

DG1000Z Series Function/Arbitrary Waveform Generator

- SiFi (Signal Fidelity) for 100% waveform replication
- 2Mpts or 8Mpts/CH(std.), 16Mpts/CH (opt.) arbitrary waveform length
- Standard 2 full functional independent channels
- ±1ppm frequency stability, -125dBc/Hz phase noise, 200ps low jitter
- Built-in 8 orders harmonics generator
- Built-in 7 digits/s counter up to 200MHz
- 160 built-in pre-edited waveforms
- Intuitive arbitrary waveform editing software
- Full modulation supported: AM, FM, PM, ASK, FSK, PSK and PWM

DG1000Z series function/arbitrary waveform generator is a multifunctional generator that combines many functions in one, including Function Generator, Arbitrary Waveform Generator, Noise Generator, Pulse Generator, Harmonics Generator, Analog/Digital Modulator and Counter. As a multi-functional, high performance and portable generator, it will be a new selection in education, R&D, production, test and etc.

DG1000Z Series Function/Arbitrary Waveform Generator

Dimensions: Width \times Height \times Depth=261.5mm \times 112mm \times 318.4mm Weight: 3.2kg (without package)

Feature and Benefits

Standard 2 full functional channels

SiFi

Arbitrary waveform function with innovative SiFi technology

Up to 160 built-in waveforms

Burst function

Multiple analog and digital modulations

Sweep function

Standard harmonic generator

Waveform summing function

Standard 7 digits/s full function frequency counter with 200MHz bandwidth

Channels and system setting

In line with LXI Core 2011 Device

File Management Function

Specifications

All the specifications can be guaranteed if the following two conditions are met unless where noted. \cdot The generator is within the calibration period and has performed self-calibration.

- The generator has been working continuously for at least 30 minutes under the specified temperature (18°C ~ 28°C).

All the specifications are guaranteed unless those marked with "typical".

Model	DG1022Z	DG1032Z	DG1062Z	
Channel	2	2	2	
Max Frequency	25 MHz	30 MHz	60 MHz	
Sample Rate	200 MSa/s	332		
oumple rate	200 1000/0			
Waveform				
Basic Waveform	Sine Square Ramn	Pulse Noise		
Built-in Arbitrary Waveform	Sine, Square, Ramp, Pulse, Noise 160 kinds, including Sinc, Exponential Rise, Exponential Fall, ECG, Gauss, HaverSine, Lorentz, Dual-Tone, etc.			
Frequency Characteristics				
Sine	1 μHz to 25 MHz	1 µHz to 30 MHz	1 µHz to 60 MHz	
Square	1 µHz to 25 MHz	1 μHz to 25 MHz	1 μHz to 25 MHz	
Ramp	1 μHz to 500 kHz	1 μHz to 500 kHz	1 μHz to 1 MHz	
Pulse	1 µHz to 15 MHz	1 µHz to 15 MHz	1 μHz to 25 MHz	
Harmonic	1uHz to 10 MHz	1 μHz to 10 MHz	1uHz to 20 MHz	
Noise (-3dB)	25 MHz bandwidth	30 MHz bandwidth	60 MHz bandwidth	
Arbitrary Waveform	1 μHz to 10 MHz	1 µHz to 10 MHz	1 μHz to 20 MHz	
Resolution	1 μHz			
Accuracy	±1 ppm of the setting	value, 18°C to 28°C		
Sine Wave Spectrum Purity				
Harmonic Distortion	Typical (0 dBm) DC-10 MHz (included): <-65 dBc 10 MHz to 30 MHz (included): <-55 dBc 30 MHz to 60 MHz (included): <-50 dBc			
Total Harmonic Distortion	<0.075% (10 Hz to 20	<0.075% (10 Hz to 20 kHz, 0 dBm)		
Spurious (non-harmonic)	Typical (0 dBm) ≤10 MHz: <-70 dBc >10 MHz: <-70 dBc +	Typical (0 dBm)		
Phase Noise	` ` `	Typical (0 dBm, 10 kHz offset) 10 MHz: <-125 dBc/Hz		
Signal Characteristics				
Square	T : 1/43/			
Rise/Fall Time	<10ns			
Overshoot	≤5%	Typical (100 kHz, 1 Vpp) ≤5%		
Duty Cycle	,	ited by the current frequency s	etting)	
Non-symmetry	1% of the period + 5 r	ns		
Jitter (rms)		Typical (1 Vpp) ≤5 MHz: 2 ppm + 200 ps > 5 MHz: 200 ps		
Ramp				
Linearity		ypical, 1 kHz, 1 VPP, 100% syı	nmetry)	
Symmetry	0% to 100%			
Pulse				
Pulse Width	16ns to 999.999 982	118ks (limited by the current fre	equency setting)	
Duty Cycle	0.001% to 99.999% (I	0.001% to 99.999% (limited by the current frequency setting)		
Rising/Falling Edge	≥10 ns (limited by the	current frequency setting and	pulse width setting)	
Overshoot	Typical (1 Vpp) ≤5%			
Jitter (rms)	Typical (1 Vpp) <5 MHz 2 ppm + 200 ps > 5 MHz 200 ps			
Arbitrary Waveform	<u>-</u>			
,	2Mpts (std.) 8Mpts (std.) 8Mpts (std.) 16Mpts (opt.) 16Mpts (opt.) 16Mpts (opt.)			

Vertical Resolution	14 bits
Sample Rate	200MSa/s
Min Rise/Fall Time	Typical (1 Vpp) <10 ns
Jitter (rms)	Typical (1 Vpp) ≤5 MHz: 2 ppm + 200 ps
E dittion of Manager	> 5 MHz: 200 ps
Editing Mode	Point Edit, Block Edit, Insert Waveform
Harmonic Output	70
Harmonic Order	≤8
Harmonic Type	Even Harmonic, Odd harmonic, Order Harmonic, User
Harmonic Amplitude	The amplitude of each order of harmonic can be set
Harmonic Phase	The phase of each order of harmonic can be set
Output Characteristics	
Amplitude (into 50 Ω)	
Amplitude (into 50 12)	≤10 MHz: 1.0 mVpp to 10 Vpp
Range	≤30 MHz: 1.0 mVpp to 5.0 Vpp
rtango	≤60 MHz: 1.0 mVpp to 2.5 Vpp
	Typical (1 kHz sine, 0 V offset, >10 mVpp, auto)
Accuracy	±(1% of the setting value) ±1 mV
	Typical (sine, 2.5 Vpp)
Flatness	≤10 MHz: ±0.1 dB
	≤60 MHz: ±0.2 dB
Unit	Vpp, Vrms, dBm
Resolution	0.1mVpp or 4 digits
Offset (into 50 Ω)	
Range (Peak ac+dc)	±5Vpk ac+dc
Accuracy	±(1% of the setting value + 5mV + 0.5% of the amplitude)
Waveform Output	
Output Impedance	50Ω (typical)
Protection	Short-circuit protection, automatically disable the waveform output when overload occurs
Madulatian Chanastanistian	
Modulation Characteristics	
Modulation Type AM	AM, FM, PM, ASK, FSK, PSK, PWM
Carrier Waveform	Sine, Square, Ramp, Arb (except DC)
Source	Internal/External
Modulating Waveform	Sine, Square, Ramp, Noise, Arb
Modulation Depth	0% to 120%
Modulating Frequency	2 mHz to 1 MHz
FM	2 111112 (0 1 191112
Carrier Waveform	Sine, Square, Ramp, Arb (except DC)
Source	Internal/External
Modulating Waveform	Sine, Square, Ramp, Noise, Arb
Modulating Frequency	2 mHz to 1 MHz
PM	
Carrier Waveform	Sine, Square, Ramp, Arb (except DC)
Source	Internal/External
Modulating Waveform	Sine, Square, Ramp, Noise, Arb
Phase Deviation	0° to 360°
Modulating Frequency	2 mHz to 1 MHz
ASK	
Carrier Waveform	Sine, Square, Ramp, Arb (except DC)
Source	Internal/External
Modulating Waveform	Square with 50% duty cycle
Key Frequency	2 mHz to 1 MHz
FSK	
Carrier Waveform	Sine, Square, Ramp, Arb (except DC)
Source	Internal/External
Modulating Waveform	Square with 50% duty cycle
	2 mHz to 1 MHz
Key Frequency	
PSK	
	Sine, Square, Ramp, Arb (except DC) Internal/External

Square with 50% duty cycle		
∠ MHZ to 1 MHZ		
Dulas		
11 1 11 1		
·		
2 mHz to 1 MHz		
75 mVRMS to ±5 Vac + dc		
50 kHz		
10ΚΩ		
	2mHz to 30MHz	2 mHz to 60 MHz
1 to 1,000,000 or Infinite		
0° to 360°, 0.1° resolution		
1 μs to 500 s		
External Trigger		
Internal, External or Manual		
0 ns to 100 s		
Sine, Square, Ramp, Arb (exce	pt DC)	
• ,		
·		
'	/	
Talling edge of the syric signal	(programmable)	
5 5 15 3 41		
Frequency, Period, Positive/Ne		
7 digits/second (Gate Time = 1s		
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz	5)	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range		
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz	5)	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range	5)	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal)	5ns to 16 days	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range	5ns to 16 days ±1.5 Vdc	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz	5) 5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc	
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp	
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp	
7 digits/second (Gate Time = 1s 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp	DC Coupling
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 200 MHz 1 µHz to 300 MHz Measurement 1 µHz to 25 MHz	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns	DC Coupling
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 1 µHz to 500 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns	DC Coupling
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 200 MHz 1 µHz to 300 MHz Measurement 1 µHz to 25 MHz Min Pulse Width	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns	DC Coupling
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display)	50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 500 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage	50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Input Impedance = 1 MΩ
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display)	5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz;	
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode	50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Input Impedance = 1 MΩ
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection	b) 5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis volume = 200 MHz of the control of the	Input Impedance = 1 MΩ DC
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection Trigger Level Range Trigger Sensitivity Range	b) 5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis vo hysteresis voltage)	Input Impedance = 1 MΩ DC
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection Trigger Level Range Trigger Sensitivity Range GateTime1	b) 5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis volysteresis voltage) 1.310ms	Input Impedance = 1 MΩ DC
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection Trigger Level Range Trigger Sensitivity Range GateTime1 GateTime2	±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis vo hysteresis voltage) 1.310ms 10.48ms	Input Impedance = 1 MΩ DC
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection Trigger Level Range Trigger Sensitivity Range GateTime1 GateTime2 GateTime3	b) 5ns to 16 days ±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis vo hysteresis voltage) 1.310ms 10.48ms 166.7ms	Input Impedance = 1 MΩ DC
7 digits/second (Gate Time = 1st 1 µHz to 200 MHz Measurement Range y (non-modulating signal) DC Offset Range 1µHz to 100 MHz 100 MHz to 200 MHz 1 µHz to 100 MHz 100 MHz to 200 MHz Measurement 1 µHz to 25 MHz Min Pulse Width Pulse Width Resolution Measurement Range (display) Breakdown Voltage Coupling Mode High-frequency Rejection Trigger Level Range Trigger Sensitivity Range GateTime1 GateTime2	±1.5 Vdc 50 mVRMS to ±2.5 Vac + dc 100 mVRMS to ±2.5 Vac + dc 50 mVRMS to ±2.5 Vpp 100 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vpp 50 mVRMS to ±2.5 Vac + dc ≥20 ns 5 ns 0% to 100% ±7Vac+dc AC On: Input Bandwidth = 250 kHz; Off: Input Bandwidth = 200 MHz -2.5V to +2.5V 0% (about 140 mV hysteresis vo hysteresis voltage) 1.310ms 10.48ms	Input Impedance = 1 MΩ DC
	Pulse Internal/External Sine, Square, Ramp, Noise, Art 0% to 100% of the pulse width 2 mHz to 1 MHz 75 mVRMS to ±5 Vac + dc 50 kHz 10KΩ Sine, Square, Ramp, Pulse, No 2mHz to 25MHz 1 to 1,000,000 or Infinite 0° to 360°, 0.1° resolution 1 μs to 500 s External Trigger Internal, External or Manual 0 ns to 100 s Sine, Square, Ramp, Arb (exce Linear, Log or Step Up or Down The same with the upper/lower 1 ms to 500 s 0 ms to 500 s Internal, External or Manual	Pulse Internal/External Sine, Square, Ramp, Noise, Arb 0% to 100% of the pulse width 2 mHz to 1 MHz 75 mVRMS to ±5 Vac + dc 50 kHz 10KΩ Sine, Square, Ramp, Pulse, Noise, Arb (except DC) 2mHz to 25MHz 2 mHz to 30MHz 1 to 1,000,000 or Infinite 0° to 360°, 0.1° resolution 1 μs to 500 s External Trigger Internal, External or Manual 0 ns to 100 s Sine, Square, Ramp, Arb (except DC) Linear, Log or Step Up or Down The same with the upper/lower limit of the corresponding carrier frequent ms to 500 s 0 ms to 500 s

Trigger Characteristics	
Trigger Input	
Level	TTL-compatible
Slope	Rising or falling (selectable)
Pulse Width	>100ns
Latency	Sweep: <100 ns (typical) Burst: <300 ns (typical)
Trigger Output	
Level	TTL-compatible
Pulse Width	> 60 ns (typical)
Maximum Frequency	1 MHz

Two-channel Characteristics - Phase Offset		
Range	0° to 360°	
Waveform Phase Resolution	0.03°	

Reference Clock	
External Reference Input	
Lock Range	10 MHz ± 50 Hz
Level	250 mVpp to 5 Vpp
Lock Time	<2s
Input Impedance (Typical)	1 kΩ, AC coupling
Internal Reference Output	
Frequency	10 MHz ± 50 Hz
Level	3.3 Vpp
Input Impedance (Typical)	50 Ω, AC coupling

Sync Output	
Level	TTL-compatible
Impedance	50 Ω, nominal value

Overvoltage Protection

Occurred when:

- The instrument amplitude setting is greater than 2Vpp or the output offset is greater than |2Vpc| and the input voltage is greater than ±11.5 × (1 ± 5%)V (<10kHz).
- The instrument amplitude setting is lower than or equal to 2Vpp or the output offset is lower than or equal to |2Vpc| and the input voltage is greater than ±3.5 × (1 ± 5%)V (<10kHz).</p>

Power Supply	
Power Voltage	100 V to 240 V (45 Hz to 440 Hz)
Power Consumption	Lower than 40 W
Fuse	250 V, T3.15 A
Display	
Туре	3.5-inch TFT LCD
Resolution	320 horizontal × RGB × 240 vertical resolution
Color	16 M color
Environment	
Temperature Range	Operating: 0°C to 50°C Non-operating: -40°C to 70°C
Cooling Method	Fan cooling
Humidity Range	Lower than 30°C : ≤95% relative humidity 30°C to 40°C : ≤75% relative humidity 40°C to 50°C : ≤45% relative humidity
Altitude	Operating: below 3000 meters Non-operating: below 15,000 meters
Mechanical	
Dimensions (W×H×D)	261.5 mm × 112 mm × 318.4 mm
Weight	Without Package: 3.2 kg With Package: 4.5 kg
Interfaces	USB Host, USB Device, LAN
IP Protection	IP2X
Calibration Interval	1 year recommended calibration interval

Certification Information	1	
	in line with EN61326-1:2006	
	IEC 61000-3-2:2000	±4.0kV (contact discharge) ±4.0kV (air discharge)
	IEC 61000-4-3:2002	3 V/m (80 MHz to 1 GHz) 3 V/m (1.4 GHz to 2 GHz) 1 V/m (2.0 GHz to 2.7 GHz)
	IEC 61000-4-4:2004	1 kV power lines
EMC	IEC 61000-4-5:2001	0.5kV (Phase to Neutral) 0.5kV (Phase to PE) 1 kV (Neutral to PE)
	IEC 61000-4-6:2003	3V,0.15MHz-80MHz
	IEC 61000-4-11:2004	Voltage dip: 0 % UT during half cycle 0 % UT during 1 cycle 70 % UT during 25 cycles Short interruption: 0 % UT during 1 cycle
Electrical Safety	Electrical Safety in line with USA:UL 61010-1:2012, Canada: CAN/CSA-C22.2 No. 61010-1-2012 EN 61010-1:2010	

Ordering Information

	Description	Order Number
	DG1022Z (25MHz, Dual-channel)	DG1022Z
Model	DG1032Z (30MHz, Dual-channel)	DG1032Z
	DG1062Z (60MHz, Dual-channel)	DG1062Z
	Power Cord	-
	USB Cable	CB-USBA-USBB-FF-150
Standard Accessories	BNC Cable	CB-BNC-BNC-MM-100
	Quick Guide	-
	Resource CD (including User's Guide and etc.)	-
	16Mpts Memory for Arb	Arb16M-DG1000Z
	Rack Mount Kit (for single instrument)	RM-1-DG1000Z
Ontions	Rack Mount Kit (for dual instruments)	RM-2-DG1000Z
Options	40dB Attenuator	RA5040K
	10W Power Amplifier	PA1011
	USB-GPIB Converter	USB-GPIB

HEADQUARTER

RIGOL TECHNOLOGIES, INC. No.156,Cai He Village, Sha He Town, Chang Ping District, Beijing, 102206 P.R.China Tel:+86-10-80720067 Electronic Measurement Instrument service and support email:EMD_support@rigol.com

EUROPE

RIGOL TECHNOLOGIES GmbH Lindbergh str. 4 82178 Puchheim Germany Tel: 0049- 89/89418950 Email: info-europe@rigoltech.com

NORTH AMERICA

RIGOL TECHNOLOGIES, USA INC. 10200 SW Allen Blvd, Suite C Beaverton, OR 97005, USA Toll free: 877-4-RIGOL-1 Office: 440-232-4488 Fax: 877-474-4651 Email: info@rigol.com

JAPAN

RIGOL TECHNOLOGIES JAPAN G.K. MJ BLDG.3F,1-7-4 MINATO,CHUOU-KU,TOKYO,JAPAN 〒 104-0043 Tel: 03-6262-8932 Fax: 03-6262-8933 Email: info-japan@rigol.com

RIGOL® is the registered trademark of **RIGOL** Technologies, Inc. Product information in this document subject to update without notice. For the latest information about **RIGOL**'s products, applications and services, please contact local **RIGOL** office or access **RIGOL** official website: www.rigol.com

