Complementary General Purpose Transistor

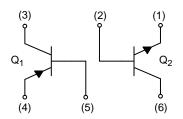
The NST3946DXV6T1 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

- h_{FE}, 100-300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Table 1. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage (NPN) (PNP)	V _{CEO}	40 -40	Vdc
Collector – Base Voltage (NPN) (PNP)	V _{CBO}	60 -40	Vdc
Emitter – Base Voltage (NPN) (PNP)	V _{EBO}	6.0 -5.0	Vdc
Collector Current – Continuous (NPN) (PNP)	I _C	200 -200	mAdc
Electrostatic Discharge	ESD	HBM>16000, MM>2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

http://onsemi.com

SOT-563 CASE 463A

NST3946DXV6T1*

*Q1 PNP Q2 NPN

MARKING DIAGRAM

46 = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NST3946DXV6T1G	SOT-563 (Pb-Free)	4,000 / Tape & Reel
NSVT3946DXV6T1G	SOT-563 (Pb-Free)	4,000 / Tape & Reel
NST3946DXV6T5G	SOT-563 (Pb-Free)	8,000 / Tape & Reel

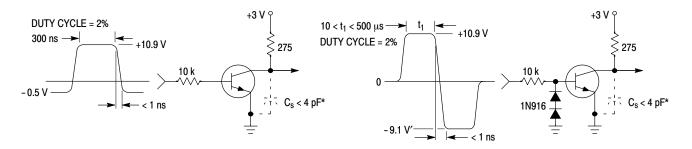
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 2. THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)		Symbol	Max	Unit
Total Device Dissipation	T _A = 25°C	P _D	357 (Note 1)	mW
Derate above 25°C			2.9 (Note 1)	mW/°C
Thermal Resistance Junction-to-Ambient		$R_{ hetaJA}$	350 (Note 1)	°C/W
Characteristic (Both Junctions Heated)		Symbol	Max	Unit
Total Device Dissipation	T _A = 25°C	P _D	500 (Note 1)	mW
Derate above 25°C			4.0 (Note 1)	mW/°C
Thermal Resistance Junction-to-Ambient		$R_{ hetaJA}$	250 (Note 1)	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	55 to +150	°C

^{1.} FR-4 @ Minimum Pad

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$) ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	(NPN) (PNP)	V _{(BR)CEO}	40 -40	- -	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) ($I_C = -10 \mu Adc, I_E = 0$)	(NPN) (PNP)	V _{(BR)CBO}	60 -40	- -	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$) ($I_E = -10 \mu Adc$, $I_C = 0$)	(NPN) (PNP)	V _{(BR)EBO}	6.0 -5.0	- -	Vdc
Base Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$ $(V_{CE} = -30 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$	(NPN) (PNP)	I _{BL}	- -	50 –50	nAdc
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$ $(V_{CE} = -30 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$	(NPN) (PNP)	I _{CEX}	- -	50 –50	nAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain $ \begin{aligned} &(I_C=0.1 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=1.0 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=10 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=50 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=100 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \end{aligned} $	(NPN)	h _{FE}	40 70 100 60 30	- 300 - -	-
$ \begin{array}{l} (I_{C} = -0.1 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ (I_{C} = -1.0 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ (I_{C} = -10 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ (I_{C} = -50 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ (I_{C} = -100 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ \end{array} $	(PNP)		60 80 100 60 30	- 300 - -	
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	(NPN)	V _{CE(sat)}	_ _	0.2 0.3	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	(PNP)		- -	-0.25 -0.4	
Base – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	(NPN)	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	(PNP)		-0.65 -	-0.85 -0.95	

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (continued)

Characteristic		Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				•	•
Current-Gain - Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = -10 \text{ mAdc}$, $V_{CE} = -20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	(NPN) (PNP)	f _T	300 250	_ _	MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$ $(V_{CB} = -5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	(NPN) (PNP)	$C_{ m obo}$		4.0 4.5	pF
Input Capacitance $(V_{EB}=0.5\ Vdc,\ I_{C}=0,\ f=1.0\ MHz)$ $(V_{EB}=-0.5\ Vdc,\ I_{C}=0,\ f=1.0\ MHz)$	(NPN) (PNP)	C _{ibo}		8.0 10.0	pF
Input Impedance (V_{CE} = 10 Vdc, I_{C} = 1.0 mAdc, f = 1.0 kHz) (V_{CE} = -10 Vdc, I_{C} = -1.0 mAdc, f = 1.0 kHz)	(NPN) (PNP)	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	(NPN) (PNP)	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
Small – Signal Current Gain $(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	(NPN) (PNP)	h _{fe}	100 100	400 400	-
Output Admittance $(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	(NPN) (PNP)	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{($V_{CE}=5.0$ Vdc, $I_{C}=100$ μAdc, $R_{S}=1.0$ k Ω, $f=1.0$ kHz)} \\ \text{($V_{CE}=-5.0$ Vdc, $I_{C}=-100$ μAdc, $R_{S}=1.0$ k Ω, $f=1.0$ kHz)} \end{array} $	(NPN) (PNP)	NF	- -	5.0 4.0	dB
SWITCHING CHARACTERISTICS					
Delay Time $(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ $(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$	(NPN) (PNP)	t _d	- -	35 35	ns
Rise Time $(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ $(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	(NPN) (PNP)	t _r	- -	35 35	
Storage Time $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc})$ $(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	(NPN) (PNP)	t _S	- -	200 225	ns
Fall Time (I _{B1} = I _{B2} = 1.0 mAdc) (I _{B1} = I _{B2} = -1.0 mAdc)	(NPN) (PNP)	t _f	_ _	50 75	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

(NPN)

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

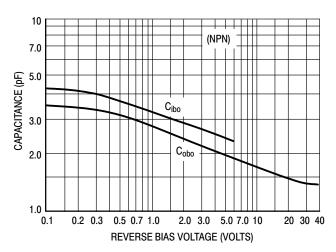
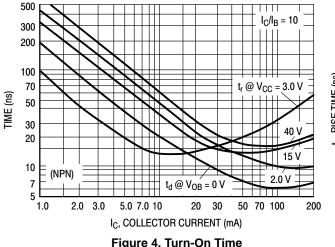



Figure 3. Capacitance

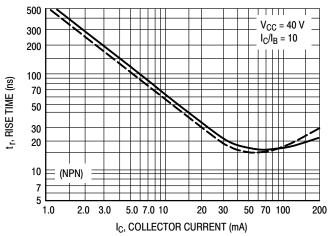
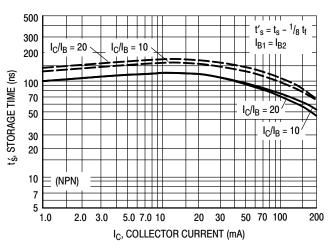



Figure 4. Turn-On Time

Figure 5. Rise Time

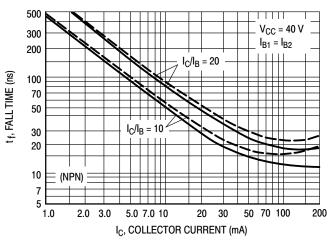
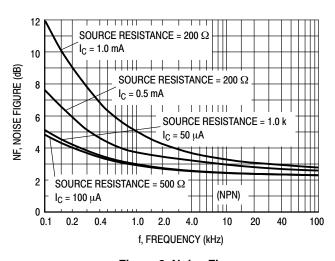



Figure 6. Storage Time

Figure 7. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS**

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

14 f = 1.0 kHz $I_C = 1.0 \text{ mA}$ 12 NF, NOISE FIGURE (dB) 10 I_C = 50 μA 8 $I_C = 100 \mu A$ 6 4 2 (NPN 0.1 0.2 0.4 1.0 2.0 4.0 10 40 100 R_S, SOURCE RESISTANCE (k OHMS)

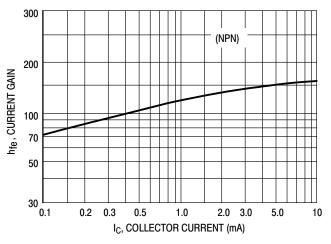
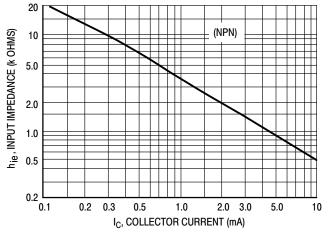

Figure 8. Noise Figure

Figure 9. Noise Figure

(NPN)

h PARAMETERS


(V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C)

100 h_{0e}, OUTPUT ADMITTANCE (μ mhos) (NPN) 50 20 10 5 2 0.1 0.2 0.3 2.0 3.0 0.5 1.0 10 I_C, COLLECTOR CURRENT (mA)

Figure 10. Current Gain

Figure 11. Output Admittance

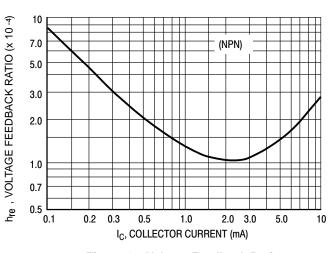


Figure 12. Input Impedance

Figure 13. Voltage Feedback Ratio

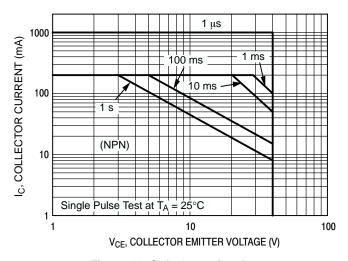


Figure 14. Safe Operating Area

(NPN)

TYPICAL STATIC CHARACTERISTICS

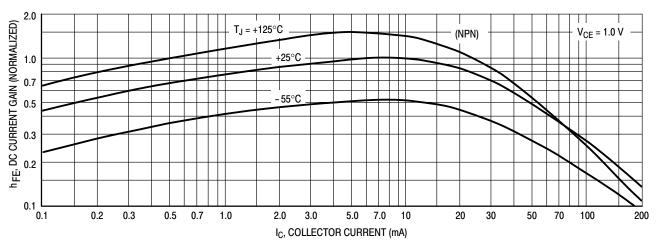


Figure 15. DC Current Gain

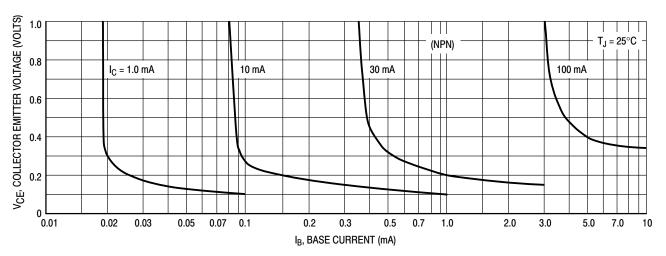


Figure 16. Collector Saturation Region

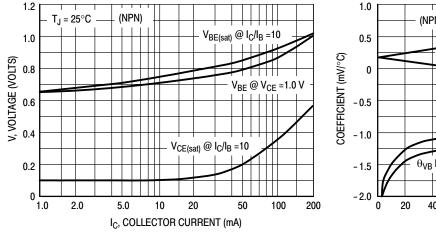


Figure 17. "ON" Voltages

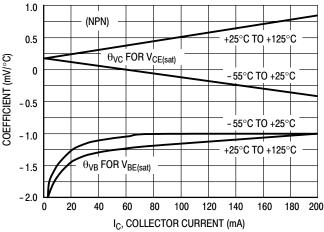
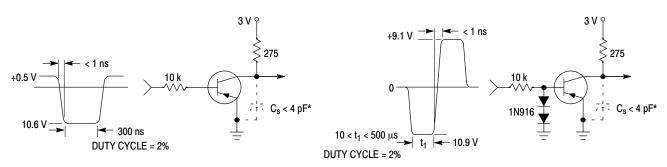



Figure 18. Temperature Coefficients

(PNP)

* Total shunt capacitance of test jig and connectors

Figure 19. Delay and Rise Time Equivalent Test Circuit

Figure 20. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

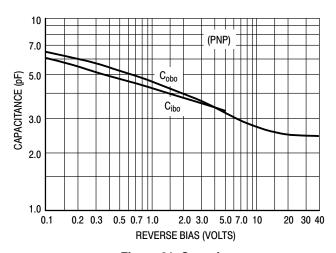
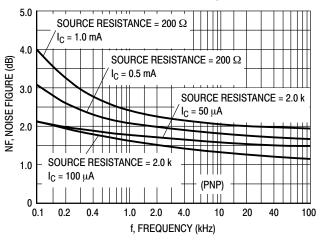


Figure 21. Capacitance

 $T_J = 25^{\circ}C$ T_J = 125°C 500 500 $I_{\rm C}/I_{\rm B}=10$ (PNP) V_{CC} = 40 V 300 300 $I_{B1} = I_{B2}$ 200 200 $I_C/I_B = 20$ tf, FALLTIME (ns) 100 100 70 70 TIME (ns) $t_r @ V_{CC} = 3.0 V$ 50 50 30 30 $I_C/I_B = 10$ 20 20 10 10 7 $t_{d} @ V_{OB} = 0 V$ 5 5 1.0 2.0 3.0 20 30 50 70 100 1.0 2.0 3.0 5.0 7.0 10 30 5.0 7.0 10 200 20 50 70 100 200 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA)

Figure 22. Turn-On Time


Figure 23. Fall Time

(PNP)

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

NF, NOISE FIGURE (dB)

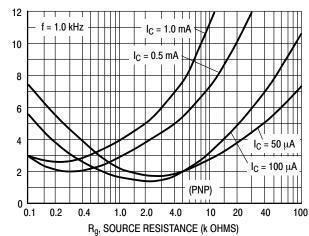
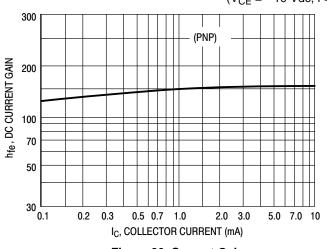



Figure 24.

Figure 25.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

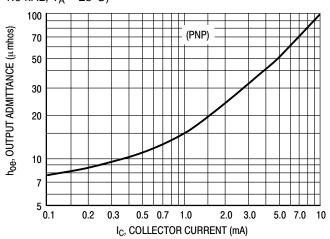


Figure 26. Current Gain

20 (PNP) h ie, INPUT IMPEDANCE (k OHMS) 10 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.1 IC, COLLECTOR CURRENT (mA)

Figure 27. Output Admittance

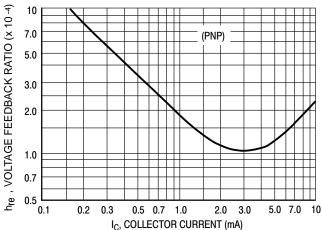


Figure 28. Input Impedance

Figure 29. Voltage Feedback Ratio

(PNP)

TYPICAL STATIC CHARACTERISTICS

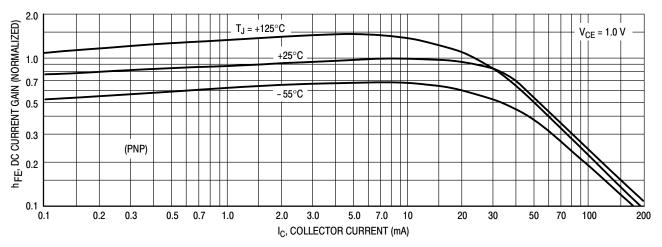


Figure 30. DC Current Gain

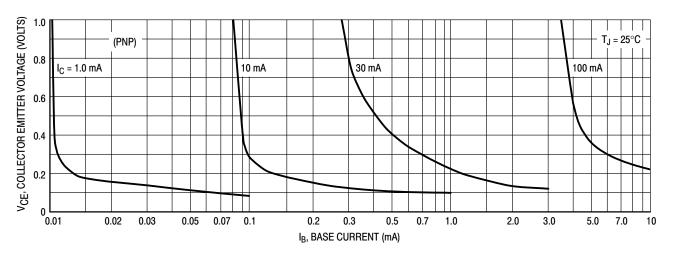


Figure 31. Collector Saturation Region

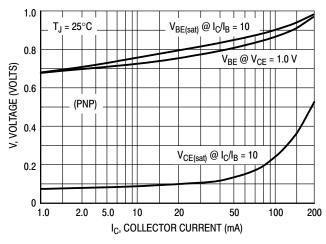


Figure 32. "ON" Voltages

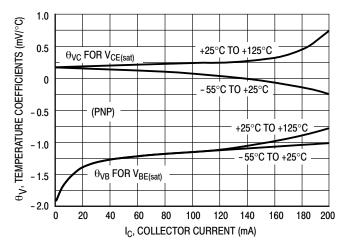


Figure 33. Temperature Coefficients

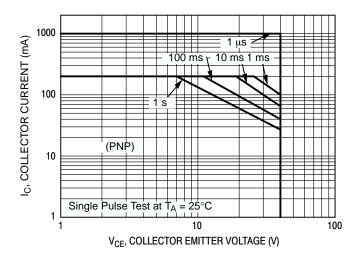
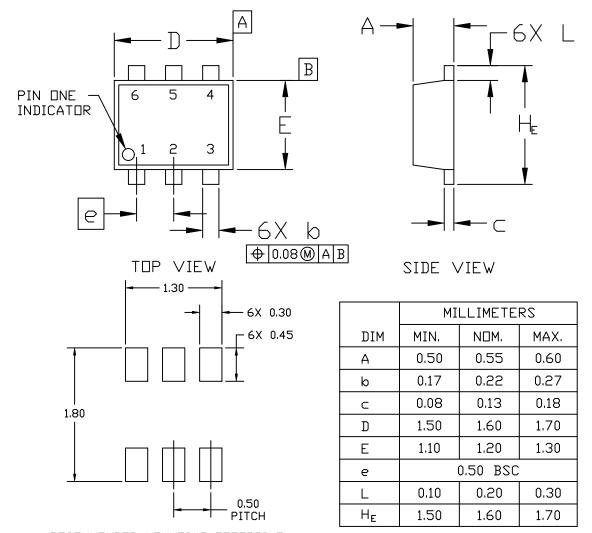


Figure 34. Safe Operating Area



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

NOTES:

- I. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-563, 6 LEAD

CASE 463A ISSUE H

2

1

DATE 26 JAN 2021

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 2: PIN 1. EMITTER 1 2. EMITTER 2 3. BASE 2 4. COLLECTOR 2 5. BASE 1 6. COLLECTOR 1	STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE
STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SDURCE 5. DRAIN 6. DRAIN	STYLE 9: PIN 1. SDURCE 1 2. GATE 1 3. DRAIN 2 4. SDURCE 2 5. GATE 2 6. DRAIN 1
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

GENERIC MARKING DIAGRAM*

XX = Specific Device CodeM = Month Code= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

