]_XL_OIS	01: Positive sign self-test;
	10: Negative sign self-test;
	11: not allowed)

Table 141. INT_OIS register description

9.54 CTRL1_OIS (70h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 142. CTRL1_OIS register

	0 ⁽¹⁾	LVL1_OIS	SIM_OIS	Mode4_EN	FS1_G_OIS	FS0_G_OIS	FS_125_OIS	OIS_EN_SPI2
--	------------------	----------	---------	----------	-----------	-----------	------------	-------------

1. This bit must be set to '0' for the correct operation of the device.

LVL1_OIS	Enables level-sensitive trigger mode on OIS chain. Default value: 0
	SPI2 3- or 4-wire interface. Default value: 0
SIM_OIS	(0: 4-wire SPI2;
	1: 3-wire SPI2)
Mode4_EN	Enables accelerometer OIS chain. OIS outputs are available through SPI2 in registers $OUTX_L_A$ (28h) and $OUTX_H_A$ (29h) - $OUTZ_L_A$ (2Ch) and $OUTZ_H_A$ (2Dh).
	Note: OIS_EN_SPI2 must be enabled (i.e. set to '1') to enable also XL OIS chain.
	Selects gyroscope OIS chain full-scale
	(00: ±250 dps;
FS[1:0]_G_OIS	01: ±500 dps;
	10: ±1000 dps;
	11: ±2000 dps)
	Selects gyroscope OIS chain full-scale ±125 dps
FS_125_OIS	(0: FS selected through bits FS[1:0]_OIS_G;
	1: ±125 dps)
	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in Mode 4 (mode4_en = 1).
OIS_EN_SPI2	When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers OUTX_L_G (22h) and OUTX_H_G (23h) through OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) and STATUS_REG (1Eh) / STATUS_SPIAux (1Eh), and LPF1 is dedicated to this chain.

Table 143. CTRL1_OIS register description

DEN mode selection can be done using the LVL1_OIS bit of register CTRL1_OIS (70h) and the LVL2_OIS bit of register INT_OIS (6Fh).

DEN mode on the OIS path is active in the gyroscope only.

Table 144. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode	
10	Level-sensitive trigger mode is selected	
11	Level-sensitive latched mode is selected	

9.55 CTRL2_OIS (71h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 145. CTRL2_OIS register

-	-	HPM1_OIS	HPM0_OIS	0 ⁽¹⁾	FTYPE_1_OIS	FTYPE_0_OIS	HP_EN_OIS

1. This bit must be set to '0' for the correct operation of the device.

Table 146. CTRL2_OIS register description

	Selects gyroscope OIS chain digital high-pass filter cutoff. Default value: 00
	(00: 16 mHz;
HPM[1:0]_OIS	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
FTYPE_[1:0]_OIS	Selects gyroscope digital LPF1 filter bandwidth. Table 147 shows cutoff and phase values obtained with all configurations.
HP_EN_OIS	Enables gyroscope OIS chain digital high-pass filter.

Table 147. Gyroscope OIS chain digital LPF1 filter bandwidth selection

ODR [Hz]	LPF1 FTYPE_[1:0]_OIS	Total BW [Hz] (phase delay @20 Hz)
	00	297 Hz (7°)
6.66 kHz	01	222 Hz (9°)
0.00 KHZ	10	154 Hz (12°)
-	11	470 Hz (5°)

9.56 CTRL3_OIS (72h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 148. CTRL3_OIS register

FS1_XL_OIS FS0_XL_OIS	FILTER_XL_ CONF_OIS_2	FILTER_XL_ CONF_OIS_1	FILTER_XL_ CONF_OIS_0	ST1_OIS	ST0_OIS	ST_OIS_ CLAMPDIS	
-----------------------	--------------------------	--------------------------	--------------------------	---------	---------	---------------------	--

FS[1:0]_XL_OIS	Selects accelerometer OIS channel full-scale. Default value: 00. (00: $\pm 2 q$; 01: $\pm 16 q$; 10: $\pm 4 q$; 11: $\pm 8 q$)				
FILTER_XL_CONF_OIS_[2:0]	Selects accelerometer OIS channel bandwidth. See Table 150.				
	Selects gyroscope OIS chain self-test. Default value: 00				
ST[1:0] OIS	Table 151 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS='1'.				
	(00: Normal mode;				
	01: Positive sign self-test;				
	10: Normal mode;				
	11: Negative sign self-test)				
	Disables OIS chain clamp				
ST_OIS_CLAMPDIS	(0: All OIS chain outputs = 8000h during self-test;				
	1: OIS chain self-test outputs as shown in Table 151.				

Table 149. CTRL3_OIS register description

Table 150. Accelerometer OIS channel bandwidth and phase

FILTER_XL_CONF_OIS[2:0]	Typ. overall bandwidth [Hz]	Typ. overall phase [°]
000	631	-4.20 @ 20 Hz
001	295	-6.35 @ 20 Hz
010	140	-10.6 @ 20 Hz
011	68.2	-18.9 @ 20 Hz
100	33.6	-17.8 @ 10 Hz
101	16.7	-32.2 @ 10 Hz
110	8.3	-26.2 @ 4 Hz
111	4.14	-26.0 @ 2 Hz

Table 151. Self-test nominal output variation

Full scale	Output variation [dps]
±2000	±400
±1000	±200
±500	±100
±250	±50
±125	±25

9.57 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 152. X_OFS_USR register

Table 153. X_OFS_USR register description

X_OFS_USR_[7:0] Accelerometer X-axis user offset correction expressed in two's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].

9.58 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 154. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR 7 | USR 6 | USR 5 | USR 4 | USR 3 | USR 2 | USR 1 | USR 0 |
| | _ | | | | | | |

Y_OFS_USR_[7:0] Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

9.59 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 155. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 156. Z_OFS_USR register description

Z_OFS_USR_[7:0] Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
--

9.60 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 157. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_4	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	TAG_CNT_1	TAG_CNT_0	TAG_ PARITY
------------------	------------------	------------------	------------------	------------------	-----------	-----------	----------------

Table 158. FIFO_DATA_OUT_TAG register description

	Identifies the sensor in:
TAG_SENSOR_[4:0]	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)
	For details, refer to Table 159. FIFO tag
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot
TAG_PARITY	Parity check of TAG content

Table 159. FIFO tag

TAG_SENSOR_[4:0]	Sensor name					
0x01	Gyroscope NC					
0x02	Accelerometer NC					
0x03	Temperature					
0x04	Timestamp					
0x05	CFG_Change					
0x06	Accelerometer NC_T_2					
0x07	Accelerometer NC_T_1					
0x08	Accelerometer 2xC					
0x09	Accelerometer 3xC					
0x0A	Gyroscope NC_T_2					
0x0B	Gyroscope NC_T_1					
0x0C	Gyroscope 2xC					
0x0D	Gyroscope 3xC					
0x0E	Sensor Hub Slave 0					
0x0F	Sensor Hub Slave 1					
0x10	Sensor Hub Slave 2					
0x11	Sensor Hub Slave 3					
0x12	Step Counter					
0x19	Sensor Hub Nack					

9.61 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)

FIFO data output X (r)

Table 160. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers									
D15	D14	D13	D12	D11	D10	D9	D8		
D7	D6	D5	D4	D3	D2	D1	D0		

Table 161. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0]	FIFO X-axis output

9.62 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)

FIFO data output Y (r)

Table 162. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15 D14 D13 D12 D11 D10 D9 D8								
	D15	D14	D13	D12	D11	1010	D9	D8

[07	D6	D5	D4	D3	D2	D1	D0

Table 163. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output	D[15:0]	FIFO Y-axis output
----------------------------	---------	--------------------

9.63 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)

FIFO data output Z (r)

Table 164. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8

D7	D6	D5	D4	D3	D2	D1	D0

Table 165. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description

D[15:0]	FIFO Z-axis output	
---------	--------------------	--

57

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Nome	.	Regis	ter address	Defeat	Commont
Name	Туре	Hex	Binary	Default	Comment
PAGE_SEL	RW	02	00000010	00000001	
RESERVED	-	03	00000011		
EMB_FUNC_EN_A	RW	04	00000100	00000000	
EMB_FUNC_EN_B	RW	05	00000101	00000000	
PAGE_ADDRESS	RW	08	00001000	00000000	
PAGE_VALUE	RW	09	00001001	00000000	
EMB_FUNC_INT1	RW	0A	00001010	00000000	
FSM_INT1_A	RW	0B	00001011	00000000	
FSM_INT1_B	RW	0C	00001100	00000000	
MLC_INT1	RW	0D	00001101	00000000	
EMB_FUNC_INT2	RW	0E	00001110	00000000	
FSM_INT2_A	RW	0F	00001111	01101011	
FSM_INT2_B	RW	10	00010000	00000000	
MLC_INT2	RW	11	00010001	00000000	
EMB_FUNC_STATUS	R	12	00010010	output	
FSM_STATUS_A	R	13	00010011	output	
FSM_STATUS_B	R	14	00010100	output	
MLC_STATUS	R	15	00010101	output	
PAGE_RW	RW	17	00010111	00000000	
RESERVED	-	18-43			
EMB_FUNC_FIFO_CFG	RW	44	01000100	00000000	
FSM_ENABLE_A	RW	46	01000110	00000000	
FSM_ENABLE_B	RW	47	01000111	00000000	
FSM_LONG_COUNTER_L	RW	48	01001000	00000000	
FSM_LONG_COUNTER_H	RW	49	01001001	00000000	
FSM_LONG_COUNTER_CLEAR	RW	4A	01001010	00000000	
FSM_OUTS1	R	4C	01001100	output	
FSM_OUTS2	R	4D	01001101	output	
FSM_OUTS3	R	4E	01001110	output	
FSM_OUTS4	R	4F	01001111	output	
FSM_OUTS5	R	50	01010000	output	
FSM_OUTS6	R	51	01010001	output	

Table 166. Register address map - embedded functions

Nome	Time	Regis	ter address	Defeult	Commont
Name	Туре	Hex	Binary	Default	Comment
FSM_OUTS7	R	52	01010010	output	
FSM_OUTS8	R	53	01010011	output	
FSM_OUTS9	R	54	01010100	output	
FSM_OUTS10	R	55	01010101	output	
FSM_OUTS11	R	56	01010110	output	
FSM_OUTS12	R	57	01010111	output	
FSM_OUTS13	R	58	01011000	output	
FSM_OUTS14	R	59	01011001	output	
FSM_OUTS15	R	5A	01011010	output	
FSM_OUTS16	R	5B	01011011	output	
RESERVED	-	5C-5E			
EMB_FUNC_ODR_CFG_B	RW	5F	01011111	01001011	
EMB_FUNC_ODR_CFG_C	RW	60	01100000	00010101	
STEP_COUNTER_L	R	62	01100010	output	
STEP_COUNTER_H	R	63	01100011	output	
EMB_FUNC_SRC	RW	64	01100100	output	
EMB_FUNC_INIT_A	RW	66	01100110	00000000	
EMB_FUNC_INIT_B	RW	67	01100111	00000000	
MLC0_SRC	R	70	01110000	output	
MLC1_SRC	R	71	01110001	output	
MLC2_SRC	R	72	01110010	output	
MLC3_SRC	R	73	01110011	output	
MLC4_SRC	R	74	01110100	output	
MLC5_SRC	R	75	01110101	output	
MLC6_SRC	R	76	01110110	output	
MLC7_SRC	R	77	01110111	output	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions register description

11.1 PAGE_SEL (02h)

Enable advanced features dedicated page (r/w)

Table 167. PAGE_SEL registe	BEL register
-----------------------------	---------------------

PAGE_SEL3 PAGE_SEL2 PAGE_SEL1 PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾
---	------------------	------------------	------------------	------------------

1. This bit must be set to '0' for the correct operation of the device.

2. This bit must be set to '1' for the correct operation of the device.

Table 168. PAGE_SEL register description

		Select the advanced features dedicated page	
PAGE_SEL[3:0]	PAGE_SEL[3.0]	Default value: 0000	

11.2 EMB_FUNC_EN_A (04h)

Embedded functions enable register (r/w)

Table 169. EMB_FUNC_EN_A register

0 ⁽¹⁾	0(1)	SIGN_ MOTION_EN	TILT_EN	PEDO_EN	0(1)	0(1)	0 ⁽¹⁾
------------------	------	--------------------	---------	---------	------	------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 170. EMB_FUNC_EN_A register description

	Enable significant motion detection function. Default value: 0
SIGN_MOTION_EN	(0: significant motion detection function disabled;
	1: significant motion detection function enabled)
	Enable tilt calculation. Default value: 0
TILT_EN	(0: tilt algorithm disabled;
	1: tilt algorithm enabled)
	Enable pedometer algorithm. Default value: 0
PEDO_EN	(0: pedometer algorithm disabled;
	1: pedometer algorithm enabled)

11.3 EMB_FUNC_EN_B (05h)

Embedded functions enable register (r/w)

Table 171. EMB_FUNC_EN_B register

0(1)	0 ⁽¹⁾	0 ⁽¹⁾	MLC_EN	FIFO_ COMPR_EN	0 ⁽¹⁾	0(1)	FSM_EN
------	-------------------------	-------------------------	--------	-------------------	------------------	------	--------

1. This bit must be set to '0' for the correct operation of the device.

Table 172. EMB_FUNC_EN_B register description

	Enable Machine Learning Core feature. Default value: 0					
MLC_EN	(0: Machine Learning Core feature disabled;					
	1: Machine Learning Core feature enabled)					
	Enable FIFO compression feature. Default value: 0					
FIFO_COMPR_EN ⁽¹⁾	(0: FIFO compression feature disabled;					
	1: FIFO compression feature enabled)					
	Enable Finite State Machine (FSM) feature. Default value: 0					
FSM_EN	(0: FSM feature disabled; 1: FSM feature enabled)					

1. This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.

11.4 PAGE_ADDRESS (08h)

Page address register (r/w)

Table 173. PAGE_ADDRESS register

PAGE_

Table 174. PAGE_ADDRESS register description

	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set
	the address of the register to be written/read in the advanced features page selected through the bits
	PAGE_SEL[3:0] in register PAGE_SEL (02h).

11.5 PAGE_VALUE (09h)

Page value register (r/w)

Table 175. PAGE_VALUE register

| PAGE_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VALUE7 | VALUE6 | VALUE5 | VALUE4 | VALUE3 | VALUE2 | VALUE1 | VALUE0 |

Table 176. PAGE_VALUE register description

PAGE_VALUE[7:0] PAGE_READ = 1 in register PAGE_RW (17h))	RITE = 1 in register PAGE_RW (17h)) or read (if the bit the data at the address PAGE_ADDR[7:0] of the selected
advanced features page.	

11.6 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 177. EMB_FUNC_INT1 register	Table 177.	EMB	FUNC	INT1	register
-----------------------------------	------------	-----	------	------	----------

INT1_ FSM_LC	0(1)	INT1_ SIG_MOT	INT1_TILT	INT1_STEP_ DETECTOR	0 ⁽¹⁾	0(1)	0 ⁽¹⁾
-----------------	------	------------------	-----------	------------------------	------------------	------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 178. EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_TILT ⁽¹⁾	Routing of tilt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.7 FSM_INT1_A (0Bh)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 179. FSM_INT1_A register

INT1_FSM8	INT1_FSM7	INT1_FSM6	INT1_FSM5	INT1_FSM4	INT1_FSM3	INT1_FSM2	INT1_FSM1

INT1_FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of FSM6 interrupt event on INT1. Default value: 0
INT1_FSM6 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of FSM5 interrupt event on INT1. Default value: 0
INT1_FSM5 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM3 ⁽¹⁾	Routing of FSM3 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

Table 180. FSM_INT1_A register description

1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.8 FSM_INT1_B (0Ch)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 181. FSM_INT1_B register

INT1_FSM16	INT1_FSM15	INT1_FSM14	INT1_FSM13	INT1_FSM12	INT1_FSM11	INT1_FSM10	INT1_FSM9

INT1 FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of FSM14 interrupt event on INT1. Default value: 0
INT1_FSM14 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 COM12(1)	Routing of FSM13 interrupt event on INT1. Default value: 0
INT1_FSM13 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 ESM12(1)	Routing of FSM12 interrupt event on INT1. Default value: 0
INT1_FSM12 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of FSM9 interrupt event on INT1. Default value: 0
INT1_FSM9 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

Table 182. FSM_INT1_B register description

1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

11.9 MLC_INT1 (0Dh)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 183	MLC	INT1	register
-----------	-----	------	----------

INT1_MLC8	INT1_MLC7	INT1_MLC6	INT1_MLC5	INT1_MLC4	INT1_MLC3	INT1_MLC2	INT1_MLC1

INT1_MLC8	Routing of MLC8 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC7	Routing of MLC7 interrupt event on INT1. Default value: 0
_	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC6	Routing of MLC6 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC5	Routing of MLC5 interrupt event on INT1. Default value: 0
INTI_MEOS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC4	Routing of MLC4 interrupt event on INT1. Default value: 0
INTI_MEC4	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC3	Routing of MLC3 interrupt event on INT1. Default value: 0
INTI_MECS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of MLC2 interrupt event on INT1. Default value: 0
INT1_MLC2	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
	Routing of MLC1 interrupt event on INT1. Default value: 0
INT1_MLC1	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

Table 184. MLC_INT1 register description

11.10 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 185. EMB_FUNC_INT2 register

INT2_ FSM_LC 0 ⁽¹⁾	INT2_ SIG_MOT	INT2_TILT	INT2_STEP_ DETECTOR	0(1)	0(1)	0(1)
----------------------------------	------------------	-----------	------------------------	------	------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 186. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_TILT ⁽¹⁾	Routing of tilt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.11 FSM_INT2_A (0Fh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 187. FSM_INT2_A register

INT2_FSM8	INT2_FSM7	INT2_FSM6	INT2_FSM5	INT2_FSM4	INT2_FSM3	INT2_FSM2	INT2_FSM1

INT2_FSM7(1)Routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM7(1)Routing of FSM7 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM6(1)Routing of FSM6 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM6(1)Routing of FSM6 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM5(1)Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)		
INT2_FSM7(1)Routing of FSM7 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM6(1)Routing of FSM6 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM6(1)Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM5(1)Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT1 enabled)INT2_FSM1(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM1(1)Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)	INT2_FSM8 ⁽¹⁾	
Image: Construction on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM6(1)Routing of FSM6 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM5(1)Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM1(1)Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)		
INT2_FSM6 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM5 ⁽¹⁾ Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4 ⁽¹⁾ Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4 ⁽¹⁾ Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled)INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)	INT2_FSM7 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM5(1)Routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM5(1)Routing of FSM5 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM1(1)Routing of FSM1 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)	INIT2 ESM6(1)	Routing of FSM6 interrupt event on INT2. Default value: 0
INT2_FSM5(1)(0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)(0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM1(1)Routing of FSM1 interrupt event on INT2. Default value: 0		(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM4(1)Routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM4(1)Routing of FSM4 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM3(1)Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM2(1)Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)INT2_FSM1(1)Routing of FSM1 interrupt event on INT2. Default value: 0	INIT2 ESM5(1)	Routing of FSM5 interrupt event on INT2. Default value: 0
INT2_FSM4 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled) INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT2 disabled; 1: routing on INT2. Default value: 0 (0: routing of FSM1 interrupt event on INT2. Default value: 0 INT2_FSM1 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0		(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM3 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled) INT2_FSM3 ⁽¹⁾ Routing of FSM3 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled) INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing of FSM2 interrupt event on INT2. Default value: 0 INT2_FSM2 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0 INT2_FSM1 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0	INT2 FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT2. Default value: 0
INT2_FSM3 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled) (0: routing on INT1 disabled; 1: routing on INT1 enabled) INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) Routing of FSM1 interrupt event on INT2. Default value: 0 INT2_FSM1 ⁽¹⁾		(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) INT2_FSM1 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0		Routing of FSM3 interrupt event on INT2. Default value: 0
INT2_FSM2 ⁽¹⁾ Routing of FSM2 interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled) INT2_FSM1 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0	INT2_FSM3 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM2 ⁽¹⁾ (0: routing on INT2 disabled; 1: routing on INT2 enabled) INT2_FSM1 ⁽¹⁾ Routing of FSM1 interrupt event on INT2. Default value: 0		(0: routing on INT1 disabled; 1: routing on INT1 enabled)
- (0: routing on INT2 disabled; 1: routing on INT2 enabled) Routing of FSM1 interrupt event on INT2. Default value: 0	INT2 FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT2. Default value: 0
INT2 FSM1 ⁽¹⁾		(0: routing on INT2 disabled; 1: routing on INT2 enabled)
(0: routing on INT2 disabled; 1: routing on INT2 enabled)	INT2 FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT2. Default value: 0
		(0: routing on INT2 disabled; 1: routing on INT2 enabled)

Table 188. FSM_INT2_A register description

1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.12 FSM_INT2_B (10h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 189. FSM_INT2_B register

INT2_FSM16	INT2_FSM15	INT2_FSM14	INT2_FSM13	INT2_FSM12	INT2_FSM11	INT2_FSM10	INT2_FSM9

INT2_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM15 ⁽¹⁾	Routing of FSM15 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT2. Default value: 0
INT2_F3W14	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	Routing of FSM11 interrupt event on INT2. Default value: 0
INT2_FSM11 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT2 ESM10(1)	Routing of FSM10 interrupt event on INT2. Default value: 0
INT2_FSM10 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	Routing of FSM9 interrupt event on INT2. Default value: 0
INT2_FSM9 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

Table 190. FSM_INT2_B register description

1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

11.13 MLC_INT2 (11h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table	191.	MLC	INT2	register

INT2_MLC8	INT2_MLC7	INT2_MLC6	INT2_MLC5	INT2_MLC4	INT2_MLC3	INT2_MLC2	INT2_MLC1

INT2_MLC8	Routing of MLC8 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC7	Routing of MLC7 interrupt event on INT2. Default value: 0
_	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC6	Routing of MLC6 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 MLC5	Routing of MLC5 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC4	Routing of MLC4 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC3	Routing of MLC3 interrupt event on INT2. Default value: 0
INTZ_MEOS	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 MLC2	Routing of MLC2 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
	Routing of MLC1 interrupt event on INT2. Default value: 0
INT2_MLC1	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

Table 192. MLC_INT2 register description

11.14 EMB_FUNC_STATUS (12h)

Embedded function status register (r)

Table 193. EMB_FUNC_STATUS register

IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0

Table 194. EMB_FUNC_STATUS register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)

11.15 FSM_STATUS_A (13h)

Finite State Machine status register (r)

Table 195. FSM_STATUS_A register

10. 50140		10. 50140					10. 50144
IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1

Table 196. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.16 FSM_STATUS_B (14h)

Finite State Machine status register (r)

Table 197. FSM_STATUS_B register

IS_FSM16 IS_FSM	5 IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9
-----------------	------------	----------	----------	----------	----------	---------

Table 198. FSM_STATUS_B register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

11.17 MLC_STATUS (15h)

Machine Learning Core status register (r)

Table 199. MLC_STATUS register

	IS_MLC8	IS_MLC7	IS_MLC6	IS_MLC5	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 200. MLC_STATUS register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7	Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6	Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.18 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (r/w)

Table 201. PAGE_RW register

EMB_ FUNC_LIR	PAGE_ WRITE	PAGE_ READ	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	0(1)	0(1)
------------------	----------------	---------------	------------------	------------------	------	------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 202. PAGE_RW register description

EMB_FUNC_LIR	Latched Interrupt mode for Embedded Functions. Default value: 0 (0: Embedded Functions interrupt request not latched; 1: Embedded Functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page. ⁽¹⁾ Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page. ⁽¹⁾ Default value: 0 (1: enable; 0: disable)

1. Page selected by PAGE_SEL[3:0] in register PAGE_SEL (02h).

11.19 EMB_FUNC_FIFO_CFG (44h)

Embedded functions batching configuration register (r/w)

Table 203. EMB_FUNC_FIFO_CFG register

0 ⁽¹⁾ PEDO_ FIFO_EN	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	0(1)	0(1)
-----------------------------------	------	------------------	------------------	------	------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 204. EMB_FUNC_FIFO_CFG register description

PEDO_FIFO_EN	Enable FIFO batching of step counter values. Default value: 0

11.20 FSM_ENABLE_A (46h)

FSM enable register (r/w)

Table 205. FSM_ENABLE_A register

FSM8_EN	FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
---------	---------	---------	---------	---------	---------	---------	---------

Table 206. FSM_ENABLE_A register description

FSM8_EN	FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

11.21 FSM_ENABLE_B (47h)

FSM enable register (r/w)

Table 207. FSM_ENABLE_B register

FSM16_EN	FSM15_EN	FSM14_EN	FSM13_EN	FSM12_EN	FSM11_EN	FSM10_EN	FSM9_EN

Table 208. FSM_ENABLE_B register description

FSM16_EN	FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN	FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

11.22 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (r/w).

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 209. FSM_LONG_COUNTER_L register

FSM_LC_7	FSM_LC_6	FSM_LC_5	FSM_LC_4	FSM_LC_3	FSM_LC_2	FSM_LC_1	FSM_LC_0

Table 210. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0] Long counter current value (LSbyte). Default value: 00000000

Table 211. FSM_LONG_COUNTER_H register

FSM_LC_15	FSM_LC_14	FSM_LC_13	FSM_LC_12	FSM_LC_11	FSM_LC_10	FSM_LC_9	FSM_LC_8
-----------	-----------	-----------	-----------	-----------	-----------	----------	----------

Table 212. FSM_LONG_COUNTER_H register description

FSM_LC_[15:8] Long counter current value (MSbyte). Default value: 00000000		
--	--	--

11.23 FSM_LONG_COUNTER_CLEAR (4Ah)

FSM long counter reset register (r/w)

Table 213. FSM_LONG_COUNTER_CLEAR register

0(1)	0(1)	0 ⁽¹⁾	0(1)	0(1)	0 ⁽¹⁾	FSM_LC_ CLEARED	FSM_LC_ CLEAR
------	------	------------------	------	------	------------------	--------------------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 214. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

11.24 FSM_OUTS1 (4Ch)

FSM1 output register (r)

Table 2 ^r	15. FSM	_OUTS1	register
----------------------	---------	--------	----------

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 216. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.25 FSM_OUTS2 (4Dh)

FSM2 output register (r)

Table 217. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 218. FSM_OUTS2 register description

P_X	FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.26 FSM_OUTS3 (4Eh)

FSM3 output register (r)

Table 219	. FSM_C	DUTS3	register
-----------	---------	-------	----------

|--|

Table 220. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.27 FSM_OUTS4 (4Fh)

FSM4 output register (r)

Table 221. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 222. FSM_OUTS4 register description

P_X	FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.28 FSM_OUTS5 (50h)

FSM5 output register (r)

Table	223.	FSM	OUTS5	register
-------	------	-----	-------	----------

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
	_	_	_	_			_

Table 224. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.29 FSM_OUTS6 (51h)

FSM6 output register (r)

Table 225. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 226. FSM_OUTS6 register description

P_X	FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.30 FSM_OUTS7 (52h)

FSM7 output register (r)

Table	227.	FSM_	OUTS7	register
-------	------	------	-------	----------

|--|

Table 228. FSM_OUTS7 register description

P_X	FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.31 FSM_OUTS8 (53h)

FSM8 output register (r)

Table 229. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 230. FSM_OUTS8 register description

P_X	FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.32 FSM_OUTS9 (54h)

FSM9 output register (r)

Table	231.	FSM_	OUTS9	register
-------	------	------	-------	----------

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 232. FSM_OUTS9 register description

P_X	FSM9 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM9 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM9 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM9 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM9 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.33 FSM_OUTS10 (55h)

FSM10 output register (r)

Table 233. FSM_OUTS10 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 234. FSM_OUTS10 register description

P_X	FSM10 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM10 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM10 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM10 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM10 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM10 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM10 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM10 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.34 FSM_OUTS11 (56h)

FSM11 output register (r)

Table 23	5. FSM	_OUTS11	register
----------	--------	---------	----------

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 236. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM11 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM11 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM11 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.35 FSM_OUTS12 (57h)

FSM12 output register (r)

Table 237. FSM_OUTS12 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 238. FSM_OUTS12 register description

P_X	FSM12 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM12 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM12 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM12 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM12 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM12 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM12 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM12 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.36 FSM_OUTS13 (58h)

FSM13 output register (r)

Table	239.	FSM	OUTS13	register
-------	------	-----	--------	----------

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 240. FSM_OUTS13 register description

P_X	FSM13 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM13 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM13 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM13 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM13 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM13 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM13 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.37 FSM_OUTS14 (59h)

FSM14 output register (r)

Table 241. FSM_OUTS14 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 242. FSM_OUTS14 register description

P_X	FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.38 FSM_OUTS15 (5Ah)

FSM15 output register (r)

Table 243. FSM_OUTS15 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 244. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM15 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM15 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM15 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM15 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM15 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM15 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM15 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.39 FSM_OUTS16 (5Bh)

FSM16 output register (r)

Table 245. FSM_OUTS16 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V

Table 246. FSM_OUTS16 register description

P_X	FSM16 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM16 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM16 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM16 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM16 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.40 EMB_FUNC_ODR_CFG_B (5Fh)

Finite State Machine output data rate configuration register (r/w)

Table 247. EMB_FUNC_ODR_CFG_B register

0 ⁽¹⁾ 1 ⁽²⁾ 0 ⁽¹⁾ FSM_ODR1 FSM_ODR0 0 ⁽¹⁾ 1 ⁽²⁾	1 ⁽²⁾
--	------------------

1. This bit must be set to '0' for the correct operation of the device.

2. This bit must be set to '1' for the correct operation of the device

Table 248. EMB_FUNC_ODR_CFG_B register description

	Finite State Machine ODR configuration:
	(00: 12.5 Hz;
FSM_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

11.41 EMB_FUNC_ODR_CFG_C (60h)

Machine Learning Core output data rate configuration register (r/w)

Table 249. EMB_FUNC_ODR_CFG_C register

	0 ⁽¹⁾	0 ⁽¹⁾	MLC_ODR1	MLC_ODR0	0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	1 ⁽²⁾
--	------------------	------------------	----------	----------	------------------	------------------	------------------	------------------

This bit must be set to '0' for the correct operation of the device.
 This bit must be set to '1' for the correct operation of the device.

Table 250. EMB_FUNC_ODR_CFG_C register description

	Machine Learning Core ODR configuration:
	(00: 12.5 Hz;
MLC_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

11.42 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)

Step counter output register (r)

Table 251. STEP_COUNTER_L register

STEP_7	STEP_6	STEP_5	STEP_4	STEP_3	STEP_2	STEP_1	STEP_0

Table 252. STEP_COUNTER_L register description

STEP_[7:0]	Step counter output (LSbyte)	
------------	------------------------------	--

Table 253. STEP_COUNTER_H register

STEP_15	STEP_14	STEP_13	STEP_12	STEP_11	STEP_10	STEP_9	STEP_8
---------	---------	---------	---------	---------	---------	--------	--------

Table 254. STEP_COUNTER_H register description

STEP_[15:8]	Step counter output (MSbyte)

11.43 EMB_FUNC_SRC (64h)

Embedded function source register (r/w)

Table 255. EMB_FUNC_SRC register

PEDO_ RST_STEP 0 ⁽¹⁾	STEP_ DETECTED	STEP_COUNT _DELTA_IA	STEP_ OVERFLOW	STEPCOUNTER _BIT_SET	0(1)	0(1)
------------------------------------	-------------------	-------------------------	-------------------	-------------------------	------	------

1. This bit must be set to '0' for the correct operation of the device.

Table 256. EMB_FUNC_SRC register description

STEP_OVERFLOW	(0: step counter value < 2^{16} ; 1: step counter value reached 2^{16})
	Step counter overflow status. Read-only bit.
STEP_COUNT_DELTA_IA	(0: no step recognized during delta time;1: at least one step recognized during delta time)
	Pedometer step recognition on delta time status. Read-only bit.
STEP_DETECTED	Step detector event detection status. Read-only bit. (0: step detection event not detected; 1: step detection event detected)
PEDO_RST_STEP	Reset pedometer step counter. Read/write bit. (0: disabled; 1: enabled)

11.44 EMB_FUNC_INIT_A (66h)

Embedded functions initialization register (r/w)

Table 257. EMB_FUNC_INIT_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIG_MOT _INIT	TILT_INIT	STEP_DET _INIT	0(1)	0(1)	0 ⁽¹⁾
------------------	------------------	------------------	-----------	-------------------	------	------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 258. EMB_FUNC_INIT_A register description

SIG_MOT_INIT	Significant Motion Detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer Step Counter/Detector algorithm initialization request. Default value: 0

11.45 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (r/w)

Table 259. EMB_FUNC_INIT_B register

0(1)	0 ⁽¹⁾	0 ⁽¹⁾	MLC_INIT	FIFO_ COMPR_INIT	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT
------	------------------	------------------	----------	---------------------	-------------------------	-------------------------	----------

1. This bit must be set to '0' for the correct operation of the device.

Table 260. EMB_FUNC_INIT_B register description

MLC_INIT	Machine Learning Core initialization request. Default value: 0
FIFO_COMPR_INIT	FIFO compression feature initialization request. Default value: 0
FSM_INIT	FSM initialization request. Default value: 0

11.46 MLC0_SRC (70h)

Machine Learning Core source register (r)

Table 261. MLC0_SRC register

 MLC0_ MLC0_	MLC0_	MLC0_	MLC0_	MLC0_	MLC0_
SRC_6 SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 262. MLC0_SRC register description

MLC0_SRC_[7:0] Output value of MLC0 decision tree	
---	--

11.47 MLC1_SRC (71h)

Machine Learning Core source register (r)

Table 263. MLC1_SRC register

MLC1_	MLC1_ MLC1	_ MLC1_	MLC1_	MLC1_	MLC1_	MLC1_
SRC_7	SRC_6 SRC_	5 SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 264. MLC1_SRC register description

MLC1_SRC_[7:0] Output value of MLC1 decision tree

11.48 MLC2_SRC (72h)

Machine Learning Core source register (r)

Table	265.	MLC2	_SRC	register
-------	------	------	------	----------

MLC2_ MLC2_ <th< th=""><th>MLC2_ SRC_0</th></th<>	MLC2_ SRC_0
---	----------------

Table 266. MLC2_SRC register description

MLC2_SRC_17:01 Output value of MLC2 decision free	MLC2 SRC [7:0]	Output value of MLC2 decision tree
---	----------------	------------------------------------

11.49 MLC3_SRC (73h)

Machine Learning Core source register (r)

Table 267. MLC3_SRC register

MLC3_								
SRC_7	SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0	

Table 268. MLC3_SRC register description

MLC3_SRC_[7:0] Output value of MLC3 decision tree

11.50 MLC4_SRC (74h)

Machine Learning Core source register (r)

Table 269. MLC4_SRC register

MLC4_ MLC4_ MLC4_	SPC 4	MLC4_ MLC4_	MLC4_	MLC4_
SRC_7 SRC_6 SRC_5		SRC_3 SRC_2	SRC_1	SRC_0

Table 270. MLC4_SRC register description

MLC4_SRC_[7:0] Output value of MLC4 decision tree

11.51 MLC5_SRC (75h)

Machine Learning Core source register (r)

Table 271. MLC5_SRC register

MLC5_	MLC5_	MLC5_	MLC5_	MLC5_	MLC5_	MLC5_	MLC5_
SRC_7	SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0
0	0.10_0	0.10_0	0.00	0.10_0	0.100_2	0.10	0.00_0

Table 272. MLC5_SRC register description

MLC5_SRC_[7:0]	Output value of MLC5 decision tree
----------------	------------------------------------

11.52 MLC6_SRC (76h)

Machine Learning Core source register (r)

Table 27	73. MLC	C6_SRC	register
----------	---------	--------	----------

SRC_7 SRC_6 SRC_5 SRC_4 SRC_3 SRC_2 SRC_1 SRC_0	MLC6_ SRC_7	SRUD		MLC6_ SRC_4	SRU3	SRU Z	MLC6_ SRC_1	SRUU
---	----------------	------	--	----------------	------	-------	----------------	------

Table 274. MLC6_SRC register description

MLC6_SRC_[7:0]

Output value of MLC6 decision tree

11.53 MLC7_SRC (77h)

Machine Learning Core source register (r)

Table 275. MLC7_SRC register

Table 276. MLC7_SRC register description

MLC7_SRC_[7:0]	Output value of MLC7 decision tree
----------------	------------------------------------

12 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

	_	Reg	ister address		Commont
Name	Туре	Hex	Binary	Default	Comment
MAG_SENSITIVITY_L	RW	BA	10111010	00100100	
MAG_SENSITIVITY_H	RW	BB	10111011	00010110	
MAG_OFFX_L	RW	C0	11000000	00000000	
MAG_OFFX_H	RW	C1	11000001	0000000	
MAG_OFFY_L	RW	C2	11000010	00000000	
MAG_OFFY_H	RW	C3	11000011	00000000	
MAG_OFFZ_L	RW	C4	11000100	0000000	
MAG_OFFZ_H	RW	C5	11000101	00000000	
MAG_SI_XX_L	RW	C6	11000110	00000000	
MAG_SI_XX_H	RW	C7	11000111	00111100	
MAG_SI_XY_L	RW	C8	11001000	00000000	
MAG_SI_XY_H	RW	C9	11001001	00000000	
MAG_SI_XZ_L	RW	CA	11001010	00000000	
MAG_SI_XZ_H	RW	СВ	11001011	00000000	
MAG_SI_YY_L	RW	СС	11001100	00000000	
MAG_SI_YY_H	RW	CD	11001101	00111100	
MAG_SI_YZ_L	RW	CE	11001110	00000000	
MAG_SI_YZ_H	RW	CF	11001111	0000000	
MAG_SI_ZZ_L	RW	D0	11010000	0000000	
MAG_SI_ZZ_H	RW	D1	11010001	00111100	
MAG_CFG_A	RW	D4	11010100	00000101	
MAG_CFG_B	RW	D5	11010101	00000010	

Table 277. Register address map - embedded advanced features page 0

The following table provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Name	Туре	Register address			Comment
Naille	Type	Hex	Binary	Delault	Comment
FSM_LC_TIMEOUT_L	RW	7A	01111010	0000000	
FSM_LC_TIMEOUT_H	RW	7B	01111011	0000000	
FSM_PROGRAMS	RW	7C	01111100	0000000	
FSM_START_ADD_L	RW	7E	01111110	0000000	
FSM_START_ADD_H	RW	7F	0111111	0000000	
PEDO_CMD_REG	RW	83	10000011	0000000	
PEDO_DEB_STEPS_CONF	RW	84	10000100	00001010	
PEDO_SC_DELTAT_L	RW	D0	11010000	0000000	
PEDO_SC_DELTAT_H	RW	D1	11010001	0000000	
MLC_MAG_SENSITIVITY_L	RW	E8	11101000	0000000	
MLC_MAG_SENSITIVITY_H	RW	E9	11101001	00111100	

Table 278. Register address map - embedded advanced features page 1

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example:

Example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

- 1. Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)
- 2. Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register
- 3. Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)
- 4. Write 84h in PAGE_ADDR register (08h)
- 5. Write 06h in PAGE_DATA register (09h)
- 6. Write bit PAGE_WRITE = 0 in PAGE_RW (17h) register
- 7. Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)

- // Enable access to embedded functions registers
- // Select write operation mode
- // Select page 1
- // Set address
- // Set value to be written
- // Write operation disabled
- // Disable access to embedded functions registers

Read procedure example:

Example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

- 1. Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)
- 2. Write bit PAGE_READ = 1 in PAGE_RW (17h) register
- 3. Write 0001 in PAGE_SEL[3:0] field
- // Enable access to embedded functions registers
- // Select read operation mode
- // Select page 1

of register PAGE_SEL (02h)

- 4. Write 84h in PAGE_ADDR register (08h)
- 5. Read value of PAGE_DATA register (09h)
- 6. Write bit PAGE_READ = 0 in PAGE_RW (17h) register
- Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)

// Set address

// Get register value

- // Read operation disabled
- // Disable access to embedded functions registers

Note: Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, multiple operations involve consecutive registers, only step 5 can be performed.

13 Embedded advanced features register description

13.1 Page 0 - Embedded advanced features registers

13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 279. MAG_SENSITIVITY_L register

MAG_ MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	
SENS_7 SENS_6	SENS_5	SENS_4	SENS_3	SENS_2	SENS_1	SENS_0	

Table 280. MAG_SENSITIVITY_L register description

SENS[7:0] External magnetometer sensitivity (LSbyte). Default value: 00100100	MAG_SENS_[7:0]
---	----------------

Table 281. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8

Table 282. MAG_SENSITIVITY_H register description

MAG_SENS_[15:8]	External magnetometer sensitivity (MSbyte). Default value: 00010110
-----------------	---

Table 283. MAG_OFFX_L register

MAG_ MAG_ MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	
OFFX_7 OFFX_6 OFFX_5	OFFX_4	OFFX_3	OFFX_2	OFFX_1	OFFX_0	

Table 284. MAG_OFFX_L register description

MAG_OFFX_[7:0]	Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000	
WAG_OFFX_[7.0]	Onset for X-axis hard-iron compensation (LSbyte). Default value. 0000000)

Table 285. MAG_OFFX_H register

MAG_ MAG_	MAG_	MAG_	MAG_	MAG_
DFFX_13 OFFX_12	OFFX_11	OFFX_10	OFFX_9	OFFX_8

Table 286. MAG_OFFX_H register description

MAG_OFFX_[15:8]	Offset for X-axis hard-iron compensation (MSbyte). Default value: 00000000
	Chief to A-axis hard-ion compensation (mobyte). Default value, obooooo

13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Table 287. MAG_OFFY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFY_7 | OFFY_6 | OFFY_5 | OFFY_4 | OFFY_3 | OFFY_2 | OFFY_1 | OFFY_0 |

Table 288. MAG_OFFY_L register description

MAG_OFFY_[7:0]	Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000
----------------	--

Table 289. MAG_OFFY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFY_15	OFFY 14	OFFY 13	OFFY_12	OFFY 11	OFFY_10	OFFY 9	OFFY 8
_	_		_	_	_		_

Table 290. MAG_OFFY_H register description

MAG_OFFY_[15:8]	Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000
-----------------	--

13.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)

Table 291. MAG_OFFZ_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFZ_7 | OFFZ_6 | OFFZ_5 | OFFZ_4 | OFFZ_3 | OFFZ_2 | OFFZ_1 | OFFZ_0 |

Table 292. MAG_OFFZ_L register description

	MAG_OFFZ_[7:0]	Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000
--	----------------	--

Table 293. MAG_OFFZ_H register

MAG_ MAG_	MAG_ MAG_	MAG_	MAG_	MAG_	MAG_
OFFZ_15 OFFZ_14 (DFFZ_13 OFFZ_12	OFFZ_11	OFFZ_10	OFFZ_9	OFFZ_8

Table 294. MAG_OFFZ_H register description

13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Table 295. MAG_SI_XX_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_7 | XX_6 | XX_5 | XX_4 | XX_3 | XX_2 | XX_1 | XX_0 |

Table 296. MAG_SI_XX_L register description

MAG_SI_XX_[7:0]	Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000
-----------------	--

Table 297. MAG_SI_XX_H register

MAG_SI_	MAG_SI_						
XX 15	XX_14	XX 13	XX 12	XX_11	XX 10	XX_9	XX_8
///_10	707_14	701_10	707_12	<u></u>	///_10	,,, <u> </u>	///_0

Table 298. MAG_SI_XX_H register description

MAG_SI_XX_[15:8]	Soft-iron correction row1 col1 coefficient (MSbyte). Default value: 00111100
------------------	--

13.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)

Table 299. MAG_SI_XY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY_7 | XY_6 | XY_5 | XY_4 | XY_3 | XY_2 | XY_1 | XY_0 |

Table 300. MAG_SI_XY_L register description

MAG_SI_XY_[7:0] Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Defau
--

Table 301. MAG_SI_XY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY_15 | XY_14 | XY_13 | XY_12 | XY_11 | XY_10 | XY_9 | XY_8 |

Table 302. MAG_SI_XY_H register description

MAG_SI_XY_[15:8] Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000

13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Table 303. MAG_SI_XZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_7 | XZ_6 | XZ_5 | XZ_4 | XZ_3 | XZ_2 | XZ_1 | XZ_0 |

Table 304. MAG_SI_XZ_L register description

MAG_SI_XZ_[7:0]	Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000
-----------------	--

Table 305. MAG_SI_XZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ 15 | XZ 14 | XZ 13 | XZ 12 | XZ 11 | XZ 10 | XZ 9 | XZ_8 |
| | | | | | | | |

Table 306. MAG_SI_XZ_H register description

	MAG_SI_XZ_[15:8]	Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000
--	------------------	--

13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Table 307. MAG_SI_YY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_7 | YY_6 | YY_5 | YY_4 | YY_3 | YY_2 | YY_1 | YY_0 |

Table 308. MAG_SI_YY_L register description

Table 309. MAG_SI_YY_H register

MAG_SI_ MAG_SI_ MAG_SI_ VV 15 VV 14 VV 1	SI_ MAG_SI_ MAG_SI_	MAG_SI_ MAG_SI_	MAG_SI_
	3 YY_12 YY_11	YY_10 YY_9	YY_8

Table 310. MAG_SI_YY_H register description

MAG SI YY [15:8]	Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100

13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Table 311. MAG_SI_YZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_7 | YZ_6 | YZ_5 | YZ_4 | YZ_3 | YZ_2 | YZ_1 | YZ_0 |

Table 312. MAG_SI_YZ_L register description

MAG_SI_YZ_[7:0]	Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000
-----------------	--

Table 313. MAG_SI_YZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ 15 | YZ 14 | YZ 13 | YZ 12 | YZ 11 | YZ_10 | YZ 9 | YZ 8 |
| | _ | | | | _ | | |

Table 314. MAG_SI_YZ_H register description

	MAG_SI_YZ_[15:8]	Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000
--	------------------	--

13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Table 315. MAG_SI_ZZ_L register

MAG_SI_ MA	AG_SI_ MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
ZZ_7 Z	ZZ_6 ZZ_5	ZZ_4	ZZ_3	ZZ_2	ZZ_1	ZZ_0

Table 316. MAG_SI_ZZ_L register description

MAG_SI_ZZ_[7:0]	Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000	
W// CO_OI_ZZ_[/.0]	continon concellent towe colo coemolent (Leobyte). Delutit value. coecoco	

Table 317. MAG_SI_ZZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_15 | ZZ_14 | ZZ_13 | ZZ_12 | ZZ_11 | ZZ_10 | ZZ_9 | ZZ_8 |

Table 318. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8]	Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100
------------------	--

13.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Z and Y axes) rotation register (r/w)

Table 319. MAG_CFG_A register

0(1)	MAG_Y_ AXIS2	MAG_Y_ AXIS1	MAG_Y_ AXIS0	0 ⁽¹⁾	MAG_Z_ AXIS2	MAG_Z_ AXIS1	MAG_Z_ AXIS0
------	-----------------	-----------------	-----------------	------------------	-----------------	-----------------	-----------------

1. This bit must be set to '0' for the correct operation of the device.

Table 320. MAG_CFG_A register description

	Magnetometer Y-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Y = Y; (default)
	001: Y = -Y;
	010: Y = X;
MAG_Y_AXIS[2:0]	011: Y = -X;
	100: Y = -Z;
	101: Y = Z;
	Others: Y = Y)
	Magnetometer Z-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Z = Y;
	001: Z = -Y;
	010: Z = X;
MAG_Z_AXIS[2:0]	011: Z = -X;
	100: Z = -Z;
	101: Z = Z; (default)
	Others: Z = Y)

13.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (r/w)

Table 321. MAG_CFG_B register

0(1)	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	0(1)	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0
------	------------------	-------------------------	------	------	-----------------	-----------------	-----------------

1. This bit must be set to '0' for the correct operation of the device.

Table 322. MAG_CFG_B register description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: X = Y;
	001: X = -Y;
	010: X = X; (default)
MAG_X_AXIS[2:0]	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

13.2 Page 1 - Embedded advanced features registers

13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (r/w).

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reaches this value, the FSM generates an interrupt.

Table 323. FSM_LC_TIMEOUT_L register

| FSM_LC_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TIMEOUT7 | TIMEOUT6 | TIMEOUT5 | TIMEOUT4 | TIMEOUT3 | TIMEOUT2 | TIMEOUT1 | TIMEOUT0 |

Table 324. FSM_LC_TIMEOUT_L register description

FSM_LC_TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
---------------------	--

Table 325. FSM_LC_TIMEOUT_H register

FSM_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_
TIMEO	TIMEOUT13	TIMEOUT12	TIMEOUT11	TIMEOUT10	TIMEOUT9	TIMEOUT8

Table 326. FSM_LC_TIMEOUT_H register description

FSM_LC_TIMEOUT[15:8]	FSM long counter timeout value (MSbyte). Default value: 00000000
----------------------	--

13.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (r/w)

Table 327. FSM_PROGRAMS register

Table 328. FSM_PROGRAMS register description

FSM_N_PROG[7:0]	Number of FSM programs; must be less than or equal to 16. Default value: 00000000
-----------------	---

13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (r/w). First available address is 0x033C.

Table 329. FSM_START_ADD_L register

FSM_ FSM_ FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	
START7 START6 START5	START4	START3	START2	START1	START0	

Table 330. FSM_START_ADD_L register description

FSM_START[7:0]	FSM start address value (LSbyte). Default value: 00000000
----------------	---

Table 331. FSM_START_ADD_H register

_	FSM_ FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
	TART14 START13	START12	START11	START10	START9	START8

Table 332. FSM_START_ADD_H register description

	FSM_START[15:8]	FSM start address value (MSbyte). Default value: 00000000	
--	-----------------	---	--

13.2.4 **PEDO_CMD_REG** (83h)

Pedometer configuration register (r/w)

Table 333. PEDO_CMD_REG register

0(1)	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	0 ⁽¹⁾	0(1)	0 ⁽¹⁾
------	------	------------------	------------------	--------------------	------------------	------	------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 334. PEDO_CMD_REG register description

	CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.	
--	----------------	---	--

13.2.5 PEDO_DEB_CONF (84h)

Pedometer debounce configuration register (r/w)

Table 335. PEDO_DEB_STEPS_CONF register

DEB_ DEB_ DEB_	DEB_ DE	EB_ DEB_	DEB_	DEB_
STEP7 STEP6 STEP5	STEP4 ST	EP3 STEP2	STEP1	STEP0

Table 336. PEDO_DEB_STEPS_CONF register description

DEB_STEP[7:0]	Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010	
---------------	---	--

13.2.6 PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)

Time period register for step detection on delta time (r/w)

Table 337. PEDO_SC_DELTAT_L register

PD_SC_7	PD_SC_6	PD_SC_5	PD_SC_4	PD_SC_3	PD_SC_2	PD_SC_1	PD_SC_0

Table 338. PEDO_SC_DELTAT_H register

PD_SC_15	PD_SC_14	PD_SC_13	PD_SC_12	PD_SC_11	PD_SC_10	PD_SC_9	PD_SC_8
----------	----------	----------	----------	----------	----------	---------	---------

Table 339. PEDO_SC_DELTAT_H/L register description

PD_SC_[15:0]	Time period value (1LSB = 6.4 ms)	
--------------	-----------------------------------	--

13.2.7 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)

External magnetometer sensitivity value register for the Machine Learning Core (r/w).

Table 340. MLC_MAG_SENSITIVITY_L register

				1			
MLC_							
MAG_S_7	MAG_S_6	MAG_S_5	MAG_S_4	MAG_S_3	MAG_S_2	MAG_S_1	MAG_S_0

Table 341. MLC_MAG_SENSITIVITY_L register description

MLC_MAG_S_[7:0]	External magnetometer sensitivity (LSbyte). Default value: 00000000	
-----------------	---	--

Table 342. MLC_MAG_SENSITIVITY_H register

MLC_ MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	
MAG_S_15 MAG_S_1	MAG_S_13	MAG_S_12	MAG_S_11	MAG_S_10	MAG_S_9	MAG_S_8	

Table 343. MLC_MAG_SENSITIVITY_H register description

MLC_MAG_S_[15:8]	External magnetometer sensitivity (MSbyte). Default value: 00111100

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in FUNC_CFG_ACCESS (01h).

Manua	-	Re	gister address	Defeat	0	
Name	Туре	Hex	Binary	Default	Comment	
SENSOR_HUB_1	R	02	00000010	output		
SENSOR_HUB_2	R	03	00000011	output		
SENSOR_HUB_3	R	04	00000100	output		
SENSOR_HUB_4	R	05	00000101	output		
SENSOR_HUB_5	R	06	00000110	output		
SENSOR_HUB_6	R	07	00000111	output		
SENSOR_HUB_7	R	08	00001000	output		
SENSOR_HUB_8	R	09	00001001	output		
SENSOR_HUB_9	R	0A	00001010	output		
SENSOR_HUB_10	R	0B	00001011	output		
SENSOR_HUB_11	R	0C	00001100	output		
SENSOR_HUB_12	R	0D	00001101	output		
SENSOR_HUB_13	R	0E	00001110	output		
SENSOR_HUB_14	R	0F	00001111	output		
SENSOR_HUB_15	R	10	00010000	output		
SENSOR_HUB_16	R	11	00010001	output		
SENSOR_HUB_17	R	12	00010010	output		
SENSOR_HUB_18	R	13	00010011	output		
MASTER_CONFIG	RW	14	00010100	0000000		
SLV0_ADD	RW	15	00010101	0000000		
SLV0_SUBADD	RW	16	00010110	0000000		
SLV0_CONFIG	RW	17	00010111	0000000		
SLV1_ADD	RW	18	00011000	0000000		
SLV1_SUBADD	RW	19	00011001	0000000		
SLV1_CONFIG	RW	1A	00011010	0000000		
SLV2_ADD	RW	1B	00011011	0000000		
SLV2_SUBADD	RW	1C	00011100	0000000		
SLV2_CONFIG	RW	1D	00011101	0000000		
SLV3_ADD	RW	1E	00011110	0000000		
SLV3_SUBADD	RW	1F	00011111	0000000		
SLV3_CONFIG	RW	20	00100000	0000000		
DATAWRITE_SLV0	RW	21	00100001	0000000		
STATUS_MASTER	R	22	00100010	output		

Table 344. Registers address map

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (r)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 345. SENSOR_HUB_1 register

Sensor	Sensor Sensor	Sensor	Sensor	Sensor	Sensor	Sensor
Hub1_7	Hub1_6 Hub1_5	Hub1_4	Hub1_3	Hub1_2	Hub1_1	Hub1_0

Table 346. SENSOR_HUB_1 register description

	SensorHub1[7:0]	First byte associated to external sensors	
--	-----------------	---	--

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (r)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 347. SENSOR_HUB_2 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub2_7 | Hub2_6 | Hub2_5 | Hub2_4 | Hub2_3 | Hub2_2 | Hub2_1 | Hub2_0 |

Table 348. SENSOR_HUB_2 register description

SensorHub2[7:0]	Second byte associated to external sensors
-----------------	--

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (r)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 349. SENSOR_HUB_3 register

Sensor Sensor Sen Hub3_7 Hub3_6 Hub3	5 Hub3 4 Hub3		Sensor Hub3_0
---	---------------	--	------------------

Table 350. SENSOR_HUB_3 register description

S	SensorHub3[7:0]	Third byte associated to external sensors	
---	-----------------	---	--

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (r)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 351. SENSOR_HUB_4 register

Sensor Sensor	Sensor	Sensor	Sensor	Sensor	Sensor	Sensor
Hub4_7 Hub4_6	Hub4_5	Hub4_4	Hub4_3	Hub4_2	Hub4_1	Hub4_0

Table 352. SENSOR_HUB_4 register description

SensorHub4[7:0]	Fourth byte associated to external sensors
-----------------	--

15.5 SENSOR_HUB_5 (06h)

Sensor hub output register (r)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 353. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 354. SENSOR_HUB_5 register description

SensorHub5[7:0]	Fifth byte associated to external sensors	
-----------------	---	--

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (r)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 355. SENSOR_HUB_6 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub6_7 | Hub6_6 | Hub6_5 | Hub6_4 | Hub6_3 | Hub6_2 | Hub6_1 | Hub6_0 |

Table 356. SENSOR_HUB_6 register description

SensorHub6[7:0]	Sixth byte associated to external sensors	
-----------------	---	--

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (r)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 357. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 358. SENSOR_HUB_7 register description

5	SensorHub7[7:0]	Seventh byte associated to external sensors
---	-----------------	---

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (r)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 359. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 360. SENSOR_HUB_8 register description

SensorHub8[7:0]	Eighth byte associated to external sensors
-----------------	--

15.9 SENSOR_HUB_9 (0Ah)

Sensor hub output register (r)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 361. SENSOR_HUB_9 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub9_7 | Hub9_6 | Hub9_5 | Hub9_4 | Hub9_3 | Hub9_2 | Hub9_1 | Hub9_0 |

Table 362. SENSOR_HUB_9 register description

SensorHub9[7:0]	Ninth byte associated to external sensors	
-----------------	---	--

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (r)

Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 363. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 364. SENSOR_HUB_10 register description

SensorHub10[7:0]	Tenth byte associated to external sensors	
------------------	---	--

15.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (r)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 365. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 366. SENSOR_HUB_11 register description

SensorHub11[7:0]	Eleventh byte associated to external sensors
------------------	--

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (r)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 367. SENSOR_HUB_12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 368. SENSOR_HUB_12 register description

SensorHub12[7:0]	Twelfth byte associated to external sensors	
------------------	---	--

15.13 SENSOR_HUB_13 (0Eh)

51

Sensor hub output register (r)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 369. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 370. SENSOR_HUB_13 register description

SensorHub13[7:0]	Thirteenth byte associated to external sensors
------------------	--

15.14 SENSOR_HUB_14 (0Fh)

Sensor hub output register (r)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 371. SENSOR_HUB_14 register

	Sensor Hub14_0	Sensor Hub14_1
--	-------------------	-------------------

Table 372. SENSOR_HUB_14 register description

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (r)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 373. SENSOR_HUB_15 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub15_7 | Hub15_6 | Hub15_5 | Hub15_4 | Hub15_3 | Hub15_2 | Hub15_1 | Hub15_0 |

Table 374. SENSOR_HUB_15 register description

SensorHub15[7:0]	Fifteenth byte associated to external sensors
------------------	---

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (r)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 375. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 376. SENSOR_HUB_16 register description

	SensorHub16[7:0]	Sixteenth byte associated to external sensors	
--	------------------	---	--

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (r)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 377. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub17_7 | Hub17_6 | Hub17_5 | Hub17_4 | Hub17_3 | Hub17_2 | Hub17_1 | Hub17_0 |

Table 378. SENSOR_HUB_17 register description

Senso	rHub17[7:0]	Seventeenth byte associated to external sensors
-------	-------------	---

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (r)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 379. SENSOR_HUB_18 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 380. SENSOR_HUB_18 register description

SensorHub18[7:0]	Eighteenth byte associated to external sensors
------------------	--

15.19 MASTER_CONFIG (14h)

Master configuration register (r/w)

Table 381. MASTER_CONFIG register

RSTWRITE_	START_ PASS_	SHUB_	MASTER	AUX_SENS	AUX_SENS
MASTER_REGS ONCE	CONFIG THROUGH_MODE	PU_EN	_ON	_ON1	_ON0

RST_MASTER_REGS	Reset Master logic and output registers. Must be set to '1' and then set it to '0'. Default value: 0
	Slave 0 write operation is performed only at the first sensor hub cycle.
WRITE ONCE	Default value: 0
WITE_ONCE	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
	Sensor hub trigger signal selection. Default value: 0
START_CONFIG	(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
	1: sensor hub trigger signal external from INT2 pin)
	I ² C interface pass-through. Default value: 0
PASS_THROUGH_MODE	(0: pass-through disabled;
	1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
	Master I ² C pull-up enable. Default value: 0
SHUB_PU_EN	(0: internal pull-up on auxiliary I ² C line disabled;
	1: internal pull-up on auxiliary I ² C line enabled)
MASTER ON	Sensor hub I ² C master enable. Default: 0
MASTER_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
	Number of external sensors to be read by the sensor hub.
	(00: one sensor (default);
AUX_SENS_ON[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors)

Table 382. MASTER_CONFIG register description

15.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (Sensor 1) register (r/w)

Table 383. SLV0_ADD register

slave0_	rw_0						
add6	add5	add4	add3	add2	add1	add0	

Table 384. SLV0_ADD register description

slave0_add[6:0]	I ² C slave address of Sensor1 that can be read by the sensor hub.
slave0_add[6:0]	Default value: 0000000
	Read/write operation on Sensor 1. Default value: 0
rw_0	(0: write operation; 1: read operation)

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (Sensor 1) register (r/w)

Table 385. SLV0_SUBADD register

| slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 386. SLV0_SUBADD register description

slave0_reg[7:0] Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in SLV0_ADD (15h). Default value: 00000000

15.22 SLAVE0_CONFIG (17h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w)

Table 387. SLAVE0_CONFIG register

SHUB_ ODR_1	SHUB_ ODR_0	O ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_0_EN	Slave0_ numop2	Slave0_ numop1	Slave0_ numop0	
----------------	----------------	-------------------------	------------------	-------------------------	-------------------	-------------------	-------------------	--

1. This bit must be set to '0' for the correct operation of the device.

Table 388. SLAVE0_CONFIG register description

	Rate at which the master communicates. Default value: 00
	(00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
SHUB_ODR_[1:0]	01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz);
	10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz);
	11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
BATCH_EXT_SENS_0_EN	Enable FIFO data batching of first slave. Default value: 0
Slave0_numop[2:0]	Number of read operations on Sensor 1. Default value: 000

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (Sensor 2) register (r/w)

Table 389. SLV1_ADD register

Slave1_	r_1						
add6	add5	add4	add3	add2	add1	add0	

Table 390. SLV1_ADD register description

	I ² C slave address of Sensor 2 that can be read by the sensor hub.
Slave1_add[6:0]	Default value: 0000000
r 1	Read operation on Sensor 2 enable. Default value: 0
'_'	(0: read operation disabled; 1: read operation enabled)

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (Sensor 2) register (r/w)

Table 391. SLV1_SUBADD register

| Slave1_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 392. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD (18h).

15.25 SLAVE1_CONFIG (1Ah)

Second external sensor (Sensor 2) configuration register (r/w)

Table 393. SLAVE1_CONFIG register

0 ⁽¹⁾	0(1)	0(1)	0(1)	BATCH_EXT_ SENS_1_EN	Slave1_ numop2	Slave1_ numop1	Slave1_ numop0
------------------	------	------	------	-------------------------	-------------------	-------------------	-------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 394. SLAVE1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enable FIFO data batching of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on Sensor 2. Default value: 000

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (Sensor 3) register (r/w)

Table 395. SLV2_ADD register

Slave2_	r_2						
add6	add5	add4	add3	add2	add1	add0	

Table 396. SLV2_ADD register description

Slave2_add[6:0] I ² C slave address of Sensor 3 that can be read by the sensor hub.					
r)	Read operation on Sensor 3 enable. Default value: 0				
1_2	(0: read operation disabled; 1: read operation enabled)				

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (Sensor 3) register (r/w)

Table 397. SLV2_SUBADD register

| Slave2_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | req5 | req4 | reg3 | req2 | reg1 | reg0 |
| 0 | 0 | 0 | 0 | - 3 - | - 3 | 0 | |

Table 398. SLV2_SUBADD register description

Slave2_reg[7:0] Address of register on Sensor 3 that has to be read/written according to the r_2 bit value in SLV2_ADD (1Bh).

15.28 SLAVE2_CONFIG (1Dh)

Third external sensor (Sensor 3) configuration register (r/w)

Table 399. SLAVE2_CONFIG register

0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0
------------------	------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 400. SLAVE2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enable FIFOdata batching of third slave. Default value: 0
Slave2_numop[2:0]	Number of read operations on Sensor 3. Default value: 000

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (Sensor 4) register (r/w)

Table 401. SLV3_ADD register

Slave3_	r_3						
add6	add5	add4	add3	add2	add1	add0	

Table 402. SLV3_ADD register description

Slave3_add[6:0] I ² C slave address of Sensor 4 that can be read by the sensor hub.					
r 2	Read operation on Sensor 4 enable. Default value: 0				
r_3	(0: read operation disabled; 1: read operation enabled)				

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (Sensor 4) register (r/w)

Table 403. SLV3_SUBADD register

| Slave3_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 404. SLV3_SUBADD register description

Slave3_reg[7:0] Address of register on Sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).

15.31 SLAVE3_CONFIG (20h)

Fourth external sensor (Sensor 4) configuration register (r/w)

Table 405. SLAVE3_CONFIG register

O ⁽¹⁾	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	BATCH_EXT_ SENS_3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0
------------------	------------------	------	------------------	-------------------------	-------------------	-------------------	-------------------

1. This bit must be set to '0' for the correct operation of the device.

Table 406. SLAVE3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enable FIFO data batching of fourth slave. Default value: 0
Slave3_numop[2:0]	Number of read operations on Sensor 4. Default value: 000

15.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (r/w)

Table 407. DATAWRITE_SLV0 register

Slave0_ Slave0_	Slave0_ Slave0_	Slave0_	Slave0_	Slave0_	Slave0_
dataw7 dataw6	dataw5 dataw4	dataw3	dataw2	dataw1	dataw0

Table 408. DATAWRITE_SLV0 register description

	Slove0 detaw[7:0]	Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).
Slave0_dataw[7:0]	Slaveo_ualaw[7.0]	Default value: 00000000

15.33 STATUS_MASTER (22h)

Sensor hub source register (r)

Table 409. STATUS_MASTER register

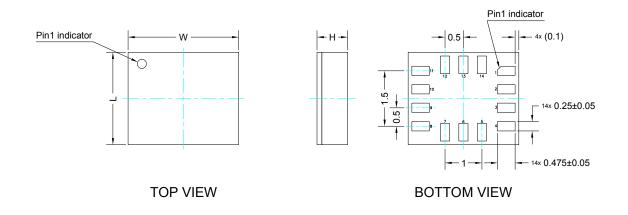
W	/R_ONCE _DONE	SLAVE3_ NACK	SLAVE2_ NACK	SLAVE1_ NACK	SLAVE0_ NACK	0	0	SENS_HUB _ENDOP	
---	------------------	-----------------	-----------------	-----------------	-----------------	---	---	--------------------	--

Table 410. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

16 Soldering information

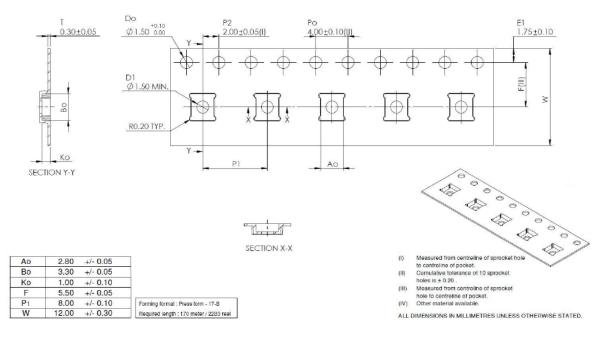
57


The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems.

17 Package information

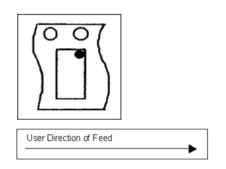
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

17.1 LGA-14L package information


Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX


DM00249496_1

17.2 LGA-14 packing information

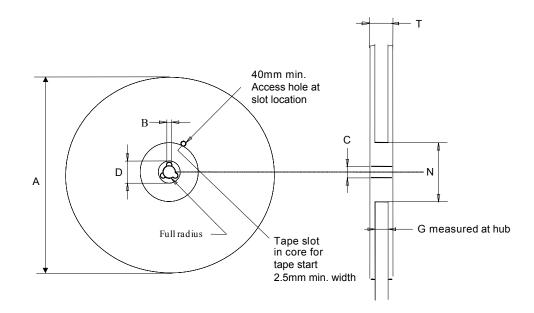


Figure 25. Carrier tape information for LGA-14 package

Figure 27. Reel information for carrier tape of LGA-14 package

Table 411. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

Revision history

Table 412. Document revision history

Date	Version	Changes
31-Jul-2019	3	First public release
		Updated Description, Section 1: Overview, Table 19: Internal pin status
		Updated bit 1 in CTRL9_XL (18h)
02-Oct-2019	4	Removed register 03h
		Updated bit 3 in EMB_FUNC_INIT_B (67h)
		Updated PEDO_CMD_REG (83h)
12-Mar-2020	5	Updated title, added Product resources
12-10101-2020		Updated Table 6. I ² C slave timing values, adding fast mode plus values
26-May-2020	6	Updated description of bits in INT_DUR2 (5Ah)
		Updated linear acceleration self-test output change in Table 2. Mechanical characteristics
20-Nov-2020	7	Updated Note below Figure 6 and Figure 7
		Updated Table 43. Accelerometer ODR selection

Contents

1	Over	view		3
2	Emb	edded	low-power features	4
	2.1	Finite S	State Machine	5
	2.2	Machir	ne Learning Core	6
3	Pin d	lescript	tion	7
	3.1	Pin co	nnections	8
4	Modu	ule spe	cifications	10
	4.1	Mecha	inical characteristics	10
	4.2	Electric	cal characteristics	13
	4.3	Tempe	erature sensor characteristics	13
	4.4	Comm	unication interface characteristics	14
		4.4.1	SPI - serial peripheral interface	14
		4.4.2	I ² C - inter-IC control interface	15
	4.5	Absolu	Ite maximum ratings	16
	4.6	Termin	ology	17
		4.6.1	Sensitivity	17
		4.6.2	Zero-g and zero-rate level	17
5	Digit	al inter	faces	18
	5.1	I ² C/SP	I interface	18
		5.1.1	I ² C serial interface	18
		5.1.2	SPI bus interface.	21
	5.2	Master	r I ² C interface	25
	5.3	Auxilia	ry SPI interface	25
6	Func	tionalit	ty	
	6.1	Operat	ting modes	26
	6.2	Gyroso	cope power modes	26
	6.3	Accele	erometer power modes	26
	6.4	Block	diagram of filters	26
		6.4.1	Block diagrams of the accelerometer filters	27

		6.4.2	Block diagrams of the gyroscope filters	28
	6.5	FIFO		31
		6.5.1	Bypass mode	32
		6.5.2	FIFO mode	32
		6.5.3	Continuous mode	32
		6.5.4	Continuous-to-FIFO mode.	32
		6.5.5	Bypass-to-Continuous mode	32
		6.5.6	Bypass-to-FIFO mode	33
		6.5.7	FIFO reading procedure	33
7	Appli	cation I	hints	34
	7.1	ISM330	DHCX electrical connections in Mode 1	34
	7.2	ISM330	DHCX electrical connections in Mode 2	35
	7.3	ISM330	DHCX electrical connections in Mode 3 and Mode 4	36
8	Regis	ster map	oping	39
9	Regis	ster des	cription	42
	9.1	FUNC_	CFG_ACCESS (01h)	42
	9.2	PIN_CT	RL (02h)	42
	9.3	FIFO_C	CTRL1 (07h)	43
	9.4	FIFO_C	CTRL2 (08h)	43
	9.5	FIFO_C	CTRL3 (09h)	44
	9.6	FIFO_C	CTRL4 (0Ah)	45
	9.7	COUNT	ER_BDR_REG1 (0Bh)	46
	9.8	COUNT	ER_BDR_REG2 (0Ch)	46
	9.9	INT1_C	TRL (0Dh)	47
	9.10	INT2_C	TRL (0Eh)	48
	9.11	WHO_A	AM_I (0Fh)	48
	9.12	CTRL1_	_XL (10h)	49
	9.13	CTRL2	_G (11h)	50
	9.14	CTRL3	_C (12h)	51
	9.15	CTRL4_	_C (13h)	52
	9.16		_C (14h)	

9.17	CTRL6_C (15h)	. 54
9.18	CTRL7_G (16h)	. 55
9.19	CTRL8_XL (17h)	. 56
9.20	CTRL9_XL (18h)	. 58
9.21	CTRL10_C (19h)	. 58
9.22	ALL_INT_SRC (1A)	. 59
9.23	WAKE_UP_SRC (1Bh)	. 60
9.24	TAP_SRC (1Ch)	. 61
9.25	DRD_SRC (1Dh)	. 62
9.26	STATUS_REG (1Eh) / STATUS_SPIAux (1Eh)	. 63
9.27	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	. 64
9.28	OUTX_L_G (22h) and OUTX_H_G (23h)	. 64
9.29	OUTY_L_G (24h) and OUTY_H_G (25h)	. 65
9.30	OUTZ_L_G (26h) and OUTZ_H_G (27h).	. 65
9.31	OUTX_L_A (28h) and OUTX_H_A (29h)	. 66
9.32	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	. 66
9.33	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	. 67
9.34	EMB_FUNC_STATUS_MAINPAGE (35h)	. 67
9.35	FSM_STATUS_A_MAINPAGE (36h)	. 68
9.36	FSM_STATUS_B_MAINPAGE (37h)	. 68
9.37	MLC_STATUS_MAINPAGE (38h)	. 69
9.38	STATUS_MASTER_MAINPAGE (39h)	. 69
9.39	FIFO_STATUS1 (3Ah)	. 70
9.40	FIFO_STATUS2 (3Bh)	. 70
9.41	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) 71
9.42	TAP_CFG0 (56h)	.72
9.43	TAP_CFG1 (57h)	.73
9.44	TAP_CFG2 (58h)	.73
9.45	TAP_THS_6D (59h)	.74
9.46	INT_DUR2 (5Ah)	.74

	9.47	WAKE_UP_THS (5Bh)	.75
	9.48	WAKE_UP_DUR (5Ch)	.75
	9.49	FREE_FALL (5Dh)	.76
	9.50	MD1_CFG (5Eh)	.77
	9.51	MD2_CFG (5Fh)	.78
	9.52	INTERNAL_FREQ_FINE (63h)	. 79
	9.53	INT_OIS (6Fh)	. 80
	9.54	CTRL1_OIS (70h)	. 81
	9.55	CTRL2_OIS (71h)	. 82
	9.56	CTRL3_OIS (72h)	. 83
	9.57	X_OFS_USR (73h)	. 84
	9.58	Y_OFS_USR (74h)	. 84
	9.59	Z_OFS_USR (75h)	. 84
	9.60	FIFO_DATA_OUT_TAG (78h)	. 85
	9.61	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)	. 86
	9.62	FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)	. 86
	9.63	FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)	. 86
10	Embe	edded functions register mapping	.87
11	Embe	edded functions register description	.89
	11.1	PAGE_SEL (02h)	. 89
	11.2	EMB_FUNC_EN_A (04h)	. 89
	11.3	EMB_FUNC_EN_B (05h)	. 90
	11.4	PAGE_ADDRESS (08h)	. 90
	11.5	PAGE_VALUE (09h)	90
	11.6	EMB_FUNC_INT1 (0Ah)	
	11.6 11.7		.91
		EMB_FUNC_INT1 (0Ah)	.91 .92
	11.7	EMB_FUNC_INT1 (0Ah)	.91 .92 .93
	11.7 11.8 11.9	EMB_FUNC_INT1 (0Ah) FSM_INT1_A (0Bh) FSM_INT1_B (0Ch)	.91 .92 .93 .94

11.12	FSM_INT2_B (10h)	97
11.13	MLC_INT2 (11h)	98
11.14	EMB_FUNC_STATUS (12h)	99
11.15	FSM_STATUS_A (13h).	99
11.16	FSM_STATUS_B (14h)	100
11.17	MLC_STATUS (15h)	100
11.18	PAGE_RW (17h)	101
11.19	EMB_FUNC_FIFO_CFG (44h)	101
11.20	FSM_ENABLE_A (46h)	102
11.21	FSM_ENABLE_B (47h)	102
11.22	FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)	103
11.23	FSM_LONG_COUNTER_CLEAR (4Ah)	103
11.24	FSM_OUTS1 (4Ch)	104
11.25	FSM_OUTS2 (4Dh)	104
11.26	FSM_OUTS3 (4Eh).	105
11.27	FSM_OUTS4 (4Fh).	105
11.28	FSM_OUTS5 (50h)	106
11.29	FSM_OUTS6 (51h)	106
11.30	FSM_OUTS7 (52h)	107
11.31	FSM_OUTS8 (53h)	107
11.32	FSM_OUTS9 (54h)	108
	FSM_OUTS10 (55h)	
11.34	FSM_OUTS11 (56h)	109
11.35	FSM_OUTS12 (57h)	109
11.36	FSM_OUTS13 (58h)	110
11.37	FSM_OUTS14 (59h)	110
11.38	FSM_OUTS15 (5Ah)	111
11.39	FSM_OUTS16 (5Bh)	111
11.40	EMB_FUNC_ODR_CFG_B (5Fh)	112
11.41	EMB_FUNC_ODR_CFG_C (60h)	112

	11.42	STEP_0	COUNTER_L (62h) and STEP_COUNTER_H (63h)	. 113
	11.43	EMB_F	UNC_SRC (64h)	. 114
	11.44	EMB_F	UNC_INIT_A (66h)	. 114
	11.45	EMB_F	UNC_INIT_B (67h)	. 115
	11.46	MLC0_	SRC (70h)	. 115
	11.47	MLC1_	SRC (71h)	. 115
	11.48	MLC2_	SRC (72h)	. 116
	11.49	MLC3_	SRC (73h)	. 116
	11.50	MLC4_	SRC (74h)	. 116
	11.51	MLC5_	SRC (75h)	. 116
	11.52	MLC6_	SRC (76h)	. 117
	11.53	MLC7_	SRC (77h)	. 117
12	Embo	edded a	dvanced features pages	. 118
13	Embo	edded a	dvanced features register description	. 121
	13.1	Page 0	- Embedded advanced features registers	121
		13.1.1	MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)	. 121
		13.1.2	MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)	. 122
		13.1.3	MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)	. 122
		13.1.4	MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	. 123
		13.1.5	MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	. 123
		13.1.6	MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	. 124
		13.1.7	MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	. 124
		13.1.8	MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)	. 125
		13.1.9	MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)	. 125
		13.1.10	MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	. 126
		13.1.11	MAG_CFG_A (D4h)	. 127
		13.1.12	MAG_CFG_B (D5h)	. 127
	13.2	Page 1	- Embedded advanced features registers	. 128
		13.2.1	FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)	. 128
		13.2.2	FSM_PROGRAMS (7Ch)	
		13.2.3	FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)	. 129

		13.2.4	PEDO_CMD_REG (83h)	129
		13.2.5	PEDO_DEB_CONF (84h)	129
		13.2.6	PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)	130
		13.2.7	$MLC_MAG_SENSITIVITY_L$ (E8h) and $MLC_MAG_SENSITIVITY_H$ (E9h)	130
14	Sens	or hub	register mapping	131
15	Sens	or hub	register description	133
	15.1	SENSC	DR_HUB_1 (02h)	133
	15.2	SENSC	DR_HUB_2 (03h)	133
	15.3	SENSC	DR_HUB_3 (04h)	133
	15.4	SENSC	DR_HUB_4 (05h)	134
	15.5	SENSC	DR_HUB_5 (06h)	134
	15.6	SENSC	DR_HUB_6 (07h)	134
	15.7	SENSC	DR_HUB_7 (08h)	135
	15.8	SENSC	DR_HUB_8 (09h)	135
	15.9	SENSC	DR_HUB_9 (0Ah)	135
	15.10	SENSC	DR_HUB_10 (0Bh)	136
	15.11	SENSC	DR_HUB_11 (0Ch)	136
	15.12	SENSC	DR_HUB_12 (0Dh)	136
	15.13	SENSC	DR_HUB_13 (0Eh)	137
	15.14	SENSC	DR_HUB_14 (0Fh)	137
	15.15	SENSC	DR_HUB_15 (10h)	137
	15.16	SENSC	DR_HUB_16 (11h)	138
	15.17	SENSC	DR_HUB_17 (12h)	138
	15.18	SENSC	DR_HUB_18 (13h)	138
	15.19	MASTE	R_CONFIG (14h)	139
	15.20	SLV0_A	ADD (15h)	140
	15.21	SLV0_S	SUBADD (16h)	140
	15.22	SLAVE	0_CONFIG (17h)	140
	15.23	SLV1_A	ADD (18h)	141
	15.24	SLV1_S	SUBADD (19h)	141
	15.25	SLAVE	1_CONFIG (1Ah)	141

	15.26	SLV2_ADD (1Bh)
	15.27	SLV2_SUBADD (1Ch)
	15.28	SLAVE2_CONFIG (1Dh)
	15.29	SLV3_ADD (1Eh)
	15.30	SLV3_SUBADD (1Fh)
	15.31	SLAVE3_CONFIG (20h)
	15.32	DATAWRITE_SLV0 (21h)
	15.33	STATUS_MASTER (22h)
16	Solde	ering information
17	Packa	age information
	17.1	LGA-14L package information
	17.2	LGA-14 packing information
Revi	ision h	iistory
Con	tents	
List	of tab	les
List	of figu	ıres

List of tables

Table 1.	Pin description.	. 9
Table 2.	Mechanical characteristics	10
Table 3.	Electrical characteristics	13
Table 4.	Temperature sensor characteristics	13
Table 5.	SPI slave timing values (in mode 3)	14
Table 6.	I ² C slave timing values	15
Table 7.	Absolute maximum ratings	16
Table 8.	Serial interface pin description	18
Table 9.	I ² C terminology	18
Table 10.	SAD+Read/Write patterns.	19
Table 11.	Transfer when master is writing one byte to slave.	
Table 12.	Transfer when master is writing multiple bytes to slave	
Table 13.	Transfer when master is receiving (reading) one byte of data from slave	
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 15.	Master I ² C pin details	
Table 16.	Auxiliary SPI pin details	
Table 17.	Gyroscope LPF2 bandwidth selection	
Table 18.	Internal pin status	
Table 19.	Registers address map.	
Table 20.	FUNC_CFG_ACCESS register	
Table 21.	FUNC_CFG_ACCESS register description	
Table 22.	PIN_CTRL register	
Table 23.	PIN_CTRL register description	
Table 23.	FIFO_CTRL1 register	
Table 25.	FIFO_CTRL1 register description.	
Table 25.	FIFO_CTRL2 register	
Table 20.	FIFO CTRL2 register	
Table 27.	FIFO_CTRL3 register.	
Table 20.	FIFO_CTRL3 register description.	
	FIFO_CTRL4 register	
Table 30. Table 31.	FIFO_CTRL4 register description.	
Table 32.	COUNTER_BDR_REG1 register	
Table 33.		
Table 34.		
Table 35.	COUNTER_BDR_REG2 register description	
Table 36.	INT1_CTRL register	
Table 37.	INT1_CTRL register description	
Table 38.	INT2_CTRL register	
Table 39.	INT2_CTRL register description.	
Table 40.	WhoAml register	
Table 41.	CTRL1_XL register	
Table 42.	CTRL1_XL register description	
Table 43.	Accelerometer ODR selection	
Table 44.	CTRL2_G register	
Table 45.	CTRL2_G register description	
Table 46.	Gyroscope ODR configuration setting.	
Table 47.	CTRL3_C register	
Table 48.	CTRL3_C register description	
Table 49.	CTRL4_C register	
Table 50.	CTRL4_C register description	
Table 51.	CTRL5_C register	
Table 52.	CTRL5_C register description	53

57

Table 53.	Angular rate sensor self-test mode selection	53
Table 54.	Linear acceleration sensor self-test mode selection	53
Table 55.	CTRL6_C register	54
Table 56.	CTRL6_C register description	
Table 57.	Trigger mode selection	
Table 58.	Gyroscope LPF1 bandwidth selection	54
Table 59.	CTRL7_G register	55
Table 60.	CTRL8_XL register	
Table 61.	Accelerometer bandwidth configurations	56
Table 62.	CTRL9_XL register	
Table 63.	CTRL9_XL register description	
Table 64.	CTRL10_C register	
Table 65.	CTRL10_C register description	58
Table 66.	ALL_INT_SRC register	
Table 67.	ALL_INT_SRC register description	59
Table 68.	WAKE_UP_SRC register	
Table 69.	WAKE_UP_SRC register description	30
Table 70.	TAP_SRC register	61
Table 71.	TAP_SRC register description	31
Table 72.	D6D_SRC register	32
Table 73.	D6D_SRC register description	32
Table 74.	STATUS_REG register	33
Table 75.	STATUS_REG register description	33
Table 76.	STATUS_SPIAux register	33
Table 77.	STATUS_SPIAux register description	33
Table 78.	OUT_TEMP_L register	34
Table 79.	OUT_TEMP_H register	34
Table 80.	OUT_TEMP register description.	34
Table 81.	OUTX_L_G register	34
Table 82.	OUTX_H_G register	34
Table 83.	OUTX_H_G register description.	34
Table 84.	OUTY_L_G register	35
Table 85.	OUTY_H_G register	35
Table 86.	OUTY_H_G register description.	35
Table 87.	OUTZ_L_G register	35
Table 88.	OUTZ_H_G register	
Table 89.	OUTZ_H_G register description.	
Table 90.	OUTX_L_A register	
Table 91.	OUTX_H_A register	36
Table 92.	OUTX_H_A register description	36
Table 93.	OUTY_L_A register	
Table 94.	OUTY_H_A register	36
Table 95.	OUTY_H_A register description	36
Table 96.	OUTZ_L_A register	37
Table 97.	OUTZ_H_A register	37
Table 98.	OUTZ_H_A register description	37
Table 99.	EMB_FUNC_STATUS_MAINPAGE register	37
Table 100.	EMB_FUNC_STATUS_MAINPAGE register description	
	FSM_STATUS_A_MAINPAGE register	
	FSM_STATUS_A_MAINPAGE register description	
	FSM_STATUS_B_MAINPAGE register	
	FSM_STATUS_B_MAINPAGE register description	
Table 105.	MLC_STATUS_MAINPAGE register	69
	MLC_STATUS_MAINPAGE register description	

	STATUS_MASTER_MAINPAGE register	
	STATUS_MASTER_MAINPAGE register description	
	FIFO_STATUS1 register	
	FIFO_STATUS1 register description	
	FIFO_STATUS2 register	
	FIFO_STATUS2 register description	
	TIMESTAMP3 register	
	TIMESTAMP2 register	
	TIMESTAMP1 register	
Table 116.	TIMESTAMP0 register	71
Table 117.	TAP_CFG0 register 7	72
Table 118.	TAP_CFG0 register description	72
Table 119.	TAP_CFG1 register	73
Table 120.	TAP_CFG1 register description	73
Table 121.	TAP priority decoding	73
Table 122.	TAP_CFG2 register	73
Table 123.	TAP_CFG2 register description	73
Table 124.	TAP_THS_6D register	74
Table 125.	TAP_THS_6D register description	74
Table 126 .	INT_DUR2 register	74
	INT_DUR2 register description	
	WAKE_UP_THS register. 7	
	WAKE_UP_THS register description	
	WAKE_UP_DUR register	
	WAKE_UP_DUR register description	
	FREE_FALL register	
	FREE_FALL register description	
	MD1_CFG register	
	MD1_CFG register description	
	MD2_CFG register	
	MD2_CFG register description	
	INTERNAL_FREQ_FINE register	
	INTERNAL FREQ FINE register description	
	INT_OIS register	
	INT_OIS register description	
	CTRL1 OIS register.	
	CTRL1_OIS register description.	
	DEN mode selection.	
	CTRL2_OIS register	
	CTRL2_OIS register description.	
	Gyroscope OIS chain digital LPF1 filter bandwidth selection	
	CTRL3_OIS register.	
	CTRL3_OIS register description.	
	Accelerometer OIS channel bandwidth and phase	
	Self-test nominal output variation	
	X_OFS_USR register	
	X_OFS_USR register description	
	Y_OFS_USR register	
	Z_OFS_USR register	
	FIFO_DATA_OUT_TAG register.	
	FIFO_DATA_OUT_TAG register description	
iadie 160.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers	50

Table 161.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description	86
Table 162.	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	86
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description	
	Register address map - embedded functions	
	PAGE_SEL register	
	PAGE_SEL register description	
	EMB_FUNC_EN_A register.	
	EMB_FUNC_EN_A register description	
	EMB_FUNC_EN_B register.	
	EMB_FUNC_EN_B register description	
	PAGE_ADDRESS register	
	PAGE_ADDRESS register description	
	PAGE_VALUE register	
	PAGE_VALUE register description	
	EMB_FUNC_INT1 register	
	EMB_FUNC_INT1 register description	
	FSM_INT1_A register.	
	FSM_INT1_A register description.	
	FSM_INT1_B register.	
	FSM_INT1_B register description.	
	MLC_INT1 register.	
	MLC_INT1 register description	
	EMB_FUNC_INT2 register	
Table 186.	EMB_FUNC_INT2 register description	95
Table 187.	FSM_INT2_A register.	96
Table 188.	FSM_INT2_A register description.	96
Table 189.	FSM_INT2_B register.	97
Table 190.	FSM_INT2_B register description.	97
Table 191.	MLC_INT2 register.	98
Table 192.	MLC_INT2 register description	98
Table 193.	EMB_FUNC_STATUS register.	99
Table 194.	EMB_FUNC_STATUS register description.	99
Table 195.	FSM_STATUS_A register	99
	FSM_STATUS_A register description	
	FSM STATUS B register	
	FSM_STATUS_B register description	00
	MLC_STATUS register	
	MLC_STATUS register description	
	PAGE_RW register	
	PAGE_RW register description	
	EMB_FUNC_FIFO_CFG register	
		01
		02
Table 206	FSM_ENABLE_A register description	
	FSM_ENABLE_B register 10 FSM_ENABLE_B register description 10	
	FSM_LONG_COUNTER_L register	
	FSM_LONG_COUNTER_L register description	
	FSM_LONG_COUNTER_H register	
	FSM_LONG_COUNTER_H register description	
	FSM_LONG_COUNTER_CLEAR register	
iable 214.	FSM_LONG_COUNTER_CLEAR register description	13

Table 045		
	FSM_OUTS1 register	
	FSM_OUTS1 register description	
Table 217.	FSM_OUTS2 register)4
Table 218.	FSM_OUTS2 register description)4
Table 219.	FSM_OUTS3 register)5
	FSM_OUTS3 register description	
	FSM_OUTS4 register	
	FSM_OUTS4 register description	
	FSM_OUTS5 register	
	FSM_OUTS5 register description	
	FSM_OUTS6 register	
	- · ·	
	FSM_OUTS6 register description	
	FSM_OUTS7 register	
	FSM_OUTS7 register description	
	FSM_OUTS8 register	
	FSM_OUTS8 register description	
Table 231.	FSM_OUTS9 register)8
Table 232.	FSM_OUTS9 register description)8
Table 233.	FSM_OUTS10 register)8
Table 234.	FSM_OUTS10 register description)8
	FSM_OUTS11 register	
	FSM_OUTS11 register description	
	FSM_OUTS12 register	
	FSM_OUTS12 register description	
	FSM_OUTS13 register	
	FSM_OUTS13 register description	
	FSM_OUTS14 register	
	FSM_OUTS14 register description	
	FSM_OUTS15 register	
Table 244.	FSM_OUTS15 register description	11
Table 245.	FSM_OUTS16 register	11
Table 246.	FSM_OUTS16 register description	11
Table 247.	EMB_FUNC_ODR_CFG_B register	2
	EMB_FUNC_ODR_CFG_B register description	
	EMB_FUNC_ODR_CFG_C register	
	EMB_FUNC_ODR_CFG_C register description	
	STEP_COUNTER_L register	
	STEP_COUNTER_L register description	
	STEP_COUNTER_H register	
	STEP_COUNTER_H register description	
	EMB_FUNC_SRC register	
	EMB_FUNC_SRC register description	
	EMB_FUNC_INIT_A register	
	EMB_FUNC_INIT_A register description	
	EMB_FUNC_INIT_B register	
Table 260.	EMB_FUNC_INIT_B register description	5
	MLC0_SRC register	
Table 262.	MLC0_SRC register description	5
	MLC1_SRC register	
	MLC1_SRC register description	
	MLC2_SRC register	
	MLC2_SRC register description	
	MLC3_SRC register	
	MLC3_SRC register description	
10010 200.		5

Table 269	MLC4_SRC register	116
	MLC4_SRC register description.	
	MLC5_SRC register	
	MLC5_SRC register description.	
	MLC6_SRC register description.	
	MLC7_SRC register	
	MLC7_SRC register description.	
	Register address map - embedded advanced features page 0	
	Register address map - embedded advanced features page 1	
	MAG_SENSITIVITY_L register	
	MAG_SENSITIVITY_L register description	
	MAG_SENSITIVITY_H register	
	MAG_SENSITIVITY_H register description	
	MAG_OFFX_L register	
	MAG_OFFX_L register description	
	MAG_OFFX_H register.	
	MAG_OFFX_H register description	
	MAG_OFFY_L register.	
	MAG_OFFY_L register description.	
	MAG_OFFY_H register.	
	MAG_OFFY_H register description	
	MAG_OFFZ_L register	
	MAG_OFFZ_L register description	
	MAG_OFFZ_H register.	
	MAG_OFFZ_H register description	
	MAG_SI_XX_L register.	
	MAG_SI_XX_L register description	
	MAG_SI_XX_H register	
	MAG_SI_XX_H register description	
	MAG_SI_XY_L register.	
	MAG_SI_XY_L register description	
	MAG_SI_XY_H register	
	MAG_SI_XY_H register description	
Table 303.	MAG_SI_XZ_L register.	124
	MAG_SI_XZ_L register description	
Table 305.	MAG_SI_XZ_H register	124
Table 306.	MAG_SI_XZ_H register description	124
Table 307.	MAG_SI_YY_L register.	125
Table 308.	MAG_SI_YY_L register description	125
Table 309.	MAG_SI_YY_H register	125
Table 310.	MAG_SI_YY_H register description	125
Table 311.	MAG_SI_YZ_L register.	125
Table 312.	MAG_SI_YZ_L register description	125
	MAG_SI_YZ_H register	
Table 314.	MAG_SI_YZ_H register description	125
	MAG_SI_ZZ_L register.	
	MAG_SI_ZZ_L register description.	
	MAG_SI_ZZ_H register	
	MAG_SI_ZZ_H register description	
	MAG_CFG_A register	
		127
	MAG_CFG_B register	127
	MAG_CFG_B register description	

Table 323	FSM LC TIMEOUT L register	128
	FSM_LC_TIMEOUT_L register description	
	FSM_LC_TIMEOUT_H register	
	FSM_LC_TIMEOUT_H register description	
	FSM_PROGRAMS register	
	FSM_PROGRAMS register description	
	FSM_START_ADD_L register	
	FSM_START_ADD_L register description	
Table 331.	FSM_START_ADD_H register	129
Table 332.	FSM_START_ADD_H register description	129
Table 333.	PEDO_CMD_REG register	129
Table 334.	PEDO_CMD_REG register description	129
Table 335.	PEDO_DEB_STEPS_CONF register 1	129
Table 336.	PEDO_DEB_STEPS_CONF register description 1	129
	PEDO_SC_DELTAT_L register	
	PEDO_SC_DELTAT_H register	
	PEDO_SC_DELTAT_H/L register description	
	MLC_MAG_SENSITIVITY_L register	
	MLC_MAG_SENSITIVITY_L register description	
	MLC_MAG_SENSITIVITY_H register	
	MLC_MAG_SENSITIVITY_H register description.	
	Registers address map.	
	SENSOR HUB 1 register	
	SENSOR_HUB_1 register description	
	SENSOR_HUB_2 register	
	SENSOR_HUB_2 register description	
	SENSOR_HUB_3 register description	
	SENSOR_HUB_3 register description	
	SENSOR_HUB_4 register	
	SENSOR_HUB_4 register description	
	SENSOR_HUB_5 register	
	SENSOR_HUB_5 register description	
	SENSOR_HUB_6 register	
	SENSOR_HUB_6 register description 1	
	SENSOR_HUB_7 register	
Table 358.	SENSOR_HUB_7 register description 1	135
Table 359.	SENSOR_HUB_8 register	135
Table 360.	SENSOR_HUB_8 register description 1	135
Table 361.	SENSOR_HUB_9 register	135
Table 362.	SENSOR_HUB_9 register description 1	135
	SENSOR_HUB_10 register	
	SENSOR_HUB_10 register description	
	SENSOR_HUB_11 register	
	SENSOR_HUB_11 register description	
	SENSOR_HUB_12 register	
	SENSOR_HUB_12 register description.	
	SENSOR_HUB_13 register	
	SENSOR_HUB_13 register description.	
	SENSOR_HUB_14 register	
	SENSOR_HUB_14 register description.	
	SENSOR_HUB_15 register.	
	SENSOR_HUB_15 register description.	
	SENSOR_HUB_16 register	
14116 310.	SENSOR_HUB_16 register description	100

Table 377.	SENSOR_HUB_17 register.	138
Table 378.	SENSOR_HUB_17 register description.	138
Table 379.	SENSOR_HUB_18 register.	138
Table 380.	SENSOR_HUB_18 register description.	138
Table 381.	MASTER_CONFIG register.	139
Table 382.	MASTER_CONFIG register description	139
	SLV0_ADD register	
Table 384.	SLV0_ADD register description	140
	SLV0_SUBADD register	
	SLV0_SUBADD register description	
	SLAVE0_CONFIG register	
Table 388.	SLAVE0_CONFIG register description	140
	SLV1_ADD register	
Table 390.	SLV1_ADD register description	141
	SLV1_SUBADD register	
Table 392.	SLV1_SUBADD register description	141
	SLAVE1_CONFIG register	
	SLAVE1_CONFIG register description	
Table 395.	SLV2_ADD register	142
	SLV2_ADD register description	
Table 397.	SLV2_SUBADD register	142
	SLV2_SUBADD register description	
	SLAVE2_CONFIG register	
	SLAVE2_CONFIG register description	
	SLV3_ADD register	
	SLV3_ADD register description	
	SLV3_SUBADD register	
	SLV3_SUBADD register description	
Table 405.	SLAVE3_CONFIG register	143
Table 406.	SLAVE3_CONFIG register description	143
	DATAWRITE_SLV0 register.	
	DATAWRITE_SLV0 register description	
	STATUS_MASTER register	
	STATUS_MASTER register description.	
	Reel dimensions for carrier tape of LGA-14 package	
Table 412.	Document revision history.	149

List of figures

Figure 1.	Generic state machine.	. 5
Figure 2.	State machine in the ISM330DHCX.	. 5
Figure 3.	Machine Learning Core in the ISM330DHCX	. 6
Figure 4.	Pin connections	. 7
Figure 5.	ISM330DHCX connection modes	. 8
Figure 6.	SPI slave timing diagram (in mode 3)	14
Figure 7.	I ² C slave timing diagram	15
Figure 8.	Read and write protocol (in mode 3)	21
Figure 9.	SPI read protocol (in mode 3)	22
Figure 10.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	22
Figure 11.	SPI write protocol (in mode 3).	23
Figure 12.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	23
Figure 13.	SPI read protocol in 3-wire mode (in mode 3)	24
Figure 14.	Block diagram of filters	26
Figure 15.	Accelerometer GP chain	27
Figure 16.	Accelerometer composite filter	27
Figure 17.	Accelerometer chain with Mode 4 enabled	28
Figure 18.	Gyroscope digital chain - Mode 1 (GP) and Mode 2	28
Figure 19.	Gyroscope digital chain - Mode 3 / Mode 4 (OIS)	29
Figure 20.	ISM330DHCX electrical connections in Mode 1	34
Figure 21.	ISM330DHCX electrical connections in Mode 2	35
Figure 22.	ISM330DHCX electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)	36
Figure 23.	Accelerometer block diagram	57
Figure 24.	LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data 1	46
Figure 25.	Carrier tape information for LGA-14 package 1	47
Figure 26.	LGA-14 package orientation in carrier tape	47
Figure 27.	Reel information for carrier tape of LGA-14 package 1	48

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved