

RF Microwave Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KYOCERA AVX knowledge of typical operating conditions for such applications, but are not intended to constitute and KYOCERA AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KYOCERA AVX with reference to the use of KYOCERA AVX products is given without regard, and KYOCERA AVX assumes no obligation or liability for the advice given or results obtained.

Although KYOCERA AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, KYOCERA AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that KYOCERA AVX makes no assurances that the products, services or deliverables are suitable for any highrisk uses. Under no circumstances does KYOCERA AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

RF/Microwave Products

Thin-Film RF/Microwave Capacitor Technology		1206 High Performance Low Pass 12W	184
Accu-P® Series		1206 Harmonic Low Pass Filter	186
Thin-Film Technology	2	1206 High Performance Low Pass 8W	217
Thin-Film Chip Capacitors	4	2816 High Performance Low Pass 20W	
Single and Power Type Capacitors	5		
0201 Typical Electrical Tables	6	BP0805 Band Pass Filter SMD 5W	
0402 Typical Electrical Tables	8	BP1206 Band Pass Filter SMD 8W	285
0603 Typical Electrical Tables	10	Multilayer Organic (MLO®) Filters	
0805 Typical Electrical Tables	12	ML0® High Pass Filters	
1210 Typical Electrical Tables	14	General Information	300
High Frequency Characteristics	16	Electrical Specifications	
Environmental / Mechanical Characteristics	22	·	
Performance Characteristics RF Power Applications	23	ML0® Low Pass Filters	200
Application Notes	24	General Information	
Ultra-Miniature 01005 Size	27	Electrical Specifications	321
Thin-Film RF/Microwave Inductor Technology		MLO® Band Pass Filters	
Accu-L® Series		BP Series	
	20	Electrical Specifications	362
L0201 Tight Tolerance RF Inductor		MLO® X Band Filters	
L0402 Tight Tolerance RF Inductor		General Information	399
AEC-Q200 High-Q RF Inductor - L0402 & L0805		Mechanical Specifications, Pad Layout, and Mounting Recommen	dations
L0603 AND L0805 SMD High-Q RF Inductor – Accu-L®		Footprint A	
Environmental Characteristics		Footprint B	
Application Notes	43	Footprint C	
Thin-Film RF/Microwave Products		Footprint D	
Designer Kits	45	Footprint E	
Thin-Film RF/Microwave Directional Couplers		Footprint E1	
CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90°		Footprint E2	
CP0402W2700FNTR Wide Band High Directivity	49	Footprint F	
High Directivity Directional Couplers For WiFi Bands			
CP0402P High Directivity, Tight Coupling Tolerance		Multilayer Organic (MLO®) Capacitors	404
CP0402 High Directivity LGA Termination		General Information	
CP0603 High Directivity LGA Type		Mechanical & Environmental Specifications	435
CP0402 / CP0603 High Directivity Couplers Test Jigs		Multilayer Organic (MLO®) Diplexers	
LGA Couplers Design Kits		0603 WLAN/BT	
CP0603 SMD Type		0805 CDMA	441
CP0603 SMD Type – High Directivity		0805 WCDMA	443
CP0805 SMD Type		0805 WLAN	
CP0805 Layout Types		0805 WLAN/BT	
CP0805 and CP0603 Test Jig		Automated SMT Assembly/SMT Reflow Profile	449
DB0603N 3dB 90° Couplers		Multilayer Organic (MLO®) Inductors	
DB0805 3dB 90° Couplers		Tight Tolerance	450
·		High Current	
Thin-Film RF/Microwave Filters		Hi-Q	454
Low Pass - Harmonic Lead-Free		Performance Characteristics	456
LP0402N Series – LGA Termination		Automated SMT Assembly/SMT Reflow Profile	457
LP0402N Series – Test Jig		·	
LP0603 Series - LGA Termination		Multilayer Organic (MLO®) SMT Crossovers RF-DC	150
LP0603 Series - Test Jig		RF-RF	
LP0805 Series – SMD Termination		Automated SMT Assembly/SMT Reflow Profile	
LP0805 Series – Test Jig	127	Automated Sivit Assembly/Sivit Renow Profile	404
Low Pass 0805 High Performance SMD 8W	139	RF/Microwave Inductors	
1206 Harmonic Low Pass Filter	182	AL Series – Air Core Inductors	465
		AS Series – Square Air Core Inductors	472

RF/Microwave Products

Table of Contents

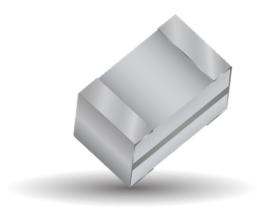
LCWC Series – Wire Wound Chip Inductor	478
LCCI Series - Multi-Layer Ceramic Chip Inductors	479
RF/Microwave Capacitors	
RF/Microwave Multilayer Capacitors (MLC)	
100A Series Porcelain Superchip® Multilayer Capacitors	480
100B Series Porcelain Superchip® Multilayer Capacitors	486
100C Series Porcelain Superchip® Multilayer Capacitors	493
100E Series Porcelain High RF Power Multilayer Capacitors	498
180R Series NPO Porcelain Ultra-Low ESR	504
200A Series BX Ceramic	509
200B Series BX Ceramic	513
530L Series Broadband Multilayer Capacitors	518
550L Series UBC™ Ultra-Broadband Capacitor	520
550S Series UBC™ Ultra-Broadband Capacitor	522
550Z Series UBC™ Ultra-Broadband Capacitor	524
550Z Series UBC™ Ultra-Broadband Capacitor	526
560Z Series UBC™ Ultra-Broadband Capacitor	528
560Z Series UBC™ Ultra-Broadband Capacitor	
560Z Series UBC™ Ultra-Broadband Capacitor	
560Z Series UBC™ Ultra-Broadband Capacitor	
600L Ultra-Low ESR NPO Capacitors	532
600F Ultra-Low ESR, High Q, NPO Capacitors	
600S Ultra-Low ESR, High Q, NPO Capacitors	
700A Series NP0 Porcelain and Ceramic Multilayer Capacitors	545
700B Series NPO Porcelain and Ceramic Multilayer Capacitors	
700C Series NPO Porcelain and Ceramic Multilayer Capacitors	
700E Series NPO Porcelain High RF Power Multilayer Capacitors	
800A Series NP0 Porcelain, High RF Power Ultra-Low ESR	
800B Series NP0 Porcelain, High RF Power Ultra-Low ESR	
800C Series NP0 Porcelain, High RF Power Ultra-Low ESR	
800E Series NPO Ceramic High RF Power Multilayer Capacitors	
800H Series NPO Ceramic High RF Power Multilayer Capacitors	
800R Series NPO Ceramic Ultra-Low ESR Multilayer Capacitors	
900C Series X7R Ceramic RF Power Multilayer Capacitors	
920C Series X7R Ceramic RF Power Multilayer Capacitors	
CDR Series — MIL-PRF-55681/4/5 (RF/Microwave Chips)	
Performance Curves	
Automatic Insertion Packaging	614
RF/Microwave C0G (NP0) Capacitors	
Ultra Low ESR "CU" Series, COG (NP0) Capacitors (RoHS)	
Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS)	
Ultra Low ESR "U" Series, COG (NPO) Capacitors (Sn/Pb)	620
Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS)	
Automotive, AEC Q200 Qualified	
RF/Microwave "U" Series Designer Kits	
Electrical Specifications	4

Accu-P® Series

Accu-P® Series

Thin-Film Technology

THE IDEAL CAPACITOR

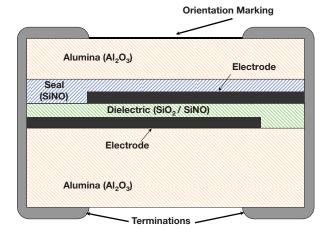

The non-ideal characteristics of a real capacitor can be ignored at low frequencies. Physical size imparts inductance to the capacitor and dielectric and metal electrodes result in resistive losses, but these often are of negligible effect on the circuit. At the very high frequencies of radio communication (>100MHz) and satellite systems (>1GHz), these effects become important. Recognizing that a real capacitor will exhibit inductive and resistive impedances in addition to capacitance, the ideal capacitor for these high frequencies is an ultra low loss component which can be fully characterized in all parameters with total repeatability from unit to unit.

Until recently, most high frequency/microwave capacitors were based on fired-ceramic (porcelain) technology. Layers of ceramic dielectric material and metal alloy electrode paste are interleaved and then sintered in a high temperature oven. This technology exhibits component variability in dielectric quality (losses, dielectric constant and insulation resistance), variability in electrode conductivity and variability in physical size (affecting inductance). An alternate thin-film technology has been developed which virtually eliminates these variances. It is this technology which has been fully incorporated into Accu-P® and Accu-P® to provide high frequency capacitors exhibiting truly ideal characteristics.

The main features of Accu-P® may be summarized as follows:

- · High purity of electrodes for very low and repeatable ESR.
- Highly pure, low-K dielectric for high breakdown field, high insulation resistance and low losses to frequencies above 40GHz.
- Very tight dimensional control for uniform inductance, unit to unit.
- Very tight capacitance tolerances for high frequency signal applications.

This accuracy sets apart these Thin-Film capacitors from ceramic capacitors so that the term Accu has been employed as the designation for this series of devices, an abbreviation for "accurate."



THIN-FILM TECHNOLOGY

Thin-film technology is commonly used in producing semiconductor devices. In the last two decades, this technology has developed tremendously, both in performance and in process control. Today's techniques enable line definitions of below 1µm, and the controlling of thickness of layers at 100Å (10-2µm). Applying this technology to the manufacture of capacitors has enabled the development of components where both electrical and physical properties can be tightly controlled.

The thin-film production facilities at KYOCERA AVX consist of:

- · Class 1000 clean rooms, with working areas under laminar-flow hoods of class 100, (below 100 particles per cubic foot larger than 0.5µm).
- High vacuum metal deposition systems for high-purity electrode construction.
- Photolithography equipment for line definition down to 2.0µm accuracy.
- Plasma-enhanced CVD for various dielectric depositions (CVD=Chemical Vapor Deposition).
- High accuracy, microprocessor-controlled dicing saws for chip separation.
- High speed, high accuracy sorting to ensure strict tolerance adherence.

ACCU-P® CAPACITOR STRUCTURE

012419

Accu-P® Series

Thin-Film Technology

ACCU-P® TECHNOLOGY

The use of very low-loss dielectric materials, silicon dioxide and silicon oxynitride, in conjunction with highly conductive electrode metals results in low ESR and high Q. These high-frequency characteristics change at a slower rate with increasing frequency than for ceramic microwave

Because of the thin-film technology, the above-mentioned frequency characteristics are obtained without significant compromise of properties required for surface mounting.

The main Accu-P® properties are:

- · Internationally agreed sizes with excellent dimensional control.
- Ultra small size chip capacitors (1005) are available.
- Ultra tight capacitance tolerances.
- Low ESR at VHF, UHF and microwave frequencies.
- Enhanced RF power handling capablity.
- High stability with respect to time, temperature, frequency and voltage
- Nickel/solder-coated terminations to provide excellent solderability and leach resistance.

ACCU-P® FEATURES

Accu-P® meets the fast-growing demand for low-loss (high-Q) capacitors for use in surface mount technology especially for the mobile communications market, such as cellular radio of 450 and 900 MHz, UHF walkie-talkies, UHF cordless telephones to 2.3 GHz, low noise blocks at 11-12.5 GHz and for other VHF, UHF and microwave applications.

Accu-P® is currently unique in its ability to offer very low capacitance values (0.05pF) and very tight capacitance tolerances (±0.01pF).

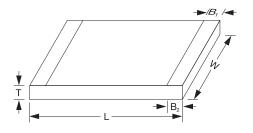
- The RF power handling capability of the Accu-P® allows for its usage in both small signal and RF power applications.
- Thin Film Technology guarantees minimal batch to batch variability of parameters at high frequency.
- Inspection test and quality control procedures in accordance with ISO 9001, CECC, IECQ and USA MIL Standards yield products of the
- Hand soldering Accu-P®: Due to their construction utilizing relatively high thermal conductivity materials, Accu-P's have become the preferred device in R & D labs and production environments where hand soldering is used.

APPLICATIONS

- · Cellular Communications
- CT2/PCN (Cordless Telephone/Personal Comm. Networks)
- Satellite TV
- Cable TV
- GPS (Global Positioning Systems)
- Vehicle Location Systems
- Vehicle Alarm Systems
- Paging

APPROVALS

- ISO 9001
- IATF 16949:2016


- Military Communications
- Radar Systems
- Video Switching
- **Test & Measurements**
- Filters
- VCO's
- Matching Networks
- · RF Amplifiers

012521

Accu-P® Series

Thin-Film Chip Capacitors

ACCU-P® (SIGNAL AND POWER TYPE CAPACITORS)

[01005*	0201*	0402*	0603*	0805*	1210
	٦	0.405±0.020 (0.016±0.001)	0.60±0.05 (0.023±0.002)	1.00±0.1 (0.039±0.004)	1.60±0.1 (0.063±0.004)	2.01±0.1 (0.079±0.004)	3.02±0.1 (0.119±0.004)
	W	0.215±0.020 (0.0085±0.002)	0.325±0.050 (0.0128±0.002)	0.55±0.07 (0.022±0.003)	0.81±0.1 (0.032±0.004)	1.27±0.1 (0.050±0.004)	2.5±0.1 (0.100±0.004)
	Т	0.145±0.020 (0.006±0.001)	0.225±0.050 (0.009±0.002)	0.40±0.1 (0.016±0.004)	0.63±0.1 (0.025±0.004)	0.93±0.2 (0.036±0.008)	0.93±0.2 (0.036±0.008)
	B1	$0.00^{+0.1}_{-0.0}$ $(0.004^{+0.004}_{-0.000})$	0.10±0.10 (0.004±0.004)	$(0.0^{+0.1}_{-0.0})$ $(0.00^{+0.004}_{-0.000})$	0.35±0.15 (0.014±0.006)	0.30±0.1 (0.012±0.004)	0.43±0.1 (0.017±0.004)
ĺ	B2	0.15±0.05 (0.000±0.002)	0.15±0.05 (0.006±0.002)	0.20±0.1 (0.008±0.004)	0.35±0.15 (0.014±0.006)	0.30±0.1 (0.012±0.004)	0.43±0.1 (0.017±0.004)

^{*}Mount Black Side Up

DIMENSIONS: millimeters (inches)

\500

Option

HOW TO ORDER

0402	3 T	J	4R7
Size C005 0201 0402 0603 0805 1210*	Voltage 2 = 200V 1 = 100V 5 = 50V 3 = 25V Y = 16V Z = 10V	Te erature Coefficient (1) J = 0±30ppm/*C (-55°C to +125°C) K = 0±60ppm/*C (-55°C to +125°	Capacitance Capacitance expressed in pF. (2 significant digits + number of zeros) for values <10pF, letter R denotes decimal point. Example: 68pF = 680 8.2pF = 8R2

The following 3 digit capacitance codes should be used for ordering Accu-P® capacitors											
CAPACITANCE CODE	EXAMPLE										
0.00 to 0.99pF Rxx	0.15pF = 04023JR15ABSTR										
1.00 to 1.99pF Axx	1.55pF = 04023JA55PBSTR										
2.00 to 2.99pF Bxx	2.85pF =B85										
3.00 to 3.99pF Cxx	3.85pF =C85										
4.00 to 4.99pF Dxx	4.85pF =D85										
5.00 to 5.99pF Exx	5.85pF =E85										
6.00 to 6.99pF Fxx	6.85pF =F85										
7.00 to 7.99pF Gxx	7.85pF =G85										
8.00 to 8.99pF Hxx	8.85pF =H85										
9.00 to 9.99pF Jxx	9.85pF =J85										
10.0 to 19.9pF Kxx	13.8pF =K38										
20.0 to 29.9pF Lxx	22.5pF =L25										
30.0 to 39.9pF Mxx	33.8pF =M38										
40.0 to 49.9pF Nxx	43.5pF =N35										

⁽¹⁾TC's shown are per EIA/IEC Specifications.

Α	В
T	T
Tolerance	Specificati

for C≤2.0pF* Code $Z = \pm 0.01 pF$ B = Accu-P® $P = \pm 0.02pF$ technology $O = \pm 0.03 pF$ $A = \pm 0.05 pF$

 $B = \pm 0.1pF$ $C = \pm 0.25pF$ for C≤3.0pF $Q = \pm 0.03pF$ $A = \pm 0.05pF$

 $B = \pm 0.1 pF$ $C = \pm 0.25 pF$ for C≤5.6pF

 $A = \pm 0.05pF$ B = ±0.1pF $C = \pm 0.25 pF$

for 5.6pF<C<10pF $B = \pm 0.1pF$ $C = \pm 0.25 pF$

 $D = \pm 0.5pF$ for C≥10pF

 $G = \pm 2\%$ $J = \pm 5\%$

Code W=Nickel/Solder Coated Accu-P® 0402 Sn90, Pb10*** T=Nickel/High Temperature Solder Coated

Accu-P® 0805**, 1210** Sn96, Ag4 Nickel/Solder Coated Accu-P® 0603*** Sn63, Pb37 **S=Nickel/Lead Free

S

Termination

Solder Coated Accu-P® 1005, 0201 0402, Sn100

**RoHS compliant

*** Not RoHS Compliant

TR

Packaging

Code

TR = Tape & Reel

For RoHS compliant products, please select correct termination style.

ELECTRICAL SPECIFICATIONS

Operating and Storage Temperature Range	-55°C to +125°C
Temperature Coefficients ⁽¹⁾	0 ± 30ppm/°C dielectric code "J" / 0 ± 60ppm/°C dielectric code "K"
Capacitance Measurement	1 MHz, 1 Vrms
Insulation Resistance (IR)	≥1011 Ohms (≥10¹⁰ Ohms for 0201 and 0402 size)
Proof Voltage	2.5 U _R for 5 secs.
Aging Characteristic	Zero
Dielectric Absorption	0.01%

^{*} Tolerances as tight as ±0.01pF are available. Please consult the factory.

Accu-P® Series

Single and Power Type Capacitors

TEMP. COEFFICIENT CODE

"J" = 0 ± 30 PPM/°C (-55°C TO +125°C)(2) "K" = 0 ± 60 PPM/°C (-55°C TO +125°C)(2)

	Size																					
	Size Code	C005			0201					04					06	03		111	0805		12	10
Canin	Voltage	16	100	50	25	16	10	200	100	50	25	16	10	200	100	50	25	100	50	25	100	50
Cap in pF ⁽¹⁾	Cap code																					
0.1	- 0R1																					
0.2 0.3	OR2OR3																					
0.4	- 0R4																					
0.5 0.6	OR5OR6																					
0.7	- 0R7 - 0R8																					
0.8																						
1.0	- 0R9 - 1R0																					
1.1	- 1R1																					
1.2 1.3	- 1R1 - 1R2 - 1R3																					
1.4	- 1R4																					
1.5 1.6	- 1R5 - 1R6																					
1.7	- 1R7																					
1.8 1.9	- 1R8 - 1R9																					
2.0																						
2.1	- 2R1																					
2.2 2.3	- 2R2 - 2R3																					
2.4	- 2R4																					
2.5 2.6	2R52R6																					
2.7	- 2R7																					
2.8 2.9	- 2R8 - 2R9																					
3.0	- 3R0																					
3.1	- 3R1 - 3R2 - 3R3 - 3R4																					
3.2 3.3	- 3R2 - 3R3																					
3.4	- 3R4																					
3.5 3.6	- 3R5 - 3R6 - 3R7																					
3.7	- 3R7																					
3.8 3.9	- 3R8 - 3R9																					
4.0	- 4R0																					
4.1	- 4R1																					
4.2 4.3	- 4R2 - 4R3																					
4.4	- 4R4																					
4.5 4.6	- 4R5 - 4R6																					
4.7	- 4R7																					
5.1 5.6	- 5R1 - 5R6																					
6.2	- 6R2		L																			
6.8	- 6R8																					
7.5 8.2	- 7R5 - 8R2																					
9.1	- 9R1																					
10.0 11.0	- 100 - 110																					
12.0																						
13.0 14.0	- 120 - 130 - 140																					
15.0	- 150																					
16.0 17.0	- 150 - 160 - 170																					
18.0	- 180																					
19.0	- 190																					
20.0	- 200 - 210	-																				
22.0	- 220																					
24.0 27.0	- 240 - 270	-																				
30.0	- 300																					
33.0 39.0	- 300 - 330 - 390 - 470 - 560																					
47.0	- 390 - 470																					
56.0	- 560																					
68.0	- 680				<u> </u>										L							

For capacitance values higher than listed in table, please consult factory.

Intermediate values are available within the indicated range.

TC shown is per EIA/IEC Specifications.

These values are produced with "K" temperature coefficient code only.

Accu-P® Series

Capac @ 11 and Tol	ИНz	Self Resonance Frequency		ard Value GHz	Free	quency 900l	MHz	Freq	uency 1900	MHz	Frequ	uency 2400	DMHz
C (pF)	Tol.	(GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.
0.05	±0.02	20.9	599	402	0.055	650	3220	0.056	265	4010	0.057	195	4450
0.1	±0.02	19.4	574	316	0.110	614	2682	0.112	246	3036	0.113	188	3113
0.15	±0.02	17.9	510	280	0.163	550	2087	0.166	220	2404	0.168	170	2441
0.2	±0.02 ±0.02	16.4 15.5	445 436	245	0.216 0.262	520 510	1693 1371	0.220	210 204	1971 1604	0.223 0.272	160 153	1970 1646
0.23	±0.02	14.6	427	235	0.202	500	1149	0.208	199	1337	0.272	146	1421
0.35	±0.02	14.1	423	232	0.360	494	1001	0.369	196	1177	0.374	144	1265
0.4	±0.02	12.5	418	230	0.411	489	874	0.421	193	1038	0.427	142	1129
0.45	±0.02	11.9	413	227	0.461	484	819	0.473	191	972	0.481	140	1066
0.5	±0.02	11.3	408	224	0.512	478	765	0.526	188	906	0.535	138	1003
0.55	±0.02	10.9 10.4	403 398	222	0.563 0.614	473 468	710 667	0.578 0.631	186 183	840 791	0.588	137 135	940 882
0.65	±0.02	10.4	394	217	0.664	462	624	0.683	181	742	0.695	133	825
0.7	±0.02	9.5	389	214	0.715	457	580	0.735	178	693	0.749	131	767
0.75	±0.02	9.3	384	211	0.766	452	557	0.788	176	664	0.802	129	729
0.8	±0.02	9.1	379	209	0.817	446	534	0.840	173	635	0.856	127	692
0.85	±0.02	8.9	374	206	0.868	441	511	0.893	171	606	0.909	126	654
0.9	±0.02	8.8	370	203	0.918	436	487	0.945	168	577	0.963	124	616
0.95	±0.02 ±0.02	8.6 8.4	365 360	201 198	0.969 1.020	430 425	464 441	0.998 1.050	166 163	548 519	1.016 1.070	122 120	579 541
1.05	±0.02	8.2	358	197	1.020	423	426	1.112	161	502	1.134	119	523
1.1	±0.02	8.0	355	195	1.135	418	410	1.173	159	486	1.199	117	505
1.15	±0.02	7.8	353	194	1.193	414	395	1.235	157	469	1.263	116	488
1.2	±0.02	7.6	350	193	1.251	411	379	1.296	155	452	1.327	115	470
1.25	±0.02	7.5	348	191	1.308	407	364	1.358	153	436	1.392	114	452
1.3	±0.02	7.4	345	190	1.366	403	348	1.419	151	419	1.456	112	434
1.35	±0.02 ±0.02	7.3 7.2	343 340	189 187	1.424 1.481	400 396	333 317	1.481 1.542	149 147	402 386	1.520 1.585	111 110	416 398
1.45	±0.02	7.2	338	186	1.539	393	302	1.604	147	369	1.649	109	398
1.5	±0.02	7.0	335	184	1.597	389	287	1.665	144	353	1.713	107	363
1.55	±0.02	6.8	332	183	1.642	386	282	1.714	142	347	1.764	106	358
1.6	±0.02	6.7	330	181	1.687	382	277	1.762	141	342	1.815	105	352
1.65	±0.02	6.6	327	180	1.732	378	272	1.810	140	337	1.866	104	347
1.7	±0.02	6.5	324	178	1.777	375	267	1.859	138	331	1.917	103	342
1.75	±0.02 ±0.02	6.4	321 318	176 175	1.822 1.866	371 367	262 257	1.907 1.955	137 136	326 321	1.968 2.018	102 101	337 331
1.85	±0.02	6.2	315	173	1.911	364	252	2.003	134	316	2.018	100	326
1.9	±0.02	6.2	312	172	1.956	360	247	2.052	133	310	2.120	99	321
1.95	±0.02	6.1	309	170	2.001	357	242	2.100	132	305	2.171	98	316
2	±0.03	6.0	306	168	2.046	353	237	2.148	131	300	2.222	97	310
2.1	±0.03	5.9	301	166	2.150	348	232	2.263	128	293	2.344	95	303
2.2	±0.03	5.7	296	163	2.254	343	227	2.377	125	287	2.467	93	296
2.3	±0.03 ±0.03	5.6 5.5	292 287	160 158	2.358	337 332	222	2.491	122 120	281 274	2.590 2.712	91 89	289
2.5	±0.03	5.4	282	155	2.462	327	217	2.720	117	268	2.835	87	275
2.6	±0.03	5.3	277	152	2.670	322	207	2.834	114	262	2.958	85	268
2.7	±0.03	5.2	272	150	2.773	317	202	2.949	112	255	3.080	83	261
2.8	±0.03	5.1	269	148	2.878	312	199	3.066	110	252	3.209	81	258
2.9	±0.03	5.0	265	146	2.983	308	196	3.184	108	248	3.337	80	254
3	±0.03	4.9	261	144	3.088	304	193	3.301	106	245	3.465	78	251
3.1	±0.05 ±0.05	4.8 4.7	257 253	141	3.192 3.297	299 295	190 187	3.419 3.536	105 103	241	3.593 3.722	77 76	247
3.3	±0.05	4.6	250	137	3.402	293	185	3.654	103	234	3.850	74	240
3.4	±0.05	4.6	246	135	3.506	286	182	3.771	99	231	3.978	73	237
3.5	±0.05	4.5	242	133	3.611	282	179	3.889	98	227	4.107	71	233
3.6	±0.05	4.5	238	131	3.716	278	176	4.006	96	224	4.235	70	230
3.7	±0.05	4.4	234	129	3.820	273	173	4.124	94	220	4.363	69	226
3.8	±0.05	4.4	230	127	3.925	269	170	4.241	92	217	4.492	67	223

Accu-P® Series

0201 Typical Electrical Tables

Capaci @ 1N and Tol	ИHz	Self Resonance Frequency	Q Standa @ 1	ard Value GHz	Free	quency 900N	ИНz	Freq	uency 1900	MHz	Freq	uency 2400	MHz
C (pF)	Tol.	(GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.
3.9	±0.05	4.3	227	125	4.030	265	167	4.359	91	213	4.620	66	219
4	±0.05	4.3	224	123	4.138	262	165	4.484	89	210	4.760	65	216
4.1	±0.05	4.2	222	122	4.247	259	162	4.610	88	207	4.901	64	213
4.2	±0.05	4.2	220	121	4.356	257	159	4.735	87	204	5.041	63	210
4.3	±0.05	4.1	218	120	4.464	254	157	4.860	86	201	5.181	62	207
4.4	±0.05	4.1	216	119	4.573	252	154	4.986	85	198	5.322	61	204
4.5	±0.05	4.0	214	118	4.682	249	152	5.111	83	195	5.462	60	201
4.6	±0.05	4.0	212	116	4.790	246	149	5.237	82	192	5.602	59	198
4.7	±0.05	3.9	209	115	4.899	244	147	5.362	81	189	5.743	58	195
5.1	±0.05	3.8	201	110	5.334	233	136	5.863	76	178	6.304	54	183
5.6	±0.05	3.6	190	105	5.877	220	124	6.490	70	163	7.006	49	168
6.2	±0.1	3.5	177	97	6.488	208	126	7.290	65	167	7.993	45	174
6.8	±0.1	3.3	164	90	7.100	195	128	8.090	60	171	8.980	41	179
7.5	±0.1	3.2	153	84	7.901	182	125	9.129	56	166	10.27	38	173
8.2	±0.1	3.0	142	78	8.701	168	121	10.17	52	160	11.56	34	167
9.1	±0.1	2.9	135	74	9.676	159	118	11.57	49	154	13.49	32	161
10	±1%	2.8	128	70	10.65	151	114	12.96	45	148	15.41	29	155
11	±1%	2.7	120	66	11.73	141	110	14.52	42	142	17.55	27	148
12	±1%	2.5	112	62	12.82	132	105	16.07	39	135	19.68	24	141
13	±1%	2.4	105	58	13.92	124	104	17.82	36	135	22.38	22	142
14	±1%	2.4	98	54	15.02	116	103	19.57	32	135	25.08	19	142
15	±1%	2.3	91	50	16.12	108	102	21.32	29	135	27.78	17	143
16	±1%	2.2	86	47	17.37	102	103	24.04	27	135	NA	NA	NA
17	±1%	2.2	81	44	18.63	96	105	26.76	25	136	NA	NA	NA
18	±1%	2.1	76	42	19.88	90	106	29.48	23	136	NA	NA	NA
19	±1%	2.1	71	39	21.14	83	108	32.20	21	136	NA	NA	NA
20	±1%	2.1	65	36	22.39	77	109	34.92	19	136	NA	NA	NA
22	±1%	2.0	55	30	24.90	65	112	40.36	15	137	NA	NA	NA

012419

Accu-P® Series

0402 Typical Electrical Tables

	itance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.
0.05	±0.02	20.9	856	471	0.06	881	1411	0.06	562	1216	0.06	498	983
0.1	±0.02	19.4	848	466	0.11	873	1316	0.11	554	1115	0.11	490	914
0.15	±0.02	17.9	840	462	0.16	866	1222	0.16	547	1013	0.16	482	845
0.2	±0.02	16.4	832	457	0.21	858	1128	0.21	539	912	0.22	474	776
0.25	±0.02 ±0.02	15.5 14.6	823 815	453 448	0.26	850 842	1033 939	0.27	532 525	810 708	0.27	465 457	707 638
0.35	±0.02	14.6	807	444	0.36	834	844	0.32	517	607	0.32	457	569
0.33	±0.02	12.5	799	439	0.30	827	750	0.37	510	505	0.37	441	500
0.45	±0.02	11.9	791	435	0.46	819	667	0.47	502	458	0.48	432	453
0.5	±0.02	11.3	783	430	0.51	811	583	0.52	495	410	0.53	424	407
0.55	±0.02	10.9	774	426	0.57	803	500	0.57	487	363	0.58	416	360
0.6	±0.02	10.4	766	421	0.62	796	465	0.62	480	343	0.63	408	339
0.65	±0.02	10.0	758	417	0.67	788	431	0.67	472	322	0.68	399	317
0.7	±0.02	9.5	750	413	0.72	780	396	0.72	465	302	0.73	391	296
0.75	±0.02	9.3	746	410	0.77	776	375	0.78	456	290	0.79	381	285
0.8	±0.02	9.1	743	408	0.82	772	354	0.83	447	277	0.84	370	273
0.85	±0.02	9.0	739	406	0.87	768	334	0.88	438	265	0.89	360	262
0.9	±0.02	8.8	735	404	0.92	764	313	0.93	429	253	0.95	350	250
0.95	±0.02	8.4	732	402	0.97	760	292	0.98	420	240	1.00	339	239
1	±0.02	8.0	728	400	1.02	756	271	1.04	411	228	1.05	329	227
1.05	±0.02	7.9	725	398	1.07	752	258	1.09	406	221	1.11	323	221
1.1	±0.02	7.8	721	397	1.12	749	245	1.14	401	214	1.16	318	214
1.15	±0.02	7.6	718	395	1.17	745	232	1.20	396	207	1.22	312	208
1.2	±0.02	7.4	714	393	1.22	742	218	1.25	391	200	1.27	306	202
1.25	±0.02	7.2 7.0	711 707	391 389	1.27	738 734	205	1.31	386 381	193 185	1.32	301 295	195 189
1.3 1.35	±0.02 ±0.02	6.9	707	389	1.37	734	192 179	1.41	376	178	1.38	295	183
1.4	±0.02	6.8	704	385	1.42	727	165	1.47	371	171	1.49	283	177
1.45	±0.02	6.7	697	383	1.47	724	152	1.52	366	164	1.54	278	170
1.5	±0.02	6.5	693	381	1.52	720	139	1.58	361	157	1.60	272	164
1.55	±0.02	6.5	690	379	1.56	716	135	1.62	358	153	1.65	269	159
1.6	±0.02	6.5	686	377	1.61	713	130	1.67	355	148	1.70	267	155
1.65	±0.02	6.5	683	375	1.66	709	126	1.72	352	143	1.76	264	150
1.7	±0.02	6.4	679	373	1.71	705	122	1.77	349	139	1.81	261	146
1.75	±0.02	6.3	676	372	1.75	702	118	1.82	347	134	1.86	259	141
1.8	±0.02	6.2	672	370	1.80	698	113	1.87	344	130	1.92	256	137
1.85	±0.02	6.1	669	368	1.85	694	109	1.92	341	125	1.97	253	132
1.9	±0.02	6.0	665	366	1.90	690	105	1.97	338	121	2.02	251	128
1.95	±0.02	5.9	662	364	1.94	687	101	2.01	335	116	2.08	248	123
2	±0.03	5.7	658	362	1.99	683	96	2.06	332	112	2.13	245	119
2.1	±0.03	5.4	651	358	2.10	676	93	2.18	326	108	2.26	241	115
2.2	±0.03	5.1	643	354	2.21	669	89	2.30	321	104	2.38	236	112
2.3	±0.03	5.0	636	350	2.31	662	85	2.42	315	101	2.51	231	109
2.4	±0.03 ±0.03	4.9 4.7	629 622	346 342	2.42	656 649	81 77	2.54 2.65	309	97 94	2.64	226 221	106 102
2.6	±0.03	4.7	614	338	2.53	642	74	2.05	298	90	2.76	216	99
2.7	±0.03	4.5	607	334	2.75	635	70	2.77	298	86	3.02	210	96
2.8	±0.03	4.5	600	330	2.85	628	68	3.01	288	83	3.15	207	92
2.9	±0.03	4.4	592	326	2.95	621	66	3.13	283	80	3.28	203	88
3	±0.03	4.4	585	322	3.06	614	64	3.24	279	76	3.41	200	84
3.1	±0.05	4.4	578	318	3.16	607	62	3.36	274	73	3.54	196	80
3.2	±0.05	4.3	570	314	3.27	600	60	3.48	270	70	3.67	192	76
3.3	±0.05	4.3	563	310	3.37	593	58	3.60	265	67	3.80	188	72
3.4	±0.05	4.3	556	306	3.47	586	57	3.71	261	63	3.93	184	68
3.5	±0.05	4.2	548	302	3.58	579	55	3.83	256	60	4.06	180	64
3.6	±0.05	4.2	541	298	3.68	572	53	3.95	252	57	4.19	177	60
3.7	±0.05	4.1	534	294	3.78	565	51	4.06	247	54	4.32	173	56
3.8	±0.05	4.0	526	289	3.89	558	49	4.18	243	50	4.45	169	52

012419

Accu-P® Series

@ 1 l	itance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Тур.	ESR (mOhm) Typ.
3.9	±0.05	3.9	519	285	3.99	551	47	4.30	238	47	4.58	165	48
4	±0.05	3.9	513	282	4.10	545	47	4.42	235	47	4.73	162	48
4.1	±0.05	3.8	507	279	4.20	539	47	4.55	232	46	4.87	160	48
4.2	±0.05	3.8	501	275	4.30	534	46	4.67	228	46	5.01	157	48
4.3	±0.05	3.7	495	272	4.41	528	46	4.79	225	46	5.16	154	48
4.4	±0.05	3.7	489	269	4.51	522	46	4.92	222	46	5.30	151	47
4.5	±0.05	3.6	483	265	4.61	516	46	5.04	219	45	5.44	149	47
4.6	±0.05	3.6	477	262	4.72	511	45	5.16	216	45	5.59	146	47
4.7	±0.05	3.5	471	259	4.82	505	45	5.29	213	45	5.73	143	47
5.1	±0.05	3.4	446	245	5.23	482	44	5.78	200	43	6.30	133	47
5.6	±0.05	3.3	416	229	5.75	453	43	6.40	184	42	7.02	119	46
6.2	±0.1	3.0	388	213	6.41	427	44	7.26	167	44	8.11	107	47
6.8	±0.1	2.8	360	198	7.07	400	44	8.12	150	45	9.19	95	48
7.5	±0.1	2.7	338	186	7.85	378	45	9.17	139	47	10.57	86	49
8.2	±0.1	2.6	315	173	8.62	356	45	10.22	128	48	11.95	77	50
9.1	±0.1	2.5	292	160	9.63	333	45	11.75	115	47	14.23	69	50
10	±1%	2.4	268	148	10.65	310	45	13.28	103	47	16.50	61	49
11	±1%	2.3	242	133	11.77	285	44	14.98	89	46	19.04	51	49
12	±1%	2.2	217	119	12.90	259	44	16.68	75	45	21.57	42	48
13	±1%	2.2	202	111	14.03	241	44	18.83	68	47	25.73	38	49
14	±1%	2.1	187	103	15.17	223	44	20.97	62	49	29.89	33	49
15	±1%	2.1	172	94	16.30	204	45	23.12	56	51	34.05	29	50
16	±1%	2.0	157	87	17.53	187	44	25.91	50	49	41.44	25	49
17	±1%	1.9	143	79	18.75	169	43	28.70	45	46	48.82	21	47
18	±1%	1.8	129	71	19.98	152	42	31.49	39	44	56.21	17	46
19	±1%	1.8	121	67	21.11	143	42	33.51	36	44	60.92	15	47
20	±1%	1.8	110	61	22.25	131	41	35.53	33	43	65.63	14	48
22	±1%	1.8	98	54	24.51	116	41	39.57	26	42	75.05	10	51
24	±1%	1.8	87	48	27.51	104	37	54.94	21	35	NA	NA	NA
27	±1%	1.7	70	39	32.01	85	32	77.98	13	23	NA	NA	NA
30	±1%	1.7	65	36	35.89	78	28	106.50	10	12	NA	NA	NA
33	±1%	1.7	60	33	40.05	74	27	NA	NA NA	NA	NA	NA	NA
36	±1%	1.7	58	32	45.13	71	28	NA	NA	NA	NA	NA	NA
39	±1%	1.7	56	31	50.21	69	28	NA	NA NA	NA	NA NA	NA NA	NA
43	±1%	1.6	53	29	56.98	66	29	NA	NA	NA	NA	NA	NA
47	±1%	1.6	50	28	63.75	63	30	NA	NA NA	NA	NA NA	NA NA	NA
51	±1%	1.6	48	26	70.53	60	31	NA	NA	NA	NA	NA	NA
56	±1%	1.6	44	24	78.99	56	33	NA	NA NA	NA	NA	NA	NA
58	±1%	1.6	42 32	23	83.54	54 42	34 40	NA	NA NA	NA	NA NA	NA NA	NA
68	±1%	1.6	32	18	106.28	42	40	NA	NA	NA	NA	NA	NA

Accu-P® Series

<u>@</u> 1	citance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.
0.05	±0.02	25.6	1200	660	0.06	1333	945	0.06	556	832	0.06	397	880
0.1	±0.02	18.1	1156	636	0.11	1284	675	0.11	535	628	0.11	382	667
0.15	±0.02	14.8	1111	611	0.16	1235	555	0.16	514	533	0.16	367	567
0.2	±0.02	12.8	1067	587	0.21	1185	483	0.21	494	474	0.22	353	505
0.25	±0.02	11.4	1022	562	0.26	1136	433	0.27	473	433	0.27	338	462
0.3	±0.02	9.7	978	538	0.31	1086	397	0.32	453 432	402 378	0.32	323 309	430 404
0.35	±0.02	9.7	933	513 489	0.36 0.41	1037 988	368 345	0.37	432	358	0.37	294	383
0.45	±0.02	8.5	844	464	0.46	938	326	0.42	391	341	0.42	279	365
0.45	±0.02	8.1	800	440	0.40	889	310	0.52	370	327	0.53	265	350
0.55	±0.02	7.7	788	434	0.57	875	296	0.57	363	315	0.58	261	337
0.6	±0.02	7.4	777	427	0.62	860	283	0.62	356	304	0.63	258	326
0.65	±0.02	7.1	765	421	0.67	846	273	0.67	348	294	0.68	255	315
0.7	±0.02	6.8	754	414	0.72	832	263	0.72	341	285	0.73	252	306
0.75	±0.02	6.6	742	408	0.77	817	254	0.78	334	277	0.79	248	298
0.8	±0.02	6.4	730	402	0.82	803	247	0.83	326	270	0.84	245	290
0.85	±0.02	6.2	719	395	0.87	789	239	0.88	319	264	0.89	242	283
0.9	±0.02	6.0	707	389	0.92	775	233	0.93	312	258	0.95	239	277
0.95	±0.02	5.9	696	383	0.97	760	227	0.98	304	252	1.00	235	271
1	±0.02	5.7	684	376	1.019	746	216	1.061	297	242	1.101	232	260
1.05	±0.02	5.6	667	367	1.076	731	213	1.126	290	239	1.171	226	256
1.1	±0.02	5.4	649	357	1.134	717	210	1.190	282	236	1.241	220	253
1.15	±0.02	5.3	632	347	1.192	702	206	1.254	275	233	1.311	214	250
1.2	±0.02	5.2	614	338	1.250	687	203	1.318	267	230	1.381	209	247
1.25	±0.02	5.1	605	333	1.307	677	200	1.382	262	227	1.451	203	244
1.3	±0.02	5.0 4.9	596 587	328	1.365 1.423	667 658	197 194	1.446	257 252	224	1.521 1.591	197 191	241
1.35	±0.02	4.9	578	323 318	1.423	648	194	1.511 1.575	247	218	1.661	185	235
1.45	±0.02	4.8	569	313	1.538	638	187	1.639	247	215	1.731	179	232
1.5	±0.02	4.7	560	308	1.596	628	184	1.703	237	212	1.801	173	229
1.55	±0.02	4.6	551	303	1.645	620	181	1.760	233	209	1.866	170	226
1.6	±0.02	4.5	542	298	1.694	611	178	1.817	228	206	1.930	166	222
1.65	±0.02	4.5	534	293	1.743	603	175	1.874	224	203	1.995	163	219
1.7	±0.02	4.4	525	289	1.792	595	172	1.931	219	200	2.060	159	216
1.75	±0.02	4.3	516	284	1.841	587	169	1.988	215	197	2.124	156	213
1.8	±0.02	4.2	507	279	1.890	578	166	2.045	211	194	2.189	153	209
1.85	±0.02	4.2	498	274	1.939	570	163	2.102	206	191	2.253	149	206
1.9	±0.02	4.1	490	269	1.988	562	160	2.158	202	188	2.318	146	203
1.95	±0.02	4.1	481	264	2.037	553	157	2.215	197	185	2.383	142	199
2	±0.03	4.0	472	260	2.086	545	154	2.272	193	182	2.447	139	196
2.1	±0.03	3.9	462	254	2.190	535	151	2.402	187	180	2.604	134	193
2.2	±0.03	3.8	452	249	2.295	524	148	2.532	181	177	2.761	129	191
2.3	±0.03	3.8	442	243	2.400	514	145	2.662	175	175	2.917	124	188
2.4	±0.03	3.7	433	238	2.504	503	143	2.793	168	172	3.074	118	186
2.5	±0.03	3.6	423 413	232	2.609	493 482	140 137	2.923 3.053	162 156	170 167	3.230 3.387	113 108	183 181
2.7	±0.03	3.5	403	227	2.714	482	137	3.053	150	165	3.387	108	178
2.8	±0.03	3.4	395	217	2.933	463	133	3.336	147	164	3.742	100	177
2.9	±0.03	3.4	388	217	3.047	453	131	3.489	144	162	3.940	97	175
3	±0.03	3.3	380	209	3.162	444	130	3.642	140	161	4.139	95	174
3.1	±0.05	3.2	372	205	3.276	435	129	3.795	137	160	4.337	92	172
3.2	±0.05	3.2	365	201	3.391	425	127	3.947	134	159	4.536	89	171
3.3	±0.05	3.1	357	196	3.506	416	126	4.100	131	157	4.734	86	169
3.4	±0.05	3.1	349	192	3.620	407	125	4.253	128	156	4.933	84	168
3.5	±0.05	3.1	342	188	3.735	397	123	4.406	125	155	5.131	81	166
3.6	±0.05	3.0	334	184	3.849	388	122	4.559	121	154	5.330	78	165
3.7	±0.05	3.0	326	179	3.964	379	121	4.712	118	152	5.528	75	164
3.8	±0.05	3.0	318	175	4.078	369	119	4.865	115	151	5.727	73	162

Accu-P® Series

<u>.</u> 0 1	citance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Тур.	ESR (m0hm) Typ.
3.9	±0.05	2.9	311	171	4.193	360	118	5.018	112	150	5.925	70	161
4	±0.05	2.9	307	169	4.301	355	117	5.188	110	149	6.188	68	160
4.1	±0.05	2.8	303	167	4.410	351	116	5.358	108	148	6.450	67	159
4.2	±0.05	2.8	299	164	4.518	347	116	5.528	106	148	6.713	65	158
4.3	±0.05	2.7	295	162	4.627	342	115	5.698	104	147	6.975	64	157
4.4	±0.05	2.7	291	160	4.735	338	114	5.867	102	146	7.238	62	157
4.5	±0.05	2.7	287	158	4.843	333	113	6.037	100	146	7.500	61	156
4.6	±0.05	2.6	283	156	4.952	329	112	6.207	98	145	7.763	59	155
4.7	±0.05	2.6	279	154	5.060	324	112	6.377	96	144	8.025	58	154
5.1	±0.05	2.5	263	145	5.494	307	109	7.057	88	142	9.075	52	151
5.6	±0.05	2.4	244	134	6.035	285	105	7.906	78	138	10.39	44	147
6.2	±0.1	2.3	228	126	6.865	267	102	9.517	72	133	13.66	40	141
6.8	±0.1	2.2	213	117	7.694	250	100	11.13	66	128	16.93	35	135
7.5	±0.1	2.1	195	107	8.367	227	98	12.63	57	125	20.91	28	132
8.2	±0.1	2.0	176	97	9.041	205	96	14.14	49	123	24.88	21	129
9.1	±0.1	1.9	161	89	10.20	188	96	18.09	42	122	40.00	16	128
10	±1%	1.8	146	80	11.37	171	95	22.05	36	121	70.00	12	127
11	±1%	1.7	129	71	12.66	153	95	26.44	29	120	140.0	6	126
12	±1%	1.6	112	62	13.95	134	94	30.83	22	119	231.3	1	125
13	±1%	1.6	102	56	15.31	122	93	40.37	18	118	n/a	n/a	n/a
14	±1%	1.5	92	51	16.67	111	92	49.91	15	118	n/a	n/a	n/a
15	±1%	1.5	82	45	18.03	99	90	59.44	11	117	n/a	n/a	n/a
16	±1%	1.4	79	43	19.61	96	90	80.00	8	117	n/a	n/a	n/a
17	±1%	1.4	76	42	21.18	92	90	120.0	6	116	n/a	n/a	n/a
18	±1%	1.3	73	40	22.76	89	90	190.0	4	116	n/a	n/a	n/a
19	±1%	1.3	69	38	24.37	84	89	n/a	n/a	n/a	n/a	n/a	n/a
20	±1%	1.2	65	36	25.98	80	89	n/a	n/a	n/a	n/a	n/a	n/a
22	±1%	1.2	57	31	29.21	72	87	n/a	n/a	n/a	n/a	n/a	n/a
24	±1%	1.2	48	26	34.44	62	87	n/a	n/a	n/a	n/a	n/a	n/a
27	±1%	1.1	43	24	41.87	56	86	n/a	n/a	n/a	n/a	n/a	n/a
30	±1%	1.0	37	21	49.29	49	85	n/a	n/a	n/a	n/a	n/a	n/a
33	±1%	1.0	32	18	56.72	43	84	n/a	n/a	n/a	n/a	n/a	n/a
36	±1%	1.0	27	15	64.15	37	83	n/a	n/a	n/a	n/a	n/a	n/a
39	±1%	1.0	21	12	71.57	30	82	n/a	n/a	n/a	n/a	n/a	n/a

Accu-P® Series

<u>@</u> 1	citance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.
0.1	±0.02	17.2	880	484	0.125	890	3296	0.125	545	2417	0.126	447	2265
0.15	±0.02	14.1	872	480	0.176	885	2073	0.178	530	1626	0.181	434	1546
0.2	±0.02	12.3 11.0	864 857	475 471	0.228	880 874	1492 1156	0.231	516 501	1227 986	0.235	420 407	1178 955
0.3	±0.02	10.1	849	467	0.331	869	938	0.337	487	825	0.344	394	804
0.35	±0.02	9.4	841	462	0.382	864	787	0.390	472	710	0.399	380	695
0.4	±0.02	8.8	833	458	0.433	859	675	0.443	458	623	0.453	367	613
0.45	±0.02	8.3 7.9	825	454	0.485	853	590	0.496	443	555	0.508	353	549
0.55	±0.02	7.9	817 811	450 446	0.536 0.584	848 843	523 469	0.549	429 420	501 456	0.562 0.616	340 331	497 454
0.6	±0.02	7.2	805	443	0.631	838	425	0.651	411	419	0.670	322	418
0.65	±0.02	6.9	798	439	0.679	834	387	0.702	402	387	0.724	313	388
0.7	±0.02	6.7	792	436	0.726	829	356	0.753	393	360	0.778	304	362
0.75	±0.02	6.5	786	432	0.774	824	329	0.804	384	337	0.832	295	339
0.8	±0.02	6.3	779 773	429 425	0.822	819 814	306 285	0.855 0.906	375 366	316 298	0.886	286 277	319 301
0.9	±0.02	5.9	767	422	0.917	810	267	0.957	357	282	0.994	268	285
0.95	±0.02	5.8	760	418	0.964	805	251	1.008	348	267	1.049	260	271
1	±0.02	5.6	754	415	1.012	800	231	1.059	339	235	1.103	251	242
1.05	±0.02	5.5 5.4	747 740	411 407	1.065 1.119	794 788	223 215	1.120 1.181	335 330	228	1.170 1.237	247	235 228
1.15	±0.02	5.4	732	407	1.172	782	208	1.181	326	214	1.304	244	220
1.2	±0.02	5.1	725	399	1.225	776	200	1.304	322	207	1.371	237	213
1.25	±0.02	5.0	718	395	1.279	770	192	1.365	318	200	1.438	233	206
1.3	±0.02	4.9	711	391	1.332	764	184	1.426	313	193	1.505	230	199
1.35	±0.02	4.9	704 696	387 383	1.386 1.439	758 752	176 169	1.487 1.548	309 305	186 179	1.573 1.640	226 223	192 184
1.45	±0.02	4.0	689	379	1.439	746	161	1.609	300	179	1.707	219	177
1.5	±0.02	4.6	682	375	1.546	740	153	1.670	296	165	1.774	216	170
1.55	±0.02	4.6	675	371	1.600	733	151	1.734	292	163	1.850	212	168
1.6	±0.02	4.5	668	367	1.654	726	148	1.799	287	161	1.927	208	165
1.65 1.7	±0.02	4.4	660 653	363 359	1.708 1.762	719 712	146 143	1.864 1.928	283 278	159 157	2.003	204	163 160
1.75	±0.02	4.3	646	355	1.816	705	141	1.928	274	155	2.156	197	158
1.8	±0.02	4.2	639	351	1.870	698	139	2.058	269	152	2.232	193	155
1.85	±0.02	4.2	632	347	1.924	691	136	2.122	265	150	2.308	189	153
1.9	±0.02	4.1	624	343	1.978	684	134	2.187	260	148	2.385	185	150
1.95	±0.02 ±0.03	4.1	617 610	339 336	2.033	677 670	131 129	2.252	256 251	146 144	2.461 2.537	181 177	148 145
2.1	±0.03	3.9	597	328	2.183	658	127	2.440	245	142	2.690	177	143
2.2	±0.03	3.8	584	321	2.280	646	124	2.563	239	139	2.843	165	141
2.3	±0.03	3.8	571	314	2.377	634	122	2.687	233	137	2.996	159	139
2.4	±0.03	3.6	557	307	2.474	623	119	2.810	227	135	3.149	154	136
2.5	±0.03 ±0.03	3.6	544 531	299 292	2.571	611 599	117 114	2.934 3.057	221 215	133 130	3.301 3.454	148 142	134 132
2.7	±0.03	3.4	518	285	2.764	587	112	3.181	209	128	3.607	136	130
2.8	±0.03	3.4	507	279	2.875	575	111	3.348	204	127	3.850	132	129
2.9	±0.03	3.4	497	273	2.987	564	110	3.514	199	125	4.093	129	127
3	±0.03	3.3	486	267	3.098	552	109	3.681	194	124	4.335	125	126
3.1	±0.05	3.3	475 465	261 256	3.209 3.320	540 528	108 107	3.848 4.014	189 183	123 122	4.578 4.821	121 118	125 123
3.3	±0.05	3.1	454	250	3.431	517	106	4.014	178	120	5.064	114	122
3.4	±0.05	3.1	443	244	3.542	505	105	4.348	173	119	5.307	110	121
3.5	±0.05	3.1	433	238	3.653	493	104	4.515	168	118	5.549	107	119
3.6	±0.05	3.0	422	232	3.764	481	103	4.681	163	116	5.792	103	118
3.7	±0.05 ±0.05	3.0	412 401	226 220	3.875 3.986	470 458	102 101	4.848 5.015	158 153	115 114	6.035 6.278	99 96	116 115
3.8	±0.05	2.9	390	215	4.097	458	100	5.015	148	113	6.521	90	114
4	±0.05	2.9	384	211	4.214	440	99	5.378	144	112	6.861	89	113
4.1	±0.05	2.9	378	208	4.331	434	98	5.574	141	112	7.201	86	113
4.2	±0.05	2.8	372	205	4.448	428	98	5.769	138	111	7.541	84	112

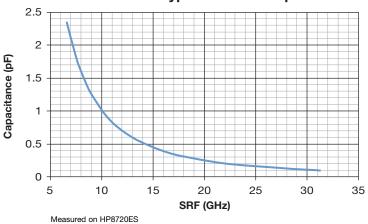
Accu-P® Series

<u>@</u> 1	and Tolerance Resor		Self Q Standard Value Resonance @ 1GHz Frequency			Frequency 900MHz			Frequency 1900MHz		Frequency 2400MHz		
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Тур.	ESR (m0hm) Typ.
4.3	±0.05	2.7	366	202	4.564	422	97	5.965	134	111	7.881	81	111
4.4	±0.05	2.7	360	198	4.681	415	96	6.161	131	110	8.222	78	111
4.5	±0.05	2.7	355	195	4.798	409	96	6.357	128	110	8.562	75	110
4.6	±0.05	2.7	349	192	4.915	403	95	6.553	124	109	8.902	72	110
4.7	±0.05	2.6	343	188	5.032	397	94	6.749	121	109	9.242	69	109
5.1	±0.05	2.5	319	175	5.499	373	91	7.533	108	107	10.60	58	107
5.6	±0.05	2.4	289	159	6.083	342	88	8.513	91	104	12.30	44	104
6.2	±0.1	2.3	264	145	6.842	313	86	10.43	79	102	18.03	36	103
6.8	±0.1	2.2	239	131	7.601	283	84	12.35	68	101	23.76	28	102
7.5	±0.1	2.1	218	120	8.468	259	83	14.84	61	100	37.25	21	101
8.2	±0.1	2.0	198	109	9.334	234	82	17.32	55	100	50.74	15	100
9.1	±0.1	1.9	179	99	10.57	213	82	24.90	46	100	n/a	n/a	n/a
10	±1%	1.8	160	88	11.80	191	81	32.48	37	100	n/a	n/a	n/a
11	±1%	1.7	139	77	13.17	167	81	40.90	26	101	n/a	n/a	n/a
12	±1%	1.6	119	65	14.54	143	80	49.32	16	101	n/a	n/a	n/a
13	±1%	1.6	110	60	16.17	134	80	n/a	n/a	n/a	n/a	n/a	n/a
14	±1%	1.5	101	55	17.79	125	80	n/a	n/a	n/a	n/a	n/a	n/a
15	±1%	1.5	92	51	19.42	116	80	n/a	n/a	n/a	n/a	n/a	n/a
16	±1%	1.4	87	48	21.13	110	79	n/a	n/a	n/a	n/a	n/a	n/a
17	±1%	1.4	83	46	22.85	104	78	n/a	n/a	n/a	n/a	n/a	n/a
18	±1%	1.3	78	43	24.57	99	77	n/a	n/a	n/a	n/a	n/a	n/a
19	±1%	1.3	73	40	26.41	92	77	n/a	n/a	n/a	n/a	n/a	n/a
20	±1%	1.3	67	37	28.26	85	76	n/a	n/a	n/a	n/a	n/a	n/a
22	±1%	1.2	57	31	31.95	72	76	n/a	n/a	n/a	n/a	n/a	n/a
24	±1%	1.2	46	25	35.64	59	75	n/a	n/a	n/a	n/a	n/a	n/a
27	±1%	1.1	41	22	44.94	54	74	n/a	n/a	n/a	n/a	n/a	n/a
30	±1%	1.0	36	20	54.24	48	73	n/a	n/a	n/a	n/a	n/a	n/a
33	±1%	1.0	30	17	63.54	42	72	n/a	n/a	n/a	n/a	n/a	n/a
36	±1%	0.9	25	14	72.84	37	71	n/a	n/a	n/a	n/a	n/a	n/a
39	±1%	0.9	20	11	82.14	31	70	n/a	n/a	n/a	n/a	n/a	n/a
43	±1%	0.9	16	9	102.9	27	66	n/a	n/a	n/a	n/a	n/a	n/a
47	±1%	0.8	12	7	123.7	23	63	n/a	n/a	n/a	n/a	n/a	n/a

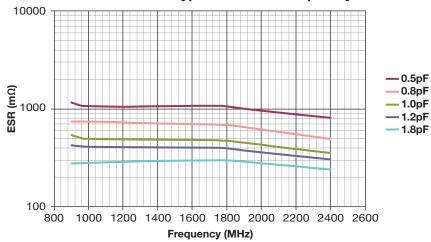
Accu-P® Series

<u>@</u> 1	eitance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (m0hm) Typ.
0.1	±0.02	15.6	1190	654	0.136	1176	3633	0.136	606	2149	0.136	450	2068
0.15	±0.03	12.7	1179	648	0.190	1166	2129	0.190	597	1407	0.191	444	1370
0.2	±0.02	11.0	1168	642	0.244	1156	1457	0.244	589	1042	0.246	438	1023
0.25	±0.02	9.8 8.9	1156 1145	636 630	0.297 0.351	1145 1135	1086 854	0.299 0.353	581 573	826 683	0.301 0.356	432 426	816 678
0.35	±0.02	8.3	1134	624	0.331	1125	697	0.333	565	581	0.330	420	580
0.33	±0.02	7.7	1123	618	0.459	1115	584	0.462	557	505	0.466	415	506
0.45	±0.02	7.3	1112	612	0.513	1105	500	0.516	549	447	0.521	409	449
0.5	±0.02	6.9	1101	606	0.567	1095	435	0.571	541	400	0.576	403	404
0.55	±0.02	6.6	1090	599	0.617	1084	384	0.621	532	362	0.627	397	366
0.6	±0.02	6.3	1079	593	0.666	1074	342	0.672	524	331	0.679	391	335
0.65	±0.02	6.0	1068	587	0.716	1064	308	0.723	516	304	0.731	385	309
0.7	±0.02	5.8	1057	581	0.765	1054	279	0.774	508	282	0.783	379	287
0.75	±0.02	5.6	1046	575	0.815	1044	255	0.824	500	262	0.834	374	267
8.0	±0.02	5.4	1035	569	0.864	1034	234	0.875	492	245	0.886	368	250
0.85	±0.02	5.3	1023	563	0.914	1024	216	0.926	484	230	0.938	362	236
0.9	±0.02	5.1	1012	557	0.963	1013	201	0.976	476	217	0.989	356	222
0.95	±0.02	5.0	1001	551	1.013	1003	187	1.027	467	205	1.041	350	210
1	±0.02	5.0	992	546	1.062	983	167	1.078	459	170	1.093	344	177
1.05	±0.02	4.9	981	539	1.107	975	163	1.124	451	167	1.141	338	174
1.1	±0.02	4.8	969	533	1.152	966	158	1.170	443	165	1.189	331	172
1.15	±0.02 ±0.02	4.7 4.6	958 946	527 521	1.196 1.241	958 950	154 150	1.217 1.263	435 427	162 160	1.236 1.284	325 318	169 167
1.25	±0.02	4.5	935	514	1.241	930	146	1.309	419	157	1.332	310	164
1.23	±0.02	4.4	923	508	1.330	933	142	1.355	419	155	1.380	305	162
1.35	±0.02	4.3	912	502	1.375	925	138	1.402	402	152	1.428	299	159
1.4	±0.02	4.2	900	495	1.419	917	134	1.448	394	150	1.476	293	156
1.45	±0.02	4.1	889	489	1.464	908	129	1.494	386	147	1.524	286	154
1.5	±0.02	4.1	877	483	1.508	900	125	1.541	378	144	1.572	280	151
1.55	±0.02	4.0	862	474	1.567	890	123	1.618	371	143	1.638	274	150
1.6	±0.02	3.9	846	465	1.626	881	122	1.694	363	142	1.704	268	149
1.65	±0.02	3.9	831	457	1.685	871	120	1.771	356	140	1.770	262	148
1.7	±0.02	3.8	815	448	1.743	862	118	1.848	349	139	1.836	256	147
1.75	±0.02	3.7	800	440	1.802	852	116	1.925	342	138	1.902	250	145
1.8	±0.02	3.7	784	431	1.861	843	114	2.002	334	136	1.968	244	144
1.85	±0.02	3.6	769	423	1.920	833	112	2.079	327	135	2.034	239	143
1.9	±0.02	3.5	753	414	1.978	824	110	2.156	320	134	2.100	233	142
1.95	±0.02	3.4	737	406	2.037	814	108	2.233	313	132	2.167	227	141
2	±0.03	3.3	722 691	397	2.096	805 786	107	2.310	305	131	2.233	221	139 137
2.1	±0.03 ±0.03	3.2	660	380 363	2.213	786 767	99	2.464 2.618	291 276	128 126	2.365 2.497	198	137
2.2	±0.03	2.9	644	353	2.420	767	99	2.681	268	123	2.497	198	135
2.4	±0.03	2.9	629	346	2.508	728	96	2.744	259	123	2.729	185	130
2.5	±0.03	2.8	614	338	2.597	709	94	2.807	251	118	2.845	179	128
2.6	±0.03	2.8	598	329	2.686	689	93	2.870	242	116	2.961	173	126
2.7	±0.03	2.7	583	321	2.775	670	91	2.933	234	114	3.077	167	123
2.8	±0.03	2.7	574	316	2.875	659	90	3.047	230	113	3.205	164	122
2.9	±0.03	2.7	566	311	2.975	647	89	3.162	227	112	3.334	161	121
3	±0.03	2.7	557	306	3.075	636	88	3.276	223	111	3.462	157	121
3.1	±0.05	2.7	548	302	3.174	625	87	3.390	220	110	3.590	154	120
3.2	±0.05	2.6	540	297	3.274	613	87	3.504	216	109	3.718	151	119
3.3	±0.05	2.6	531	292	3.374	602	86	3.619	213	108	3.847	148	118
3.4	±0.05	2.6	522	287	3.474	591	85	3.733	209	107	3.975	145	117
3.5	±0.05	2.6	514	283	3.574	579	84	3.847	206	106	4.103	141	116
3.6	±0.05	2.5	505	278	3.674	568	83	3.961	202	105	4.231	138	115
3.7	±0.05	2.5	496	273	3.773	556	82	4.076	198	104	4.359	135	114
3.8	±0.05	2.5	488	268	3.873	545	81	4.190	195	103	4.488	132	113

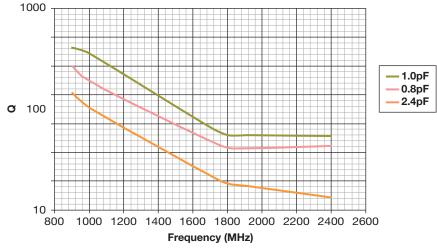
Accu-P® Series


<u>.</u> 0 1	itance MHz Ierance	Self Resonance		ard Value GHz		Frequency 900MHz			Frequency 1900MHz			Frequency 2400MHz	
C (pF)	Tol.	Frequency (GHz) Typ.	Тур.	Min.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Typ.	ESR (mOhm) Typ.	C(eff) (pF) Typ.	Q Тур.	ESR (m0hm) Typ.
3.9	±0.05	2.4	479	264	3.973	534	80	4.304	191	102	4.616	129	112
4	±0.05	2.4	473	260	4.083	528	79	4.435	189	101	4.768	127	112
4.1	±0.05	2.4	467	257	4.192	522	78	4.565	186	100	4.919	125	111
4.2	±0.05	2.4	462	254	4.302	516	78	4.695	183	100	5.071	123	110
4.3	±0.05	2.3	456	251	4.411	511	77	4.825	180	99	5.223	121	110
4.4	±0.05	2.3	450	247	4.521	505	76	4.956	178	98	5.375	119	109
4.5	±0.05	2.3	444	244	4.630	499	75	5.086	175	98	5.526	117	108
4.6	±0.05	2.3	438	241	4.740	493	75	5.216	172	97	5.678	115	108
4.7	±0.05	2.2	432	238	4.849	487	74	5.347	170	96	5.830	113	107
5.1	±0.05	2.1	408	225	5.288	464	71	5.868	159	93	6.437	106	105
5.6	±0.05	2.0	379	208	5.835	435	67	6.519	145	90	7.195	96	102
6.2	±0.1	1.9	355	195	6.440	408	65	7.176	137	86	7.897	91	96
6.8	±0.1	1.8	330	182	7.044	380	62	7.832	129	83	8.599	85	91
7.5	±0.1	1.7	308	169	7.823	351	61	8.927	115	81	10.08	74	89
8.2	±0.1	1.7	285	157	8.601	322	60	10.02	100	78	11.55	63	87
9.1	±0.1	1.6	266	146	9.600	304	58	11.55	93	77	13.93	57	85
10	±1%	1.5	247	136	10.60	285	57	13.09	85	76	16.30	50	84
11	±1%	1.5	225	124	11.71	265	56	14.79	76	74	18.94	43	82
12	±1%	1.4	204	112	12.82	244	54	16.49	68	73	21.57	36	81
13	±1%	1.3	193	106	13.97	230	53	18.64	61	72	26.09	32	80
14	±1%	1.3	181	99	15.13	215	53	20.80	55	71	30.61	28	79
15	±1%	1.2	169	93	16.28	200	52	22.95	48	70	35.13	24	78
16	±1%	1.2	164	90	17.51	195	51	26.01	46	69	46.51	22	76
17	±1%	1.2	159	88	18.75	189	50	29.07	43	67	57.90	19	75
18	±1%	1.1	154	85	19.98	183	49	32.14	41	66	69.29	17	73
19	±1%	1.1	150	82	21.21	178	49	36.34	39	66	n/a	n/a	n/a
20	±1%	1.1	145	80	22.43	172	49	40.55	38	65	n/a	n/a	n/a
22	±1%	1.0	136	75	24.88	162	49	48.96	34	64	n/a	n/a	n/a
24	±1%	1.0	126	70	27.34	151	48	57.38	31	63	n/a	n/a	n/a
27	±1%	0.9	112	62	31.02	135	48	70.00	26	62	n/a	n/a	n/a
30	±1%	0.9	101	56	36.14	121	48	n/a	n/a	n/a	n/a	n/a	n/a
33	±1%	0.8	90	50	41.27	108	48	n/a	n/a	n/a	n/a	n/a	n/a
36	±1%	0.8	79	44	46.39	95	48	n/a	n/a	n/a	n/a	n/a	n/a
39	±1%	0.8	68	38	51.52	82	48	n/a	n/a	n/a	n/a	n/a	n/a
43	±1%	0.7	54	30	58.35	64	48	n/a	n/a	n/a	n/a	n/a	n/a
47	±1%	0.7	39	21	65.18	46	48	n/a	n/a	n/a	n/a	n/a	n/a
82	±1%	0.7	17	10	148.400	24	48	n/a	n/a	n/a	n/a	n/a	n/a

Accu-P® Series


High Frequency Characteristics

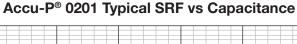
Accu-P® 01005 Typical SRF vs Capacitance

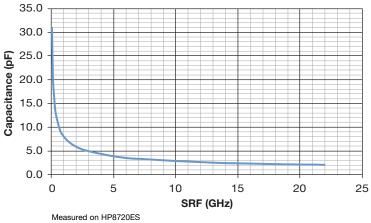


Accu-P® 01005 Typical ESR vs Frequency

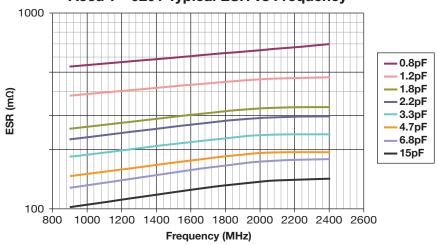
Measured on Agilent 4278A/4991A

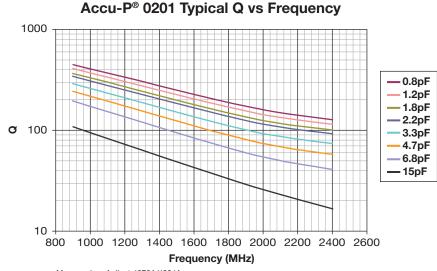
Accu-P® 01005 Typical Q vs Frequency


Measured on Agilent 4278A/4991A



Accu-P® Series


High Frequency Characteristics



Accu-P® 0201 Typical ESR vs Frequency

Measured on Agilent 4278A/4991A

Measured on Agilent 4278A/4991A

Accu-P® Series

High Frequency Characteristics

Accu-P® 0402 Typical SRF vs Capacitance 30.0 25.0 Capacitance (pF) 20.0 15.0 10.0 5.0 0.0

30

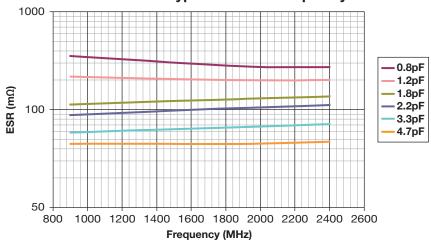
Measured on HP8720ES

10

20

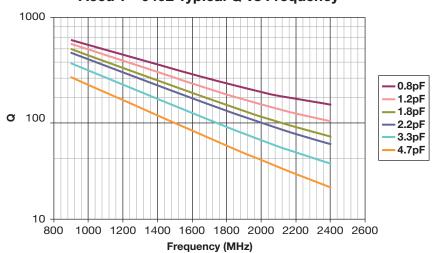
0

Accu-P® 0402 Typical ESR vs Frequency


SRF (GHz)

40

50

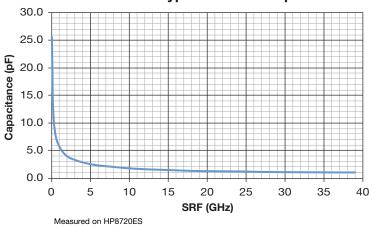

60

70

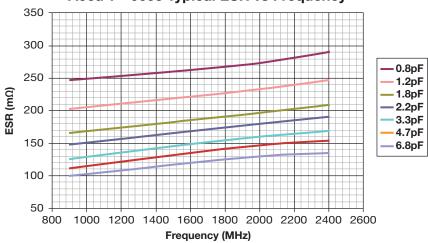
Measured on Agilent 4278A/4991A

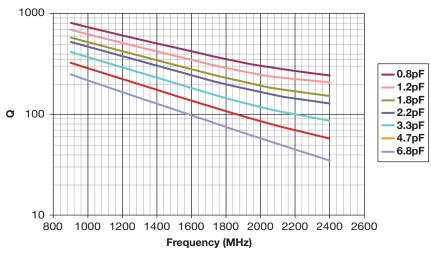
Accu-P[®] 0402 Typical Q vs Frequency

Measured on Agilent 4278A/4991A


KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Accu-P® Series


High Frequency Characteristics

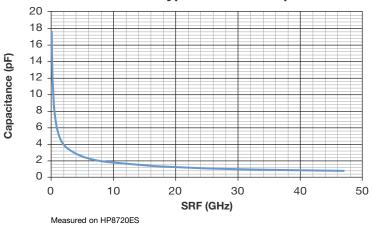

Accu-P® 0603 Typical SRF vs Capacitance

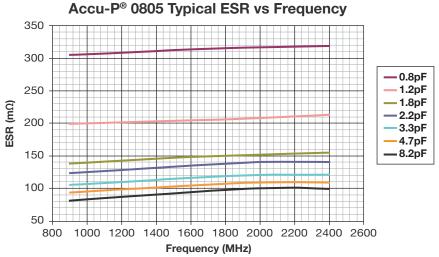
Accu-P® 0603 Typical ESR vs Frequency

Accu-P® 0603 Typical Q vs Frequency

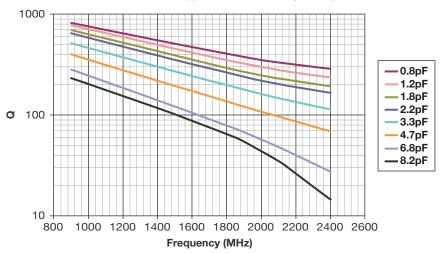
Measured on Agilent 4278A/4991A

Measured on Agilent 4278A/4991A




Accu-P® Series

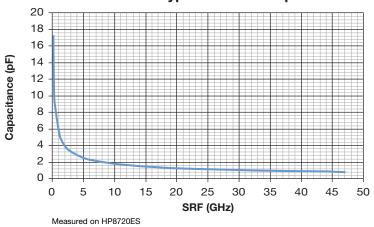
High Frequency Characteristics


Accu-P® 0805 Typical SRF vs Capacitance

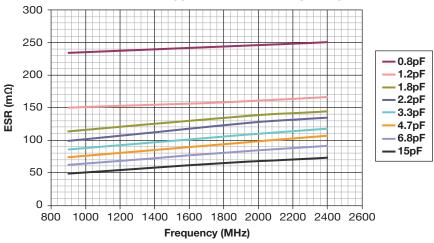
Measured on Agilent 4278A/4991A

Accu-P® 0805 Typical Q vs Frequency

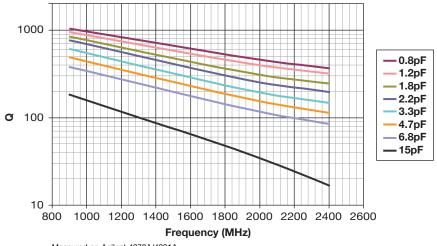
Measured on Agilent 4278A/4991A


KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Accu-P® Series


High Frequency Characteristics

Accu-P® 1210 Typical SRF vs Capacitance



Accu-P® 1210 Typical ESR vs Frequency

Measured on Agilent 4278A/4991A

Accu-P® 1210 Typical Q vs Frequency

Measured on Agilent 4278A/4991A

KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Accu-P® Series

Environmental / Mechanical Characteristics

ENVIRONMENTAL CHARACTERISTICS

TEST	CONDITIONS	REQUIREMENT
Life (Endurance) MIL-STD-202F Method 108A	125°C, 2UR,1000 hours	No visible damage Δ C/C ≤ 2% for C≥5pF Δ C ≤ 0.25pF for C<5pF
Accelerated Damp Heat Steady State MIL-STD-202F Method 103B	85°C, 85% RH, UR, 1000 hours	No visible damage Δ C/C ≤ 2% for C≥5pF Δ C ≤ 0.25pF for C<5pF
Temperature Cycling MIL-STD-202F Method 107E MIL-STD-883D Method 1010.7	-55°C to +125°C, 15 cycles – Accu-P®	No visible damage $\Delta \ C/C \le 2\% \ for \ C \ge 5pF$ $\Delta \ C \le 0.25pF \ for \ C < 5pF$
Resistance to Solder Heat IEC-68-2-58	260°C ± 5°C for 10 secs	C remains within initial limits

MECHANICAL CHARACTERISTICS

TEST	CONDITIONS	REQUIREMENT
Solderability IEC-68-2-58	Components completely immersed in a solder bath at 235°C for 2 secs.	Terminations to be well tinned, minimum 95% coverage
Leach Resistance IEC-68-2-58	Components completely immersed in a solder bath at 260±5°C for 60 secs.	Dissolution of termination faces ≤15% of area Dissolution of termination edges ≤25% of length
Adhesion MIL-STD-202F Method 211A	A force of 5N applied for 10 secs.	No visible damage
Termination Bond Strength IEC-68-2-21 Amend. 2	D = 3mm Accu-P 45mm 45mm	No visible damage Δ C/C ≤ 2% for C≥5pF Δ C ≤ 0.25pF for C<5pF
Robustness of Termination IEC-68-2-21 Amend. 2	A force of 5N applied for 10 secs.	No visible damage
High Frequency Vibration MIL-STD-202F Method 201A, 204D (Accu-P® only)	55Hz to 2000Hz, 20G	No visible damage
Storage	12 months minimum with components stored in "as received" packaging	Good solderability

QUALITY & RELIABILITY

Accu-P® is based on well established thin-film technology and materials.

ON-LINE PROCESS CONTROL

This program forms an integral part of the production cycle and acts as a feedback system to regulate and control production processes. The test procedures, which are integrated into the production process, were developed after long research work and are based on the highly developed semiconductor industry test procedures and equipment. These measures help KYOCERA AVX to produce a con-sistent and high yield line of products.

FINAL QUALITY INSPECTION

Finished parts are tested for standard electrical parameters and visual/ mechanical characteristics. Each production lot is 100% evaluated for: capacitance and proof voltage at 2.5 UR. In addition, production is periodically evaluated for:

Average capacitance with histogram printout for capacitance distribution;

IR and Breakdown Voltage distribution;

Temperature Coefficient;

Solderability;

Dimensional, mechanical and temperature stability.

QUALITY ASSURANCE

The reliability of these thin-film chip capacitors has been studied intensively for several years. Various measures have been taken to obtain the high reliability required today by the industry. Quality assurance policy is based on well established international industry standards. The reliability of the capacitors is determined by accelerated testing under the following conditions:

125°C, 2UR, 1000 hours Life (Endurance)

Accelerated Damp

Heat Steady State 85°C, 85% RH, UR, 1000 hours.

22

Accu-P® Series

Performance Characteristics RF Power Applications

RF POWER APPLICATIONS

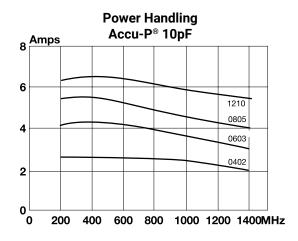
In RF power applications capacitor losses generate heat. Two factors of particular importance to designers are:

- Minimizing the generation of heat.
- Dissipating heat as efficiently as possible.

CAPACITOR HEATING

- · The major source of heat generation in a capacitor in RF power applications is a function of RF current (I) and ESR, from the relationship:
- Power dissipation = I_{RMS}^2 x ESR
- Accu-P® capacitors are specially designed to minimize ESR and therefore RF heating. Values of ESR for Accu-P® capacitors are significantly less than those of ceramic MLC components currently available.

HEAT DISSIPATION


- Heat is dissipated from a capacitor through a variety of paths, but the key factor in the removal of heat is the thermal conductivity of the capacitor material.
- The higher the thermal conductivity of the capacitor, the more rapidly heat will be dissipated.
- The table below illustrates the importance of thermal conductivity to the performance of Accu-P® in power applications.

Data used in calculating the graph:

Thermal impedance of capacitors:

•	0402	17°C/W
•	0603	12°C/W
•	0805	6.5°C/W
•	1210	5°C/W

PRODUCT	MATERIAL	THERMAL CONDUCTIVITY W/mK
Accu-P®	Alumina	18.9
Microwave MLC	Magnesium Titanate	6.0

Thermal impedance measured using RF generator, amplifier and strip-line transformer. ESR of capacitors measured on Boonton 34A

THERMAL IMPEDANCE

Thermal impedance of Accu-P® chips is shown below com-pared with the thermal impedance of Microwave MLC's.

The thermal impedance expresses the temperature difference in °C between chip center and termination caused by a power dissipation of 1 watt in the chip. It is expressed in °C/W.

ADVANTAGES OF ACCU-P® IN RF POWER CIRCUITS

The optimized design of Accu-P® offers the designer of RF power circuits the following advantages:

- Reduced power losses due to the inherently low ESR of Accu-P®.
- Increased power dissipation due to the high thermal conductivity of Accu-P®.
- The only true test of a capacitor in any particular application is its performance under operating conditions in the actual circuit.

CAPACITOR TYPE	CHIP SIZE	THERMAL IMPEDANCE (°C/W)
Accu-P®	0805 1210	6.5 5
Microwave MLC	0505 1210	12 7.5

PRACTICAL APPLICATION IN RF POWER CIRCUITS

- There is a wide variety of different experimental methods for measuring the power handling performance of a capacitor in RF power circuits. Each method has its own problems and few of them exactly reproduce the conditions present in "real" circuit applications.
- Similarly, there is a very wide range of different circuit appli- cations, all with their unique characteristics and operating conditions which cannot possibly be covered by such "theoretical" testing

Accu-P® Series

Application Notes

GENERAL

Accu-P® SMD capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

CIRCUIT BOARD TYPE

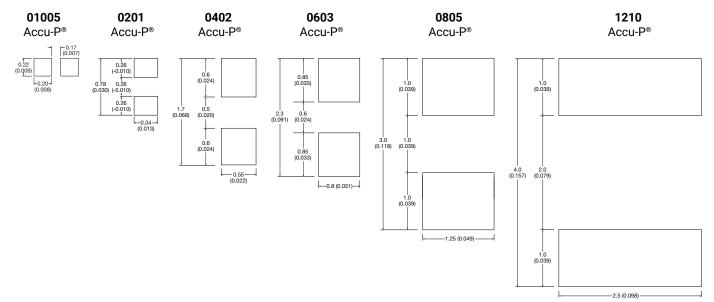
The circuit board types which may be used with Accu-P® are as follows:

All flexible types of circuit boards (eg. FR-4, G-10) and also alumina.

For other circuit board materials, please consult factory.

HANDLING

SMD capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. For automatic equipment, taped and reeled product gives the ideal medium for direct presentation to the placement machine.


COMPONENT PAD DESIGN

Component pads must be designed to achieve good joints and minimize component movement during reflow soldering. Pad designs are given below for both wave and reflow soldering.

The basis of these designs is:

- a. Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below
- b. Pad overlap 0.5mm beneath large components. Pad overlap about 0.3mm beneath small components.
- c. Pad extension of 0.5mm for reflow of large components and pad extension about 0.3mm for reflow of small components. Pad extension about 1.0mm for wave soldering.

REFLOW SOLDERING PAD DIMENSIONS: millimeters (inches)

Accu-P® Series

Application Notes

PREHEAT & SOLDERING

The rate of preheat in production should not exceed 4°C/ second and a recommended maximum is about 2°C/second. Temperature differential from preheat to soldering should not exceed 100°C.

For further specific application or process advice, please consult KYOCERA AVX.

COOLING

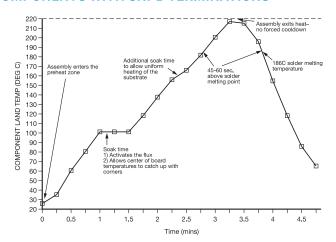
After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

HAND SOLDERING & REWORK

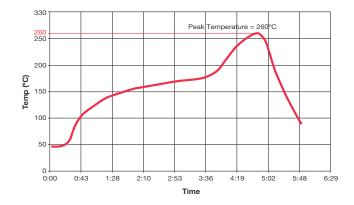
Hand soldering is permissible. Preheat of the PCB to 150°C is required. The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C.

CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:


Cleaning liqu	i-propanol, ethanol, acetylacetone, water and other standard PCB cleaning liquids.
Ultrasonic co	power-20w/liter max. frequency-20kHz to 45kHz.
Temperature	80°C maximum (if not otherwise limited by chosen solvent system).
Time	 5 minutes max.

STORAGE CONDITIONS


Recommended storage conditions for Accu-P® prior to use are as follows:

Temperature	15°C to 35°C
Humidity	≤65%
Air Pressure	860mbar to 1060mbar

RECOMMENDED REFLOW SOLDERING PROFILE **COMPONENTS WITH SNPB TERMINATIONS**

RECOMMENDED REFLOW SOLDERING PROFILE LEAD FREE COMPONENTS WITH SN100 TERMINATIONS

Accu-P® Series

Automatic Insertion Packaging

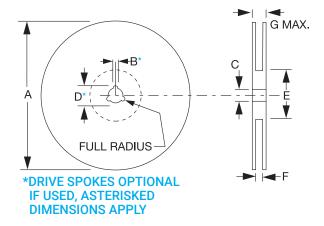
TAPE & REEL

All tape and reel specifications are in compliance with EIA 481-1-A. (equivalent to IEC 286 part 3).

8mm carrier

· Reeled quantities: Reels of 3,000 per 7" reel or 10,000 pieces per 13" reel

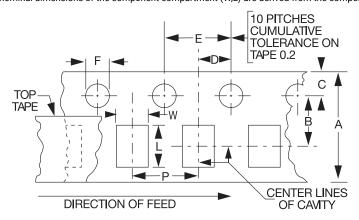
01005, 0201, and 0402 = 5,000 pieces per 7" reel and 20,000 pieces per 13" reel


REELDIMENSIONS: millimeters (inches)

	A(1)	В	С	D	E	F	G
Г	180±1.0	1.5 min.	13±0.2	20.2 min.	50 min.	9.6±1.5	14.4 max.
	(7.087±0.039)	(0.059 min.)	(0.512 ± 0.008)	(0.795 min.)	(1.969 min.)	(0.370 ± 0.050)	(0.567 max.)

Metric dimensions will govern.

Inch measurements rounded and for reference only.


(1) 330mm (13 inch) reels are available.

CARRIER DIMENSIONS: millimeters (inches)

Α	В	С	D	E	F
8.0 ± 0.3	3.5 ± 0.05	1.75±0.1	2.0 ± 0.05	4.0 ± 0.1	(1.5 ^{+0.1} _{-0.00})
(0.315 ± 0.012)	(0.138 ± 0.002)	(0.069 ± 0.004)	(0.079 ± 0.002)	(0.157 ± 0.004)	(0.059 ⁺ 0.004)

The nominal dimensions of the component compartment (W,L) are derived from the component size.

P = 4mm for 0603, 0805, 1210

P = 2mm for 01005, 0201, and 0402

Accu-P® Series

Ultra-Miniature 01005 Size

ACCU-P® TECHNOLOGY

The use of silicon oxide, a very low - loss dielectric material, in conjunction with highly conductive electrode metals, results in low ESR and high Q. These high - frequency characteristics change at a slower rate with increasing frequency than for ceramic microwave capacitors.

ACCU-P® meets the fast - growing demand for low - loss (high - Q) capacitors for use in surface mount technology, especially for the wireless communications market at frequencies up to and above 5.8GHz.

ACCU-P® is currently unique in its ability to offer very low capacitance values (0.05 pF) and ultra tight capacitance tolerances (±0.01 pF).

ACCU-P® TECHNOLOGY

- RF Modules
- Mobile communications
- Statelite TV
- Global positioning systems
- Filters
- VCO's
- Matching Networks

FEATURES

- · Ultra Miniature standard 01005 chip size.
- Ultra tight capacitance tolerances (±0.01pF).
- · Low ESR and high Q at VHF, UHF and microwave frequencies.
- TC ±30, ±60ppm/°C.
- · Nickel/Solder coated terminations provide excellent solderability and leach resistance.
- High insulation resistance: IR ≥ 1010 Ohm.
- Orientation provides high SRF uniformity.
- Repeatable CEFF, ESR and Q vs. Frequency parameters, both lot to lot and within lots, for increased production yields.

HOW TO ORDER

P/N Example: C 0 0 5 Y K 1 R 0 A B S T R

ACCU-P® TECHNOLOGY

Finished parts are tested for standard electrical parameters and visual / mechanical characteristics.

Each production lot is 100% evaluated for:

- Capacitance
- O Factor
- DWV at 12.5xV_{RATED}

Each production lot is evaluated on a sample basis for:

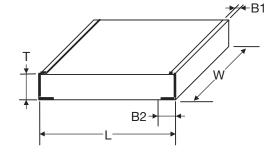
- Dimensions
- Insulation Resistance
- Breakdown Voltage
- **ESR**
- Solderability

In addition, production is periodically evaluated for:

- Dimensions
- Insulation Resistance
- Breakdown Voltage
- ESR
- Solderability

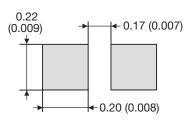
Accu-P® Series

Ultra-Miniature 01005 Size


ACCU-P® 01005 CAPACITANCE RANGE

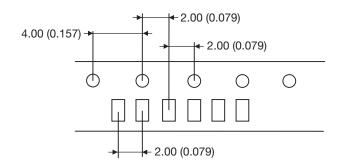
Capacitance [pF]	Part Number	Tolerances Z = ±0.01pF P = ±0.02pF Q = ±0.03pF A = ±0.05pF	TC J = ±30ppm/°C K = ±60pFppm/°C	Voltage (V)
0.05	C005YJR05_BSTR	Z, P, Q, A	J	16
0.10	C005YJ0R1_BSTR	Z, P, Q, A	J	16
0.15	C005YJR15_BSTR	Z, P, Q, A	J	16
0.20	C005YJ0R2_BSTR	Z, P, Q, A	J	16
0.25	C005YJR25_BSTR	Z, P, Q, A	J	16
0.30	C005YJ0R3_BSTR	Z, P, Q, A	J	16
0.35	C005YJR35_BSTR	Z, P, Q, A	J	16
0.40	C005YJ0R4_BSTR	Z, P, Q, A	J	16
0.45	C005YJR45_BSTR	Z, P, Q, A	J	16
0.50	C005YJ0R5_BSTR	Z, P, Q, A	J	16
0.55	C005YJR55_BSTR	P, Q, A	J	16
0.60	C005YJ0R6_BSTR	P, Q, A	J	16
0.65	C005YJR65_BSTR	P, Q, A	J	16
0.70	C005YJ0R7_BSTR	P, Q, A	J	16
0.75	C005YJR75_BSTR	P, Q, A	K	16
0.80	C005YK0R8_BSTR	P, Q, A	K	16
0.85	C005YKR85_BSTR	P, Q, A	K	16

Capacitance [pF]	Part Number	Tolerances Z = ±0.01pF P = ±0.02pF Q = ±0.03pF A = ±0.05pF	TC J = ±30ppm/°C K = ±60pFppm/°C	Voltage (V)
0.90	C005YK0R9_BSTR	P, Q, A	K	16
0.95	C005YKR95_BSTR	P, Q, A	K	16
1.00	C005YK1R0_BSTR	P, Q, A	K	16
1.10	C005YK1R1_BSTR	P, Q, A	K	16
1.20	C005YK1R2_BSTR	P, Q, A	K	16
1.30	C005YK1R3_BSTR	P, Q, A	K	16
1.40	C005YK1R4_BSTR	P, Q, A	K	16
1.50	C005YK1R5_BSTR	P, Q, A	K	16
1.60	C005YK1R6_BSTR	P, Q, A	K	16
1.70	C005YK1R7_BSTR	P, Q, A	K	16
1.80	C005YK1R8_BSTR	P, Q, A	K	16
1.90	C005YK1R9_BSTR	P, Q, A	K	16
2.00	C005YK2R0_BSTR	P, Q, A	K	16
2.10	C005YK2R1_BSTR	P, Q, A	K	16
2.20	C005YK2R2_BSTR	P, Q, A	K	16
2.30	C005YK2R3_BSTR	P, Q, A	K	16
2.40	C005YK2R4_BSTR	P, Q, A	K	16


Intermediate capacitance values are available

DIMENSIONS: mm (inches)

	0.405 ± 0.020
_	(0.016 ± 0.001)
w	0.215 ± 0.020
VV	(0.0085 ± 0.001)
т	0.145 ± 0.020
•	(0.006 ± 0.001)
	Top (B1): 0.0 +0.10/-0.0
В	(0.0 +0.004/-0.0)
В	Bottom (B2): 0.10 ± 0.03
	(0.004 ± 0.001)


RECOMMENDED PAD LAYOUT: mm (inches)

PACKAGING SPECIFICATION: mm (inches)

Standard Packaging: 5,000 / 10,000 / 20,000pcs in 4" / 7" reels

Materials: Reel - Polystyrene Tape - Paper: 8.00 (0.315) Component pitch: 2.00 (0.079)

Accu-L® Series

Thin-Film RF/Microwave Inductor Technology

Accu-L® Series

L0201 Tight Tolerance RF Inductor

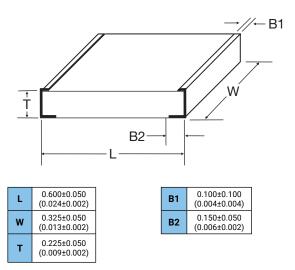
ACCU-L® TECHNOLOGY

The L0201 SMD Tuning Inductor is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

APPLICATIONS

- · Mobile Communications
- · Satellite TV Receivers
- GPS
- · Vehicle Location Systems
- · Wireless LAN's
- Filters
- · Matching Networks

HOW TO ORDER

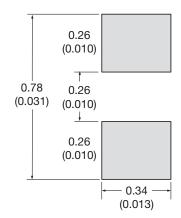


P/N Example: L02013R3BHSTR

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

DIMENSIONS: millimeters (inches) (TOP View)



TERMINATION

Nickel/Lead Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

Recommended Pad Layout Dimensions

mm (inches)

Thin-Film RF/Microwave Inductor Technology

Accu-L® Series

L0201 Tight Tolerance RF Inductor

ELECTRICAL SPECIFICATIONS

	450MHz			1900MHz	2400MHz	005		
L(nH)	Tolerance A=±0.05nH , B=±0.1nH, C=±0.2nH, D=±0.5nH	Q (min)	Q (Typ)	Q (Typ)	Q (Typ)	SRF min. (GHz)	R _{DC} max. (Ω)	max. (mA)
0.33	±0.05nH , ± 0.1nH , ± 0.2nH	13	24	36	39	35	0.1	550
0.39	±0.05nH , ± 0.1nH , ± 0.2nH	11	23	34	38	33	0.1	550
0.47	±0.05nH , ± 0.1nH , ± 0.2nH	10	18	26	30	32	0.1	550
0.56	±0.05nH , ± 0.1nH , ± 0.2nH	9	16	24	27	31	0.1	500
0.68	±0.05nH , ± 0.1nH , ± 0.2nH	8	19	28	32	30	0.2	500
0.82	±0.05nH , ± 0.1nH , ± 0.2nH	8	19	28	32	28	0.2	400
1.0	±0.05nH , ± 0.1nH , ± 0.2nH	7	16	26	30	26	0.2	400
1.2	±0.05nH , ± 0.1nH , ± 0.2nH	7	16	26	30	24	0.3	300
1.5	± 0.1nH , ± 0.2nH , ± 0.5nH	7	16	26	30	23	0.5	250
1.8	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	25	29	20	0.5	250
2.2	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	18	0.6	200
2.7	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	14	0.7	180
3.3	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	13	1.0	150

All intermediate Inductance values within the indicated range are available.

Thin-Film RF/Microwave Inductor Technology

Accu-L® Series

L0402 Tight Tolerance RF Inductor

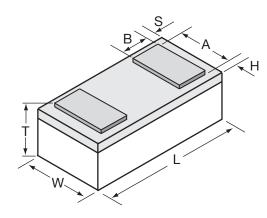
GENERAL DESCRIPTION ITF TECHNOLOGY

The L0402 LGA Inductor is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

APPLICATIONS

- Mobile Communications
- Satellite TV Receivers
- GPS
- Vehicle Location Systems
- Wireless LAN's
- Filters
- Matching Networks

LAND GRID ARRAY ADVANTAGES


- · Inherent Low Profile
- Self Alignment during Reflow
- **Excellent Solderability**
- Low Parasitics

Better Heat Dissipation

DIMENSIONS: millimeters (inches) (BOTTOM VIEW)

L	1.00±0.10 (0.039±0.004)
w	0.58±0.07 (0.023±0.003)
т	0.35±0.10 (0.014±0.004)

Α	0.48±0.05
^	(0.019±0.002)
	0.17±0.05
В	(0.007±0.002)
C 11	0.064±0.05
S, H	(0.003±0.002)

HOW TO ORDER

P/N Example: L04023R3BHNTR

QUALITY INSPECTION

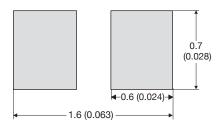
Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

Nickel/Lead Free solder coating compatible with automatic soldering

(Top View)


technologies: reflow, wave soldering, vapor phase and manual.

MAKING AND ORIENTATION IN TAPE

0 0 0 0 0

Recommended Pad Layout Dimensions

mm (inches)

Accu-L® Series

L0402 Tight Tolerance RF Inductor

ELECTRICAL SPECIFICATIONS

	450MHz			900MHz	1900MHz	2400MHz	ODE	_	
L(nH)	Tolerance A=±0.05nH , B=±0.1nH, C=±0.2nH, D=±0.5nH	Q (min)	Q (Typ)	Q (Typ)	Q (Typ)	Q (Typ)	SRF min. (MHz)	R _{DC} max. (Ω)	max. (mA)
0.56	± 0.05nH, ± 0.1nH	35	45	55	65	75	20000	0.02	1000
0.68	± 0.05nH, ± 0.1nH	30	40	50	60	70	20000	0.04	750
0.82	± 0.05nH, ± 0.1nH	25	40	50	60	70	20000	0.06	500
1.0	± 0.05nH, ± 0.1nH	20	30	35	40	50	20000	0.15	500
1.2	± 0.05nH, ± 0.1nH, ± 0.2nH	20	30	30	40	45	20000	0.20	400
1.5	± 0.05nH, ± 0.1nH, ± 0.2nH	20	25	30	40	40	18000	0.20	400
1.8	± 0.05nH, ± 0.1nH, ± 0.2nH	18	20	30	35	40	16000	0.20	400
2.2	± 0.05nH, ± 0.1nH, ± 0.2nH	15	20	25	35	40	15000	0.20	400
2.7	± 0.05nH, ± 0.1nH, ± 0.2nH	15	20	25	35	40	9500	0.25	250
3.3	± 0.1nH, ± 0.2nH, ± 0.5nH	15	20	25	35	40	8500	0.40	250
3.9	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	8000	0.45	250
4.7	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	7500	0.45	250
5.6	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	7000	0.65	200
6.8	± 0.1nH, ± 0.2nH, ± 0.5nH	12	15	20	25	30	6500	0.90	200

Please contact factory for intermediate inductance values within the indicated range.

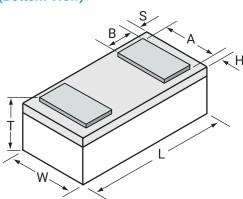
Accu-L® Series

AEC-Q200 High-Q RF Inductor - L0402 & L0805

ACCU-L® TECHNOLOGY

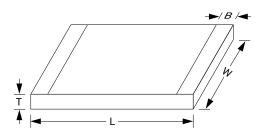
The L0402 LGA Inductor and the L0805 Accu-L® SMD Inductor are based on thin-film multilayer technology. This technology provides a level of control on the electrical and physical characteristics of the component which gives consistent characteristics within a lot and lot-to-lot. The original design provides small size, excellent high-frequency performance and rugged construction for reliable automatic assembly.

The AEC-Q200 Qualified Accu-L® Series is designed to meet the demanding performance specifications in automotive signal and power applications.


FEATURES

- · High Q
- · RF Power Capability
- · High SRF
- Low DC Resistance
- · Ultra-Tight Inductance Tolerance
- Standard 0402 and 0805 Chip Sizes
- · Low Profile
- · Rugged Construction
- · Taped and Reeled
- Operating/Storage Temp. Range: -55°C to +125°C

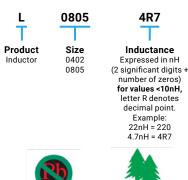
APPLICATIONS


- · Vehicle to Vehicle Communications
- Infotainment
- Telematics
- **GPS**
- Radar
- Vehicle Locations Systems
- · Keyless Entry
- Filters
- · Matching Networks

0402 DIMENSIONS: millimeters (inches) (Bottom View)

L	1.00±0.10 (0.039±0.004)
W	0.58±0.07 (0.023±0.003)
Т	0.35±0.10 (0.014±0.004)
Α	0.48±0.05 (0.019±0.002)
В	0.17±0.05 (0.007±0.002)
S, H	0.064±0.05 (0.003±0.002)

0805 DIMENSIONS: millimeters (inches)


1	2.11±0.10
_	(0.083±0.004)
w	1.5±0.10
VV	(0.059±0.004)
т	.91±0.13
	(0.036±0.005)
В	0.25±0.15
	(0.010±0.006)

Accu-L® Series

AEC-Q200 High-Q RF Inductor - L0402 & L0805

HOW TO ORDER

 $G = \pm 2\%$

 $J = \pm 5\%$

 $A = \pm 0.05 nH$ $B = \pm 0.1 nH$ $C = \pm 0.2nH$ $D = \pm 0.5 nH$

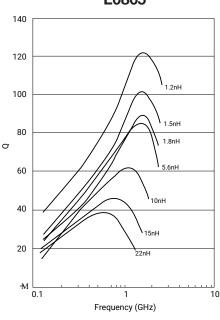
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0402

	450MHz			900MHz	1900MHz	2400MHz	SRF	В	
L(nH)	Tolerance A=±0.05nH, B=±0.1nH, C=±0.2nH, D=±0.5nH	Q (min)	Q (Typ)	(Тур)	Q (Typ)	Q (Typ)	min (MHz)	R _{DC} max. (Ω)	max. (mA)
0.56	± 0.05nH, ± 0.1nH	35	45	55	65	75	20000	0.02	1000
0.68	± 0.05nH, ± 0.1nH	30	40	50	60	70	20000	0.04	750
0.82	± 0.05nH, ± 0.1nH	25	40	50	60	70	20000	0.06	500
1.0	± 0.05nH, ± 0.1nH	20	30	35	40	50	20000	0.15	500
1.2	± 0.05nH, ± 0.1nH, ± 0.2nH	20	30	30	40	45	20000	0.20	400
1.5	± 0.05nH, ± 0.1nH, ± 0.2nH	20	25	30	40	40	18000	0.20	400
1.8	± 0.05nH, ± 0.1nH, ± 0.2nH	18	20	30	35	40	16000	0.20	400
2.2	± 0.05nH, ± 0.1nH, ± 0.2nH	15	20	25	35	40	15000	0.20	400
2.7	± 0.05nH, ± 0.1nH, ± 0.2nH	15	20	25	35	40	9500	0.25	250
3.3	± 0.1nH, ± 0.2nH, ± 0.5nH	15	20	25	35	40	8500	0.40	250
3.9	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	8000	0.45	250
4.7	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	7500	0.45	250
5.6	± 0.1nH, ± 0.2nH, ± 0.5nH	13	20	20	30	30	7000	0.65	200
6.8	± 0.1nH, ± 0.2nH, ± 0.5nH	12	15	20	25	30	6500	0.90	200

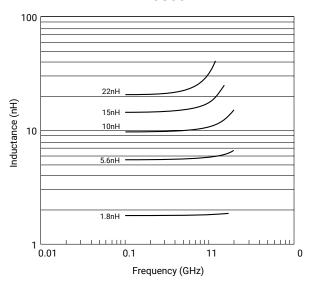
Please contact factory for intermediate inductance values within the indicated range.

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0805

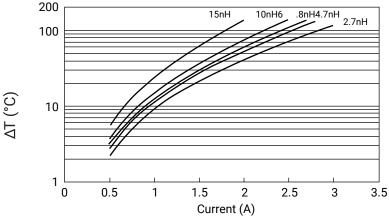
	450MHz Test Frequency			MHz equency		1900MHz Test Frequency		MHz equency	SRF min	DC .	I _{pc} max. (mA)	
Inductance L(nH)	Available Inductance Tolerance	Q Typical	L (nH)	Q Typical	L (nH)	Q (Typ)	L (nH)	Q (Typ)	(MHz)	(Ω)	ΔT = 15°C (1)	ΔT = 70°C (2)
1.2	±0.1nH, ±0.2nH, ±0.5nH	60	1.2	92	1.2	122	1.2	92	10000	0.05	1000	2000
1.5	±0.1nH, ±0.2nH, ±0.5nH	50	1.5	74	1.5	102	1.5	84	10000	0.05	1000	2000
1.8	±0.1nH, ±0.2nH, ±0.5nH	50	1.8	72	1.8	88	1.9	73	10000	0.06	1000	2000
2.2	±0.1nH, ±0.2nH, ±0.5nH	42	2.2	62	2.2	82	2.3	72	10000	0.07	1000	2000
2.7	±0.1nH, ±0.2nH, ±0.5nH	42	2.7	62	2.8	80	2.9	70	10000	0.08	1000	2000
3.3	±0.1nH, ±0.2nH, ±0.5nH	38	3.3	46	3.4	48	3.5	57	10000	0.11	750	1500
3.9	±0.1nH, ±0.2nH, ±0.5nH	27	3.9	36	4.0	38	4.1	42	10000	0.20	750	1500
4.7	±0.1nH, ±0.2nH, ±0.5nH	43	4.8	62	5.3	76	5.8	60	5500	0.10	750	1500
5.6	±0.5nH	50	5.7	68	6.3	73	7.6	62	4600	0.10	750	1500
6.8	±0.5nH	43	7.0	62	7.7	71	9.4	50	4500	0.11	750	1500
8.2	±0.5nH	43	8.5	56	10.0	55	15.2	32	3500	0.12	750	1500
10	±2%, ±5%	46	10.6	60	13.4	52	-	-	2500	0.13	750	1500
12	±2%, ±5%	40	12.9	50	17.3	40	-	-	2400	0.20	750	1500
15	±2%, ±5%	36	16.7	46	27	23	-	-	2200	0.20	750	1000
18	±2%, ±5%	30	21.9	27	-	-	-	-	1700	0.35	500	1000
22	±2%, ±5%	36	27.5	33	-	-	-	-	1400	0.40	500	1000


⁽¹⁾ I $_{\rm DC}$ measured for 15°C rise at 25°C ambient temperature (2) I $_{\rm DC}$ measured for 70°C rise at 25°C ambient temperature

L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360 Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.



Typical Q vs. Frequency L0805


Measured on HP4291A and **Boonton 34A Coaxial Line**

Typical Inductance vs. Frequency L0805

Measured on HP4291A and Wiltron 360 Vector Analyzer

Maximum Temperature Rise at 25°C ambient temperature (on FR-4) L0805

Temperature rise will typically be no higher than shown by the graph

Accu-L® Series

AEC-Q200 High-Q RF Inductor - L0402 & L0805

FINAL QUALITY INSPECTION

Finished parts are tested for electrical parameters and visual/ mechanical characteristics.

Parts are 100% tested for inductance at 450MHz. Parts are 100% tested for RDC. Each production lot is evaluated on a sample basis for:

- Q at test frequency
- Static Humidity Resistance: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

ENVIRONMENTAL CHARACTERISTICS

	INTAL CHARACTERIST				
Test	Conditions	Requirement			
Solderability	Components completely immersed in a solder bath at 235 ± 5°C for 2 secs.	Terminations to be well tinned. No visible damage.			
Leach Resistance	Components completely immersed in a solder bath at 260 ±5°C for 60 secs.	Dissolution of termination faces ≤ 15% of area. Dissolution of termination edges ≤ 25% of length.			
Storage	12 months minimum with components stored in "as received" packaging.	Good solderability			
Shear	Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate.	No visible damage			
Rapid Change of Temperature	Components mounted to a substrate. 5 cycles -55°C to +125°C.	No visible damage			
Bend Strength	Tested as shown in diagram 1mm deflection 45mm 45mm	No visible damage			
Temperature Coefficient of Inductance (TCL)	Component placed in environmental chamber -55°C to +125°C.	+0 to +125 ppm/°C (typical) $TCL = \frac{L_2 \cdot L_1}{L_1 (T_2 \cdot T_1)} \cdot 10^6$			

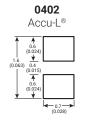
HANDLING

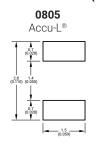
SMD chips should be handled with care to avoid dam age or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. For automatic equipment, taped and reeled product is the ideal medium for direct presentation to the placement machine.

CIRCUIT BOARD TYPE

All flexible types of circuit boards may be used (e.g. FR-4, G-10) and also alumina.

For other circuit board materials, please consult factory


COMPONENT PAD DESIGN


Component pads must be designed to achieve good joints and minimize component movement during soldering. Pad designs are given below for both wave and reflow soldering.

The basis of these designs is:

- · Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go be low this.
- Pad overlap about 0.3mm.
- Pad extension about 0.3mm for reflow. Pad ex ten sion about 0.8mm for wave soldering.

REFLOW SOLDERING DIMENSIONS: millimeter (inches)

PREHEAT & SOLDERING

The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second.

Temperature differential from preheat to soldering should not exceed 150°C.

For further specific application or process advice, please consult KYOCERA

HAND SOLDERING & REWORK

Hand soldering is permissible. Preheat of the PCB to 100°C is required. The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Max i mum allowed time at temperature is 1 minute. When hand soldering, the base side (white side) must be soldered to the board.

COOLING

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those rec om mended for preheating should be used.

CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise be come conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

Cleaning liquids......i-propanol, ethanol, acetylacetone, water, and other

standard PCB cleaning liquids.

Ultrasonic conditions... power - 20w/liter max.

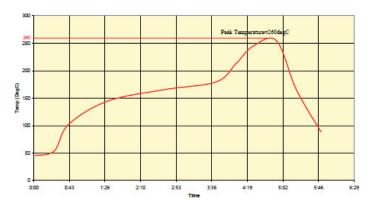
frequency - 20kHz to 45kHz.

Temperature...... 80°C maximum (if not otherwise limited by

chosen solvent system).

Time 5 minutes max

STORAGE CONDITIONS

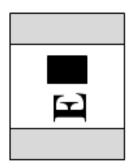

Recommended storage conditions for Accu-L® prior to use are as follows:

Temperature......15°C to 35°C

Humidity≤65%

Air Pressure...... 860mbar to 1060mbar

RECOMMENDED SOLDERING PROFILE



KYDCERa | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

ACCU-L® TECHNOLOGY

The Accu-L® SMD Inductor is based on thin-film multilayer technology. This technology provides a level of control on the electrical and physical characteristics of the component which gives consistent characteristics within a lot and lot-to-lot.

The original design provides small size, excellent high-frequency performance and rugged construction for reliable automatic assembly.

The Accu-L® Inductor is particularly suited for the telecommunications industry where there is a continuing trend towards miniaturization and increasing frequencies. The Accu-L® inductor meets both the performance and tolerance requirements of present cellular frequencies 450MHz and 900MHz and of future frequencies, such as 1700MHz, 1900MHz and 2400MHz.

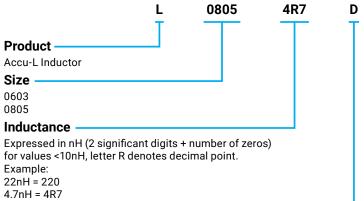
FEATURES

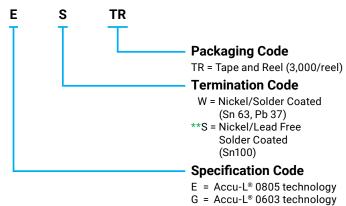
- · Ultra-Tight Tolerance on Inductance
- · RF Power Capability
- · Low DC Resistance
- · High SRF
- · High Q

APPLICATIONS

- Vehicle Locations Systems
- **Mobile Communications**
- Satellite TV Receivers
- · Matching Networks
- 5G Application
- · Filters
- GPS

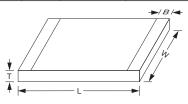
Not RoHS Compliant




For RoHS compliant products, please select correct termination style

HOW TO ORDER

Tolerance

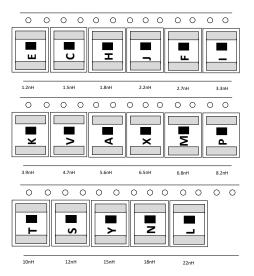


**RoHS Compliant

L ≤ 4.7nH	4.7nH <l<10nh< th=""><th>L≥10nH</th></l<10nh<>	L≥10nH
B = ±0.1nH	C = ±0.2nH	G = ±2%
C = ±0.2nH	D = ±0.5nH	J = ±5%
D = ±0.5nH		

DIMENSIONS: millimeters (inches)

		0603	0805		
L	1	.6±0.10	2.11±0.10		
-	(0.0	63±0.004)	(0.083±0.004)		
w	0.	81±0.10	1.5±0.10		
VV	(0.0	32±0.004)	(0.059±0.004)		
Т	0.	61±0.10	0.91±0.13		
'	(0.0	24±0.004)	(0.036±0.005)		
	top:	0.0 +0.3/-0.0			
В	ιομ.	(0.0+0.012)	0.25±0.15		
Б	bottom:	0.35±0.20	(0.010±0.006)		
	DOLLOIII.	(0.014±0.008)			



PART APPEARANCE (TOP VIEW)

ACCU-L 0603 (ALL VALUES)

ACCU-L 0805

KYDCERa | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0603

	450 MHz Test Frequency			900 MHz Test Frequency		1900 MHz Test Frequency		MHz equency	SRF min.	R _{pc} max.	I _{DC} max.
Inductance L (nH)	Available Inductance Tolerance	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	(MHz)	(Ω)	(mA) (1)
1.2	±0.1, ±0.2nH	49	1.2	70	1.2	134	1.2	170	10000	0.04	1000
1.5	±0.1, ±0.2nH	26	1.54	39	1.52	63	1.52	76	10000	0.06	1000
1.8	±0.1, ±0.2nH	20	1.74	30	1.73	50	1.72	59	10000	0.07	1000
2.2	±0.1, ±0.2nH	20	2.2	30	2.24	49	2.24	56	10000	0.08	1000
2.7	±0.1, ±0.2nH	21	2.7	30	2.75	48	2.79	54	9000	0.08	750
3.3	±0.1, ±0.2, ±0.5nH	24	3.33	35	3.39	56	3.47	64	8400	0.08	750
3.9	±0.1, ±0.2, ±0.5nH	25	3.9	57	4.06	60	4.21	69	6500	0.12	500
4.7	±0.1, ±0.2, ±0.5nH	23	4.68	32	4.92	46	5.2	49	5500	0.15	500
5.6	±0.2, ±0.5nH	26	5.65	36	5.94	54	6.23	60	5000	0.25	300
6.8	±0.2, ±0.5nH	23	6.9	33	7.3	47	8.1	39	4500	0.30	300
8.2	±0.2, ±0.5nH	23	8.4	31	10	35	12.1	31	3800	0.35	300
10.0	±2%, ±5%	28	10	39	11.8	47	14.1	41	3500	0.45	300
12.0	±2%, ±5%	28	13.2	38	14.1	30	17.2	20	3000	0.50	300
15.0	±2%, ±5%	28	16.2	38	25.9	30	49.8	15	2500	0.60	300

⁽¹⁾ IDC measured for 15°C rise at 25°C ambient temperature when soldered to FR-4 board. Inductance and Q measured on Agilent 4291B / 4287 using the 16196A test fixture.

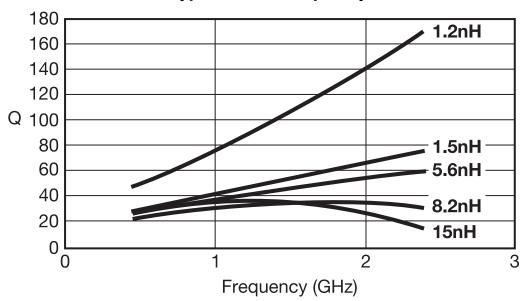
ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0805

	450 MHz Test Frequency 900 MHz Test Frequency		1900 MHz Test Frequency Test Frequency			SRF min. (MHz)	R _{DC} max.	I _{DC} max. (mA)				
Inductance L (nH)	Available Inductance Tolerance	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	(WITZ)	(Ω)	T = 15°C (1)	T = 70°C (2)
1.2	±0.1nH, ±0.2nH, ±0.5nH	60	1.2	92	1.2	122	1.2	92	10000	0.05	1000	2000
1.5	±0.1nH, ±0.2nH, ±0.5nH	50	1.5	74	1.5	102	1.5	84	10000	0.05	1000	2000
1.8	±0.1nH, ±0.2nH, ±0.5nH	50	1.8	72	1.8	88	1.9	73	10000	0.06	1000	2000
2.2	±0.1nH, ±0.2nH, ±0.5nH	42	2.2	62	2.2	82	2.3	72	10000	0.07	1000	2000
2.7	±0.1nH, ±0.2nH, ±0.5nH	42	2.7	62	2.8	80	2.9	70	10000	0.08	1000	2000
3.3	±0.1nH, ±0.2nH, ±0.5nH	38	3.3	46	3.4	48	3.5	57	10000	0.11	750	1500
3.9	±0.1nH, ±0.2nH, ±0.5nH	27	3.9	36	4.0	38	4.1	42	10000	0.20	750	1500
4.7	±0.1nH, ±0.2nH, ±0.5nH	43	4.8	62	5.3	76	5.8	60	5500	0.10	750	1500
5.6	±0.5nH	50	5.7	68	6.3	73	7.6	62	4600	0.10	750	1500
6.8	±0.5nH	43	7.0	62	7.7	71	9.4	50	4500	0.11	750	1500
8.2	±0.5nH	43	8.5	56	10.0	55	15.2	32	3500	0.12	750	1500
10	±2%, ±5%	46	10.6	60	13.4	52	_	_	2500	0.13	750	1500
12	±2%, ±5%	40	12.9	50	17.3	40	_	_	2400	0.20	750	1500
15	±2%, ±5%	36	16.7	46	27	23	-	_	2200	0.20	750	1000
18	±2%, ±5%	30	21.9	27	-	_	-	_	1700	0.35	500	1000
22	±2%, ±5%	36	27.5	33	-	_	_	-	1400	0.40	500	1000

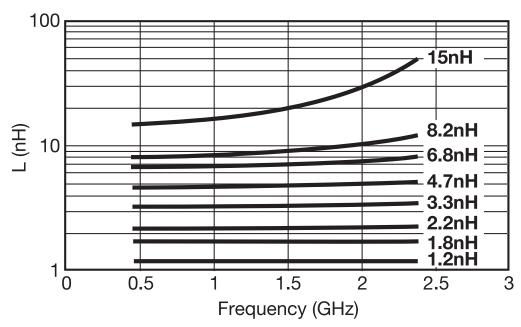
⁽¹⁾ $\rm I_{\rm DC}$ measured for 15°C rise at 25°C ambient temperature

L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360 $\,$ Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.

⁽²⁾ Inc measured for 70°C rise at 25°C ambient temperature

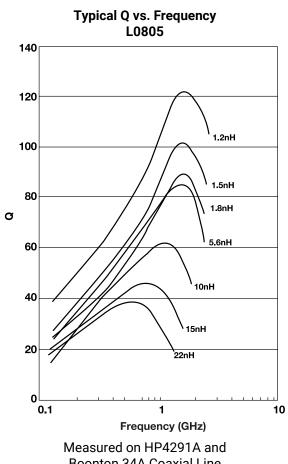

Accu-L® Series

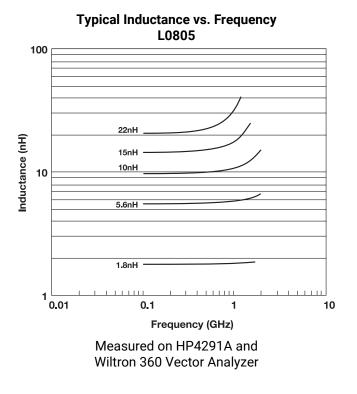
L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®


L0603

Measured on AGILENT 4291B/4287 using the 16196A test fixture

Typical Inductance vs. Frequency


Measured on AGILENT 4291B/4287 using the 16196A test fixture


Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

L0805

Boonton 34A Coaxial Line

Maximum Temperature Rise at 25°C Ambient Temperature (on FR-4) L0805 200 15nH 100 10 1 1.5 2 0 0.5 1 2.5 3 3.5 Current (A)

Temperature rise will typically be no higher than shown by the graph

Accu-L® Series

Environmental Characteristics

FINAL QUALITY INSPECTION

Finished parts are tested for electrical parameters and visual/ mechanical characteristics.

Parts are 100% tested for inductance at 450MHz. Parts are 100% tested for RDC. Each production lot is evaluated on a sample basis for:

- · Q at test frequency
- Static Humidity Resistance: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

ENVIRONMENTAL CHARACTERISTICS

TEST	CONDITIONS	REQUIREMENT		
Solderability	Components completely immersed in a solder bath at 235 ± 5°C for 2 secs.	Terminations to be well tinned. No visible damage.		
Leach Resistance	Components completely immersed in a solder bath at 260 ±5°C for 60 secs.	Dissolution of termination faces ≤ 15% of area. Dissolution of termination edges ≤ 25% of length.		
Storage	12 months minimum with components stored in "as received" packaging.	Good solderability		
Shear	Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate.	No visible damage		
Rapid Change of Temperature	Components mounted to a substrate. 5 cycles -55°C to +125°C.	No visible damage		
Bend Strength	Tested as shown in diagram 1mm deflection 45mm 45mm	No visible damage		
Temperature Coefficient of Inductance (TCL)	Component placed in environmental chamber -55°C to +125°C.	+0 to +125 ppm/°C (typical) $TCL = \frac{L_2 - L_1}{L_1 (T_2 - T_1)} \bullet 10^6$		

Accu-L® Series

Application Notes

HANDLING

SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. For automatic equipment, taped and reeled product is the ideal medium for direct presentation to the placement machine.

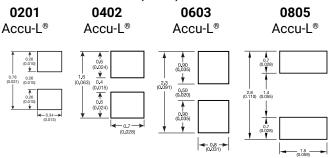
CIRCUIT BOARD TYPE

All flexible types of circuit boards may be used (e.g. FR-4, G-10) and also alumina.

For other circuit board materials, please consult factory.

COMPONENT PAD DESIGN

Component pads must be designed to achieve good joints and minimize component movement during soldering.


Pad designs are given below for both wave and reflow soldering.

The basis of these designs is:

- a. Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.
- b. Pad overlap about 0.3mm.
- c. Pad extension about 0.3mm for reflow. Pad extension about 0.8mm for wave soldering.

REFLOW SOLDERING

DIMENSIONS: millimeters (inches)

PREHEAT & SOLDERING

The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second.

Temperature differential from preheat to soldering should not exceed

For further specific application or process advice, please consult KYOCERA AVX.

HAND SOLDERING & REWORK

Hand soldering is permissible. Preheat of the PCB to 100°C is required. The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Maximum allowed time at temperature is 1 minute. When hand soldering, the base side (white side) must be soldered to the board.

COOLING

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lossy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

9 1	i-propanol, ethanol, acetylace-tone, water, and other standard PCB cleaning liquids.
Ultrasonic conditions	power – 20w/liter max. frequency – 20kHz to 45kHz.
•	80°C maximum (if not otherwise limited by chosen solvent system).
Time	5 minutes max.

STORAGE CONDITIONS

Recommended storage conditions for Accu-L® prior to use are as follows:

Temperature15°C to 35°C	
Humidity	≤65%
Air Pressure	860mbar to 1060mbar

RECOMMENDED SOLDERING PROFILE

For recommended soldering profile see page 29

Thin-Film RF/Microwave Products

Accu-P®/Accu-L® Designer Kits

Thin-Film RF/Microwave Products

Designer Kits

Accu-P® Designer Kit Type 1700LF Order Number: Accu-P® 0201KITL2

nuel Nullibel. Accu-i		OZU IKIIL
Volts	Capacitors Value (pF)	Tolerance
	0.1	Р
	0.2	Р
100	0.3	Р
	0.4	Р
	0.5	Р
	0.6	Р
	0.7	Р
	0.8	Р
	0.9	Р
50	1.0	Р
	1.1	Α
	1.2	Α
	1.3	Α
	1.5	Α
	1.8	Α
	2.0	В
	2.2	В
	2.4	В
	2.7	В
25	3.0	В
25	3.3	В
	3.6	В
	3.9	В
	4.7	В
	5.6	В
	6.8	В
	7.5	В
16	8.2	В
16	10.0	G
	12.0	G

600 Capacitors, 20 each of 30 values P = 0.02pF $A = \pm 0.05pF$ $B = \pm 0.1pF$ $G = \pm 2\%$

Accu-P® Designer Kit Type 1800LF Order Number: Accu-P® 0201KITL3

Order Number: Accu-r		. 0201141120
Volts	Capacitors Value (pF)	Tolerance
	1.0	Α
	1.1	Α
	1.2	Α
50	1.3	Α
50	1.4	A
	1.5	A
	1.6	A
	1.7	Α
	1.8	Α
	1.9	A
	2.0	Α
	2.1	В
	2.2	В
	2.3	В
	2.4	В
	2.5	В
	2.6	В
	2.7	В
25	2.8	В
25	2.9	В
	3.0	В
	3.1	В
	3.3	В
	3.4	В
	3.6	В
	3.9	В
	4.1	В
	4.3	В
	4.5	В
	4.7	В

600 Capacitors, 20 each of 30 values A = ± 0.05pF B = ± 0.1pF Tolerance

Accu-P® Designer Kit Type 1300LF Order Number: Accu-P® 0402KITL1

Orderi	vuilibei. Accu	-P 0402KIILI
Volts	Capacitors Value (pF)	Tolerance
	0.1	Р
	0.2	Р
	0.3	Р
	0.4	Р
	0.5	Р
	0.6	Р
100	0.7	Р
100	0.8	Р
	0.9	Р
	1.0	Р
	1.1	Α
	1.2	Α
	1.5	Α
	1.8	Α
	2.0	Α
	2.2	В
	2.4	В
	2.7	В
	3.0	В
50	3.3	В
	3.9	В
	4.7	В
	5.6	В
	6.8	В
	8.2	В
	10.0	G
25	12.0	G
25	15.0	G
	18.0	G
16	22.0	G

600 Capacitors, 20 each of 30 values $P = \pm 0.02pF$ $A = \pm 0.05pF$ $B = \pm 0.1pF$ $G = \pm 2\%$

Accu-P® Designer Kit Type 1400LF Order Number: Accu-P® 0402KITL2

Volts	Capacitors Value (pF)	Tolerance
	1.0	A
	1.1	A
	1.2	A
	1.3	A
100	1.4	A
	1.5	A
	1.6	A
	1.7	A
	1.8	Α
	1.9	A
	2.0	A
	2.1	В
	2.2	В
	2.3	В
	2.4	В
	2.5	В
	2.6	В
	2.7	В
	2.8	В
50	2.9	В
	3.0	В
	3.1	В
	3.3	В
	3.4	В
	3.6	В
	3.9	В
	4.1	В
	4.3	В
	4.5	В
	4.7	В

600 Capacitors, 20 each of 30 values $A = \pm 0.05pF$ $B = \pm 0.1pF$ Tolerance

Thin-Film RF/Microwave Products

Accu-P®/Accu-L® Series

Designer Kits

Accu-P® **Designer Kit Type 900LF** Order Number: Accu-P® 0603KITL1

		000011112
Volts	Capacitors Value (pF)	Tolerance
	0.1	Α
	0.2	Α
	0.3	Α
	0.4	В
	0.5	В
	0.6	В
	0.7	В
	0.8	В
	0.9	В
	1.0	В
100	1.1	В
	1.2	В
	1.5	В
	1.8	В
	2.0	В
	2.2	В
	2.4	В
	2.7	В
	3.0	В
	3.3	В
	3.9	В
	4.7	В
	5.6	В
	6.8	В
	8.2	В
50	10.0	G
	12.0	G
	15.0	G
	18.0	G
25	22.0	G

600 Capacitors, 20 each of 30 values **Tolerance** $A = \pm 0.05pF$

 $B = \pm 0.1pF$ G = ± 2%

Accu-P® Designer Kit Type 800LF Order Number: Accu-P® 0805KITL2

Volts	Capacitors Value (pF)	Tolerance
	0.1	Α
	0.2	Α
	0.3	Α
	0.4	Α
	0.5	В
	0.7	В
	0.8	В
	0.9	В
	1.0	В
	1.2	В
	1.5	В
100	1.8	В
	2.0	В
	2.2	В
	2.7	В
	3.3	В
	3.9	В
	4.7	В
	5.6	В
	6.8	В
	8.2	В
	10.0	G
	12.0	G
	15.0	G
50	18.0	G
	22.0	G
	27.0	J
	33.0	J
	39.0	J
	47.0	J

600 Capacitors, 20 each of 30 values **Tolerance** $A = \pm 0.05pF$ $G = \pm 2\%$ $B = \pm 0.1pF$ $J = \pm 5\%$

Accu-P® Designer Kit Type 2800LF Order Number: Accu-P® 0201KITL5

Order Number: Accu-P° 0201K11L5		
Volts	Capacitors Value (pF)	Tolerance
	0.05	Z
	0.10	Z
	0.15	Z
	0.20	Z
100	0.25	Z
100	0.30	Z
	0.35	Z
	0.40	Z
	0.45	Z
	0.50	Z
	0.55	Р
	0.60	Р
	0.65	Р
	0.70	Р
	0.75	Р
	0.80	Р
	0.85	Р
	0.90	Р
50	0.95	Р
	1.0	Р
	1.1	Р
	1.2	Р
	1.3	Р
	1.4	Р
	1.5	Р
	1.6	Р
	1.7	Р
	1.8	Р
25	1.9	P
	2.0	P

600 Capacitors, 20 each of 30 values **Tolerance** $Z = \pm 0.01 pF$ $P = \pm 0.02pF$

Accu-P® Designer Kit Type 2700LF Order Number: Accu-P® 0402KITL4

Volts	Capacitors Value (pF)	Tolerance
	0.05	Z
	0.10	Z
	0.15	Z Z Z
	0.20	Z
	0.25	
	0.30	Z
	0.35	Z
	0.40	Z
	0.45	Z
	0.50	Z
	0.55	Р
	0.60	Р
	0.65	Р
100	0.70	Р
100	0.75	Р
	0.80	Р
	0.85	Р
	0.90	Р
	0.95	Р
	1.0	Р
	1.1	Р
	1.2	Р
	1.3	Р
	1.4	Р
	1.5	Р
	1.6	Р
	1.7	Р
	1.8	Р
50	1.9	Р
	2.0	Р

600 Capacitors, 20 each of 30 values **Tolerance** $Z = \pm 0.01pF$ $P = \pm 0.02pF$

Thin-Film RF/Microwave Products

Accu-P®/Accu-L® Series

Designer Kits

Accu-P® Designer Kit Type 2200LF Order Number: Accu-P® 0603KITL2

Volts	Capacitors Value (pF)	Tolerance
	0.05	Р
[0.10	Р
	0.15	Р
[0.20	Р
	0.25	Р
	0.30	Р
[0.35	P
100	0.40	P
	0.45	Р
[0.50	Р
[0.55	Р
	0.60	P
	0.65	Р
	0.70	Р
	0.75	Р

300 Capacitors, 20 each of 15 values **Tolerance** $P = \pm 0.02pF$

Accu-P® Designer Kit Type 700 Order Number: Accu-P® 1210KIT02

Volts	Capacitors Value (pF)	Tolerance
	1.0	В
	1.5	В
	1.8	В
	2.2	В
	2.7	В
	3.3	В
	4.7	В
100	5.6	В
	6.8	В
	10.0	G
	12.0	G
	18.0	G
	22.0	G
	27.0	G
	33.0	G

150 Capacitors, 10 each of 15 values **Tolerance** $B = \pm 0.1pF$ $G = \pm 2\%$

Accu-L® 0201 Designer Kit Type 3200 Order Number: Accu-L® 0201KIT1

Inductance Value (nH)	Tolerance
0.33	A
0.39	A
0.47	A
0.56	A
0.68	A
0.82	А
1.0	A
1.2	A
1.5	В
1.8	В
2.2	В
2.7	В
3.3	В

260 Inductors, 20 each of 13 values

Accu-L® Designer Kit Type 2500 Order Number: Accu-L® L0402KIT01

Inductance Value (nH)	Tolerance
0.82	Α
1.0	Α
1.2	Α
1.5	A
1.8	A
2.2	Α
2.7	Α
3.3	В
3.9	В
4.7	В
5.6	В
6.8	В

240 Inductors, 20 each of 12 values **Tolerance** $A = \pm 0.05pF$

Accu-L® Designer Kit Type 1600LF Order Number: Accu-L® 0603KITL2

Inductance Value (nH)	Tolerance
1.2	С
1.5	С
1.8	С
2.2	С
2.7	С
3.3	С
3.9	С
4.7	С
5.6	С
6.8	С
8.2	С
10	G
12	G
15	G

280 Inductors, 20 each of 14 values **Tolerance** $C = \pm 0.2 nH$ $G = \pm 2\%$

Accu-L® Designer Kit Type 1100LF Order Number: Accu-L® 0805KITL2

Inductance Value (nH)	Tolerance
1.8	С
2.2	С
2.7	С
3.3	С
3.9	С
4.7	С
5.6	С
6.8	D
8.2	D
10.0	J
12.0	J
15.0	J
18.0	J
22.0	J

280 Inductors, 20 each of 14 values Tolerance $C = \pm 0.2 nH$ $D = \pm 0.5 nH$

Thin-Film RF/Microwave Directional Couplers

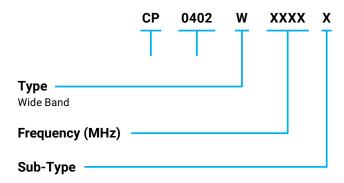
CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90°

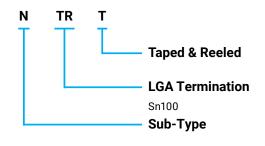
Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° CP0402W2700FNTR Wide Band High Directivity

ITF TECHNOLOGY

The ITF High Directivity Wide Band LGA Coupler is based on thinfilm multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The Wide Band High Directivity Coupler displays a stable coupling factor over a wide frequency band.


APPLICATIONS


- · Mobile communications
- · Satellite TV receivers
- GPS
- · Vehicle location systems
- · Wireless LAN's

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

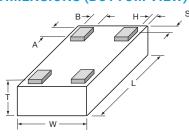
QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

TERMINATION

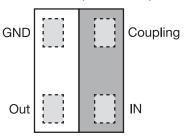
Nickel/Lead Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

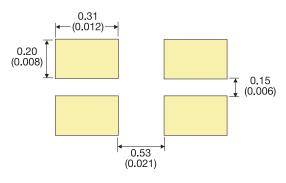

OPERATING TEMPERATURE

-40°C to +85°C

POWER RATING

3W RF Continuous

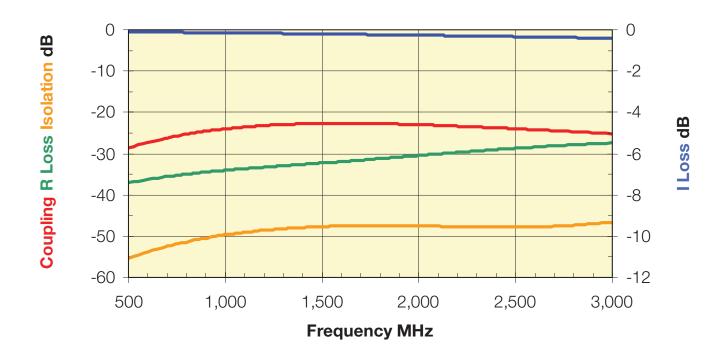

DIMENSIONS (BOTTOM VIEW)


mm (inches)

L	1.00±0.05 (0.040±0.002)
w	0.58±0.04 (0.023±0.002)
Т	0.35±0.05 (0.014±0.002)
Α	0.20±0.05 (0.008±0.002)
В	0.18±0.05 (0.007±0.002)
S,H	0.05±0.05 (0.002±0.002)

TERMINALS (TOP VIEW)

Recommended Pad Layout Dimensions mm (inches)



Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° CP0402W2700FNTR Wide Band High Directivity

Directional Coupler Type CP0402W2700FNTR

P/N	Frequency [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402W2700FNTR	700-2,700	24±2	0.3	18	20

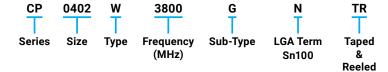
Lead-Free LGA Termination

CP0402W3800GNTR - High Directivity

ITF TECHNOLOGY

The ITF High Directivity LGA Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

FINAL QUALITY INSPECTION

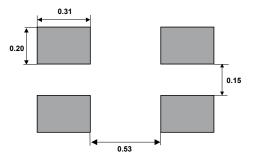
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

TERMINATION

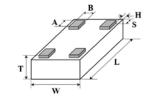
Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE


-40°C to +85°C

POWER RATING

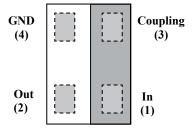
1W RF Continuous


CP0402W3800GNTR includes a built in 50 Ohm resistor and does not require an external 50 Ohm resistor.

RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



L 1.0±0.05 (0.040±0.002	
w 0.58±0.04 (0.023±0.002	
Т	0.35±0.05 (0.014±0.002)

	0.20±0.05
Α	(0.008±0.002)
В	0.18±0.05
В	(0.007±0.002)
s	0.05±0.05
3	(0.002±0.002)

TERMINALS:

(Top View)

Lead-Free LGA Termination

CP0402W3800GNTR - High Directivity

DIRECTIONAL COUPLER TYPE CP0402W3800GNTR

P/N	FREQUENCY	COUPLING	I. Loss max.	R.Loss	Directivity
	[MHz]	[dB]	[dB]	[dB]	[dB]
CP0402W3800GNTR	700-3800	24±2.5	0.4	18	18

TYPICAL ELECTRICAL PERFORMANCE

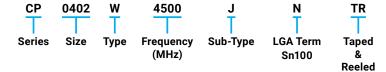
Lead-Free LGA Termination

CP0402W4500JNTR - High Directivity

ITF TECHNOLOGY

The ITF High Directivity LGA Coupler is based onthin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


APPLICATIONS

- 5G Application
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

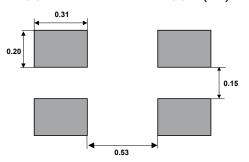
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours

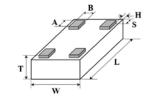
TERMINATION

Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


OPERATING TEMPERATURE

-40°C to +85°C

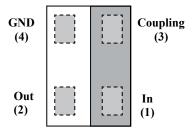
POWER RATING


1W RF Continuous

RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



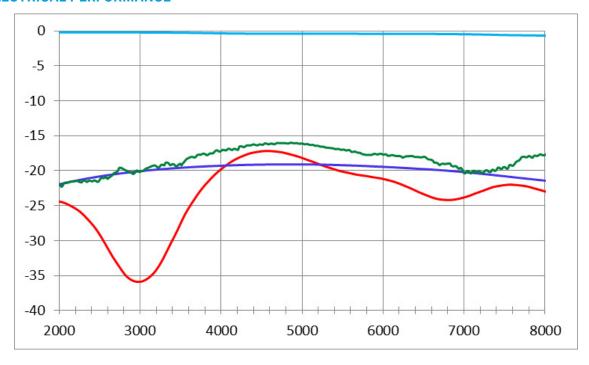
	1.0±0.05
_	(0.040±0.002)
VA/	0.58±0.04
VV	(0.023±0.002)
_	0.35±0.05
	(0.014±0.002)

Α	0.20±0.05 (0.008±0.002)
В	0.18±0.05 (0.007±0.002)
s	0.05±0.05 (0.002±0.002)

TERMINALS:

(Top View)

Lead-Free LGA Termination


CP0402W4500JNTR - High Directivity

DIRECTIONAL COUPLER TYPE CP0402W3800GNTR

P/N	FREQUENCY [MHz]	COUPLING [dB]	l. Loss [dB]	R.Loss [dB]	Directivity [dB]
CP0402W4500JNTR	2000-7000	20±2	0.6	15	15

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90°

High Directivity Directional Couplers For WiFi Bands

CP0302P5425ENTR / CP0302A5425ENTR / CP0402Q5425ENTR / CP0603Q5425ENTR

TECHNOLOGY

These High Directivity LGA Couplers are based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly. The WiFi Bands Couplers are offered in 0302, 0402 and 0603 standard sizes having identical electrical performance.

APPLICATIONS:

- WiFi
- 4G LTF
- 5G LTF
- · Base Stations.
- Automotive
- Industrial

PART NUMBERS

CP0302P5425ENTR

CP0302A5425ENTR

CP0402Q5425ENTR

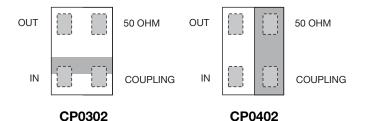
CP0603Q5425ENTR

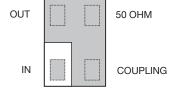
QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a

sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

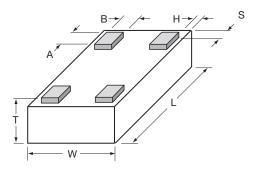

TERMINATION


Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE

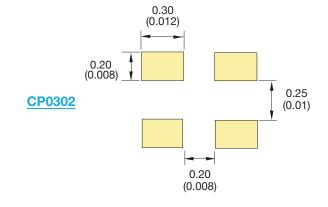
-40°C to +85°C

TERMINALS (TOP VIEW)



CP0603

DIMENSIONS (BOTTOM VIEW)

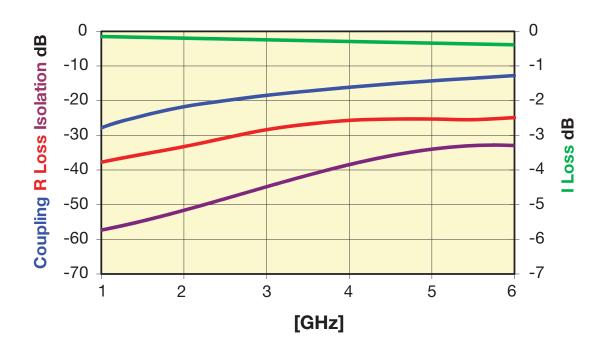


	CP0302	CP0402	CP0603	
L	0.65±0.04	1.0±0.05	1.6±0.1	
	(0.026±0.002)	(0.040±0.002)	(0.063±0.004)	
w	0.50±0.04	0.58±0.04	0.84±0.1	
	(0.02±0.002)	(0.023±0.002)	(0.033±0.004)	
Т	0.25±0.05	0.35±0.05	0.60±0.1	
	(0.01±0.002)	(0.014±0.002)	(0.024±0.004)	
Α	0.20±0.05	0.20±0.05	0.25±0.05	
	(0.008±0.002)	(0.008±0.002)	(0.01±0.002)	
В	0.10±0.04	0.18±0.05	0.20±0.05	
	(0.004±0.002)	(0.007±0.002)	(0.008±0.002)	
S, H	0.025±0.025	0.05±0.05	0.05±0.05	
	(0.001±0.001)	(0.002±0.002)	(0.002±0.002)	

RECOMMENDED PAD LAYOUT **DIMENSTIONS:**

mm (inches)

CP0402 / CP0603: see pages 49 / 53


Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° **High Directivity Directional Couplers For WiFi Bands**

ELECTRICAL CHARACTERISTICS

P/N	Frequency [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0302P5425ENTR	2,400-2,496	-20±0.5	-0.2	-30	20
CP0302P3423ENTR	4,900-5,950	-13±0.5	-0.4	-25	20
		1	I	I	
P/N	Frequency [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
P/N CP0302A5425ENTR					

P/N	Frequency [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402Q5425ENTR	2,400-2,496	-20±1	-0.3	-30	20
CP0603Q5425ENTR	4,900-5,950	-13±1	-0.4	-25	20

Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° **CP0402P High Directivity, Tight Coupling Tolerance**

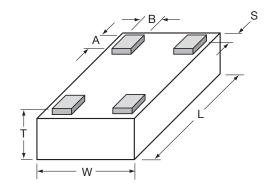
GENERAL DESCRIPTION

ITF (INTEGRATED THIN-FILM) TECHNOLOGY

The CP0402P Series High Directivity, Tight Coupling Tolerance LGA Coupler is based on the proprietary RFAP Thin-Film multilayer technology. The technology provides a miniature part with excellent high frequency performance and ugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS


- · 4G LTE
- 5G LTE
- · Base Stations.
- · Automotive
- Industrial
- · Wireless communications
- · Wireless LAN's
- GPS
- WiMAX

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation
- Power Rating 3W RF Continuous

DIMENSIONS: (Bottom View)

millimeters (inches)

L	1.00±0.05 (0.040±0.002)
W	0.58±0.04 (0.023±0.002)
Т	0.35±0.05 (0.014±0.002)

Δ	0.20±0.05					
^	(0.008±0.002)					
В	0.18±0.05					
D	(0.007±0.002)					
_	0.05±0.05					
S	(0.002±0.002)					

HOW TO ORDER

Termination LGA Lead-Free

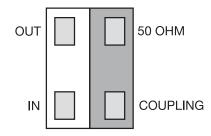
Ν

Taped & Reeled

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

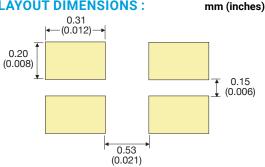
- · Static Humidity: 85°C, 85% RH, 160 hours
- · Endurance: 125°C, IR, 4 hours


TERMINATION

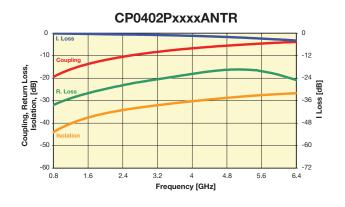
Nickel/Lead-Free Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE:

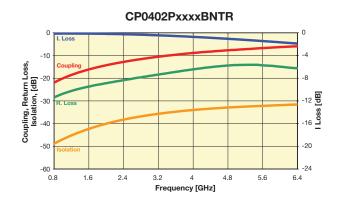
-40°C to +85°C


TERMINALS (TOP VIEW)

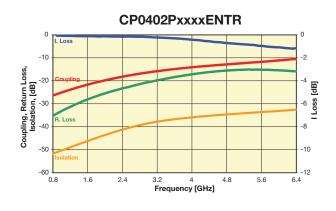
RECOMMENDED PAD LAYOUT DIMENSIONS:



Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° **CP0402P High Directivity, Tight Coupling Tolerance**


Coupler P/N CP0402PxxxxAN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402P0836AN	824 - 849	19.10±0.5	0.25	32	21
CP0402P0881AN	869 - 894	18.60±0.5	0.25	31	21
CP0402P0902AN	890 - 915	18.50±0.5	0.25	31	21
CP0402P0947AN	935 - 960	18.00±0.5	0.25	31	21
CP0402P0897AN	880 - 915	18.50±0.5	0.25	31	21
CP0402P0942AN	925 - 960	18.00±0.5	0.25	31	21
CP0402P1441AN	1429 - 1453	14.50±0.5	0.40	28	21
CP0402P1747AN	1710 - 1785	13.00±0.5	0.50	26	21
CP0402P1842AN	1805 - 1880	12.50±0.5	0.50	26	21
CP0402P1880AN	1850 - 1910	12.30±0.5	0.50	25	21
CP0402P1960AN	1930 - 1990	12.00±0.5	0.50	25	21
CP0402P1907AN	1895 - 1920	12.30±0.5	0.50	25	21
CP0402P1890AN	1880 - 1900	12.30±0.5	0.50	25	21
CP0402P2442AN	2400 - 2484	10.30±0.5	0.70	23	21
CP0402P3500AN	3450 - 3550	7.60±0.5	1.30	15	14
CP0402P5000AN	4950 - 5050	5.00±0.5	1.50	15	13
CP0402P5500AN	5450 - 5550	4.60±0.5	1.50	14	13
CP0402P6000AN	5950 - 6050	4.00±0.5	1.50	14	13


Coupler P/N CP0402PxxxxBN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402P0836BN	824 - 849	22.00±0.5	0.20	28	27
CP0402P0881BN	869 - 894	21.70±0.5	0.20	28	27
CP0402P0902BN	890 - 915	21.50±0.5	0.20	28	27
CP0402P0947BN	935 - 960	21.00±0.5	0.25	27	27
CP0402P0897BN	880 - 915	21.50±0.5	0.20	28	27
CP0402P0942BN	925 - 960	21.00±0.5	0.25	27	27
CP0402P1441BN	1429 - 1453	17.50±0.5	0.25	24	27
CP0402P1747BN	1710 - 1785	16.00±0.5	0.30	23	27
CP0402P1842BN	1805 - 1880	15.50±0.5	0.35	23	27
CP0402P1880BN	1850 - 1910	15.50±0.5	0.35	23	27
CP0402P1960BN	1930 - 1990	15.00±0.5	0.35	22	27
CP0402P1907BN	1895 - 1920	15.50±0.5	0.35	23	27
CP0402P1890BN	1880 - 1900	15.50±0.5	0.35	23	27
CP0402P2442BN	2400 - 2484	13.30±0.5	0.40	21	27
CP0402P3500BN	3450 - 3550	9.40±0.5	0.80	18	14
CP0402P5000BN	4950 - 5050	7.40±0.5	1.20	14	13
CP0402P5500BN	5450 - 5550	6.70±0.5	1.60	14	13
CP0402P6000BN	5950 - 6050	6.10±0.5	2.00	14	13

Coupler P/N CP0402PxxxxEN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402P0836EN	824 - 849	27.20±0.5	0.20	35	25
CP0402P0881EN	869 - 894	26.80±0.5	0.20	34	25
CP0402P0902EN	890 - 915	26.50±0.5	0.20	34	25
CP0402P0947EN	935 - 960	26.00±0.5	0.20	34	25
CP0402P0897EN	880 - 915	26.50±0.5	0.20	34	25
CP0402P0942EN	925 - 960	26.00±0.5	0.20	34	25
CP0402P1441EN	1429 - 1453	22.30±0.5	0.25	29	25
CP0402P1747EN	1710 - 1785	20.50±0.5	0.25	27	23
CP0402P1842EN	1805 - 1880	20.30±0.5	0.25	26	23
CP0402P1880EN	1850 - 1910	20.00±0.5	0.25	26	23
CP0402P1960EN	1930 - 1990	20.00±0.5	0.25	26	23
CP0402P1907EN	1895 - 1920	20.00±0.5	0.25	26	23
CP0402P1890EN	1880 - 1900	20.00±0.5	0.25	26	23
CP0402P2442EN	2400 - 2484	18.00±0.5	0.35	23	23
CP0402P3500EN	3450 - 3550	15.00±0.5	0.37	20	16
CP0402P5000EN	4950 - 5050	12.50±0.5	0.50	18	13
CP0402P5500EN	5450 - 5550	11.50±0.5	0.65	16	13
CP0402P6000EN	5950 - 6050	11.10±0.5	0.70	15	13

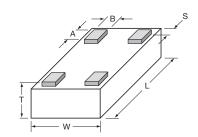
GENERAL DESCRIPTION ITF (INTEGRATED THIN-FILM) TECHNOLOGY

The ITF High Directivity LGA Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS

- 4G LTE
- 5G LTF
- · Base Stations.
- Automotive
- Industrial
- · Mobile Communications
- · Satellite TV Receivers
- · Vehicle Location Systems
- · Wireless LAN's


FEATURES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation
- Operating/Storage Temp -40°C to +85°C
- · Power Rating 3W RF Cont

DIMENSIONS:

millimeters (inches)

(Bottom View)

L	1.00±0.05 (0.040±0.002)
w	0.58±0.04 (0.023±0.002)
Т	0.35±0.05 (0.014±0.002)

Α	0.20±0.05 (0.008±0.002)
В	0.18±0.05 (0.007±0.002)
s	0.05±0.05 (0.002±0.002)

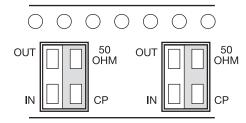
HOW TO ORDER

**N = LGA Sn100

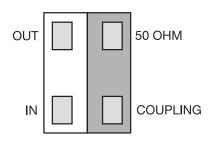
TR **Packaging Code** TR = Tape and Reel

**RoHS compliant

QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

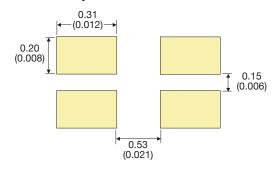
- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours


TERMINATION

Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and

ORIENTATION IN TAPE

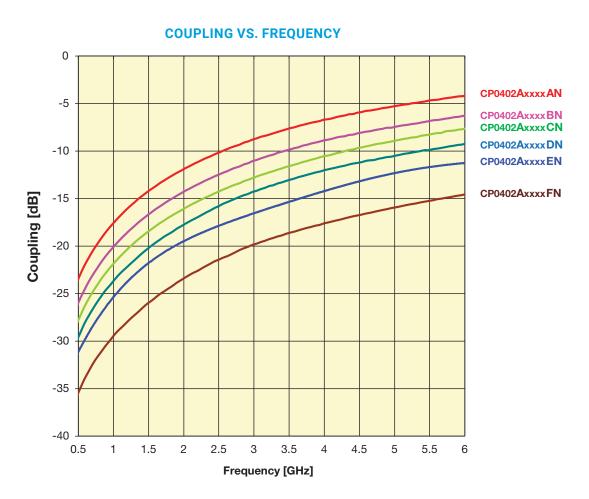
TERMINALS (TOP VIEW)


Not RoHS Compliant

COMPLIANT For RoHS compliant products. please select correct termination style

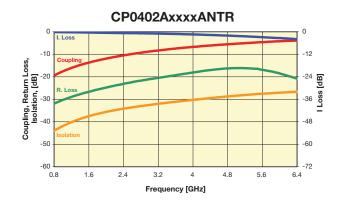
Recommended Pad Layout Dimensions

mm (inches)

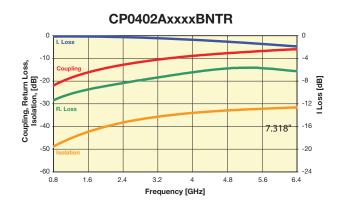

*The recommended distance to the PCB Ground Plane is 0.254mm (0.010")

KYDCERa | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

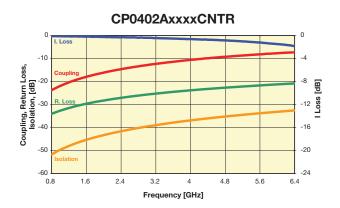
CP0402 - TYPE SELECTION CHART



Intermediate coupling factors are readily available. Please contact factory.


Coupler P/N CP0402AxxxxAN

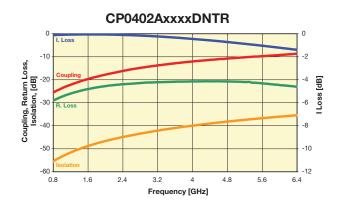
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402A0836AN	824 - 849	19.10	0.25	32	21
CP0402A0881AN	869 - 894	18.60	0.25	31	21
CP0402A0902AN	890 - 915	18.50	0.25	31	21
CP0402A0947AN	935 - 960	18.00	0.25	31	21
CP0402A0897AN	880 ÷915	18.50	0.25	31	21
CP0402A0942AN	925 ÷960	18.00	0.25	31	21
CP0402A1441AN	1429 - 1453	14.50	0.40	28	21
CP0402A1747AN	1710 - 1785	13.00	0.50	26	21
CP0402A1842AN	1805 - 1880	12.50	0.50	26	21
CP0402A1880AN	1850 - 1910	12.30	0.50	25	21
CP0402A1960AN	1930 - 1990	12.00	0.50	25	21
CP0402A1907AN	1895 - 1920	12.30	0.50	25	21
CP0402A1890AN	1880 - 1900	12.30	0.50	25	21
CP0402A2442AN	2400 - 2484	10.30	0.70	23	21
CP0402A3500AN	3450 - 3550	7.60	1.30	15	14
CP0402A5000AN	4950 - 5050	5.00	1.50	15	13
CP0402A5500AN	5450 - 5550	4.60	1.50	14	13
CP0402A6000AN	5950 - 6050	4.00	1.50	14	13


Coupler P/N CP0402AxxxxBN

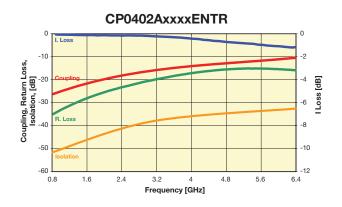
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402A0836BN	824 - 849	22.00	0.20	28	27
CP0402A0881BN	869 - 894	21.70	0.20	28	27
CP0402A0902BN	890 - 915	21.50	0.20	28	27
CP0402A0947BN	935 - 960	21.00	0.25	27	27
CP0402A0897BN	880 ÷915	21.50	0.20	28	27
CP0402A0942BN	925 ÷960	21.00	0.25	27	27
CP0402A1441BN	1429 - 1453	17.50	0.25	24	27
CP0402A1747BN	1710 - 1785	16.00	0.30	23	27
CP0402A1842BN	1805 - 1880	15.50	0.35	23	27
CP0402A1880BN	1850 - 1910	15.50	0.35	23	27
CP0402A1960BN	1930 - 1990	15.00	0.35	22	27
CP0402A1907BN	1895 - 1920	15.50	0.35	23	27
CP0402A1890BN	1880 - 1900	15.50	0.35	23	27
CP0402A2442BN	2400 - 2484	13.30	0.40	21	27
CP0402A3500BN	3450 - 3550	9.40	0.80	18	14
CP0402A5000BN	4950 - 5050	7.40	1.20	14	13
CP0402A5500BN	5450 - 5550	6.70	1.60	14	13
CP0402A6000BN	5950 - 6050	6.10	2.00	14	13

Coupler P/N CP0402AxxxxCN

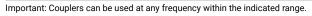
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402A0836CN	824 - 849	23.60	0.20	33	22
CP0402A0881CN	869 - 894	23.00	0.20	33	22
CP0402A0902CN	890 - 915	23.00	0.20	26	22
CP0402A0947CN	935 - 960	22.50	0.20	33	22
CP0402A0897CN	880 ÷915	23.00	0.20	25	22
CP0402A0942CN	925 ÷960	22.50	0.20	32	22
CP0402A1441CN	1429 - 1453	19.00	0.25	31	22
CP0402A1747CN	1710 - 1785	17.20	0.25	30	19
CP0402A1842CN	1805 - 1880	17.00	0.25	30	19
CP0402A1880CN	1850 - 1910	16.80	0.25	30	19
CP0402A1960CN	1930 - 1990	16.50	0.25	29	19
CP0402A1907CN	1895 - 1920	16.80	0.25	29	19
CP0402A1890CN	1880 - 1900	16.80	0.25	30	19
CP0402A2442CN	2400 - 2484	14.70	0.45	28	19
CP0402A3500CN	3450 - 3550	10.97	0.67	23	17
CP0402A5000CN	4950 - 5050	8.00	1.00	21	16
CP0402A5500CN	5450 - 5550	7.50	1.10	21	15
CP0402A6000CN	5950 - 6050	7.10	1.30	23	15

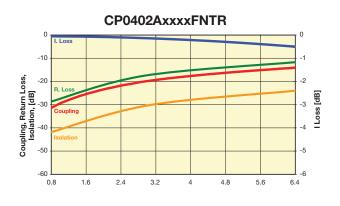


Important: Couplers can be used at any frequency within the indicated range.


Coupler P/N CP0402AxxxxDN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402A0836DN	824 - 849	25.20	0.20	29	20
CP0402A0881DN	869 - 894	24.80	0.20	28	20
CP0402A0902DN	890 - 915	24.70	0.20	28	20
CP0402A0947DN	935 - 960	24.10	0.20	28	20
CP0402A0897DN	880 ÷915	24.70	0.20	28	20
CP0402A0942DN	925 ÷960	24.10	0.20	28	20
CP0402A1441DN	1429 - 1453	20.50	0.20	25	20
CP0402A1747DN	1710 - 1785	19.00	0.20	24	18
CP0402A1842DN	1805 - 1880	18.50	0.25	23	18
CP0402A1880DN	1850 - 1910	18.20	0.25	23	18
CP0402A1960DN	1930 - 1990	18.00	0.25	23	18
CP0402A1907DN	1895 - 1920	18.10	0.25	23	18
CP0402A1890DN	1880 - 1900	18.20	0.25	23	18
CP0402A2442DN	2400 - 2484	16.00	0.35	22	18
CP0402A3500DN	3450 - 3550	12.50	0.46	21	17
CP0402A5000DN	4950 - 5050	10.00	0.65	21	16
CP0402A5500DN	5450 - 5550	9.60	0.76	20	15
CP0402A6000DN	5950 - 6050	9.10	0.84	20	15


Coupler P/N CP0402AxxxxEN


P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0402A0836EN	824 - 849	25.20	0.20	29	20
CP0402A0881EN	869 - 894	24.80	0.20	28	20
CP0402A0902EN	890 - 915	24.70	0.20	28	20
CP0402A0947EN	935 - 960	24.10	0.20	28	20
CP0402A0897EN	880 ÷ 915	24.70	0.20	28	20
CP0402A0942EN	925 ÷ 960	24.10	0.20	28	20
CP0402A1441EN	1429 - 1453	20.50	0.20	25	20
CP0402A1747EN	1710 - 1785	19.00	0.20	24	18
CP0402A1842EN	1805 - 1880	18.50	0.25	23	18
CP0402A1880EN	1850 - 1910	18.20	0.25	23	18
CP0402A1960EN	1930 - 1990	18.00	0.25	23	18
CP0402A1907EN	1895 - 1920	18.10	0.25	23	18
CP0402A1890EN	1880 - 1900	18.20	0.25	23	18
CP0402A2442EN	2400 - 2484	16.00	0.35	22	18
CP0402A3500EN	3450 - 3550	12.50	0.46	21	17
CP0402A5000EN	4950 - 5050	10.00	0.65	21	16
CP0402A5500EN	5450 - 5550	9.60	0.76	20	15
CP0402A6000EN	5950 - 6050	9.10	0.84	20	15

Coupler P/N CP0402AxxxxFN

Couplet F/N CFU402AXXXFN						
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]	
CP0402A0836FN	824 - 849	31.00	0.20	29.10	11	
CP0402A0881FN	869 - 894	30.70	0.20	28.60	11	
CP0402A0902FN	890 - 915	30.60	0.20	28.50	11	
CP0402A0947FN	935 - 960	30.00	0.20	28.10	11	
CP0402A0897FN	880 ÷915	30.60	0.20	28.50	11	
CP0402A0942FN	925 ÷960	30.00	0.20	28.10	11	
CP0402A1441FN	1429 - 1453	26.50	0.20	25.00	11	
CP0402A1747FN	1710 - 1785	25.00	0.20	23.80	11	
CP.0402A1842FN	1805 - 1880	24.50	0.20	23.60	11	
CP0402A1880FN	1850 - 1910	24.20	0.20	23.50	11	
CP0402A1960FN	1930 - 1990	24.00	0.20	23.30	11	
CP0402A1907FN	1895 - 1920	24.20	0.20	23.40	11	
CP0402A1890FN	1880 - 1900	24.20	0.20	23.50	11	
CP0402A2442FN	2400 - 2484	22.00	0.25	22.60	11	
CP0402A3500FN	3450 - 3550	18.00	0.27	22.00	9	
CP0402A5000FN	4950 - 5050	15.70	0.30	23.01	8	
CP0402A5500FN	5450 - 5550	15.20	0.30	20.36	7.5	
CP0402A6000FN	5950 - 6050	14.50	0.30	18.94	7.5	

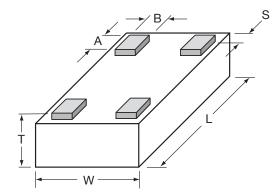
GENERAL DESCRIPTION

ITF (INTEGRATED THIN-FILM) TECHNOLOGY

The ITF LGA Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS


- 4G LTE
- 5G LTE
- · Base Stations.
- · Automotive
- Industrial
- · Mobile Communications
- · Satellite TV Receivers
- GPS
- · Vehicle Location Systems
- · Wireless LAN's

FEATURES

- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation
- · Operating/Storage Temp -40°C to +85°C
- · Power Rating 5W RF Cont

DIMENSIONS: (Bottom View)

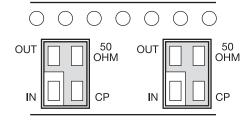
millimeters (inches)

L	1.60±0.10 (0.063±0.004)			
W	0.84±0.10 (0.033±0.004)			
Т	0.60±0.10 (0.024±0.004)			

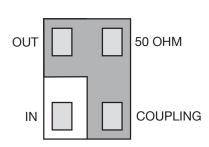
Α	0.25±0.05 (0.010±0.002)					
В	0.20±0.05 (0.008±0.002)					
s	0.05±0.05 (0.002±0.002)					

HOW TO ORDER

**RoHS compliant


QUALITY INSPECTION

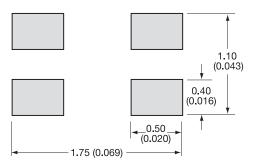
Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:


- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

Sn90Pb10 or Lead-Free Sn100 Nickel/Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and

ORIENTATION IN TAPE

TERMINALS (TOP VIEW)

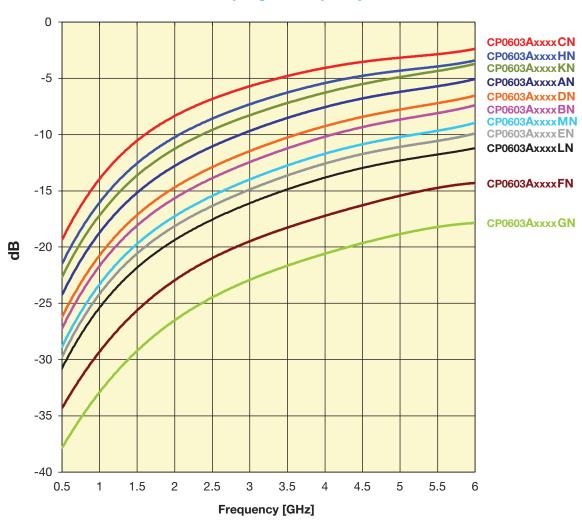

Not RoHS Compliant

For RoHS compliant products, please select correct termination style.

mm (inches)

Recommended Pad Layout Dimensions

*The recommended distance to the PCB Ground Plane is 0.254mm (0.010")

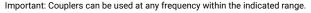


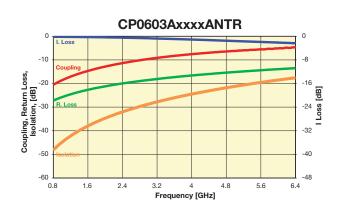
KYDCERa | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

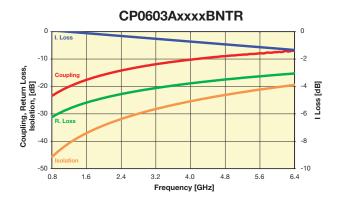
CP0603 - TYPE SELECTION CHART

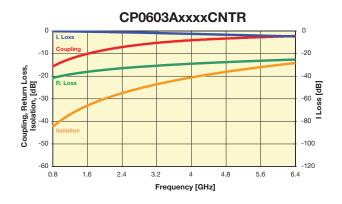
Intermediate coupling factors are readily available. Please contact factory.

Coupler P/N CP0603AxxxxAn

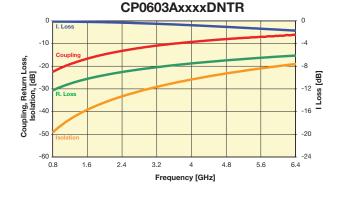

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836AN	824 - 849	20.0	0.25	28	22
CP0603A0881AN	869 - 894	19.7	0.25	28	22
CP0603A0902AN	890 - 915	19.4	0.25	27	22
CP0603A0947AN	935 - 960	19.0	0.25	27	22
CP0603A0897AN	880 - 915	19.4	0.25	28	22
CP0603A0942AN	925 - 960	19.0	0.25	27	22
CP0603A1441AN	1429 - 1453	15.5	0.40	24	22
CP0603A1747AN	1710 - 1785	14.0	0.50	22	22
CP0603A1842AN	1805 - 1880	13.5	0.50	22	22
CP0603A1880AN	1850 - 1910	13.2	0.50	22	22
CP0603A1960AN	1930 - 1990	13.0	0.55	21	22
CP0603A1907AN	1895 - 1920	13.2	0.50	22	22
CP0603A1890AN	1880 - 1900	13.2	0.50	22	22
CP0603A2442AN	2400 - 2484	11.5	0.75	20	22
CP0603A3500AN	3450 - 3550	8.6	1.3	17	20
CP0603A5000AN	4950 - 5050	6.1	2.2	13	14
CP0603A5500AN	5450 - 5550	5.5	2.5	15	13
CP0603A6000AN	5950 - 6050	5	3	11.6	13

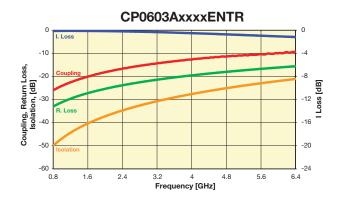



P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836BN	824 - 849	23.0	0.20	31	24
CP0603A0881BN	869 - 894	22.7	0.20	31	24
CP0603A0902BN	890 - 915	22.5	0.20	31	24
CP0603A0947BN	935 - 960	22.0	0.20	30	24
CP0603A0897BN	880 - 915	22.5	0.20	31	24
CP0603A0942BN	925 - 960	22.0	0.20	30	24
CP0603A1441BN	1429 - 1453	18.5	0.25	27	24
CP0603A1747BN	1710 - 1785	17.0	0.25	25	21
CP0603A1842BN	1805 - 1880	16.4	0.25	25	21
CP0603A1880BN	1850 - 1910	16.2	0.25	25	21
CP0603A1960BN	1930 - 1990	16.0	0.25	24	21
CP0603A1907BN	1895 - 1920	16.1	0.25	25	21
CP0603A1890BN	1880 - 1900	16.2	0.25	25	21
CP0603A2442BN	2400 - 2484	14.2	0.35	23	21
CP0603A3500BN	3450 - 3550	11.2	0.6	20	20
CP0603A5000BN	4950 - 5050	8.4	1.1	16.7	17
CP0603A5500BN	5450 - 5550	7.8	1.4	15.7	16
CP0603A6000BN	5950 - 6050	7.2	1.6	15	15

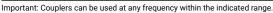

Coupler P/N CP0603AxxxxCN

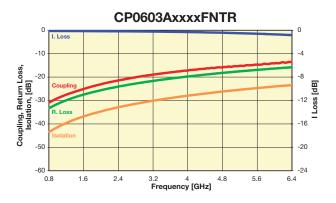
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836CN	824 - 849	15.2	0.35	23	23
CP0603A0881CN	869 - 894	15.0	0.35	23	23
CP0603A0902CN	890 - 915	14.7	0.35	23	23
CP0603A0947CN	935 - 960	14.3	0.40	22	23
CP0603A0897CN	880 - 915	14.7	0.35	23	23
CP0603A0942CN	925 - 960	14.3	0.40	22	23
CP0603A1441CN	1429 - 1453	11.0	0.70	19	23
CP0603A1747CN	1710 - 1785	9.5	0.80	18	21
CP0603A1842CN	1805 - 1880	9.0	0.90	17	21
CP0603A1880CN	1850 - 1910	8.8	0.90	17	21
CP0603A1960CN	1930 - 1990	8.5	1.00	17	21
CP0603A1907CN	1895 - 1920	8.8	0.90	17	21
CP0603A1890CN	1880 - 1900	8.8	0.90	17	21
CP0603A2442CN	2400 - 2484	7.0	1.40	15	21
CP0603A3500CN	3450 - 3550	4.8	2.0	23	20
CP0603A5000CN	4950 - 5050	3.0	3.6	21	17
CP0603A5500CN	5450 - 5550	3.0	4.0	20.6	16
CP0603A6000CN	5950 - 6050	2.5	4.5	20.5	16




Coupler P/N CP0603AxxxxDN

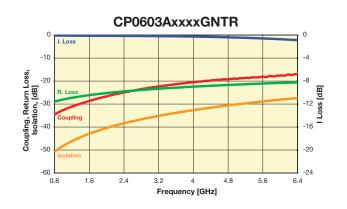
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836DN	824 - 849	22.0	0.25	31	30
CP0603A0881DN	869 - 894	21.8	0.25	30	30
CP0603A0902DN	890 - 915	21.3	0.25	30	30
CP0603A0947DN	935 - 960	21.0	0.30	30	30
CP0603A0897DN	880 - 915	21.3	0.25	30	30
CP0603A0942DN	925 - 960	21.0	0.30	30	30
CP0603A1441DN	1429 - 1453	17.7	0.40	27	30
CP0603A1747DN	1710 - 1785	16.0	0.40	25	25
CP0603A1842DN	1805 - 1880	15.4	0.40	25	25
CP0603A1880DN	1850 - 1910	15.2	0.40	24	25
CP0603A1960DN	1930 - 1990	15.0	0.40	24	25
CP0603A1907DN	1895 - 1920	15.2	0.40	24	25
CP0603A1890DN	1880 - 1900	15.2	0.40	24	25
CP0603A2442DN	2400 - 2484	13.3	0.55	22	25
CP0603A3500DN	3450 - 3550	10.1	0.66	25.3	20
CP0603A5000DN	4950 - 5050	7.8	1.17	21.1	18
CP0603A5500DN	5450 - 5550	6.8	1.39	19.9	18
CP0603A6000DN	5950 - 6050	6.3	1.64	18.8	17


Coupler P/N CP603AxxxxEN

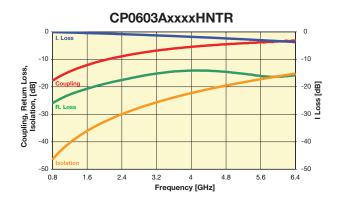

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836EN	824 - 849	25.8	0.20	32	21
CP0603A0881EN	869 - 894	25.3	0.20	32	21
CP0603A0902EN	890 - 915	25.0	0.20	32	21
CP0603A0947EN	935 - 960	24.7	0.20	31	21
CP0603A0897EN	880 - 915	26.0	0.20	32	21
CP0603A0942EN	925 - 960	24.7	0.20	31	21
CP0603A1441EN	1429 - 1453	22.0	0.25	28	21
CP0603A1747EN	1710 - 1785	19.5	0.30	26	21
CP0603A1842EN	1805 - 1880	19.0	0.30	26	21
CP0603A1880EN	1850 - 1910	18.8	0.30	26	21
CP0603A1960EN	1930 - 1990	18.5	0.30	26	21
CP0603A1907EN	1895 - 1920	18.7	0.30	26	21
CP0603A1890EN	1880 - 1900	18.8	0.30	26	21
CP0603A2442EN	2400 - 2484	17.0	0.40	24	21
CP0603A3500EN	3450 - 3550	13.2	0.5	18	20
CP0603A5000EN	4950 - 5050	10.7	0.9	13	16
CP0603A5500EN	5450 - 5550	10.2	1.2	12	15
CP0603A6000EN	5950 - 6050	9.7	1.4	12	14

Coupler P/N CP603AxxxxFN

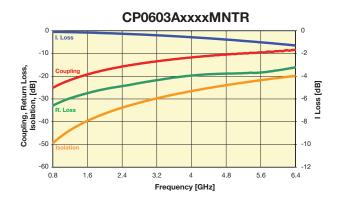
Couplet 1 / 14 Of COSAXXXX 14						
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]	
CP0603A0836FN	824 - 849	31.2	0.20	32	12	
CP0603A0881FN	869 - 894	30.8	0.20	32	12	
CP0603A0902FN	890 - 915	30.5	0.20	30	12	
CP0603A0947FN	935 - 960	30.2	0.20	30	12	
CP0603A0897FN	880 - 915	30.5	0.20	30	12	
CP0603A0942FN	925 - 960	30.2	0.20	30	12	
CP0603A1441FN	1429 - 1453	27.0	0.25	28	12	
CP0603A1747FN	1710 - 1785	25.0	0.25	27	12	
CP0603A1842FN	1805 - 1880	26.5	0.25	27	12	
CP0603A1880FN	1850 - 1910	24.3	0.25	27	12	
CP0603A1960FN	1930 - 1990	24.0	0.25	28	12	
CP0603A1907FN	1895 - 1920	24.2	0.25	27	12	
CP0603A1890FN	1880 - 1900	24.2	0.25	27	12	
CP0603A2442FN	2400 - 2484	21.5	0.25	25	12	
CP0603A3500FN	3450 - 3550	17.8	0.33	20.0	13	
CP0603A5000FN	4950 - 5050	15.4	0.62	14.86	12	
CP0603A5500FN	5450 - 5550	14.8	0.86	13.58	12	
CP0603A6000FN	5950 - 6050	14.3	1.02	12.58	11	



KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


Coupler P/N CP603AxxxxGN

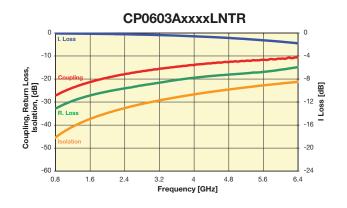
Couple 1711 Of COCAXXXXOIT						
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]	
CP0603A0836GN	824 - 849	34.2	0.20	30	13	
CP0603A0881GN	869 - 894	33.8	0.20	30	13	
CP0603A0902GN	890 - 915	33.6	0.20	30	13	
CP0603A0947GN	935 - 960	33.2	0.20	29	13	
CP0603A0897GN	880 - 915	33.6	0.20	30	13	
CP0603A0942GN	925 - 960	33.2	0.20	29	13	
CP0603A1441GN	1429 - 1453	30.0	0.25	25	13	
CP0603A1747GN	1710 - 1785	28.5	0.25	24	13	
CP0603A1842GN	1805 - 1880	28.0	0.25	24	13	
CP0603A1880GN	1850 - 1910	27.7	0.25	24	13	
CP0603A1960GN	1930 - 1990	27.5	0.25	23	13	
CP0603A1907GN	1895 - 1920	27.6	0.25	24	13	
CP0603A1890GN	1880 - 1900	27.7	0.25	24	13	
CP0603A2442GN	2400 - 2484	25.5	0.25	22	13	
CP0603A3500GN	3450 - 3550	21.6	0.31	20	13	
CP0603A5000GN	4950 - 5050	19	0.39	16	12	
CP0603A5500GN	5450 - 5550	18.5	0.57	15	12	
CP0603A6000GN	5950 - 6050	18.0	0.74	14	11	


Coupler P/N CP603AxxxxHN

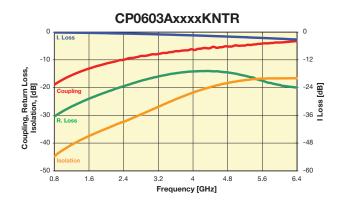
P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836HN	824 - 849	17.3	0.30	26	26
CP0603A0881HN	869 - 894	17.0	0.30	25	26
CP0603A0902HN	890 - 915	16.7	0.30	25	26
CP0603A0947HN	935 - 960	16.3	0.35	25	26
CP0603A0897HN	880 - 915	17.0	0.35	25	26
CP0603A0942HN	925 - 960	16.3	0.35	25	26
CP0603A1441HN	1429 - 1453	13.0	0.55	22	26
CP0603A1747HN	1710 - 1785	11.4	0.75	20	24
CP0603A1842HN	1805 - 1880	11.0	0.75	20	24
CP0603A1880HN	1850 - 1910	10.8	0.75	19	24
CP0603A1960HN	1930 - 1990	10.5	0.75	19	24
CP0603A1907HN	1895 - 1920	10.7	0.75	19	24
CP0603A1890HN	1880 - 1900	10.8	0.75	19	24
CP0603A2442HN	2400 - 2484	8.8	1.00	17	24
CP0603A3500HN	3450 - 3550	5.9	1.48	25	21
CP0603A5000HN	4950 - 5050	4.4	2.59	22	18
CP0603A5500HN	5450 - 5550	4	2.95	22	17
CP0603A6000HN	5950 - 6050	3.5	3.37	21	17

Coupler P/N CP603AxxxxMN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836MN	824 - 849	24.2	0.20	33	23
CP0603A0881MN	869 - 894	23.8	0.20	32	23
CP0603A0902MN	890 - 915	23.4	0.20	32	23
CP0603A0947MN	935 - 960	23.2	0.20	32	23
CP0603A0897MN	880 - 915	23.4	0.20	32	23
CP0603A0942MN	925 - 960	23.2	0.20	32	23
CP0603A1441MN	1429 - 1453	20.0	0.25	28	23
CP0603A1747MN	1710 - 1785	18.4	0.25	27	20
CP0603A1842MN	1805 - 1880	18.0	0.25	26	20
CP0603A1880MN	1850 - 1910	17.8	0.25	26	20
CP0603A1960MN	1930 - 1990	17.5	0.25	26	20
CP0603A1907MN	1895 - 1920	17.7	0.25	26	20
CP0603A1890MN	1880 - 1900	17.8	0.25	26	20
CP0603A2442MN	2400 - 2484	15.6	0.35	24	20
CP0603A3500MN	3450 - 3550	12.8	0.58	18	20
CP0603A5000MN	4950 - 5050	10.2	1.0	15	16
CP0603A5500MN	5450 - 5550	9.7	1.2	15	14
CP0603A6000MN	5950 - 6050	8.9	1.5	13.5	9



Important: Couplers can be used at any frequency within the indicated range.


Coupler P/N CP603AxxxxLN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836LN	824 - 849	26.89	0.08	32.5	18
CP0603A0881LN	869 - 894	26.55	0.08	32.2	18
CP0603A0902LN	890 - 915	26.2	0.09	31.9	18
CP0603A0947LN	935 - 960	25.87	0.09	31.5	18
CP0603A0897LN	880 - 915	26.2	0.09	31.9	18
CP0603A0942LN	925 - 960	25.87	0.09	31.5	18
CP0603A1441LN	1429 - 1453	22.31	0.12	28.1	17.5
CP0603A1747LN	1710 - 1785	20.51	0.15	26.4	16.5
CP0603A1842LN	1805 - 1880	20.03	0.15	26	16.5
CP0603A1880LN	1850 - 1910	19.87	0.16	26	16.5
CP0603A1960LN	1930 - 1990	19.57	0.17	25.5	16.5
CP0603A1907LN	1895 - 1920	19.77	0.16	25.7	16.5
CP0603A1890LN	1880 - 1900	19.87	0.16	25.8	16.5
CP0603A2442LN	2400 - 2484	17.7	0.22	23.9	16.5
CP0603A3500LN	3450 - 3550	14.85	0.56	20.6	16
CP0603A5000LN	4950 - 5050	12.4	0.95	17.8	11
CP0603A5500LN	5450 - 5550	11.83	1.2	17.1	9
CP0603A6000LN	5950 - 6050	11.08	1.33	15.9	9

Coupler P/N CP603AxxxxKN

P/N Examples*	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603A0836KN	824 - 849	18.5	0.14	30	26
CP0603A0881KN	869 - 894	18.1	0.14	29	26
CP0603A0902KN	890 - 915	17.6	0.15	29	26
CP0603A0947KN	935 - 960	17.3	0.15	29	25
CP0603A0897KN	880 - 915	17.9	0.147	29	25
CP0603A0942KN	925 - 960	17.6	0.15	29	25
CP0603A1441KN	1429 - 1453	14	0.27	25	25
CP0603A1747KN	1710 - 1785	12.4	0.36	23	24
CP0603A1842KN	1805 - 1880	12	0.39	22.5	24
CP0603A1880KN	1850 - 1910	11.8	0.4	22	24
CP0603A1960KN	1930 - 1990	11.4	0.44	22	24
CP0603A1907KN	1895 - 1920	11.5	0.43	22	24
CP0603A1890KN	1880 - 1900	11.7	0.41	22	24
CP0603A2442KN	2400 - 2484	9.7	0.6	19	23
CP0603A3500KN	3450 - 3550	7.2	1.15	15	19
CP0603A5000KN	4950 - 5050	4.7	2.15	15	13
CP0603A5500KN	5450 - 5550	4.2	2.5	17	13
CP0603A6000KN	5950 - 6050	3.7	2.8	19	13

Important: Couplers can be used at any frequency within the indicated range.

Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° CP0402 / CP0603 High Directivity Couplers Test Jigs

GENERAL DESCRIPTION

These jigs are designed for testing the CP0402 and CP0603 High Directivity Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm (0.010") from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841.

Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed using a non-metallic stick until all four ports touch the appropriate pads. Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port

calibration in the required bandwidths.

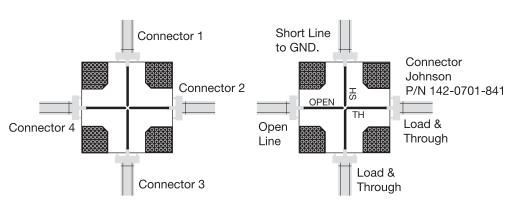
Place the coupler on the measurement jig as follows:

Input (Coupler) Connector 1 (Jig) Termination (Coupler) Connector 3 (Jig) Output (Coupler) ▶ Connector 2 (Jig) Coupling (Coupler) Connector 4 (Jig)

To measure I. Loss connect:

Connector 1 (Jig) ▶ Port 1 (VNA) Connector 3 (Jig) ▶ 50Ω Connector 2 (Jig) ▶ Port 2 (VNA) Connector 4 (Jig) ▶ 50Ω

To measure R. Loss and Coupling connect:


Connector 1 (Jig) ▶ Port 1 (VNA) Connector 3 (Jig) ▶ 50Ω Connector 2 (Jig) \blacktriangleright 50 Ω Connector 4 (Jig) ▶ Port 2 (VNA)

To measure Isolation connect:

Connector 1 (Jig) \Rightarrow 50 Ω Connector 3 (Jig) ▶ 50Ω Connector 2 (Jig) ▶ Port 1 (VNA) Connector 4 (Jig) ▶ Port 2 (VNA)

Measurement Jig

Calibration Jig

Thin-Film RF/Microwave Products

LGA Coupler Designer Kit 0402/0603 Size

Thin-Film RF/Microwave Directional Couplers LGA Couplers Design Kits

DESIGNER KIT

TYPE: 2300LF ORDER NUMBER: KITCN20402SP3K

1	CP0402AxxxxAN	20 Pcs
2	CP0402AxxxxBN	20 Pcs
3	CP0402AxxxxCN	20 Pcs
4	CP0402AxxxxDN	20 Pcs
5	CP0402AxxxxEN	20 Pcs
6	CP0402AxxxxFN	20 Pcs
7	CP0603AxxxxAN	20 Pcs
8	CP0603AxxxxBN	20 Pcs
9	CP0603AxxxxCN	20 Pcs
10	CP0603AxxxxDN	20 Pcs
11	CP0603AxxxxEN	20 Pcs
12	CP0603AxxxxFN	20 Pcs
13	CP0603AxxxxGN 20 Pc	
14	CP0603AxxxxHN	20 Pcs
15	CP0603AxxxxMN	20 Pcs

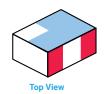
GENERAL DESCRIPTION ITF (INTEGRATED THIN-FILM) TECHNOLOGY

The ITF SMD Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS


- 4G LTE
- 5G LTE
- Base Stations.
- Automotive
- Industrial
- Mobile Communications
- Satellite TV Receivers
- **GPS**
- Vehicle Location Systems
- · Wireless LAN's


FEATURES

- Miniature Size: 0603
- Frequency Range: 800MHz 3GHz
- Characteristic Impedance: 500
- Operating / Storage Temp.: -40°C to +85°C
- Power Rating: 3W Continuous
- Low Profile
- Rugged Construction
- Taped and Reeled

DIMENSIONS:

millimeters (inches)

	0603		
	1.6±0.1		
	(0.063±0.004)		
w	0.84±0.1		
VV	(0.033±0.004)		
-	0.60±0.1		
	(0.028±0.004)		
Δ	0.35±0.15		
Α	(0.014±0.006)		
В	0.175±0.1		
D	(0.007±0.004)		
B1	0.00+0.1/0-0.0 (0.00+0.004/-0.0)		

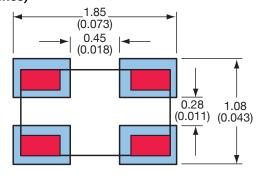
HOW TO ORDER

**RoHS compliant

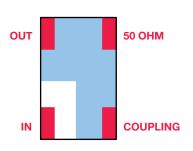
QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

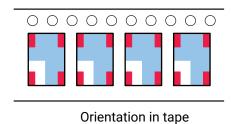

TERMINATION

72


Downloaded from Arrow.com.

Nickel/Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

Recommended Pad Layout Dimensions mm (inches)



TERMINALS (TOP VIEW)

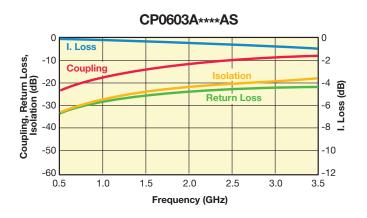
For RoHS compliant products, please select correct termination style.

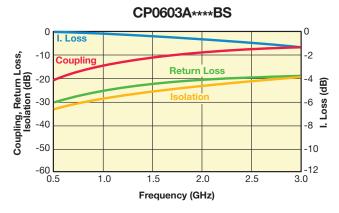
012419

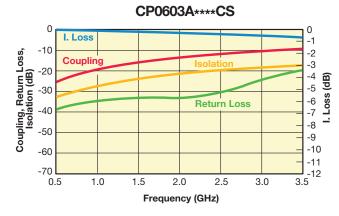
Coupler P/N CP0603A****AS

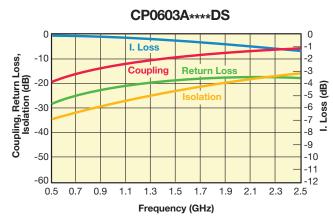
P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0603A0836AS	824 - 849	18.5±1	0.25	1.2
CP0603A0881AS	869 - 894	18.5±1	0.25	1.2
CP0603A0902AS	890 - 915	18±1	0.25	1.2
CP0603A0947AS	935 - 960	17.5±1	0.25	1.2
CP0603A0897AS	880 - 915	18±1	0.25	1.2
CP0603A0942AS	925 - 960	17.5±1	0.25	1.2
CP0603A1441AS	1429 - 1453	14±1	0.4	1.2
CP0603A1747AS	1710 - 1785	12.5±1	0.6	1.2
CP0603A1842AS	1805 - 1880	12±1	0.6	1.2
CP0603A1880AS	1850 - 1910	12±1	0.6	1.2
CP0603A1960AS	1930 - 1990	11.5±1	0.65	1.2
CP0603A1907AS	1895 - 1920	12±1	0.6	1.2
CP0603A1890AS	1880 - 1900	12±1	0.6	1.2
CP0603A2442AS	2400 - 2484	10±1	0.85	1.2

Coupler P/N CP0603A****BS


P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0603A0836BS	824 - 849	16±1	0.25	1.2
CP0603A0881BS	869 - 894	15.5±1	0.25	1.2
CP0603A0902BS	890 - 915	15.5±1	0.25	1.2
CP0603A0947BS	935 - 960	15±1	0.25	1.2
CP0603A0897BS	880 - 915	15.5±1	0.25	1.2
CP0603A0942BS	925 - 960	15±1	0.25	1.2
CP0603A1441BS	1429 - 1453	11.5±1	0.55	1.2
CP0603A1747BS	1710 - 1785	10±1	0.8	1.3
CP0603A1842BS	1805 - 1880	9.5±1	0.8	1.3
CP0603A1880BS	1850 - 1910	9±1	0.8	1.4
CP0603A1960BS	1930 - 1990	9±1	0.8	1.4
CP0603A1907BS	1895 - 1920	9±1	0.8	1.4
CP0603A1890BS	1880 - 1900	9±1	0.8	1.4
CP0603A2442BS	2400 - 2484	7.5±1	1.1	1.4

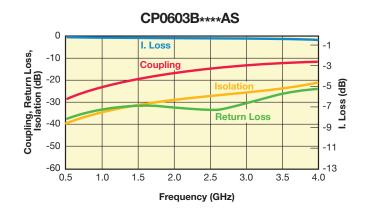

Coupler P/N CP0603A****CS

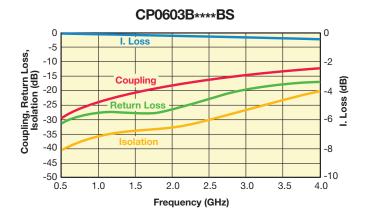

P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0603A0836CS	824 - 849	21±1	0.25	1.2
CP0603A0881CS	869 - 894	20.5±1	0.25	1.2
CP0603A0902CS	890 - 915	20.5±1	0.25	1.2
CP0603A0947CS	935 - 960	20±1	0.25	1.2
CP0603A0897CS	880 - 915	20.5±1	0.25	1.2
CP0603A0942CS	925 - 960	20±1	0.25	1.2
CP0603A1441CS	1429 - 1453	16.5±1	0.55	1.2
CP0603A1747CS	1710 - 1785	15±1	0.8	1.2
CP0603A1842CS	1805 - 1880	14.5±1	0.8	1.2
CP0603A1880CS	1850 - 1910	14.5±1	0.8	1.2
CP0603A1960CS	1930 - 1990	14±1	0.8	1.2
CP0603A1907CS	1895 - 1920	14.5±1	0.8	1.2
CP0603A1890CS	1880 - 1900	14.5±1	0.8	1.2
CP0603A2442CS	2400 - 2484	12.5±1	1.1	1.2

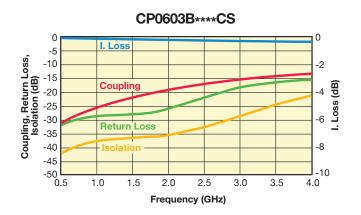

Coupler P/N CP0603A****DS

Couple: 1711 OF COUCK DO				
P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0603A0836DS	824 - 849	15.0±1	0.25	1.2
CP0603A0881DS	869 - 894	14.5±1	0.25	1.2
CP0603A0902DS	890 - 915	14.5±1	0.25	1.2
CP0603A0947DS	935 - 960	14±1	0.25	1.2
CP0603A0897DS	880 - 915	14.5±1	0.25	1.2
CP0603A0942DS	925 - 960	14±1	0.25	1.2
CP0603A1441DS	1429 - 1453	10.5±1	0.7	1.3
CP0603A1747DS	1710 - 1785	9±1	0.9	1.5
CP0603A1842DS	1805 - 1880	8.5±1	0.9	1.5
CP0603A1880DS	1850 - 1910	8.5±1	1.0	1.5
CP0603A1960DS	1930 - 1990	8±1	1.0	1.5
CP0603A1907DS	1895 - 1920	8.5±1	1.0	1.5
CP0603A1890DS	1880 - 1900	8.5±1	1.0	1.5
CP0603A2442DS	2400 - 2484	6.5±1	1.5	1.5

Coupler P/N CP0603B****AS

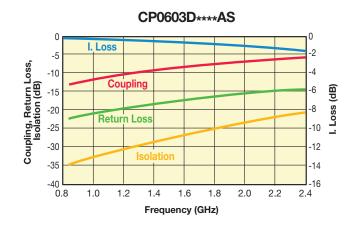

P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0603B0836AS	824 - 849	24.5±1	0.2	1.2
CP0603B0881AS	869 - 894	24±1	0.2	1.2
CP0603B0902AS	890 - 915	24±1	0.2	1.2
CP0603B0947AS	935 - 960	23.5±1	0.2	1.2
CP0603B0897AS	880 - 915	24±1	0.2	1.2
CP0603B0942AS	925 - 960	23.5±1	0.2	1.2
CP0603B1441AS	1429 - 1453	20±1	0.25	1.2
CP0603B1747AS	1710 - 1785	18±1	0.25	1.2
CP0603B1842AS	1805 - 1880	17.5±1	0.3	1.2
CP0603B1880AS	1850 - 1910	17.5±1	0.3	1.2
CP0603B1960AS	1930 - 1990	17.5±1	0.3	1.2
CP0603B1907AS	1895 - 1920	17.5±1	0.3	1.2
CP0603B1890AS	1880 - 1900	17.5±1	0.3	1.2
CP0603B2442AS	2400 - 2484	15.5±1	0.45	1.2


Coupler P/N CP0603B****BS

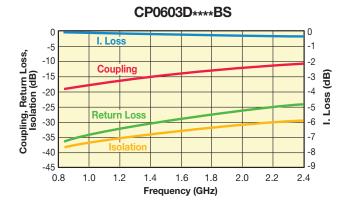

P/N Examples	Frequency Band [MHz] Coupling [dB]		I. Loss max	VSWR max
CP0603B0836BS	824 - 849	25.5±1	0.2	1.2
CP0603B0881BS	869 - 894	25±1	0.2	1.2
CP0603B0902BS	890 - 915	25±1	0.2	1.2
CP0603B0947BS	935 - 960	24.5±1	0.2	1.2
CP0603B0897BS	880 - 915	25±1	0.2	1.2
CP0603B0942BS	925 - 960	24.5±1	0.2	1.2
CP0603B1441BS	1429 - 1453	21±1	0.2	1.2
CP0603B1747BS	1710 - 1785	19±1	0.25	1.2
CP0603B1842BS	1805 - 1880	19±1	0.25	1.2
CP0603B1880BS	1850 - 1910	18.5±1	0.25	1.2
CP0603B1960BS	1930 - 1990	18.5±1	0.25	1.2
CP0603B1907BS	1895 - 1920	18.5±1	0.25	1.2
CP0603B1890BS	1880 - 1900	18.5±1	0.25	1.2
CP0603B2442BS	2400 - 2484	16.5±1	0.35	1.2

Coupler P/N CP0603B****CS

P/N Examples	Frequency Band [MHz] Coupling [dB]		I. Loss max	VSWR max
CP0603B0836CS	824 - 849	26.5±1	0.2	1.2
CP0603B0881CS	869 - 894	26±1	0.2	1.2
CP0603B0902CS	890 - 915	26±1	0.2	1.2
CP0603B0947CS	935 - 960	25.5±1	0.2	1.2
CP0603B0897CS	880 - 915	26±1	0.2	1.2
CP0603B0942CS	925 - 960	25.5±1	0.2	1.2
CP0603B1441CS	1429 - 1453	22±1	0.2	1.2
CP0603B1747CS	1710 - 1785	20.5±1	0.25	1.2
CP0603B1842CS	1805 - 1880	20±1	0.25	1.2
CP0603B1880CS	1850 - 1910	20±1	0.25	1.2
CP0603B1960CS	1930 - 1990	19.5±1	0.25	1.2
CP0603B1907CS	1895 - 1920	20±1	0.25	1.2
CP0603B1890CS	1880 - 1900	20±1	0.25	1.2
CP0603B2442CS	2400 - 2484	18±1	0.35	1.3



Thin-Film RF/Microwave Directional Couplers CP0302/CP0402/CP0603/CP0805 and DB0603N/DB0805 3dB 90° **CP0603 SMD Type - High Directivity**


Coupler P/N CP0603D****AS

Couplei 1711 Of COUCE AC					
P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603D0836AS	824 - 849	13.50	0.50	23	21
CP0603D0881AS	869 - 894	13.00	0.50	22	21
CP0603D0902AS	890 - 915	13.00	0.50	22	21
CP0603D0947AS	935 - 960	12.50	0.50	22	21
CP0603D0897AS	880 - 915	13.00	0.50	22	21
CP0603D0942AS	925 - 960	12.50	0.50	22	21
CP0603D1441AS	1429 - 1453	9.00	1.00	18	19
CP0603D1747AS	1710 - 1785	8.00	1.40	17	18
CP0603D1842AS	1805 - 1880	7.50	1.40	17	17
CP0603D1880AS	1850 - 1910	7.50	1.40	16	17
CP0603D1960AS	1930 - 1990	7.00	1.40	16	17
CP0603D1907AS	1895 - 1920	7.00	1.40	16	17
CP0603D1890AS	1880 - 1900	7.00	1.40	16	17
CP0603D2442AS	2400 - 2484	5.50	2.00	15	15

Coupler P/N CP0603D****BS

P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max. [dB]	Return Loss [dB]	Directivity [dB]
CP0603D0836BS	824 - 849	20.00	0.25	36	19
CP0603D0881BS	869 - 894	19.50	0.25	36	19
CP0603D0902BS	890 - 915	19.50	0.25	35	19
CP0603D0947BS	935 - 960	19.00	0.25	36	19
CP0603D0897BS	880 - 915	19.50	0.25	36	19
CP0603D0942BS	925 - 960	19.00	0.25	35	19
CP0603D1441BS	1429 - 1453	15.50	0.40	30	19
CP0603D1747BS	1710 - 1785	14.00	0.50	28	19
CP0603D1842BS	1805 - 1880	13.50	0.55	27	19
CP0603D1880BS	1850 - 1910	13.50	0.55	27	19
CP0603D1960BS	1930 - 1990	13.50	0.55	27	19
CP0603D1907BS	1895 - 1920	13.00	0.55	27	19
CP0603D1890BS	1880 - 1900	13.00	0.55	27	19
CP0603D2442BS	2400 - 2484	11.00	0.70	24	19

GENERAL DESCRIPTION

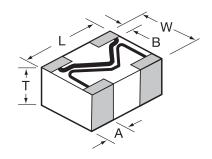
ITF (INTEGRATED THIN-FILM) TECHNOLOGY

The ITF SMD Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small Size: 0805
- Frequency Range: 800MHz 3GHz
- Characteristic Impedance: 50Ω
- Operating / Storage Temp.: -40°C to +85°C
- Power Rating: 3W Continuous
- Low Profile
- **Rugged Construction**
- Taped and Reeled


APPLICATIONS

- Mobile Communications
- Satellite TV Receivers
- **GPS**
- Vehicle Location Systems
- Wireless LAN's

DIMENSIONS:

millimeters (inches)

(Top View)

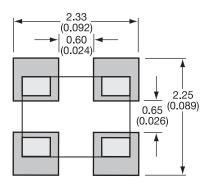
	0805
L	2.03±0.1 (0.080±0.004)
W	1.55±0.1 (0.061±0.004)
Т	0.98±0.1 (0.039±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

HOW TO ORDER

**RoHS compliant

For RoHS compliant products. please select correct termination style

QUALITY INSPECTION

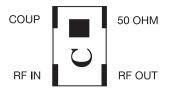

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

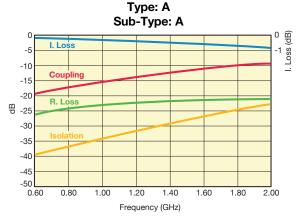
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

TERMINATION

Nickel/Solder coating (Sn, Pb) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

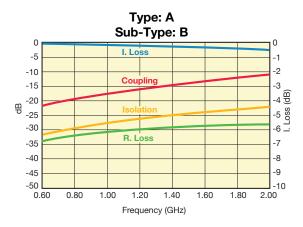
Recommended Pad Layout Dimensions mm (inches)

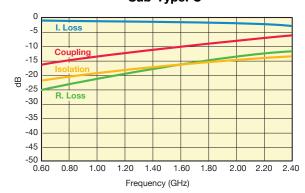


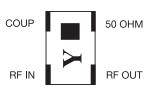

NOTE: Components must be mounted on the board with the white (Alumina) side

KYDCER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

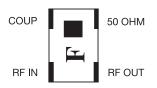
76

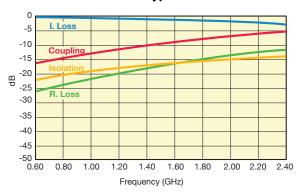



P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805A0836AS	824 - 849	16.5±1	0.25	1.2
CP0805A0881AS	869 - 894	16±1	0.25	1.2
CP0805A0902AS	890 - 915	16±1	0.25	1.2
CP0805A0947AS	935 - 960	15.5±1	0.25	1.2
CP0805A0897AS	880 - 915	16±1	0.25	1.2
CP0805A0942AS	925 - 960	15.5±1	0.25	1.2
CP0805A1441AS	1429 - 1453	12±1	0.5	1.3
CP0805A1747AS	1710 - 1785	10.5±1	0.7	1.4
CP0805A1842AS	1805 - 1880	10±1	0.8	1.4
CP0805A1880AS	1850 - 1910	9.5±1	0.8	1.4
CP0805A1960AS	1930 - 1990	9.5±1	0.8	1.4
CP0805A1907AS	1895 - 1920	9.5±1	0.8	1.4
CP0805A1890AS	1880 - 1900	9.5±1	0.8	1.4

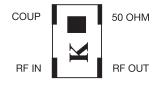


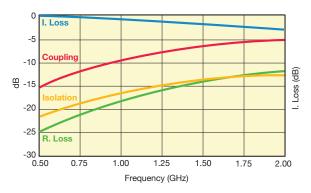
P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805A0836BS	824 - 849	19±1	0.25	1.2
CP0805A0881BS	869 - 894	18.5±1	0.25	1.2
CP0805A0902BS	890 - 915	18±1	0.25	1.2
CP0805A0947BS	935 - 960	18±1	0.25	1.2
CP0805A0897BS	880 - 915	18.5±1	0.25	1.2
CP0805A0942BS	925 - 960	18±1	0.25	1.2
CP0805A1441BS	1429 - 1453	14.5±1	0.35	1.2
CP0805A1747BS	1710 - 1785	12.5±1	0.5	1.4
CP0805A1842BS	1805 - 1880	12.5±1	0.5	1.4
CP0805A1880BS	1850 - 1910	12±1	0.6	1.4
CP0805A1960BS	1930 - 1990	11.5±1	0.7	1.4
CP0805A1907BS	1895 - 1920	12±1	0.6	1.4
CP0805A1890BS	1880 - 1900	12±1	0.6	1.4
CP0805A2442BS	2400 - 2484	10±1	0.9	1.4


Type: A Sub-Type: C



P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805A0836CS	824 - 849	14±1	0.5	1.4
CP0805A0881CS	869 - 894	13.5±1	0.5	1.4
CP0805A0902CS	890 - 915	13.5±1	0.5	1.4
CP0805A0947CS	935 - 960	13±1	0.5	1.4
CP0805A0897CS	880 - 915	13.5±1	0.5	1.4
CP0805A0942CS	925 - 960	13±1	0.5	1.4
CP0805A1441CS	1429 - 1453	9.5±1	1.15	1.8
CP0805A1747CS	1710 - 1785	8±1	1.6	2.2
CP0805A1842CS	1805 - 1880	8±1	1.6	2.2
CP0805A1880CS	1850 - 1910	7.5±1	1.75	2.2
Cp0805A1960CS	1930 - 1990	7.5±1	1.75	2.2
CP0805A1907CS	1895 - 1920	7.5±1	1.75	2.2
CP0805A1890CS	1880 - 1900	7.5±1	1.75	2.2
CP0805A2442CS	2400 - 2484	6±1	2.5	2.2

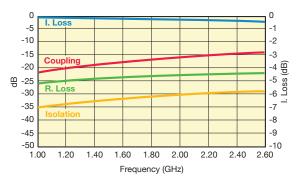



Type: A Sub-Type: D

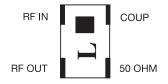
P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805A0836DS	824 - 849	13.0±1	0.5	1.4
CP0805A0881DS	869 - 894	12.5±1	0.5	1.4
CP0805A0902DS	890 - 915	12.5±1	0.5	1.4
CP0805A0947DS	935 - 960	12±1	0.5	1.4
CP0805A0897DS	880 - 915	12.5±1	0.5	1.4
CP0805A0942DS	925 - 960	12±1	0.5	1.4
CP0805A1441DS	1429 - 1453	8.5±1	1.25	1.8
CP0805A1747DS	1710 - 1785	7±1	1.85	1.8
CP0805A1842DS	1805 - 1880	7±1	1.85	1.8
CP0805A1880DS	1850 - 1910	7±1	1.85	1.8
Cp0805A1960DS	1930 - 1990	6.5±1	2.15	2.1
CP0805A1907DS	1895 - 1920	6.5±1	2.15	2.1
CP0805A1890DS	1880 - 1900	7±1	1.85	1.8
CP0805A2442DS	2400 - 2484	5.5±1	2.4	2.1

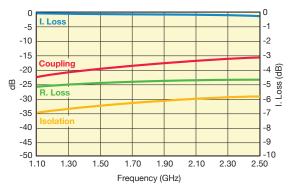
Type: A Sub-Type: E

P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805A0836ES	824 - 849	11±1	0.85	1.4
CP0805A0881ES	869 - 894	10.5±1	0.85	1.4
CP0805A0902ES	890 - 915	10.5±1	0.85	1.4
CP0805A0947ES	935 - 960	10±1	0.85	1.4
CP0805A0897ES	880 - 915	10.5±1	0.85	1.4
CP0805A0942ES	925 - 960	10±1	0.85	1.4
CP0805A1441ES	1429 - 1453	7±1	1.8	1.8
CP0805A1747ES	1710 - 1785	5.5±1	2.7	2.2
CP0805A1842ES	1805 - 1880	5.5±1	2.7	2.2
CP0805A1880ES	1850 - 1910	5±1	3.15	2.4
Cp0805A1960ES	1930 - 1990	5±1	3.15	2.4
CP0805A1907ES	1895 - 1920	5±1	3.15	2.4
CP0805A1890ES	1880 - 1900	5±1	3.15	2.4
CP0805A2442ES	2400 - 2484	4±1	4.2	2.4

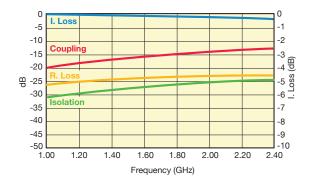

Important: Couplers can be used at any frequency within the indicated range.

Downloaded from Arrow.com.

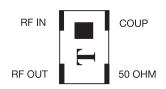



Type: B Sub-Type: B

P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805B0836BS	824 - 849	23.5±1	0.25	1.2
CP0805B0881BS	869 - 894	23±1	0.25	1.2
CP0805B0902BS	890 - 915	22.5±1	0.25	1.2
CP0805B0947BS	935 - 960	22±1	0.25	1.2
CP0805B0897BS	880 - 915	23±1	0.25	1.2
CP0805B0942BS	925 - 960	22±1	0.25	1.2
CP0805B1441BS	1429 - 1453	18.5±1	0.25	1.2
CP0805B1747BS	1710 - 1785	17±1	0.25	1.2
CP0805B1842BS	1805 - 1880	16.5±1	0.25	1.2
CP0805B1880BS	1850 - 1910	16.5±1	0.25	1.2
CP0805B1960BS	1930 - 1990	16±1	0.25	1.2
CP0805B1907BS	1895 - 1920	16±1	0.25	1.2
CP0805B1890BS	1880 - 1900	16±1	0.25	1.2
CP0805B2442BS	2400 - 2484	14±1	0.4	1.2



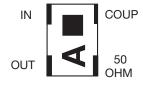
Type: B Sub-Type: C

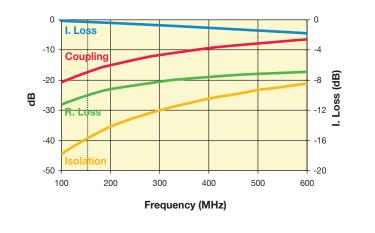


P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805B0836CS	824 - 849	25±1	0.25	1.2
CP0805B0881CS	869 - 894	24.5±1	0.25	1.2
CP0805B0902CS	890 - 915	24±1	0.25	1.2
CP0805B0947CS	935 - 960	24±1	0.25	1.2
CP0805B0897CS	880 - 915	24.5±1	0.25	1.2
CP0805B0942CS	925 - 960	24±1	0.25	1.2
CP0805B1441CS	1429 - 1453	20±1	0.25	1.2
CP0805B1747CS	1710 - 1785	18.5±1	0.25	1.2
Cp0805B1842CS	1805 - 1880	18.5±1	0.25	1.2
CP0805B1880CS	1850 - 1910	18±1	0.25	1.2
Cp0805B1960CS	1930 - 1990	17.5±1	0.25	1.2
CP0805B1907CS	1895 - 1920	18±1	0.25	1.2
CP0805B1890CS	1880 - 1900	18±1	0.25	1.2
CP0805B2442CS	2400 - 2484	16±1	0.4	1.2

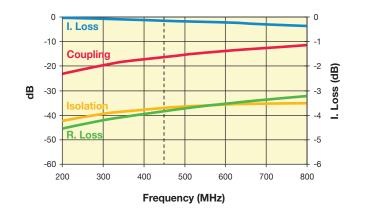
Type: B Sub-Type: B

Important: Couplers can be used at any frequency within the indicated range.


P/N Examples	Frequency Band [MHz]	Coupling [dB]	I. Loss max	VSWR max
CP0805B0836AS	824 - 849	21.5±1	0.25	1.2
CP0805B0881AS	869 - 894	21±1	0.25	1.2
CP0805B0902AS	890 - 915	21±1	0.25	1.2
CP0805B0947AS	935 - 960	20.5±1	0.25	1.2
CP0805B0897AS	880 - 915	21±1	0.25	1.2
CP0805B0942AS	925 - 960	20.5±1	0.25	1.2
CP0805B1441AS	1429 - 1453	17±1	0.25	1.2
CP0805B1747AS	1710 - 1785	15.5±1	0.25	1.2
Cp0805B1842AS	1805 - 1880	15.5±1	0.3	1.2
CP0805B1880AS	1850 - 1910	15±1	0.3	1.2
CP0805B1960AS	1930 - 1990	14.5±1	0.4	1.2
CP0805B1907AS	1895 - 1920	15±1	0.3	1.2
CP0805B1890AS	1880 - 1900	15±1	0.3	1.2
CP0805B2442AS	2400 - 2484	13±1	0.4	1.2


082420

VHF DIRECTIONAL COUPLER CP0805L0155ASTR


P/N	Frequency [MHz]	Coupling [dB]	R. Loss [dB]	I. Loss max [dB]	Directivity [dB]
CP0805L0155ASTR	155	17.1±1	24	0.35	22

UHF DIRECTIONAL COUPLER CP0805L0436BSTR

P/N	Frequency [MHz]	Coupling [dB]	R. Loss [dB]	I. Loss max [dB]	Directivity [dB]
CP0805L0436BSTR	403-470	15.85±1	35	0.25	22

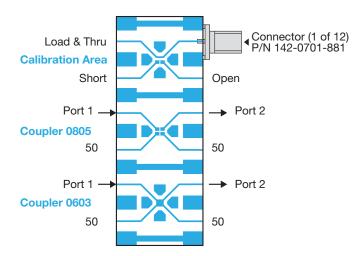
Important: Couplers can be used at any frequency within the indicated range.

80

ITF TEST JIG FOR COUPLER TYPES 0805 AND 0603 SMD

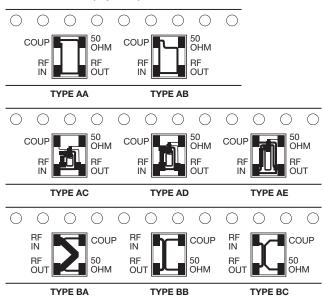
GENERAL DESCRIPTION

This jig is designed for the testing of CP0805 and CP0603 series Directional Couplers using a vector network analyzer.


It consists of a FR4 multi-layer substrate, having 50Ω microstrips as conducting lines and a ground plane in the middle layer, located at a distance of 0.2mm from the microstrips.

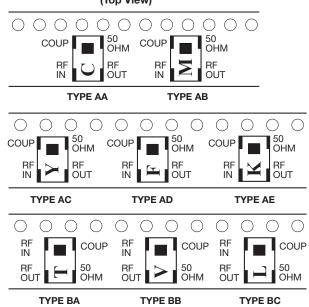
The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-881.

The jig is designed for a full 2-port calibration. LOAD calibration can be done either by a 50Ω SMA termination, or by soldering a 50Ω chip resistor at the 50Ω ports.


MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed by a non-metallic stick until all four ports touch the appropriate pads. To measure the coupling (and the R. Loss) place the component on the Port 1 & Port 2 pads. Use two SMA 50Ω terminations (male) to terminate the ports, which are not connected to the network analyzer, and connect the network analyzer to the two ports. A 90° rotation of the component on its pads allows measuring a second parameter (I. Loss).

CP0805 SERIES DIRECTIONAL COUPLERS


Orientation and Tape and Reel Packaging Specification (Top View)

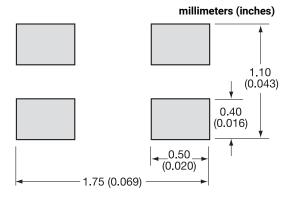
The parts should be mounted on the PCB with White (Alumina)side down and the "dark" side up.

CP0805xxxxxxSTR (Sn100)

(Top View)

The parts should be mounted on the PCB with printed side up.

GENERAL DESCRIPTION RFAP TECHNOLOGY


The DB0603N 3dB 90° Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The RFAP LGA 3dB 90° Coupler will be offered in a variety of frequency bands compatible with various types of high frequency

APPLICATIONS

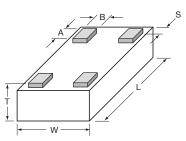
- 4G LTE
- 5G LTE
- · Base Stations.
- Automotive
- Industrial
- · Balanced Amplifiers and Signal Distribution in Wireless Communications

RECOMMENDED PAD LAYOUT DIMENSIONS:

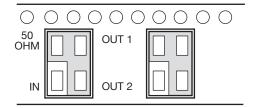
FEATURES

- · Miniature 0603 size
- · Low I. Loss
- · High Isolation
- · Surface Mountable
- · RoHS Compliant
- Supplied on T&R
- Power Rating: 10W RF Continuous

LAND GRID ARRAY ADVANTAGES:


- · Inherent Low Profile
- · Self Alignment during Reflow
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

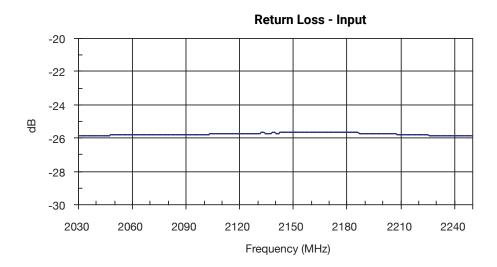
DIMENSIONS:


millimeters (inches)

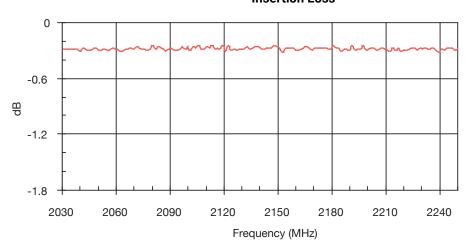
L	1.60±0.10 (0.063±0.004)					
W	0.84±0.10 (0.033±0.004)					
Т	0.60±0.10 (0.024±0.004)					
A	0.25±0.05 (0.010±0.002)					
В	0.20±0.05 (0.008±0.002)					
S	0.05±0.05 (0.002±0.002)					

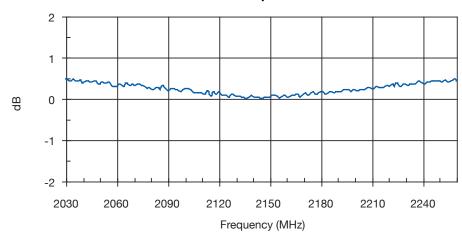
BOTTOM VIEW

ORIENTATION IN TAPE

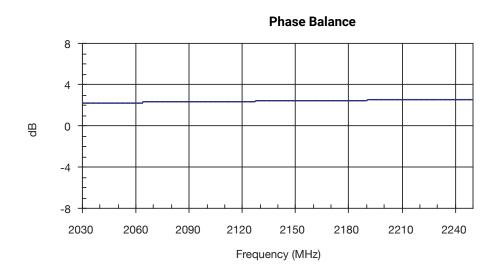

ELECTRICAL PARAMETERS

Part Number	Freque	ncy MHz	Port Impedance Ω	Return Loss [dB]		ss [dB] Isolation [dB] Insertion Loss [dB]				Insertion Loss [dB]				(Relative	Balance e to 90°) eg	Power Handing Watts
	Min.	Max.	Тур.	Min.	Тур.	Min.	Тур.	Тур.	Max.	Тур.	Max.	Тур.	Max	Max.		
DB0603N2140ANTR	2040	2240	50	15	26	15	23	0.30	0.40	0.50	0.80	2	3	10		
DB0603N2400ANTR	2300	2500	50	12	17	15	23	0.25	0.35	0.30	0.80	2	3	10		
DB0603N2600ANTR	2400	2800	50	12	17	15	23	0.25	0.35	0.30	0.80	2	3	10		
DB0603N3000ANTR	2850	3150	50	12	15	15	26	0.20	0.30	0.30	0.80	2	3	10		
DB0603N3500ANTR	3300	3700	50	12	15	15	26	0.20	0.30	0.30	0.80	2	3	10		
DB0603N4600ANTR	4200	5000	50	12	16	12	15	0.50	0.70	0.40	1.00	1.5	3	10		
DB0603N5500ANTR	5100	5900	50	12	16	10	14	0.60	0.80	0.80	1.50	1	3	10		
DB0603N5800ANTR	5600	6000	50	12	16	12	17	0.40	0.90	0.30	0.90	2	3	10		

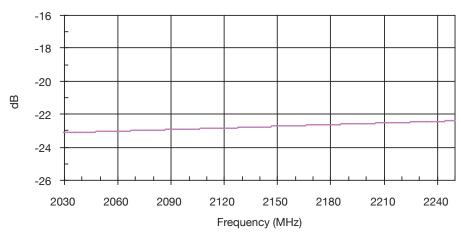

NOTE: Additional Frequencies Available Upon Request


2040MHZ TO 2240MHZ DB0603N2140ANTR

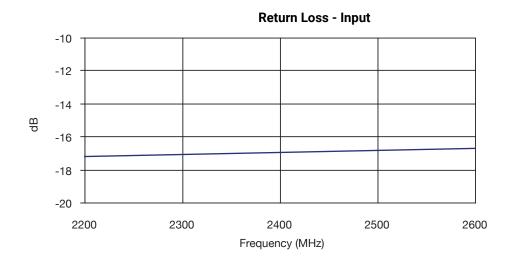
Insertion Loss



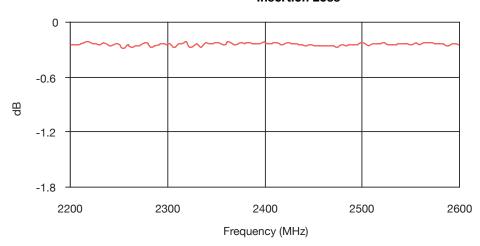
Amplitude Balance

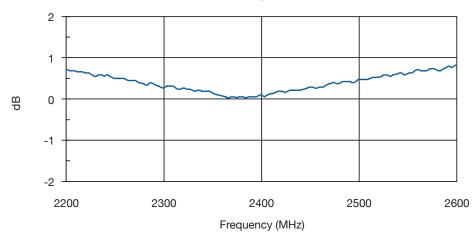


2040MHZ TO 2240MHZ DB0603N2140ANTR

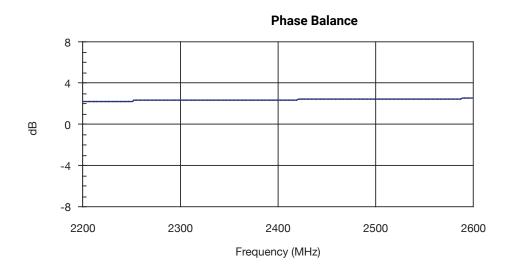


Isolation

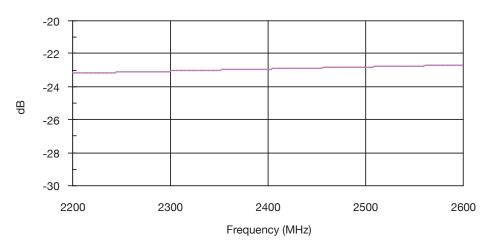



2200MHZ TO 2600MHZ DB0603N2400ANTR

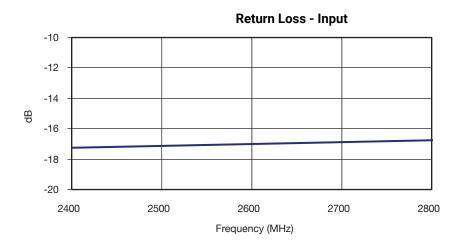
Insertion Loss

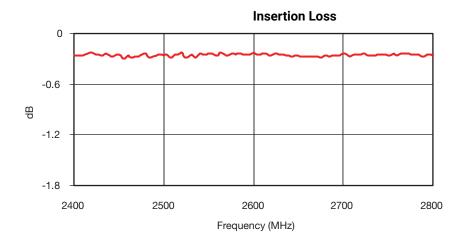


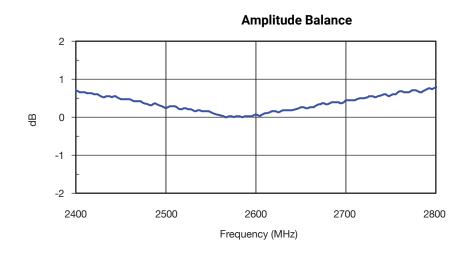
Amplitude Balance



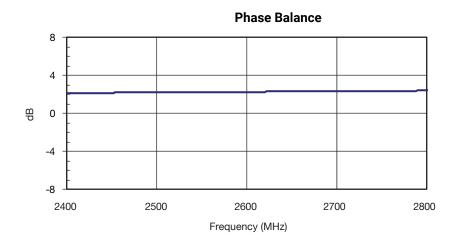
2200MHZ TO 2600MHZ DB0603N2400ANTR

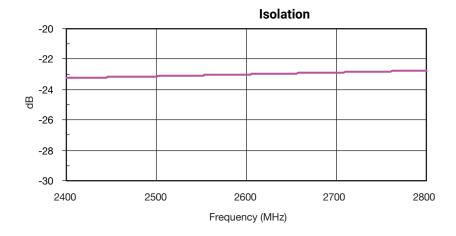



Isolation

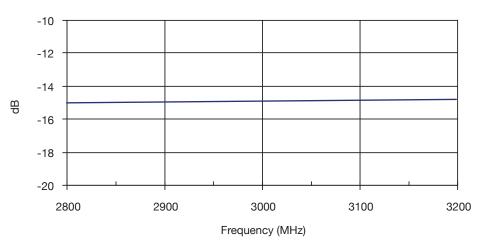


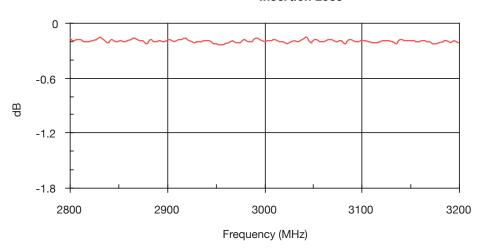
2400MHZ TO 2800MHZ DB0603N2600ANTR



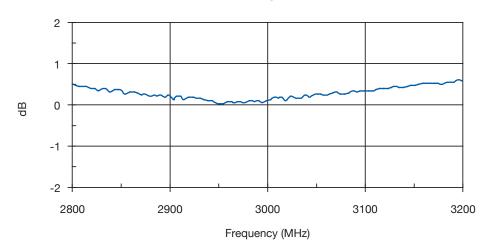


2400MHZ TO 2800MHZ DB0603N2600ANTR

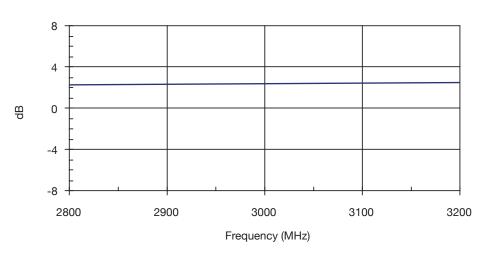


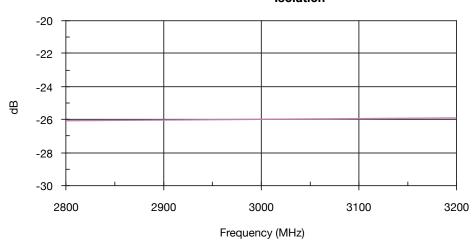


2850MHZ TO 3150MHZ DB0603N3000ANTR

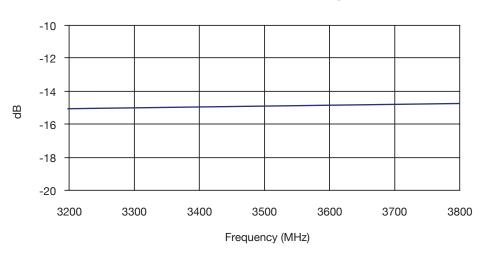


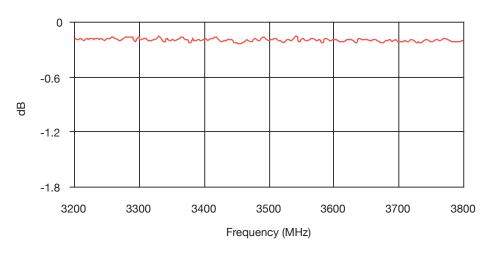
Insertion Loss


Amplitude Balance

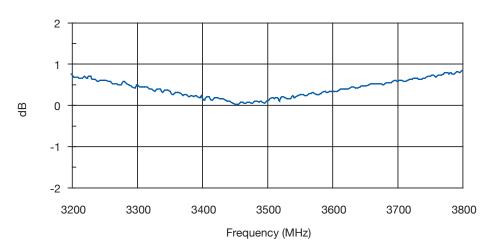


2850MHZ TO 3150MHZ DB0603N3000ANTR

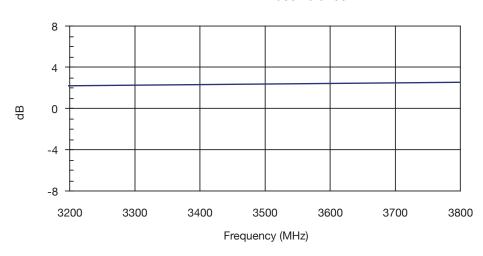

Isolation

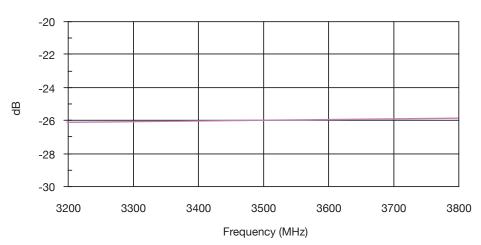


3200MHZ TO 3800MHZ DB0603N3500ANTR

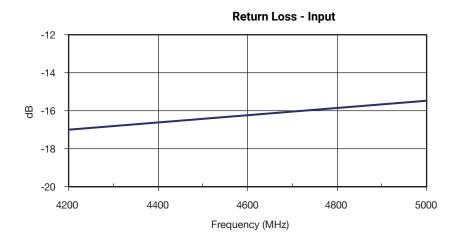


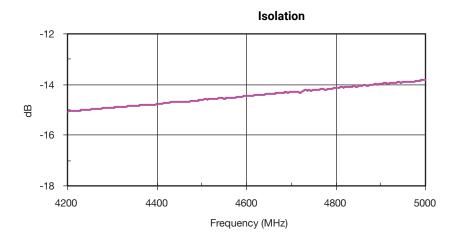
Insertion Loss


Amplitude Balance

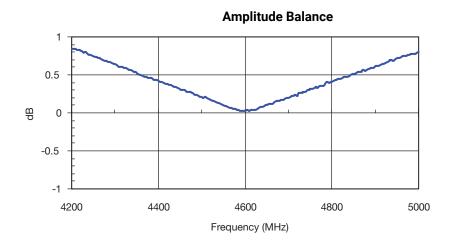


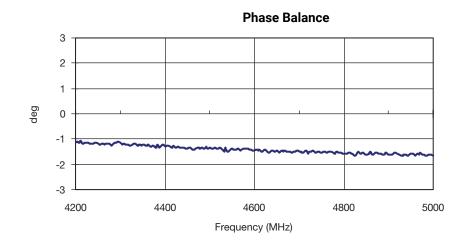
3200MHZ TO 3800MHZ DB0603N3500ANTR

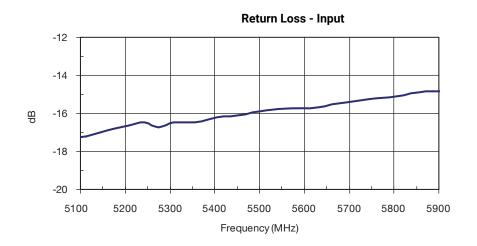


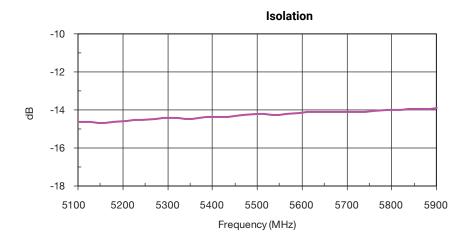

Isolation

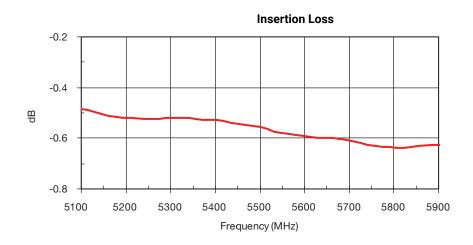
4200MHZ TO 5000MHZ DB0603N4600ANTR



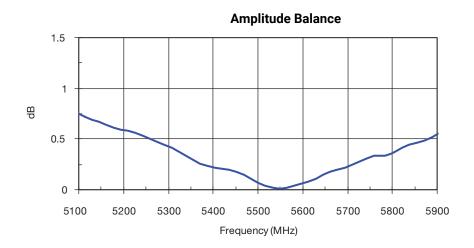


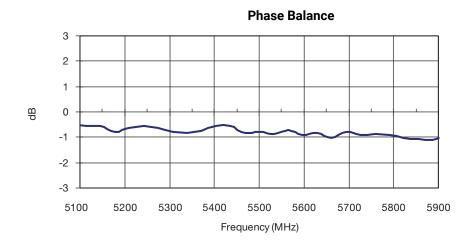

4200MHZ TO 5000MHZ DB0603N4600ANTR

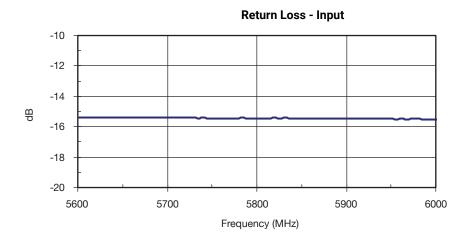


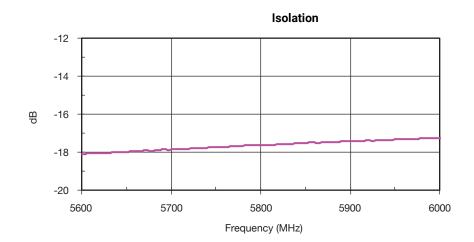


5100MHZ TO 5900MHZ DB0603N5500ANTR

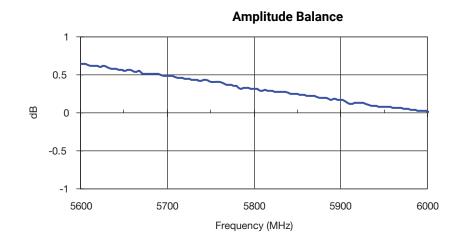





5100MHZ TO 5900MHZ DB0603N5500ANTR



5600MHZ TO 6000MHZ DB0603N5800ANTR



5600MHZ TO 6000MHZ DB0603N5800ANTR

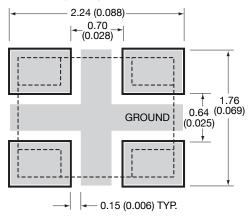
Phase Balance 3 2 1 deg 0 -1 -2 -3 5600 5700 5800 5900 6000 Frequency (MHz)

GENERAL DESCRIPTION ITF TECHNOLOGY

The ITF SMD 3dB 90° Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF 3dB 90° Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS

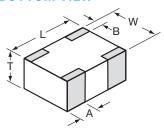

Balanced Amplifiers and Signal Distribution in Mobile Communications

FEATURES

- Miniature 0805 size
- Low I. Loss
- High Isolation
- Power Handling: 10W RF CW
- Surface Mountable
- Supplied on Tape & Reel
- Operating Temperature -40°C to +85°C

RECOMMENDED PAD LAYOUT DIMENSIONS:

millimeters (inches)

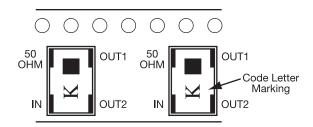


DIMENSIONS:

millimeters (inches)

L	2.03±0.10 (0.080±0.004)			
w	1.55±0.10 (0.061±0.004)			
т	0.98±0.15 (0.037±0.006)			
Α	0.56±0.25 (0.022±0.010)			
В	0.35±0.15 (0.014±0.006)			

BOTTOM VIEW

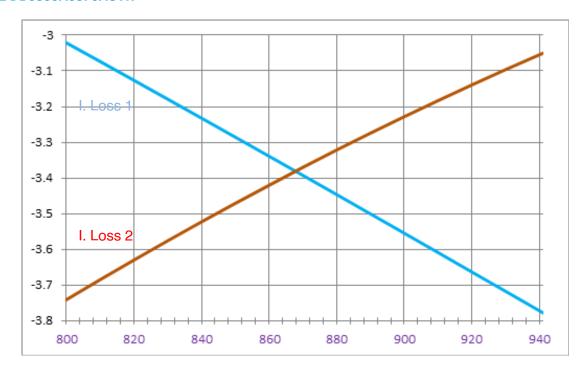

ELECTRICAL PARAMETERS*

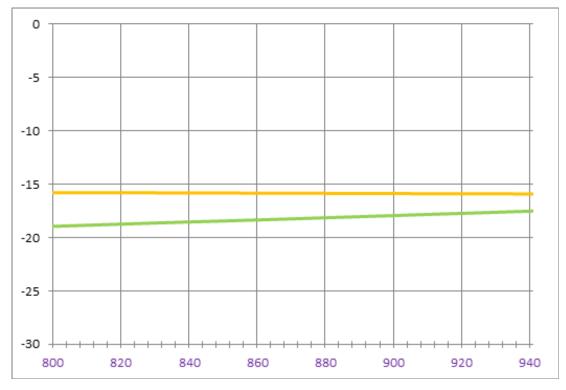
Part Number**	Frequency FO [MHz]	I. Loss @ F _o	[deg] max.	Marking
DB0805A0870ASTR	870±70	0.4	3	Υ
DB0805A0880ASTR	880±30	0.35	3	Υ
DB0805A0915ASTR	915±30	0.35	3	V
DB0805A0967ASTR	967±30	0.35	3	V
DB0805A1176ASTR	1176±13	0.2	3	G
DB0805A1350ASTR	1350±50	0.35	3	С
DB0805A1376ASTR	1376±211	0.6	8	G
DB0805A1650ASTR	1650±50	0.35	3	F
DB0805A1800ASTR	1800±50	0.30	3	F
DB0805A1850ASTR	1850±50	0.30	3	K
DB0805A1900ASTR	1900±50	0.30	3	K
DB0805A1950ASTR	1950±50	0.25	3	K
DB0805A2140ASTR	2140±50	0.25	3	L
DB0805A2325ASTR	2325±50	0.25	3	T

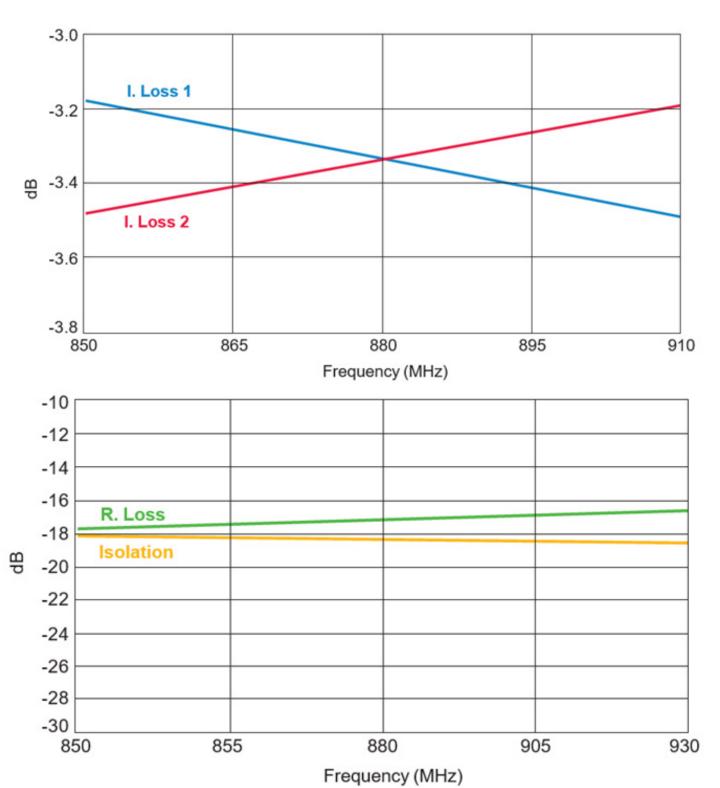
^{*}With Recommended Pad Layout

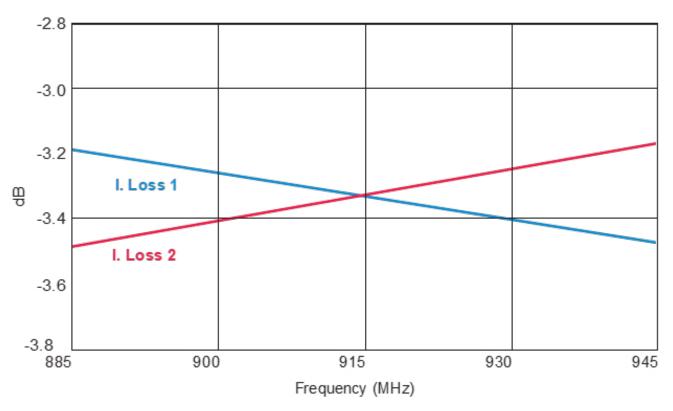
NOTE: Additional Frequencies Available Upon Request

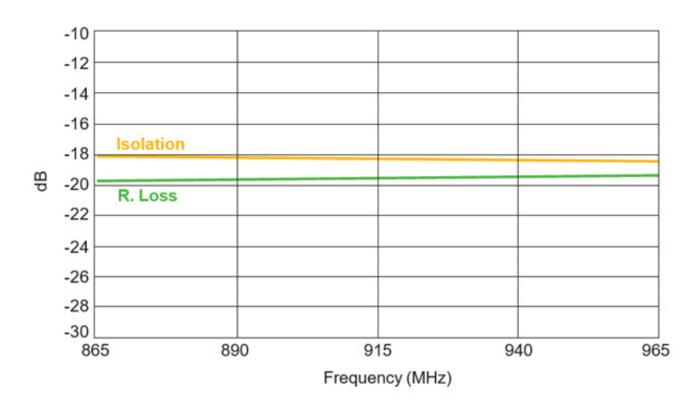
TERMINALS (TOP VIEW) ORIENTATION IN TAPE

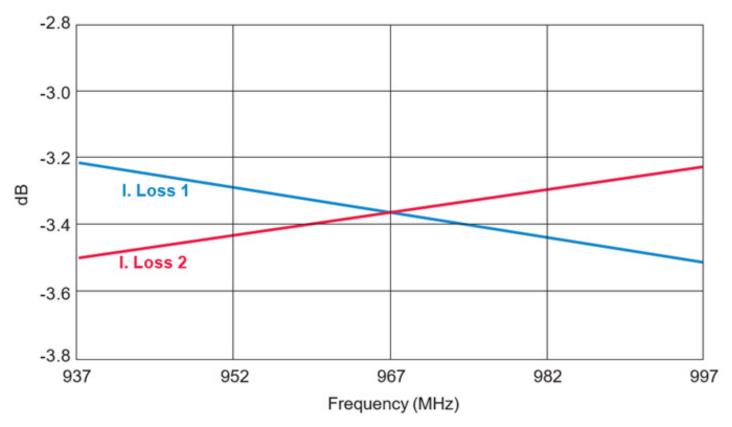

LEAD FREE TERMINATION **PART NUMBERS: DB0805AXXXXASTR

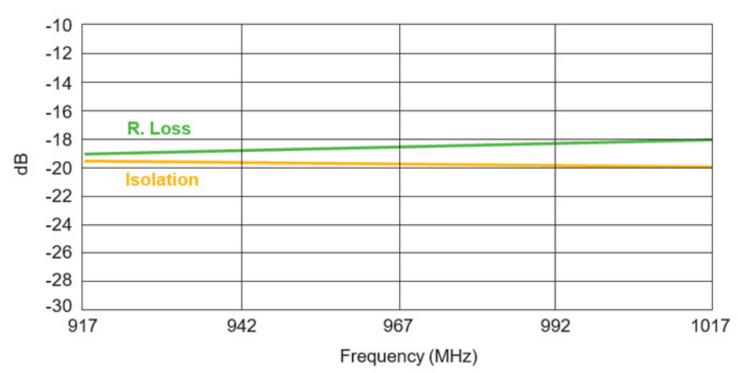


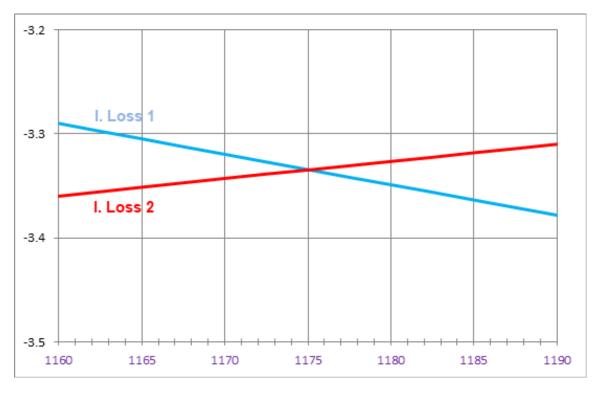

870 ± 13MHZ DB0805A0870ASTR

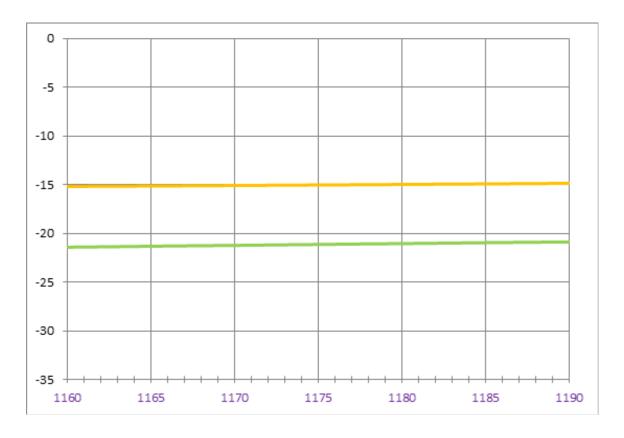


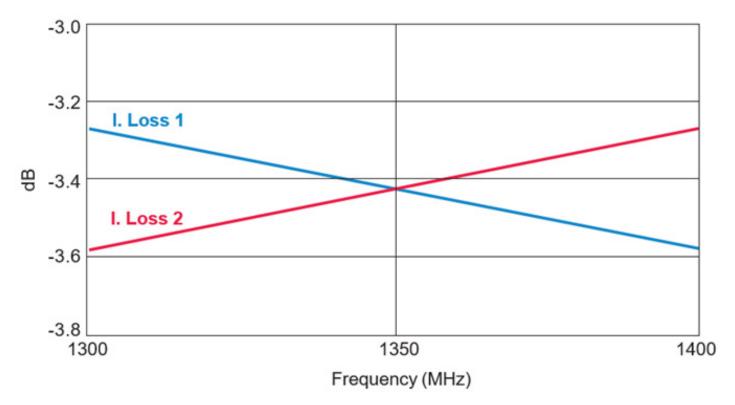

880 ± 30MHZ DB0805A0880ASTR


915 ± 30MHZ DB0805A0915ASTR

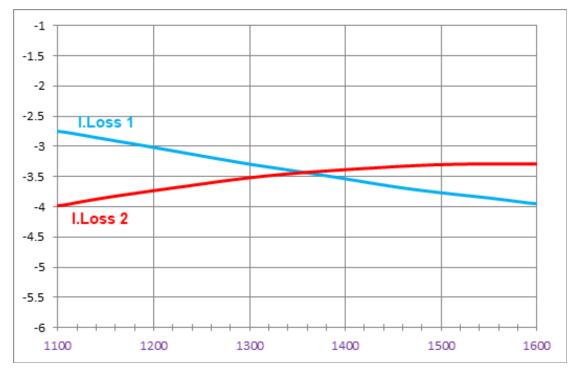


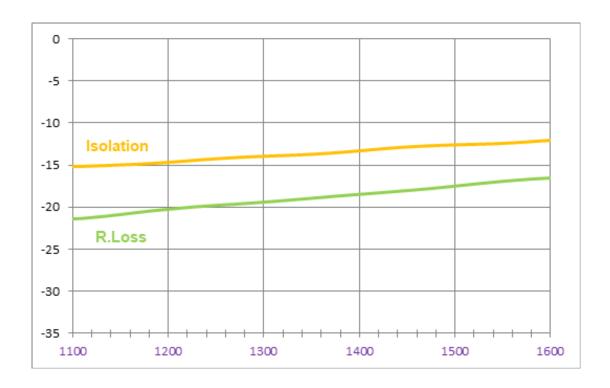

967± 30MHZ DB0805A0967ASTR



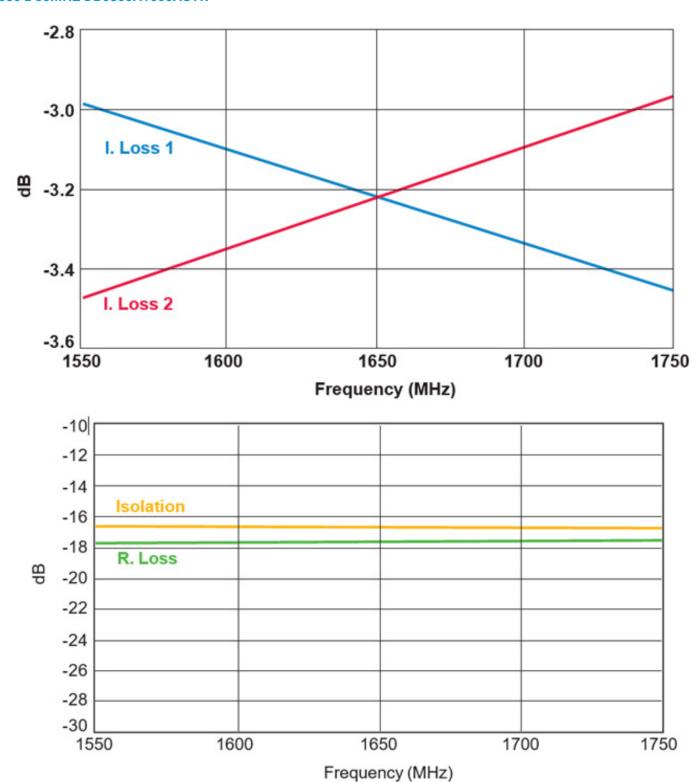

11760 ± 13MHZ DB0805A176ASTR (L1 BAND)

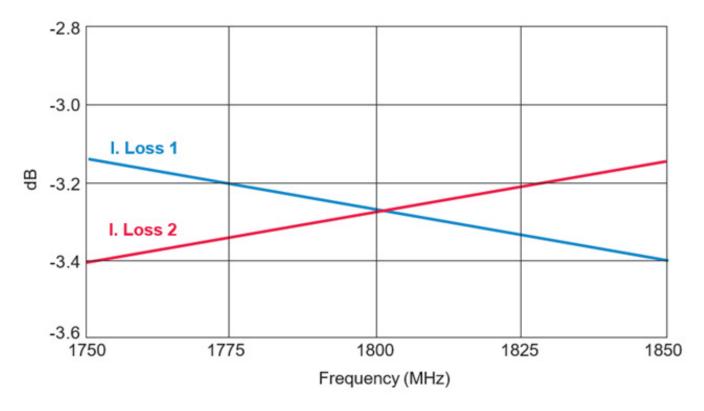
1350 ± 50MHZ DB0805A1350ASTR

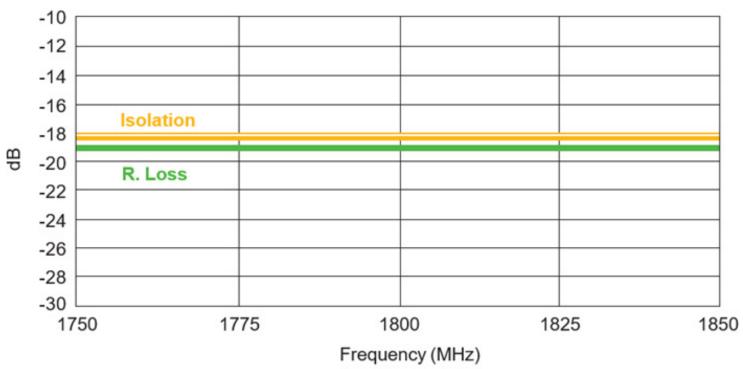


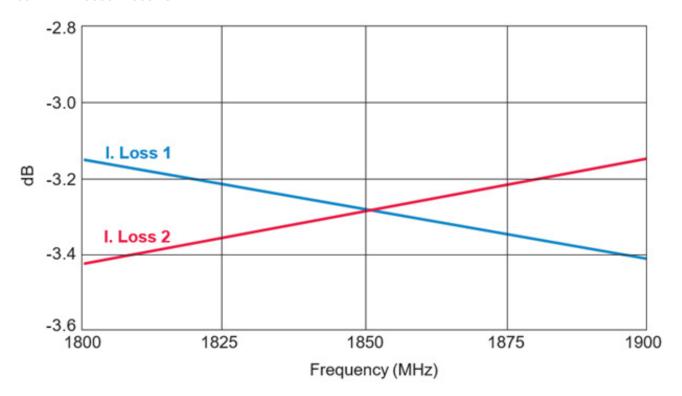


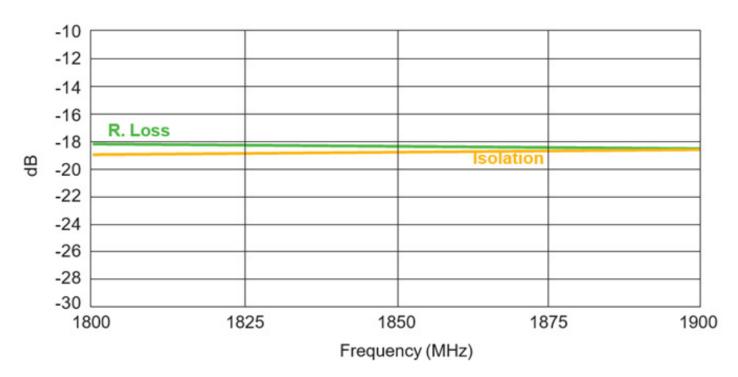
063021

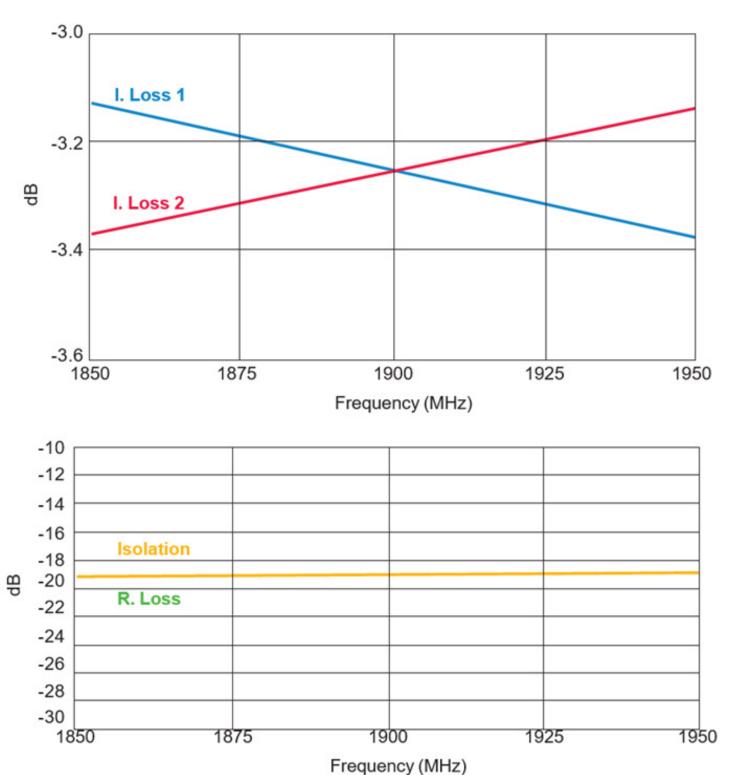

1376 ± 210 MHZ DB0805A1376ASTR (L5 BAND)

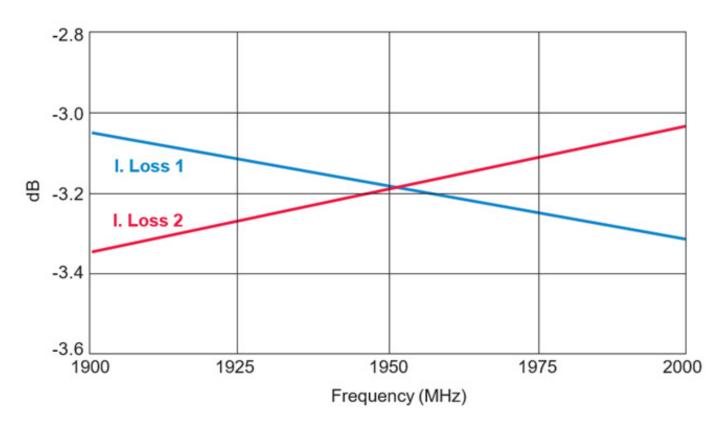


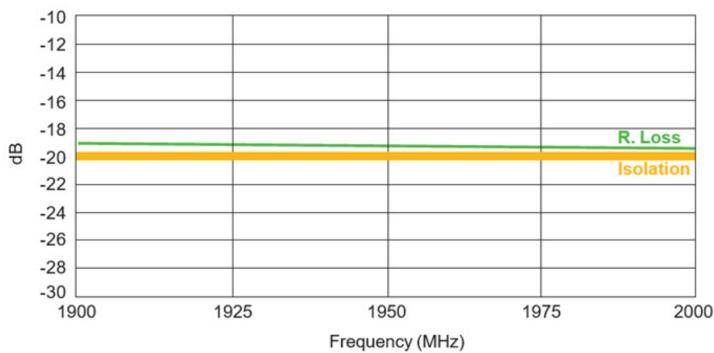

1650 ± 50MHZ DB0805A1650ASTR

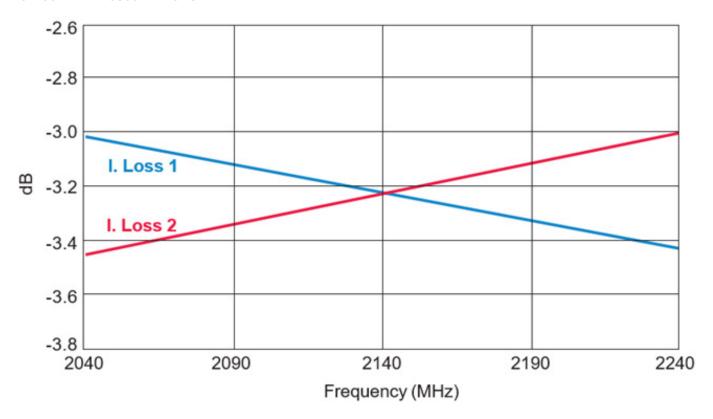

1800 ± 50MHZ DB0805A1800ASTR

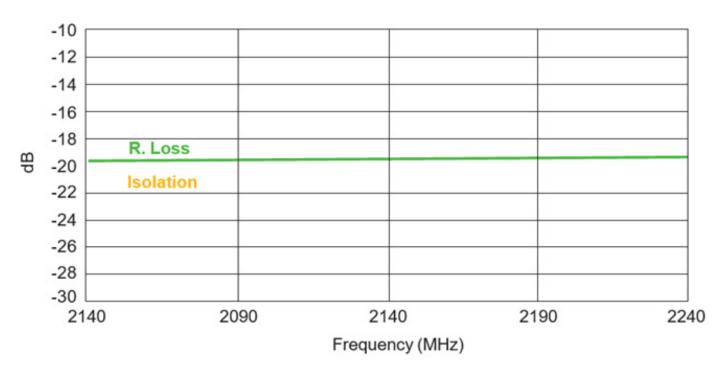


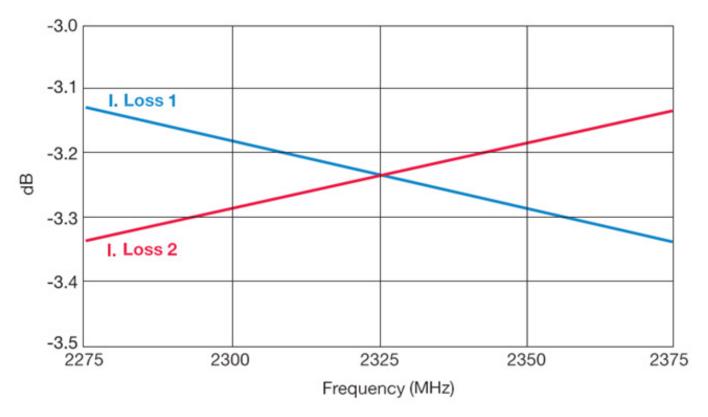

1850 ± 50MHZ DB0805A1850ASTR

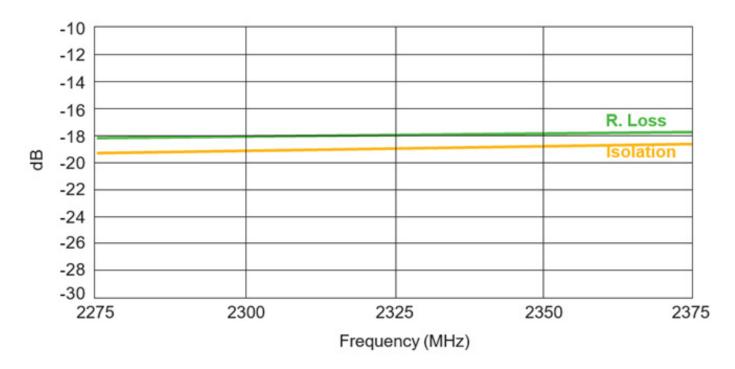



1900 ± 50MHZ DB0805A1900ASTR


1950 ± 50MHZ DB0805A1950ASTR




2140 ± 50MHZ DB0805A2140ASTR



2325 ± 50MHZ DB0805A2325ASTR

GENERAL DESCRIPTION

These jigs are designed for testing the DB0805 3dB 90° Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

The connectors are SMA type (female), 'Johnson Components Inc.' Product

non-metallic stick until all four ports touch the appropriate pads.

Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jwwig to perform a full 2-port calibration in the required bandwidths.

P/N: 142-0701-841.

Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed using a

Place the coupler on the measurement jig as follows:

Input (Coupler) ▶ Connector 1 (Jig) Output 1 (Coupler) Connector 3 (Jig) 50Ω (Coupler) ▶ Connector 2 (Jig) Output 2 (Coupler) ▶ Connector 4 (Jig)

To measure R. Loss and I. Loss 1 connect:

Connector 1 (Jig) ▶ Port 1 (VNA) Connector 3 (Jig) ▶ Port 2 (VNA)

Connector 2 (Jig) \blacktriangleright 50 Ω Connector 4 (Jig) ▶ 50Ω

To measure R. Loss and I. Loss 2 connect:

Connector 1 (Jig) ▶ Port 1 (VNA) Connector 3 (Jig) \blacktriangleright 50 Ω

Connector 2 (Jig) \blacktriangleright 50 Ω Connector 4 (Jig) ▶ Port 2 (VNA)

To measure Isolation connect:

Connector 1 (Jig) \blacktriangleright 50 Ω Connector 3 (Jig) ▶ Port 1 (VNA) Connector 2 (Jig) \blacktriangleright 50 Ω Connector 4 (Jig) ▶ Port 2 (VNA)

Calibration Jig Measurement Jig Connector 1 Load & Through Connector Johnson P/N 142-0701-841 Connector 2 Load & Connector 4 Short Line Through to GND Open Connector 3 Line

Thin-Film RF Filters

LP0402/LP0603/LP0805

Low Pass - Harmonic Lead-Free

LP0402N Series - LGA Termination

RFAP TECHNOLOGY

The LP0402N Series Harmonic Low Pass Filter is based on the proprietary RFAP Thin-Film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The RFAP Harmonic Low Pass Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS

- · Wireless communications
- · Wireless LAN's
- GPS
- WiMAX

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Self Alignment during Reflow
- Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

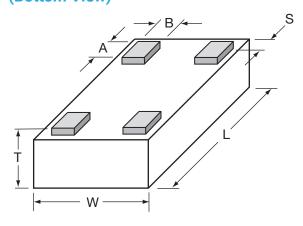
OUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- · Endurance: 125°C, IR, 4 hours

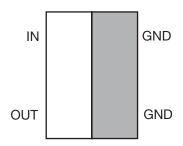
TERMINATION

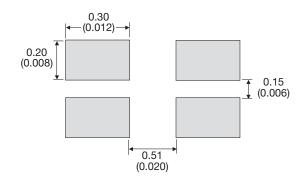
Nickel/Lead-Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.



Low Pass - Harmonic Lead-Free

LP0402N Series - LGA Termination


DIMENSIONS: millimeters (inches) (Bottom View)


L	1.0±0.05 (0.040±0.002)			
w	0.58±0.04 (0.023±0.002)			
Т	0.35±0.5 (0.014±0.002)			

A	0.20±0.06 (0.008±0.002)			
В	0.18±0.05 (0.007±0.002)			
s	S 0.05±0.05 (0.002±0.002)			

TERMINALS (TOP VIEW)

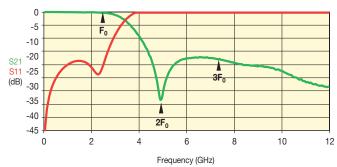
RECOMMENDED PAD LAYOUT (MM)

ELECTRICAL CHARACTERISTICS

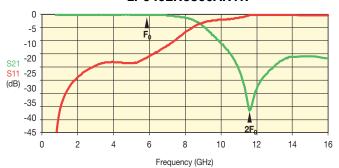
(Guaranteed over -40°C to +85°C Operating Temperature Range)

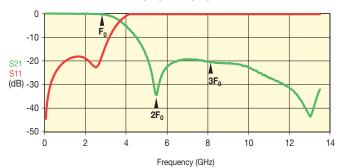
P/N	Frequency Band [MHz]	I. Loss [dB]	R. Loss [dB]	Attenuation @ 2xF ₀ [dB]	Attenuation @ 3xF ₀ [dB]
LP0402N2442ANTR	2400-2484	0.35 typ 0.5 max	20	30	17
LP0402N2690ANTR	2640-2740	0.35 typ 0.5 max	20	30	20
LP0402N3500ANTR	3400-3600	0.3 typ 0.5 max	19	30	20
LP0402N5200ANTR	5500-5350	0.2 typ 0.5 max	19	30	20
LP0402N5500ANTR	5350-5650	0.2 typ 0.5 max	15	30	-
LP0402N5800ANTR	5600-6000	0.2 typ 0.5 max	16	25	-

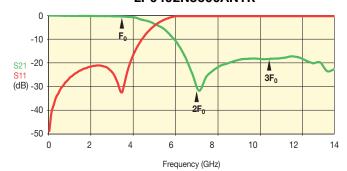
NOTE: Additional Frequencies Available Upon Request

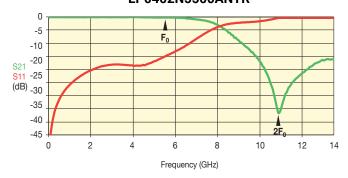


Low Pass - Harmonic Lead-Free


LP0402N Series - LGA Termination


LP0402N2442ANTR


LP0402N5800ANTR


LP0402N2690ANTR


LP0402N3500ANTR

LP0402N5500ANTR

LP0402N5200ANTR

Low Pass - Harmonic Lead-Free

LP0402N Series – Test Jig

TEST JIG FOR LP0402 LOW PASS FILTER

GENERAL DESCRIPTION

These jigs are designed for testing the LP0603 LGA Low Pass Filters using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.127mm from the microstrips.

The substrate used is Neltec's NH9338ST0127C1BC (or similar).

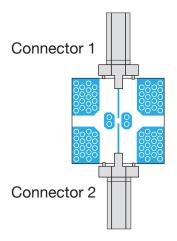
The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841 (or similar).

Both a measurement jig and a calibration jig are provided.

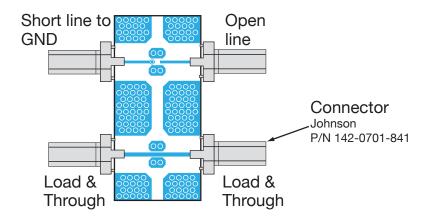
The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE

Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.


Solder the filter to the measurement jig as follows:

Input ▶ Connector 1 (Jig) GND (Filter) ▶ GND (Jig) (Filter) Output


▶ Connector 2 (Jig) GND (Filter) ▶ GND (Jig) (Filter)

Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2 (using an RF cable).

Measurement

Calibration Jig

Low Pass - Harmonic Lead-Free

LP0603 Series - LGA Termination

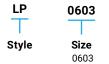
GENERAL DESCRIPTION

The LP0603 ITF (Integrated Thin Film) Lead-Free LGA Low Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Low Pass Filters are offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Miniature Size: 0603
- Frequency Range: 900MHz-6.0GHz
- Characteristic Impedance: 50 Ohm
- Operating/Storage Temperature: -40°C to +85°C
- Power Rating: 3W Continuous
- Low Profile
- **Rugged Construction**
- Lead Free
- Taped and Reeled


APPLICATIONS

- · Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LANs
- RFID

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- Self Alignment during Reflow
- **Excellent Solderability**
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

FINAL QUALITY INSPECTION

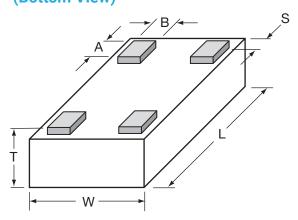
Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- · Endurance: 125°C, IR, 4 hours

TERMINATION

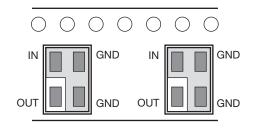
Nickel/Lead-Free Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

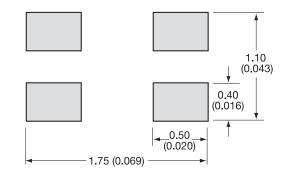
**RoHS compliant



Low Pass - Lead-Free

LP0603 Series - LGA Termination


DIMENSIONS: millimeters (inches) (Bottom View)


L	1.6±0.1 (0.063±0.004)			
w	0.84±0.1 (0.033±0.004)			
Т	0.60±0.1 (0.024±0.004)			

A	0.25±0.05 (0.010±0.002)			
В	0.20±0.05 (0.008±0.002)			
s	0.05±0.05 (0.002±0.002)			

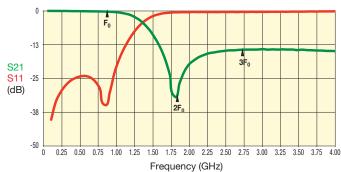
TERMINALS AND ORIENTATION IN TAPE (TOP VIEW)

RECOMMENDED PAD LAYOUT (MM)

ELECTRICAL CHARACTERISTICS

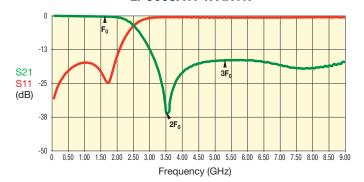
(Guaranteed over -40°C to +85°C Operating Temperature Range)

P/N	Frequency Band [MHz]	I. Loss [dB]	VSWR max [dB]	Attentuation typ. [dB]
LP0603A0902ANTR	890-915	0.35 typ (0.5 max)	1.4	25 @ 2xF0 14 @ 3xF0
LP0603A0947ANTR	935-960	0.35 typ (0.5 max)	1.4	25 @ 2xF0 17 @ 3xF0
LP0603A1747ANTR	1710-1785	0.3 typ (0.5 max)	1.4	25 @ 2xF0 17 @ 3xF0
LP0603A1842ANTR	1805-1880	0.3 typ (0.5 max)	1.4	27 @ 2xF0 15 @ 3xF0
LP0603A1880ANTR	1840-1920	0.3 typ (0.5 max)	1.4	25 @ 2xF0 17 @ 3xF0
LP0603A1950ANTR	1920-1980	0.3 typ (0.5 max)	1.4	27 @ 2xF0 15 @ 3xF0
LP0603A2140ANTR	2110-2170	0.3 typ (0.5 max)	1.4	27 @ 2xF0 17 @ 3xF0
LP0603A2442ANTR	2412-2472	0.3 typ (0.5 max)	1.4	25 @ 2xF0 17 @ 3xF0
LP0603N3500ANTR	3400-3600	-0.3 typ. -0.5 max.	1.4	30 @ 2xF0 20 @ 3xF0
LP0603N4500ANTR	4400-4600	-0.3 typ. -0.5 max.	1.4	30 @ 2xF0 20 @ 3xF0
LP0603N5200ANTR	5050-5350	-0.2 typ. -0.5 max.	1.4	30 @ 2xF0 20 @ 3xF0
LP0603N5500ANTR	5350-5650	-0.2 typ. -0.5 max.	1.4	30 @ 2xF0 20 @ 3xF0
LP0603N6000ANTR	5900-6100	-0.3 typ. -0.5 max.	1.4	30 @ 2xF0 20 @ 3xF0


NOTE: Additional Frequencies Available Upon Request

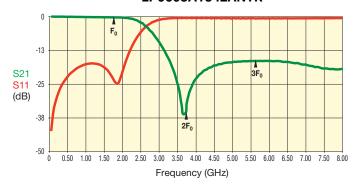
Low Pass - Lead-Free

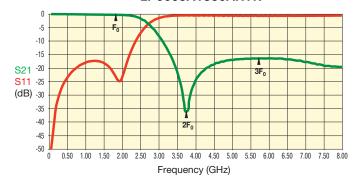
LP0603 Series – LGA Termination


LP0603A0902ANTR

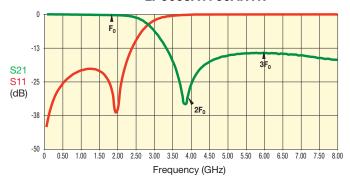
LP0603A0947ANTR -13 3F₀ S21 S11 -25 (dB) 2F -38

0.25 0.50 0.75 1.00 1.25


LP0603A1747ANTR


LP0603A1842ANTR

Frequency (GHz)

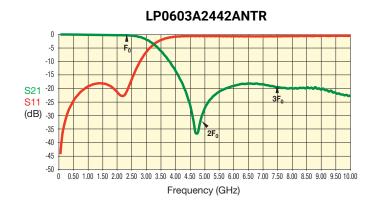

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

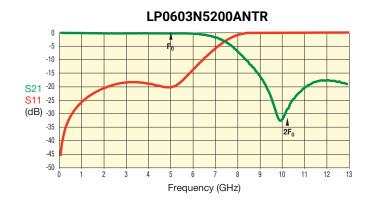
LP0603A1880ANTR

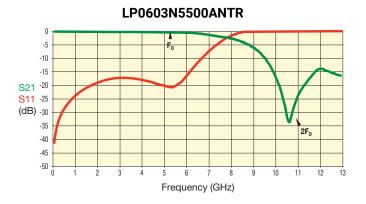
LP0603A1950ANTR

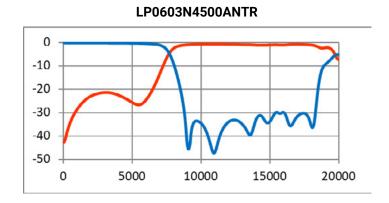
Low Pass - Lead-Free

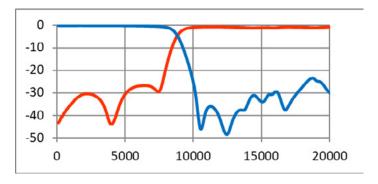
-50


LP0603 Series – LGA Termination


LP0603A2140ANTR -5 -10 -15 S21 -20 S11 -25 (dB) -30 -35 -40 2F -45


0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00


Frequency (GHz)


LP0603N3500ANTR -5 -10 -15 S21 -20 S11 -25 (dB) -30 -35 -40 2F -45 -50 11 Frequency (GHz)

LP0603N6000ANTR

Low Pass - Lead-Free

LP0603 Series - Test Jig

TEST JIG FOR LP0603 LEAD-FREE LGA LOW PASS FILTER

GENERAL DESCRIPTION

These jigs are designed for testing the LP0603 LGA Low Pass Filters using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.127mm from the microstrips.

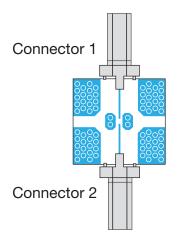
The substrate used is Neltec's NH9338ST0127C1BC (or similar).

The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841 (or similar).

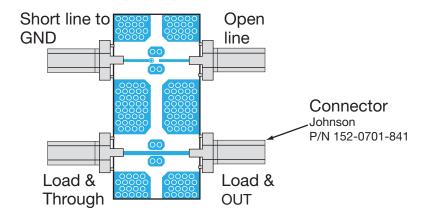
Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE


Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.

Solder the filter to the measurement jig as follows:


Input ▶ Connector 1 (Jig) GND (Filter) GND (Jig) (Filter) Output ▶ Connector 2 (Jig) GND (Filter) • GND (Jig) (Filter)

Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2 (using an RF cable).

Measurement

Calibration Jig

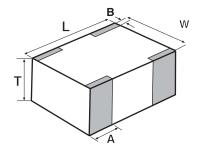
Low Pass - Harmonic

LP0805 Series - SMD Termination

GENERAL DESCRIPTION

The ITF (Integrated Thin-Film) SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- · Small Size: 0805
- · Frequency Range: 800MHz 3.5GHz
- Characteristic Impedance: 500
- Operating / Storage Temp.: -40°C to +85°C
- Power Rating: 3W Continuous
- Low Profile
- Rugged Construction
- Taped and Reeled

APPLICATIONS

- · Mobile Communications
- Satellite TV Receivers
- **GPS**
- Vehicle Location Systems
- Wireless LAN's

DIMENSIONS: millimeters (inches)

2.03±0.1 (0.080±0.004)
1.55±0.1 (0.061±0.004)
1.02±0.1 (0.040±0.004)
0.56±0.25 (0.022±0.010)
0.35±0.15 (0.014±0.006)

PAD LAYOUT

See CP0805 pad layout on page 64.

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D 4 hours

TERMINATION

Nickel/Solder coating (Sn, Pb) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

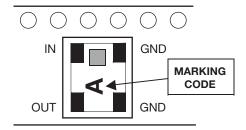
HOW TO ORDER

Termination AW = Nickel/Solder (SnPb) **AS = Nickel/ Lead Free Solder (Sn100)

**RoHS compliant

Taped & Reeled

TR = Tape and Reel

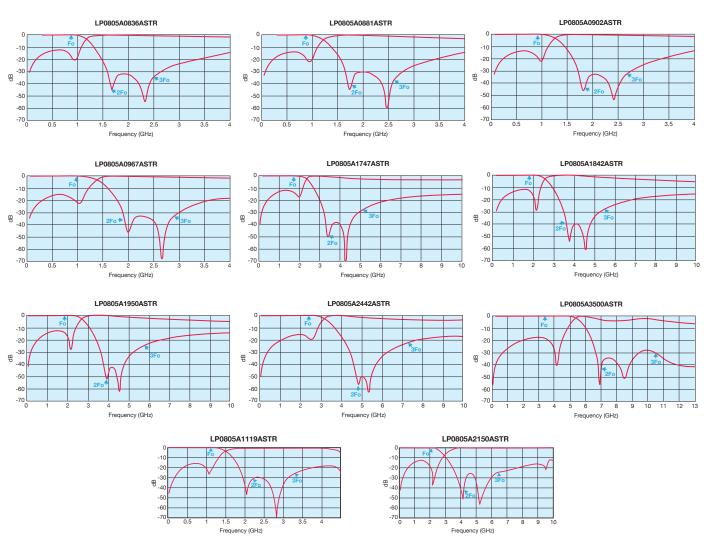


LEAD-FREE COMPATIBLE COMPONENT

> For RoHS compliant products, please select correct termination style.

TERMINALS AND LAYOUT (TOP VIEW) ORIENTATION IN TAPE

Low Pass - Harmonic


LP0805 Series – SMD Termination

ELECTRICAL CHARACTERISTICS

Application	Part Number	Frequency Band (MHz)	I. Loss max	VSWR max	Attenuation (dB) Typical	Layout Type (SnPb)	Layout Type F Marking Code
E-G SM	LP0805A0897AS	880 - 915				A	Е
E-G 2M	LP0805A0942AS	925 - 960				A	F
	LP0805A0902AS	890 - 915				A	Е
GSM	LP0805A0947AS	935 - 960				A	F
	LP0805A1119AS	1101 - 1137				A	Н
AM PS	LP0805A0836AS	824 - 849				A	Α
AM PS	LP0805A0881AS	LP0805A0881AS 869 - 894			A	С	
DON	LP0805A1747AS	1710 - 1785	0.4dB (0.3dB typ)	17	30 @ 2XFo	D	I
PCN	LP0805A1842AS	1805 - 1880		1.7	20 @ 3xFo	D	J
PCS	LP0805A1880AS	1850 - 1910				D	K
PC3	LP0805A1960AS	1930 - 1990				D	М
PHP	LP0805A1907AS	1895 - 1920				D	L
DECT	LP0805A1890AS	1880 - 1900				D	K
3G	LP0805A2150AS	1905 - 2180				D	N
Wireless LAN	LP0805A2442AS	2400 - 2484				D	S
WLL	LP0805A3500AS	3400 ~ 3600				E	Х

Typical Electrical Performance

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Low Pass - Harmonic

LP0805 Series - Test Jig

ITF TEST JIG FOR LOW PASS FILTER 0805

GENERAL DESCRIPTION

These jigs are designed for testing the LPF0805 Low Pass Filters using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50W microstrips as conducting lines and a bottom ground plane located at a distance of 0.254 mm from the microstrips.

The substrate used is RF-35-0100-C1B107 (or similar).

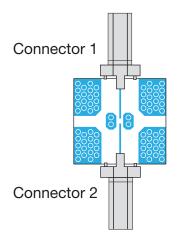
The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841(or similar).

Both a measurement jig and a calibration jig are provided.

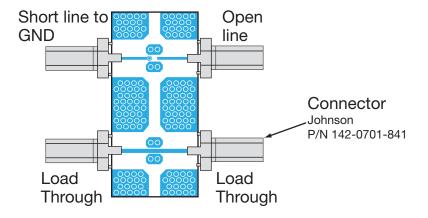
The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50W SMA termination.

MEASUREMENT PROCEDURE

Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.


Solder the filter to the measurement jig as follows:

Input Connector 1 (Jig) GND (Filter) ▶ GND (Jig) (Filter)


Output Connector 2 (Jig) GND (Filter) ▶ GND (Jig) (Filter)

Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2 (using an RF cable).

Measurement

Calibration Jig

High Performance Low Pass Filters

0805 High Performance Low Pass 8W

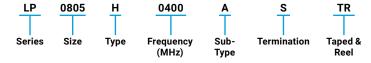
Low Pass 0805 High Performance SMD 8W

LP0805H0400ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

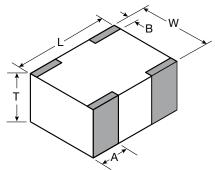

FEATURES

- Small size: 0805
- Frequency: 400MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER



FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

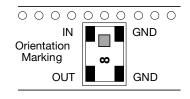
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours

DIMENSIONS (TOP VIEW)

	mm (inches)				
		2.03±0.10			
	-	(0.080±0.004)			
	w	1.55±0.10			
	VV	(0.061±0.004)			
	-	0.80±0.10			
		(0.031±0.004)			
	Α	0.56±0.25			
	A	(0.022±0.010)			
В	В	0.35±0.15			
	В	(0.014±0.006)			

TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering

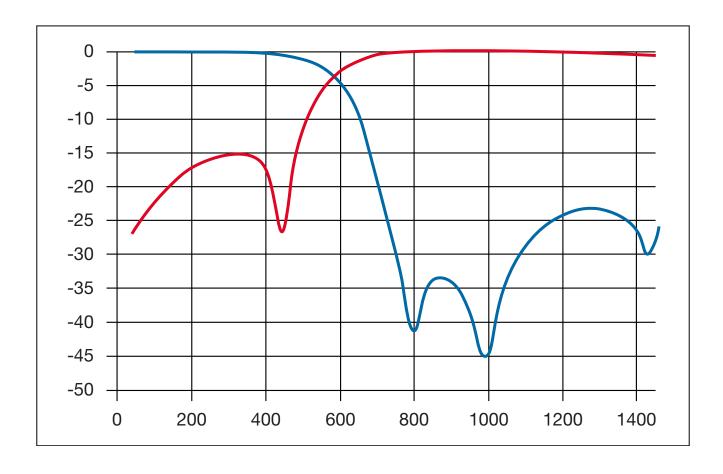

technologies: reflow, wave soldering, vapor phase and manual.

Ε Ε

Dimensions: millimeters

G	0.54
N	0.85
E	0.63
S	1.5
F	2.5
K	1.5
Р	1.0
L	0.5
D	Ø0.6

TERMINALS AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0400ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 400MHz	R.Loss @ 400MHz	Attenuation
LP0805H0400ASTR	400MHz	-0.6dB max.	-15dB	-30dB at 800MHz -20dB at 1200MHz

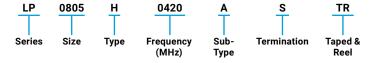
TYPICAL ELECTRICAL PERFORMANCE

Low Pass 0805 High Performance SMD 8W LP0805H0420ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

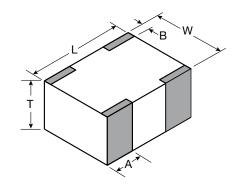

FEATURES

- Small size: 0805
- Frequency: 420MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER



FINAL QUALITY INSPECTION

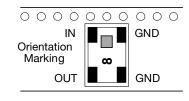
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours

DIMENSIONS (TOP VIEW)

mm (inches) 2.03±0.10 (0.080±0.004) 1 55+0 10 (0.061±0.004) 0.80±0.10 (0.031±0.004) 0.56±0.25 Α (0.022±0.010) 0.35±0.15 (0.014±0.006)

TERMINATION


Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

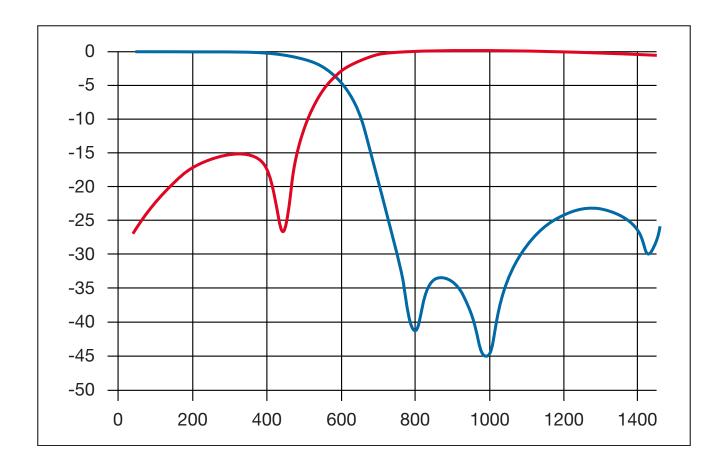
Ε S

Dimensions: millimeters

G	0.54
N	0.85
E	0.63
S	1.5
F	2.5
K	1.5
Р	1.0
L	0.5
D	Ø0.6
_	

TERMINALS AND LAYOUT (TOP VIEW)

Ε


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0420ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP0805H0420ASTR	420MHz	-0.6dB max.	-15dB	-30dB at 840MHz -20dB at 1260MHz

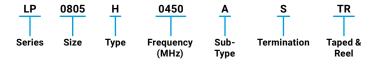
TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0450ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

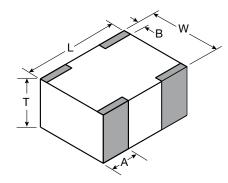

FEATURES

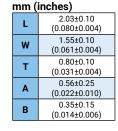
- Small size: 0805
- Frequency: 450MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER



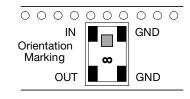

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours

DIMENSIONS (TOP VIEW)

TERMINATION


Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

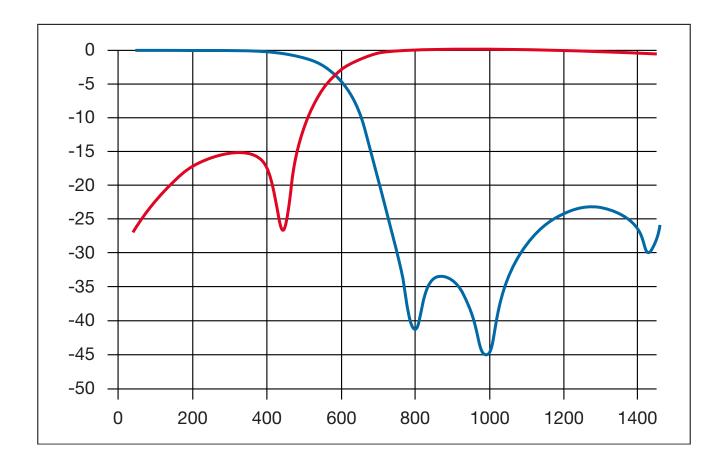
Ε S Ε

Dimensions: millimeters

G	0.54
N	0.85
Ε	0.63
S	1.5
F	2.5
K	1.5
Р	1.0
L	0.5
D	Ø0.6

TERMINALS AND LAYOUT (TOP VIEW)

012422


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0450ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP0805H0450ASTR	450MHz	-0.6dB max.	-15dB	-28dB at 900MHz -20dB at 1350MHz

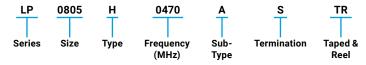
TYPICAL ELECTRICAL PERFORMANCE

Low Pass 0805 High Performance SMD 8W LP0805H0470ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

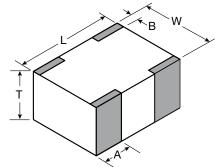

FEATURES

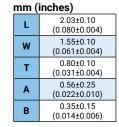
- Small size: 0805
- Frequency: 470MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER



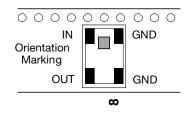

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

DIMENSIONS (TOP VIEW)

TERMINATION


Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

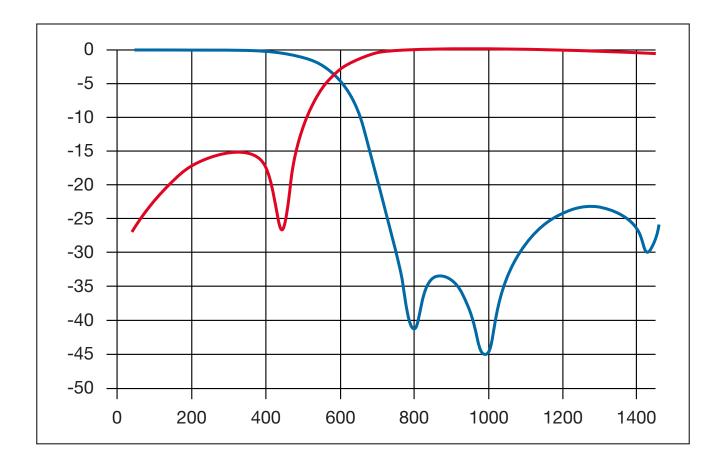
Ε S Ε

Dimensions: millimeters

0.54 0.85 0.63 1.5 2.5
0.63 1.5
1.5
2.5
1.5
1.0
0.5
Ø0.6

TERMINALS AND LAYOUT (TOP VIEW)

012422


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0470ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP0805H0470ASTR	470MHz	-0.7dB max.	-15dB	-28dB at 940MHz -20dB at 1410MHz

TYPICAL ELECTRICAL PERFORMANCE

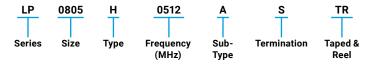
Low Pass 0805 High Performance SMD 8W

LP0805H0512ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 0805
- Frequency: 512MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

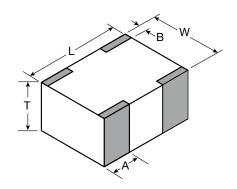
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

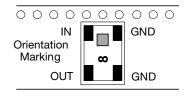
TERMINATION


Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

Ε S Ε

Dimensions: millimeters

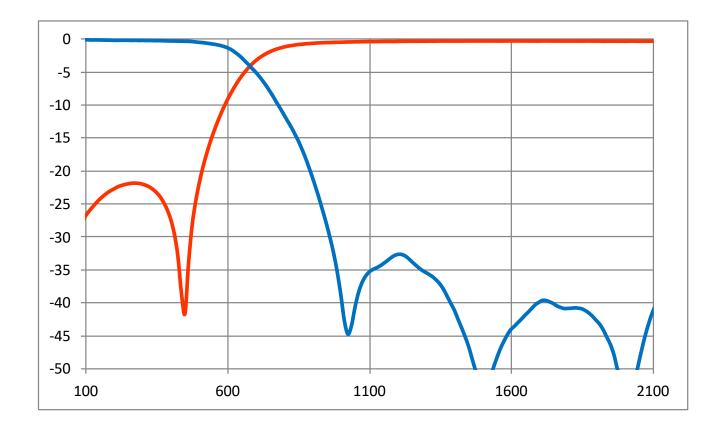
0.54 0.85 0.63
10.05,176
0.63
1.5
2.5
1.5
1.0
0.5
Ø0.6


DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINALS AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0512ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP0805H0512ASTR	512MHz	-0.75dB max.	-12dB	-35dB at 1024MHz -40dB at 1536MHz

TYPICAL ELECTRICAL PERFORMANCE

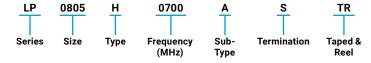
Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H0700ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

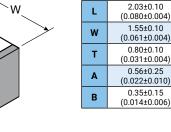

FEATURES

- Small size: 0805
- Frequency: 700MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

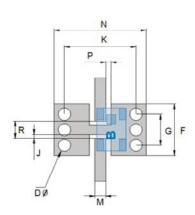
HOW TO ORDER



FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours


DIMENSIONS (TOP VIEW)

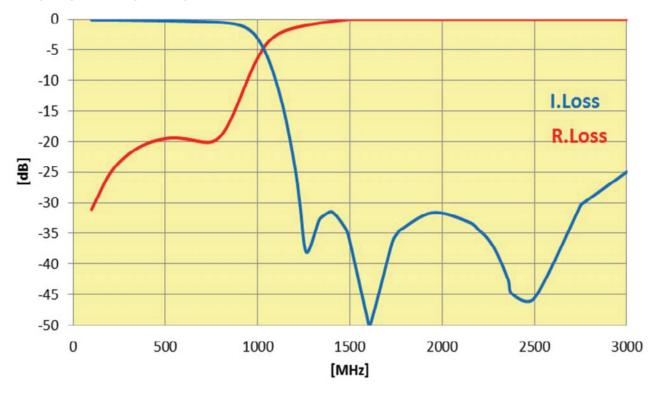
mm (inches)

TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

F	2.50±0.05 (0.098±0.002)
G	1.50±0.05 (0.059±0.002)
J	0.19±0.05 (0.007±0.002)
K	3.48±0.05 (0.137±0.002)
М	0.54±0.25 (0.021±0.010)
N	4.48±0.05 (0.776±0.002)
P	0.25±0.05 (0.010±0.002)
R	0.85±0.05 (0.033±0.002)
D	0.60±0.05 (0.024±0.002)

TERMINALS AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0700ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP0805H0700ASTR	700MHz	-0.4dB max.	-20dB	-35dB at 1400MHz -30dB at 2100MHz -30dB at 2800MHz

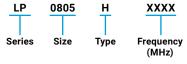
TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0750ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

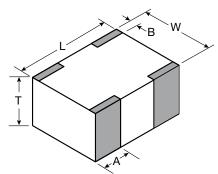

FEATURES

- Small size: 0805
- Characteristic impedance: 50Ω
- Frequency band: Band 13 746-756MHz
- Operating / Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- · Mobile communications
- Satellite TV receivers
- GPS
- · Vehicle location systems
- · Wireless LAN's

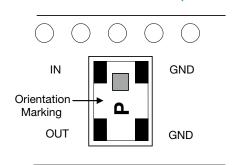
HOW TO ORDER



DIMENSIONS (TOP VIEW)

mm (inche	mm (inches)		
	2.03±0.10		
_	(0.080±0.004)		
w	1.55±0.10		
VV	(0.061±0.004)		
_	0.80±0.25		
	(0.031±0.010)		
Α	0.56±0.10		
A	(0.022±0.004)		
В	0.35±0.15		
В	(0.014±0.006)		

FINAL QUALITY INSPECTION

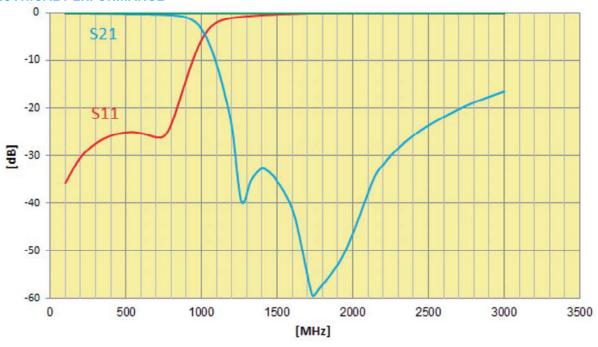

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

TERMINALS AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0750ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

Part Number	Frequency (MHz)	I.Loss max	VSWR max.	Attenuation (dB)
LP0805H0750ASTR	Band 13 DL (746-756MHz)	-0.4dB	1.7	2d Harmonic 1492-1512MHz: -37dB 3d Harmonic 2238-2268MHz: -33dB

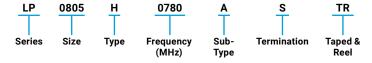
Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H0780ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

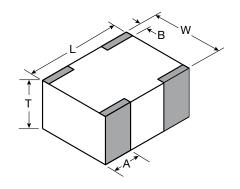

FEATURES

- Small size: 0805
- Frequency: 780MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



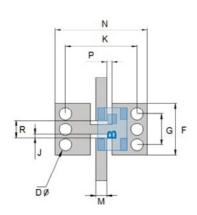
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours

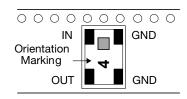
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

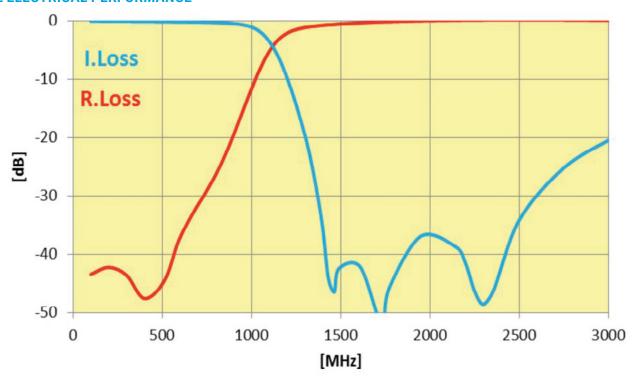
Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05
_	(0.098±0.002)
G	1.50±0.05
9	(0.059±0.002)
al .	0.19±0.05
,	(0.007±0.002)
к	3.48±0.05
~	(0.137±0.002)
М	0.54±0.25
IVI	(0.021±0.010)
N	4.48±0.05
IN	(0.776±0.002)
Р	0.25±0.05
_	(0.010±0.002)
R	0.85±0.05
N.	(0.033±0.002)
D	0.60±0.05
	(0.024±0.002)

TERMINALS AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0780ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 780MHz	R.Loss @ 780MHz	Attenuation
LP0805H0780ASTR	-0.4dB max.	-20dB	-35dB at 1560MHz -40dB at 2340MHz -20dB at 3120MHz

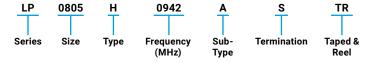
Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H0942ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

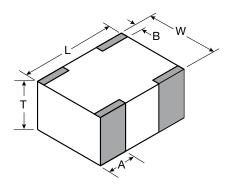

FEATURES

- Small size: 0805
- Frequency: 942MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



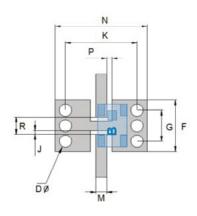
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

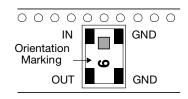
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
w	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

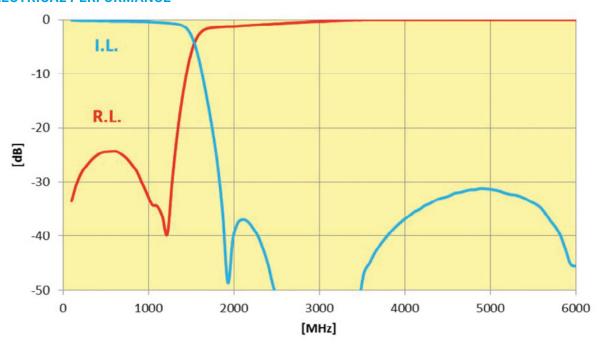
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05
	(0.098±0.002)
G	1.50±0.05
G	(0.059±0.002)
	0.19±0.05
J	(0.007±0.002)
к	3.48±0.05
, A	(0.137±0.002)
м	0.54±0.25
IVI	(0.021±0.010)
N	4.48±0.05
N	(0.776±0.002)
P	0.25±0.05
_	(0.010±0.002)
R	0.85±0.05
R	(0.033±0.002)
D	0.60±0.05
U	(0.024±0.002)

TERMINALS AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H0942ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

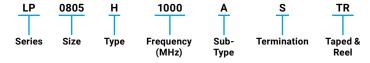
P/N	I.Loss @ 942MHz	R.Loss @ 942MHz	Attenuation
LP0805H0942ASTR	-0.4dB max.	-20dB	-35dB at 1884MHz -40dB at 2826MHz -35dB at 3768MHz

Low Pass 0805 High Performance SMD 8W LP0805H1000ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

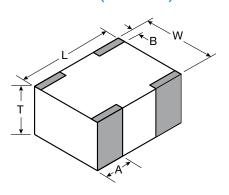

FEATURES

- Small size: 0805
- Frequency: 1000MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



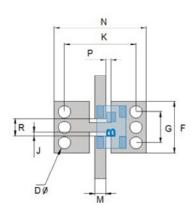
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

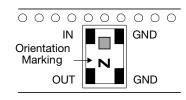
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

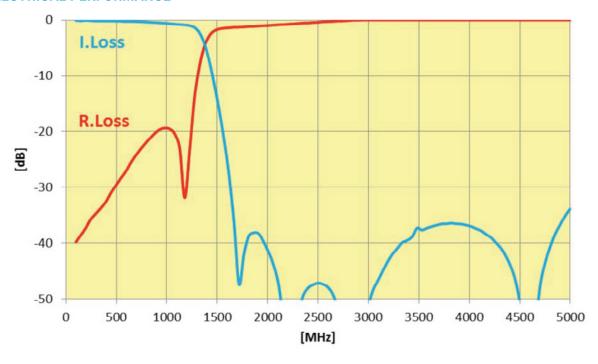
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)
G	1.50±0.05 (0.059±0.002)
J	0.19±0.05 (0.007±0.002)
K	3.48±0.05 (0.137±0.002)
М	0.54±0.25 (0.021±0.010)
N	4.48±0.05 (0.776±0.002)
Р	0.25±0.05 (0.010±0.002)
R	0.85±0.05 (0.033±0.002)
D	0.60±0.05 (0.024±0.002)

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H1000ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 1000MHz	R.Loss @ 1000MHz	Attenuation
LP0805H1000ASTR	-0.7dB max.	-20dB	-35dB at 2000MHz -40dB at 3000MHz -35dB at 4000MHz -30dB at 5000MHz

Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H1250ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

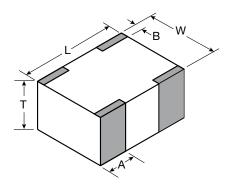
The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 1250MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's


HOW TO ORDER

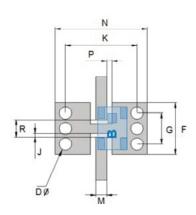
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

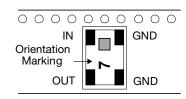
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

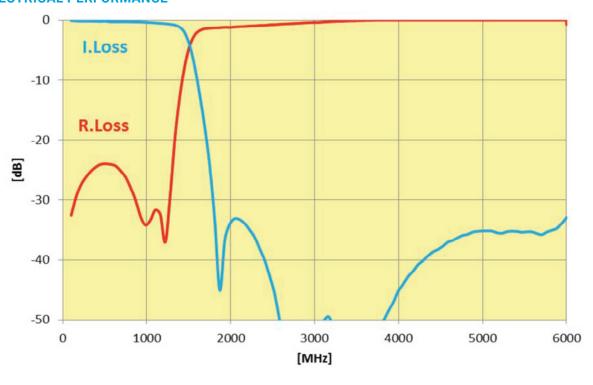
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)		
G	1.50±0.05 (0.059±0.002)		
J	0.19±0.05 (0.007±0.002)		
K	3.48±0.05 (0.137±0.002)		
М	0.54±0.25 (0.021±0.010)		
N	4.48±0.05 (0.776±0.002)		
Р	0.25±0.05 (0.010±0.002)		
R	0.85±0.05 (0.033±0.002)		
D	0.60±0.05 (0.024±0.002)		

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H1250ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

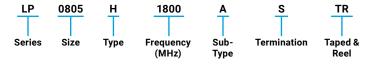
P/N	I.Loss @1250MHz	R.Loss @ 1250MHz	Attenuation
LP0805H1250ASTR	-0.7dB max.	-25dB	-20dB at 1750MHz -35dB at 2500MHz -40dB at 3750MHz -30dB at 5000MHz

Low Pass 0805 High Performance SMD 8W LP0805H1800ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

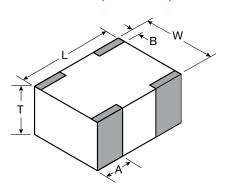

FEATURES

- Small size: 0805
- Frequency: 1800MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



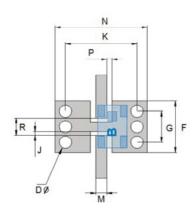
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

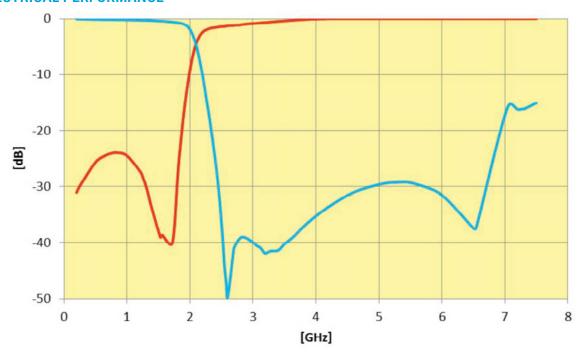
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)		
G	1.50±0.05 (0.059±0.002)		
J	0.19±0.05 (0.007±0.002)		
K	3.48±0.05 (0.137±0.002)		
М	0.54±0.25 (0.021±0.010)		
N	4.48±0.05 (0.776±0.002)		
Р	0.25±0.05 (0.010±0.002)		
R	0.85±0.05 (0.033±0.002)		
D	0.60±0.05 (0.024±0.002)		

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H1800ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @1800MHz	R.Loss @ 1800MHz	Attenuation
LP0805H1800ASTR	1800MHz	-0.8dB max.	-25dB	-35dB at 2520MHz -35dB at 3600MHz -25dB at 5400MHz

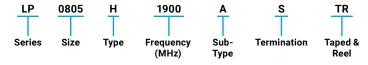
Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H1900ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

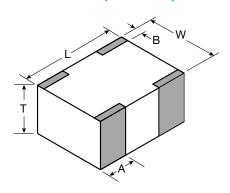

FEATURES

- Small size: 0805
- Frequency: 1900MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



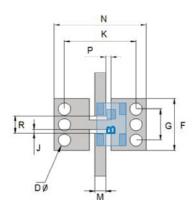
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

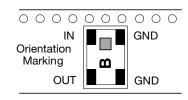
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

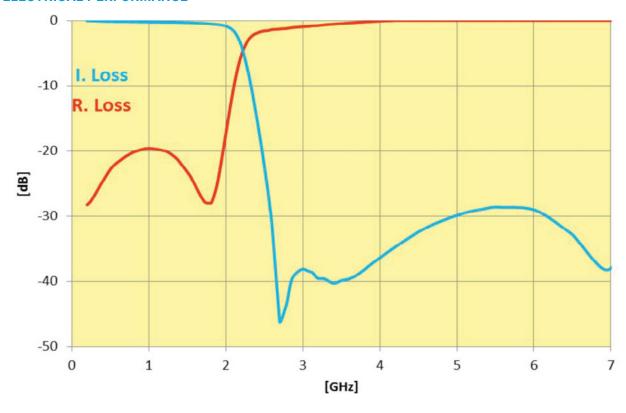
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)		
G	1.50±0.05 (0.059±0.002)		
J	0.19±0.05 (0.007±0.002)		
K	3.48±0.05 (0.137±0.002)		
М	0.54±0.25 (0.021±0.010)		
N	4.48±0.05 (0.776±0.002)		
Р	0.25±0.05 (0.010±0.002)		
R	0.85±0.05 (0.033±0.002)		
D	0.60±0.05 (0.024±0.002)		

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H1900ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @1900MHz	R.Loss @ 1900MHz	Attenuation
LP0805H1900ASTR	1900MHz	-0.75dB max.	-20dB	-35dB at 2660MHz -35dB at 3800MHz -25dB at 5700MHz

Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W

LP0805H2400ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

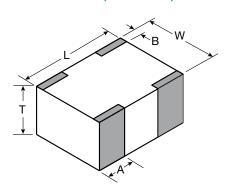
FEATURES

- Small size: 0805
- Frequency: 1900MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



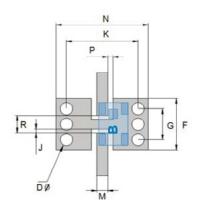
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

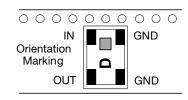
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

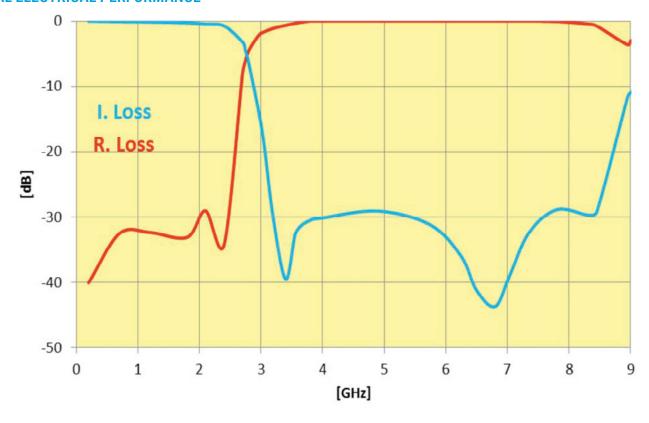
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)		
G	1.50±0.05		
	(0.059±0.002)		
.1	0.19±0.05		
J	(0.007±0.002)		
.,	3.48±0.05		
K	(0.137±0.002)		
	0.54±0.25		
М	(0.021±0.010)		
	4.48±0.05		
N	(0.776±0.002)		
P	0.25±0.05		
P	(0.010±0.002)		
	0.85±0.05		
R	(0.033±0.002)		
_	0.60±0.05		
D	(0.024±0.002)		

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H2400ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @2500MHz	R.Loss @ 2500MHz	Attenuation
LP0805H2400ASTR	2400MHz	-0.9dB max.	-30dB	-30dB at 3360MHz -25dB at 4800MHz -30dB at 7200MHz

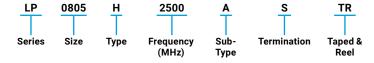
Low Pass 0805 High Performance Low Pass Filter

LP0805H2500ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

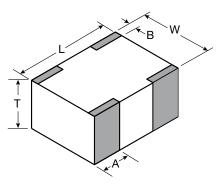

FEATURES

- Small size: 0805
- Frequency: 2500MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



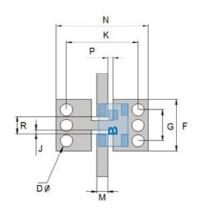
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

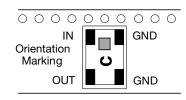
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
A	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

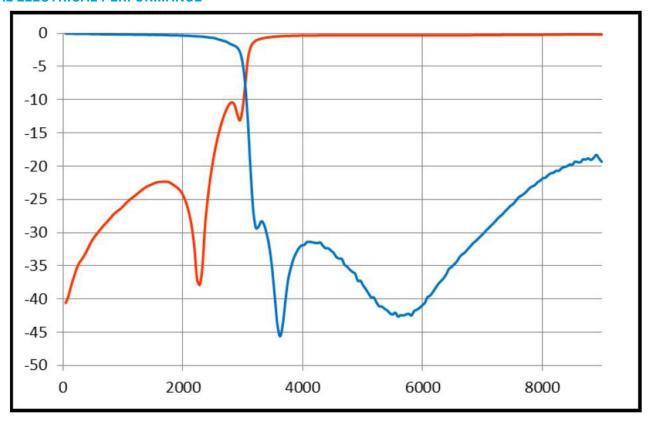
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)
G	1.50±0.05 (0.059±0.002)
J	0.19±0.05 (0.007±0.002)
К	3.48±0.05 (0.137±0.002)
М	0.54±0.25 (0.021±0.010)
N	4.48±0.05 (0.776±0.002)
Р	0.25±0.05 (0.010±0.002)
R	0.85±0.05 (0.033±0.002)
D	0.60±0.05 (0.024±0.002)

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance Low Pass Filter LP0805H2500ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @2500MHz	R.Loss @ 2500MHz	Attenuation
LP0805H2500ASTR	-0.8dB max.	-15dB	-28dB at 4000-6000MHz -20dB at 6001-8000MHz

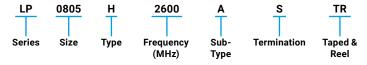
Low Pass 0805 High Performance Low Pass Filter

LP0805H2600ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 0805
- Frequency: 2600MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

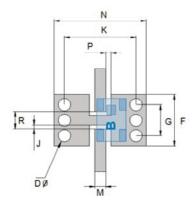
APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER

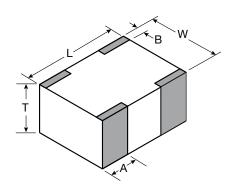
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample hasis for


- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

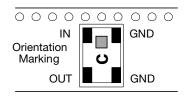
TERMINATION

Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

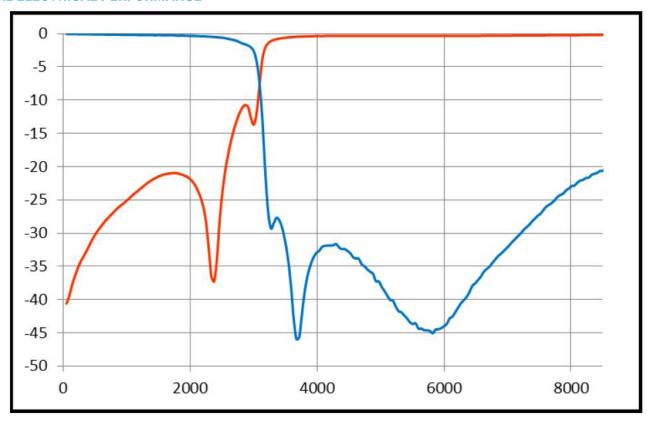
F	2.50±0.05
F	(0.098±0.002)
G	1.50±0.05
G	(0.059±0.002)
.1	0.19±0.05
<u> </u>	(0.007±0.002)
к	3.48±0.05
Α.	(0.137±0.002)
м	0.54±0.25
IVI	(0.021±0.010)
N	4.48±0.05
IN.	(0.776±0.002)
Р	0.25±0.05
	(0.010±0.002)
R	0.85±0.05
ĸ	(0.033±0.002)
D	0.60±0.05
U	(0.024±0.002)


DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters Low Pass 0805 High Performance Low Pass Filter LP0805H2600ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @2600MHz	R.Loss @ 2600MHz	Attenuation
LP0805H2600ASTR	-0.9dB max.	-15dB	-28dB at 4000-6000MHz -20dB at 6001-8000MHz


TYPICAL ELECTRICAL PERFORMANCE

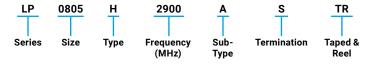
Low Pass 0805 High Performance SMD 8W

LP0805H2900ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

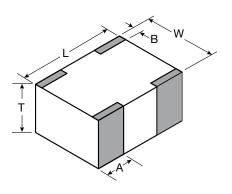

FEATURES

- Frequency: 1700-2900MHz
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



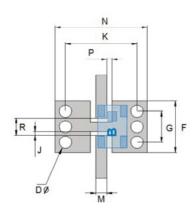
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

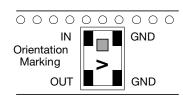
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

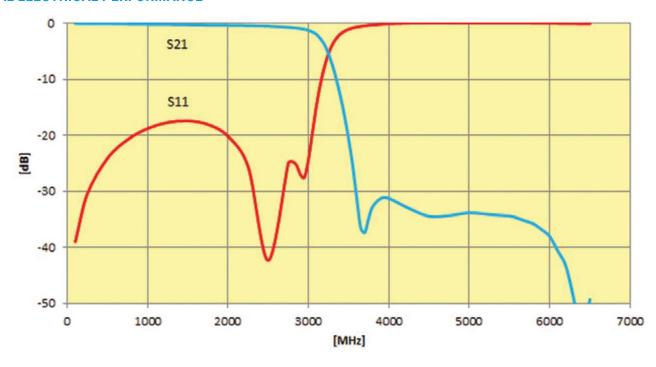
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05
	(0.098±0.002)
G	1.50±0.05
	(0.059±0.002)
.1	0.19±0.05
J	(0.007±0.002)
К	3.48±0.05
, n	(0.137±0.002)
М	0.54±0.25
IVI	(0.021±0.010)
N	4.48±0.05
IN	(0.776±0.002)
Р	0.25±0.05
	(0.010±0.002)
R	0.85±0.05
	(0.033±0.002)
D	0.60±0.05
	(0.024±0.002)

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H2900ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @2900MHz	R.Loss @ 2900MHz	Attenuation
LP0805H2900ASTR	2900MHz	-1dB max.	-20dB	-30dB at 4060MHz -30dB at 5800MHz -35dB at 6500MHz

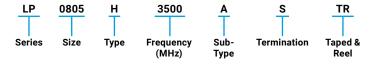
Low Pass 0805 High Performance SMD 8W

LP0805H3500ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

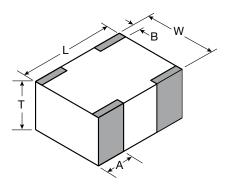

FEATURES

- Small size: 0805
- Frequency: 3500MHz
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



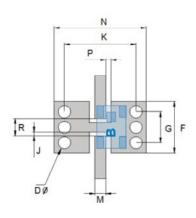
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

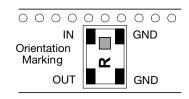
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

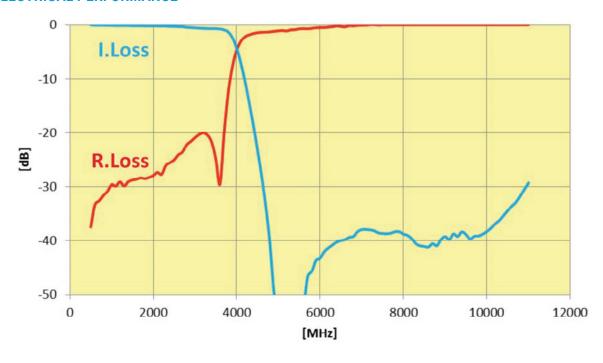
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05 (0.098±0.002)
G	1.50±0.05 (0.059±0.002)
J	0.19±0.05 (0.007±0.002)
К	3.48±0.05 (0.137±0.002)
М	0.54±0.25 (0.021±0.010)
N	4.48±0.05 (0.776±0.002)
Р	0.25±0.05 (0.010±0.002)
R	0.85±0.05 (0.033±0.002)
D	0.60±0.05 (0.024±0.002)

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H3500ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @3500MHz	R.Loss @3500MHz	Attenuation
LP0805H3500ASTR	3500MHz	-0.85dB max.	-20dB	-35dB at 4900MHz -30dB at 7000MHz -30dB at 10500MHz

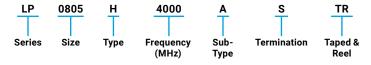
Low Pass 0805 High Performance SMD 8W

LP0805H4000ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

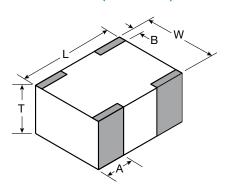

FEATURES

- Frequency: 4000MHz
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C +100°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER



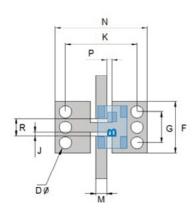
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours

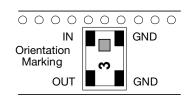
DIMENSIONS (TOP VIEW)

mm (inches)


L	2.03±0.10 (0.080±0.004)
W	1.55±0.10 (0.061±0.004)
Т	0.80±0.10 (0.031±0.004)
A	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINATION

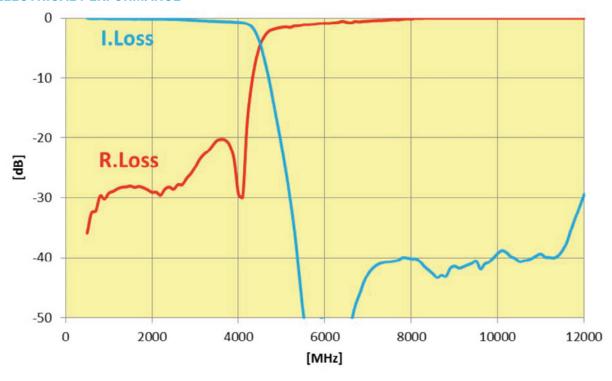
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT:

mm (inches)

F	2.50±0.05
	(0.098±0.002)
G	1.50±0.05
G	(0.059±0.002)
J	0.19±0.05
	(0.007±0.002)
к	3.48±0.05
,	(0.137±0.002)
м	0.54±0.25
IVI	(0.021±0.010)
N	4.48±0.05
- 11	(0.776±0.002)
Р	0.25±0.05
	(0.010±0.002)
R	0.85±0.05
-1	(0.033±0.002)
D	0.60±0.05
וש	(0.024±0.002)

TERMINAL AND LAYOUT (TOP VIEW)



Thin-Film RF/Microwave Filters Low Pass 0805 High Performance SMD 8W LP0805H4000ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	Frequency	I.Loss @4000MHz	R.Loss @4000MHz	Attenuation
LP0805H4000ASTR	4000MHz	-0.8dB max.	-20dB	-40dB at 5600MHz -35dB at 8000MHz -35dB at 10000MHz -25dB at 12000MHz

High Performance Low Pass Filters

LP0805H5000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5000MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

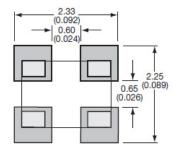
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

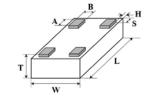
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

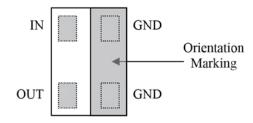
POWER RATING


8W Continuous

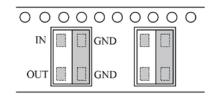
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



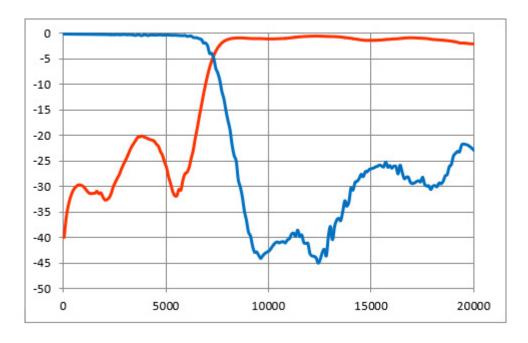
	L	2.03±0.1
		(0.080±0.004)
	W T	1.55±0.1
		(0.061±0.004)
		1.02±0.1
		(0.040±0.004)


A	0.39±0.10 (0.015±0.004)
В	0.33±0.10 (0.013±0.004)
H,S	0.05±0.05 (0.002±0.002)

TERMINALS:

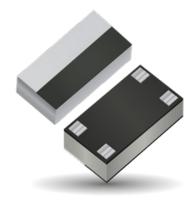
(Top View)

ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5000ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP0805H5000ANTR			
Parameter	Value	Unit	Notes
Insertion Loss @5000 MHz	-0.5	dB	
Return Loss @5000 MHz	-12	dB	
Rejection @ 10000 MHz	-33	dB	
Rejection @ 15000 MHz	-20	dB	
Power Handling	8	W	Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	0805		

High Performance Low Pass Filters

LP0805H5200ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5200MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

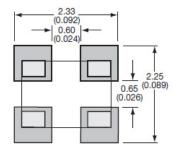
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

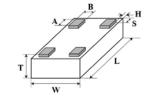
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, In, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

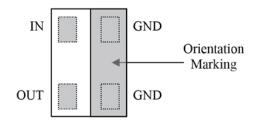
POWER RATING


8W Continuous

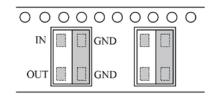
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



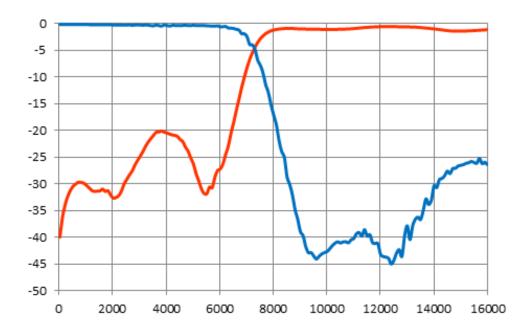
	1	2.03±0.1
		(0.080±0.004)
	w	1.55±0.1
	W	(0.061±0.004)
Г	Т	1.02±0.1
		(0.040±0.004)
_		


	0.39±0.10
Α	(0.015±0.004)
В	0.33±0.10
	(0.013±0.004)
H,S	0.05±0.05
	(0.002±0.002)

TERMINALS:

(Top View)

ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5200ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP0805H52000ANTR			
Parameter	Value	Unit	Notes
Insertion Loss @5200 MHz	-0.5	dB	
Return Loss @5200 MHz	-12	dB	
Rejection @ 10400 MHz	-30	dB	
Rejection @ 15600 MHz	-20	dB	
Power Handling	8	W	Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	0805		

High Performance Low Pass Filters

LP0805H5400ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5400MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

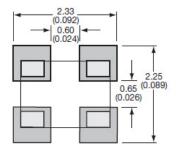
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

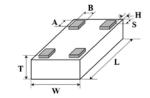
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

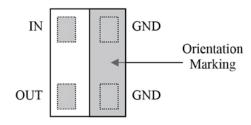
POWER RATING


8W Continuous

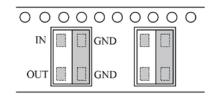
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



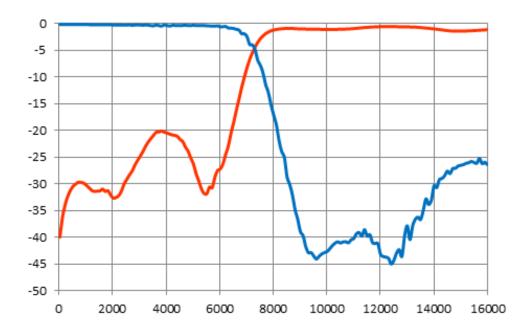
	1	2.03±0.1
		(0.080±0.004)
	w	1.55±0.1
	W	(0.061±0.004)
Г	Т	1.02±0.1
		(0.040±0.004)
_		


	0.39±0.10
Α	(0.015±0.004)
B H,S	0.33±0.10
	(0.013±0.004)
	0.05±0.05
	(0.002±0.002)

TERMINALS:

(Top View)

ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5400ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP0805H5400ANTR			
Parameter	Value	Unit	Notes
Insertion Loss @5400 MHz	-0.7	dB	
Return Loss @5400 MHz	-12	dB	
Rejection @ 10800 MHz	-30	dB	
Rejection @ 16000 MHz	-20	dB	
Power Handling	8	W	Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	0805		

High Performance Low Pass Filters

LP0805H5500ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5500MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

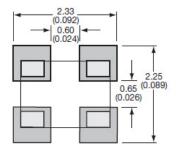
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

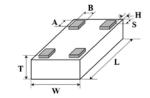
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

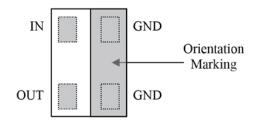
POWER RATING


8W Continuous

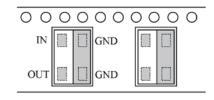
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



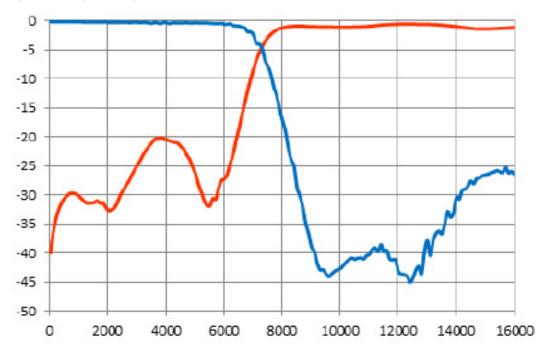
	2.03±0.1
L	(0.080±0.004)
14/	1.55±0.1
W	(0.061±0.004)
Т	1.02±0.1
	(0.040±0.004)


	0.39±0.10	
Α	(0.015±0.004)	
В	0.33±0.10	
В	(0.013±0.004)	
H,S	0.05±0.05	
	(0.002±0.002)	

TERMINALS:

(Top View)

ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5500ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP0805H5500ANTR						
Parameter	Value	Unit	Notes			
Insertion Loss @5500 MHz	-0.6	dB				
Return Loss @5500 MHz	-12	dB				
Rejection @ 11000 MHz	-30	dB				
Rejection @ 16500 MHz	-20	dB				
Power Handling	8	W	Continuous			
Impedance	50	Ohm				
Operating Temp.	-40 to +85	°C				
Size	0805					

High Performance Low Pass Filters

LP0805H5600ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5600MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

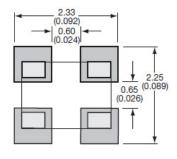
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

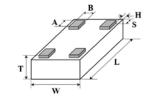
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

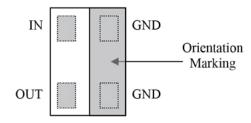
POWER RATING


8W Continuous

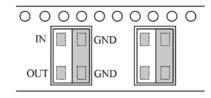
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



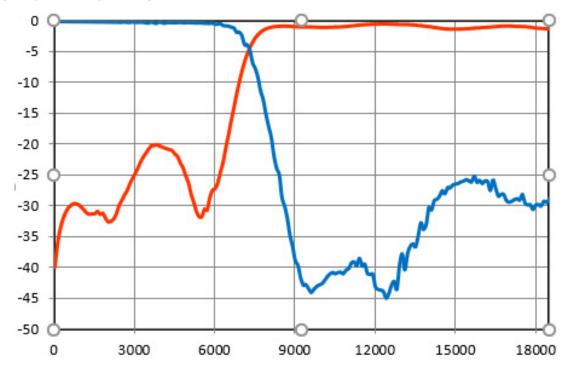
		2.03±0.1
•	_	(0.080±0.004)
	W T	1.55±0.1
		(0.061±0.004)
		1.02±0.1
		(0.040±0.004)


Α	0.39±0.10
A	(0.015±0.004)
В	0.33±0.10
	(0.013±0.004)
H,S	0.05±0.05
	(0.002±0.002)

TERMINALS:

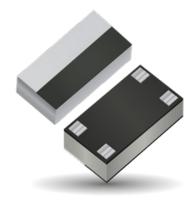
(Top View)

ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5600ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP0805H5600ANTR						
Parameter	Value	Unit	Notes			
Insertion Loss @5600 MHz	-0.6	dB				
Return Loss @5600 MHz	-12	dB				
Rejection @ 11200 MHZ	-25	dB				
Rejection @ 16800 MHz	-20	dB				
Power Handling	8	W	Continuous			
Impedance	50	Ohm				
Operating Temp.	-40 to +85	°C				
Size	0805					

High Performance Low Pass Filters

LP0805H5800ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 5800MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

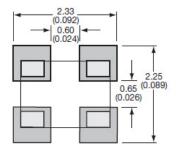
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

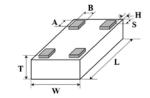
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

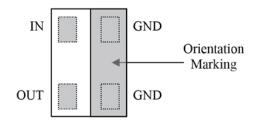
POWER RATING


8W Continuous

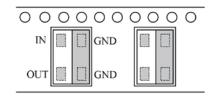
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



	L	2.03±0.1				
		(0.080±0.004)				
	w	1.55±0.1				
		(0.061±0.004)				
Г	Т	1.02±0.1				
		(0.040±0.004)				


	0.39±0.10			
Α	(0.015±0.004)			
В	0.33±0.10			
В	(0.013±0.004)			
H.S	0.05±0.05			
п,з	(0.002±0.002)			

TERMINALS:

(Top View)

ORIENTATION IN TAPE


042921

Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H5800ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP0805H5800ANTR					
Parameter	Value	Unit	Notes		
Insertion Loss @5800 MHz	-0.7	dB			
Return Loss @5800 MHz	-12	dB			
Rejection @ 11600 MHZ	-28	dB			
Rejection @ 17400 MHz	-20	dB			
Power Handling	8	W	Continuous		
Impedance	50	Ohm			
Operating Temp.	-40 to +85	°C			
Size	0805				

High Performance Low Pass Filters

LP0805H6000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Frequency: 6000MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

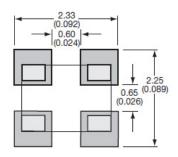
- WiFi
- Base Stations.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

HOW TO ORDER

FINAL QUALITY INSPECTION

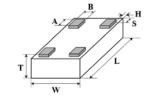
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

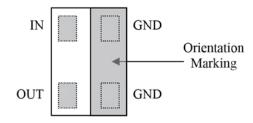
POWER RATING


8W Continuous

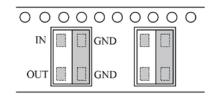
RECOMMENDED PAD LAYOUT: (mm)

DIMENSIONS: mm (inches)

(Bottom View)



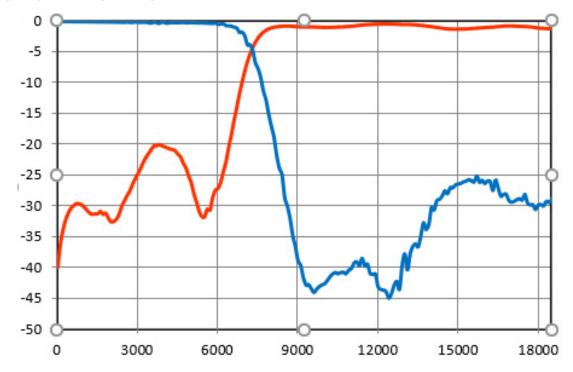
	2.03±0.1				
_	(0.080±0.004)				
w	1.55±0.1				
VV	(0.061±0.004)				
	1.02±0.1				
•	(0.040±0.004)				


Α	0.39±0.10
_ ^	(0.015±0.004)
В	0.33±0.10
Р	(0.013±0.004)
H.S	0.05±0.05
п,ъ	(0.002±0.002)

TERMINALS:

(Top View)

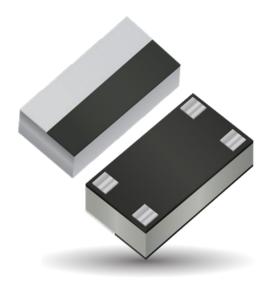
ORIENTATION IN TAPE



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP0805H6000ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP0805H6000ANTR					
Parameter	Value	Unit	Notes		
Insertion Loss @6000 MHz	-0.7	dB			
Return Loss @6000 MHz	-12	dB			
Rejection @ 12000 MHZ	-30	dB			
Rejection @ 18000 MHz	-20	dB			
Power Handling	8	W	Continuous		
Impedance	50	Ohm			
Operating Temp.	-40 to +85	°C			
Size	0805				



High Performance Low Pass Filters

1206 High Performance Low Pass 12W

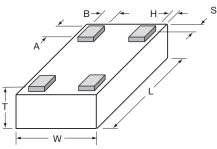
Thin-Film RF/Microwave Filters 1206 Harmonic Low Pass Filter LP1206A0480ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES


- · Small size: 1206
- Frequency: 480MHz
- Characteristic impedance: 50Ω
- Operating/Storage temp: -40°C to +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER TR 1206 XXXX Termination Taped & Type Sub-Frequency Туре Reeled MHz

DIMENSIONS (BOTTOM VIEW)

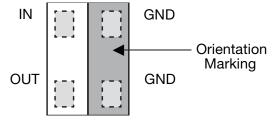
mm (inches)

3.10±0.10 (0.122±0.004)		
1.60±0.10 (0.063±0.004)		
0.60±0.30 (0.024±0.012)		
0.39±0.10 0.015±0.004		
0.33±0.10 0.013±0.004		
0.05±0.05 (0.002±0.002)		

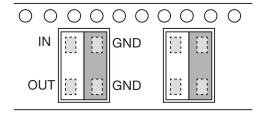
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

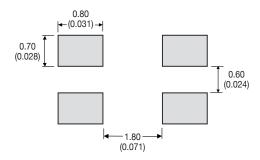
- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, Ip, 4 hours


TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


POWER RATING

3W Continuous

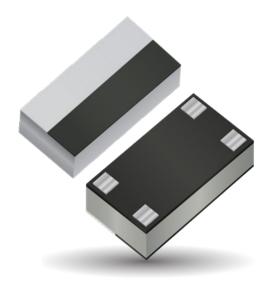

TERMINALS (TOP VIEW)

ORIENTATION IN TAPE

RECOMMENDED PAD LAYOUT DIMENSIONS: mm (inches)

RoHS

Thin-Film RF/Microwave Filters 1206 Harmonic Low Pass Filter LP1206A0480ANTR - LGA Termination


TERMINALS (TOP VIEW)

Parameter	Value	Unit	Notes
Fc	480	MHz	
Rejection @ 700-2500MHz	-35	dB	
Insertion Loss	-1.1	dB	Max.
VSWR	1.5: 1		Max. (all ports)
Power Handling	3	W	Avg.
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0512BNTR - LGA Termination

ITF TECHNOLOGY

The ITFLGAF ilter is based on thin-film multilayer technology. The technology provides a support of the provided provided in the provided providea miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 1206
- Frequency: 512MHz
- Characteristic impedance: 50Ω
- Operating/Storage temp: -40°C to +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER TR 1206 Α **XXXX** В N Termination Taped & Sub-Type Frequency

Type

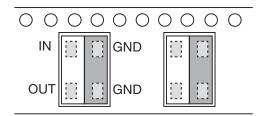
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

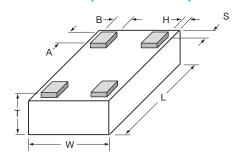
MHz

Reeled

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_p, 4 hours


TERMINATION

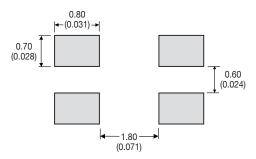
Nickel/Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


POWER RATING

3W RF Continuous

ORIENTATION IN TAPE

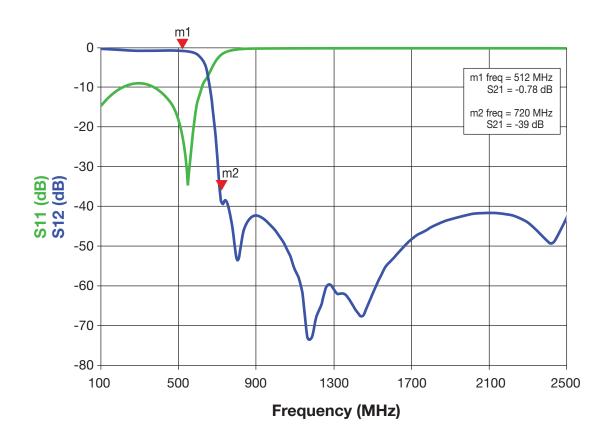
DIMENSIONS (BOTTOM VIEW)


mm (inches)

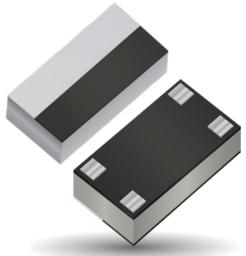
L	3.10±0.10 (0.122±0.004)		
w	1.60±0.10 (0.063±0.004)		
Т	0.60±0.30 (0.024±0.012)		
A	0.39±0.10 0.015±0.004		
В	0.33±0.10 0.013±0.004		
H, S	0.05±0.05 (0.002±0.002)		

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT DIMENSIONS: mm (inches)



Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0512BNTR - LGA Termination


TERMINALS (TOP VIEW)

Parameter	Value	Unit	Notes
Fc	512	MHz	
Rejection @ 900MHz	-35	dB	Min. (720MHz to 2GHz)
Insertion Loss	0.8	dB	Max.
VSWR	2.3:1		Max. (all ports)
Power Handling	3	W	Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

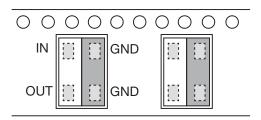
Thin-Film RF/Microwave Filters 1206 Harmonic Low Pass Filter LP1206A0512CNTR - LGA Termination

HOW TO ORDER TR 1206 Α **XXXX** C N Termination Taped & Sub-Type Frequency Reeled Type MHz

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_D, 4 hours


TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

POWER RATING

3W Continuous

ORIENTATION IN TAPE

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

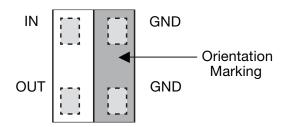
The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

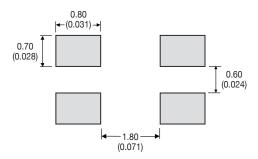
- Small size: 1206
- Frequency: 512MHz
- Characteristic impedance: 50Ω
- Operating/Storage temp: -40°C to +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's


DIMENSIONS (BOTTOM VIEW)

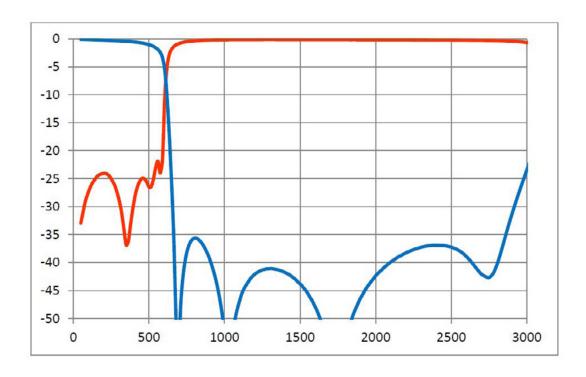
mm (inches)


L	3.10±0.10 (0.122±0.004)		
w	1.60±0.10 (0.063±0.004)		
Т	0.60±0.30 (0.024±0.012)		
Α	0.39±0.10 0.015±0.004		
В	0.33±0.10 0.013±0.004		
H, S	0.05±0.05 (0.002±0.002)		

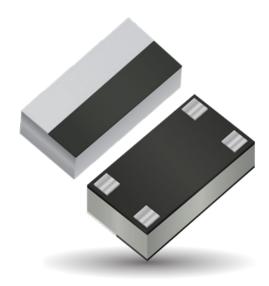
TERMINALS (TOP VIEW)

RoHS

RECOMMENDED PAD LAYOUT DIMENSIONS: mm (inches)



Thin-Film RF/Microwave Filters 1206 Harmonic Low Pass Filter LP1206A0512CNTR - LGA Termination


TERMINALS (TOP VIEW)

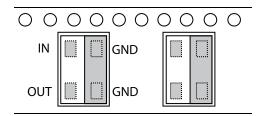
Parameter	Value	Unit	Notes
Fc	512	MHz	
Rejection @ 678MHz	-40	dB	
Insertion Loss	-1.5	dB	Max.
VSWR	1.5: 1		Max. (all ports)
Power Handling	3	W	Avg.
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0600ANTR - LGA Termination

PART NUMBER CODE:

LP 1206 A XXXX ANTR Frequency (MHz)

FINAL QUALITY INSPECTION:


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

ORIENTATION IN TAPE

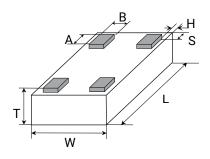
POWER RATING:

12W continuous

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

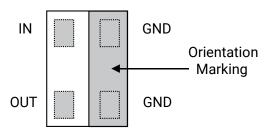

FEATURES:

- · Small size: 1206
- Frequency: 600MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

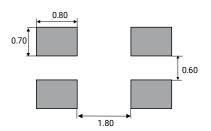
APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

DIMENSIONS: (BOTTOM VIEW)



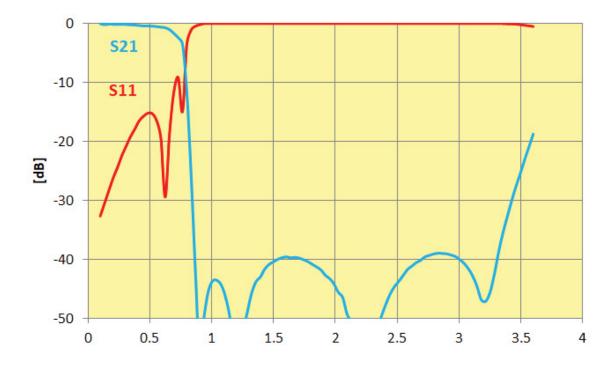
mm (inches)


(mm)

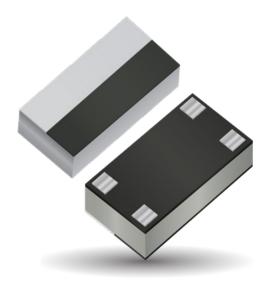
3.10±0.10 (0.122±0.004)
1.60±0.10 (0.063±0.004)
0.60±0.30 (0.024±0.012)
0.39±0.10 0.015±0.004
0.33±0.10 0.013±0.004
0.05±0.05 (0.002±0.002)

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT:



KYDCER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


ELECTRICAL CHARACTERISTICS

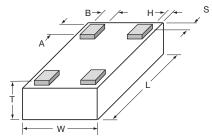
LP1206A0600ANTR				
Parameter	Value	Unit	Notes	
Fc	600	MHz		
Rejection	-40	dB	Min. @900MHz	
Rejection	-40	dB	Typ. 900MHz to 3.1GHz	
I.Loss @ 600MHz	-0.8	dB	Max.	
R.Loss @ 600MHz	-20	dB	typ.	
Power Handling	12	w	RF cont.	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	degC		
Size	1206			

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0700ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- · Small size: 1206
- Frequency: 700MHz
- Characteristic impedance: 50Ω
- Operating/Storage temp: -40°C to +85°C
- · Low profile
- · Rugged construction
- · Taped and reeled
- · RoHS compliant

APPLICATIONS

- · Mobile communications
- Satellite TV receivers
- **GPS**
- · Vehicle location systems
- · Wireless LAN's

DIMENSIONS (BOTTOM VIEW)

mm (inches)

L	3.10±0.10 (0.122±0.004)
w	1.60±0.10 (0.063±0.004)
т	0.60±0.30 (0.024±0.012)
Α	0.39±0.10 0.015±0.004
В	0.33±0.10 0.013±0.004
H, S	0.05±0.05 (0.002±0.002)

FINAL QUALITY INSPECTION

Type

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

XXXX

Frequency

MHz

В

Sub-

Termination

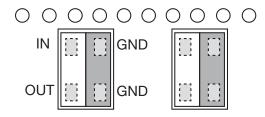
TR

Taped &

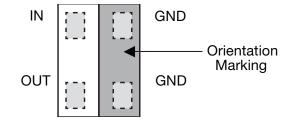
Reeled

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

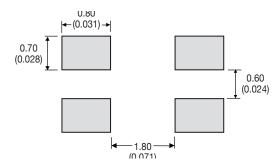
TERMINATION


HOW TO ORDER LP 1206

Nickel/ Lead free Solder coating (Sn100) compatible with RoHS automatic soldering technologies: reflow, wave soldering, vapor COMPLIANT phase and manual.

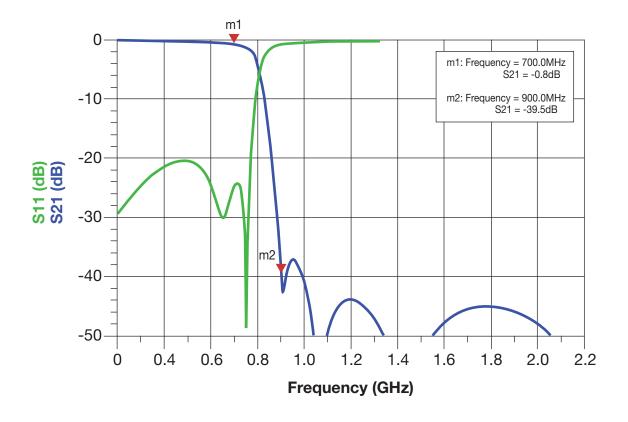

POWER RATING

3W RF Continuous

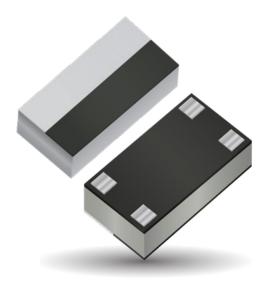

ORIENTATION IN TAPE

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT DIMENSIONS: mm (inches)



Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0700ANTR - LGA Termination


TERMINALS (TOP VIEW)

Parameter	Value	Unit	Notes
Fc	700	MHz	
Rejection @ 900MHz	-35	dB	Min. (900MHz to 2GHz)
Insertion Loss	0.9	dB	Max.
VSWR	2.3:1		Max. (all ports)
Power Handling	3	W	Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A0720ANTR - LGA Termination

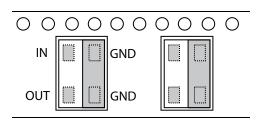
PART NUMBER CODE: LP 1206 A XXXX ANTR

Frequency (MHz)

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION:

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

POWER RATING:

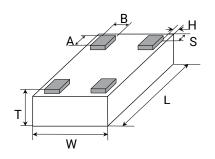
12W continuous

ORIENTATION IN TAPE

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

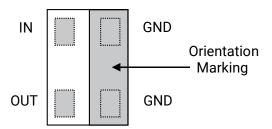

FEATURES:

- · Small size: 1206
- Frequency: 725MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

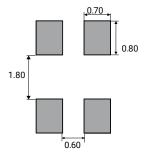
APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

DIMENSIONS: mm (inches) (BOTTOM VIEW)

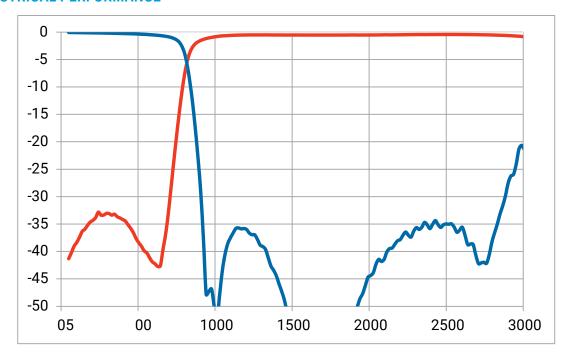


mm (inches)

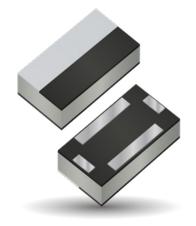

(mm)

	101100)
L	3.10±0.10 (0.122±0.004)
w	1.60±0.10 (0.063±0.004)
т	0.60±0.30 (0.024±0.012)
Α	0.39±0.10 0.015±0.004
В	0.33±0.10 0.013±0.004
H, S	0.05±0.05 (0.002±0.002)

TERMINALS (TOP VIEW)


RECOMMENDED PAD LAYOUT:

ELECTRICAL CHARACTERISTICS


LP1206A0600ANTR				
Parameter	Value Unit Notes			
Fc	720	MHz		
Rejection @875MHz	-15	dB	Min. @875-2500MHz	
Insertion Loss	1.2	dB	Max.	
VSWR	1.49:1	dB	typ.	
Power Handling	12	w	RF cont.	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	degC		
Size	1206			

High Performance Low Pass Filters

LP1206A2000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Frequency: 2.0GHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

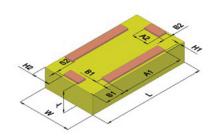
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

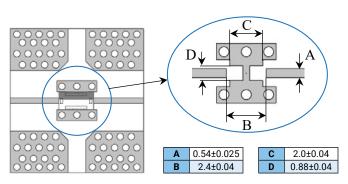
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

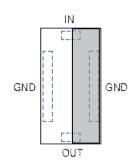
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

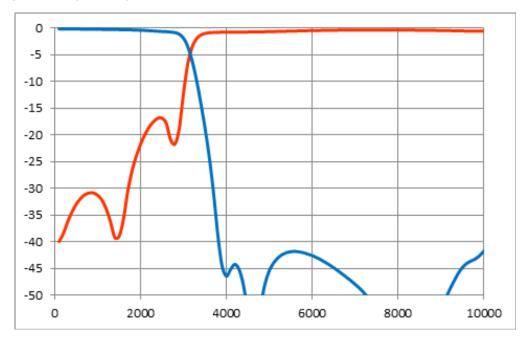
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

RECOMMENDED PAD LAYOUT: (mm)

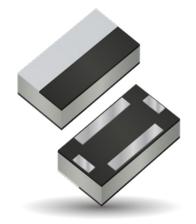
TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP1206A2000ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP1206A2000ANTR				
Parameter	Value	Unit	Notes	
Passband	2.0	GHz		
Insertion Loss @2.0GHz	-0.7	dB		
R.Loss @2.0 GHz	-12	dB		
Rejection @ 4.0-8.0 GHz	-35	dB		
Power Handling	12	W	RF Continuous	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	°C		
Size	1206			

High Performance Low Pass Filters

LP1206A2500ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Frequency: 2.5GHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- · Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

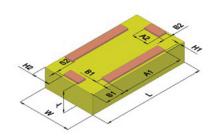
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, In, 4 hours

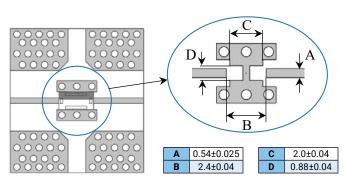
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

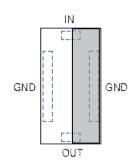
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

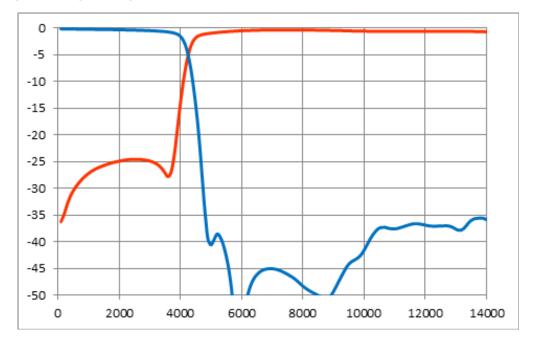
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

RECOMMENDED PAD LAYOUT: (mm)

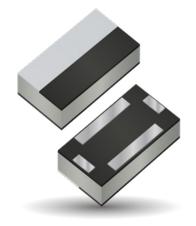
TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP1206A2500ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP1206A2500ANTR				
Parameter	Value	Unit	Notes	
Passband	2.5	GHz		
Insertion Loss @2.5 GHz	-0.7	dB		
R.Loss @2.5 GHz	-12	dB		
Rejection @ 5.0-10 GHz	-35	dB		
Power Handling	12	W	RF Continuous	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	°C		
Size	1206			

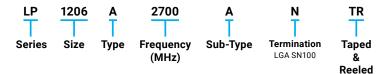
High Performance Low Pass Filters

LP1206A2700ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- · Small size: 1206 Frequency: 2.7GHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- · Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

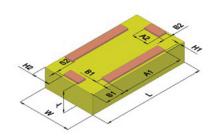
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, In, 4 hours

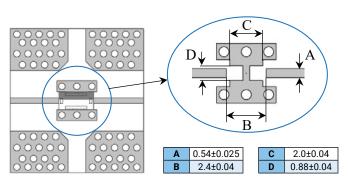
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

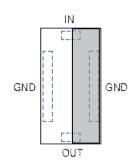
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

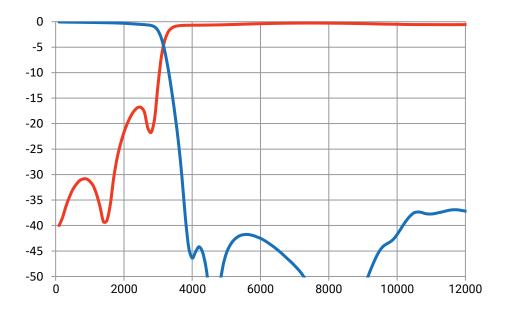
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1		
H1	0.06±0.06		
H2	0.56±0.10		
S1	0.61±0.1		
S2	0.06±.06		

RECOMMENDED PAD LAYOUT: (mm)

TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters **High Performance Low Pass Filters** LP1206A2700ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP1206A2700ANTR			
Parameter	Value	Unit	Notes
Passband	2.7	GHz	
Insertion Loss @2.7Hz	-0.85	dB	
R.Loss @2.7GHz	-12	dB	
Rejection @ 5.4-10GHz	-35	dB	
Rejection @ 10.0-11.5Hz	-30	dB	
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

High Performance Low Pass Filters

LP1206A3000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Passband: 3000MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

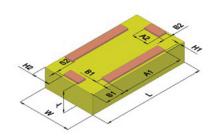
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I, , 4 hours

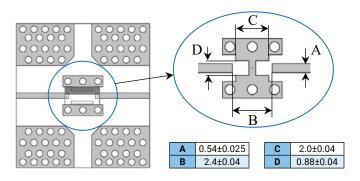
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

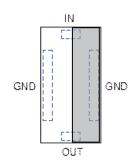
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

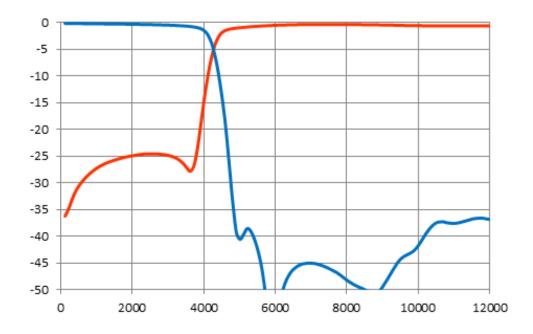
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1	
H1	0.06±0.06	
H2	0.56±0.10	
S1	0.61±0.1	
S2	0.06±.06	

RECOMMENDED PAD LAYOUT: (mm)

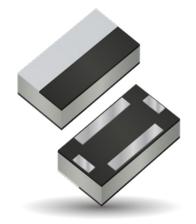
TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters **High Performance Low Pass Filters** LP1206A3000ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP1206A3000ANTR				
Parameter	Value	Unit	Notes	
Passband	3.0	GHz		
Insertion Loss @ 3.0GHz	-0.7	dB		
R.Loss @ 3.0GHz	-12	dB		
Rejection @ 6.0-9.0 GHz	-40	dB		
Rejection @ 9.0-12.0 GHz	-30	dB		
Power Handling	12	W	RF Continuous	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	°C		
Size	1206			

High Performance Low Pass Filters

LP1206A3200ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Passband: 3200MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

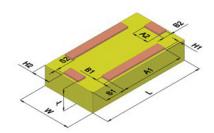
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

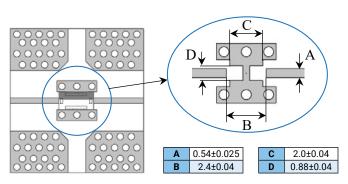
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

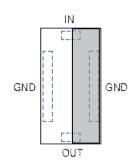
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

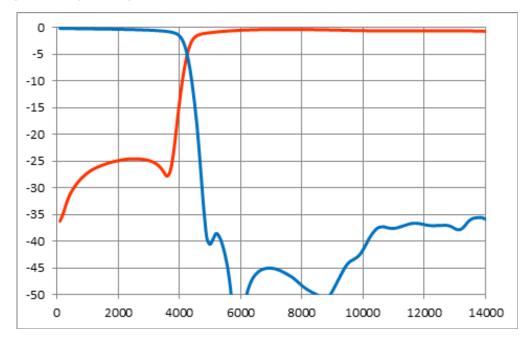
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1	
H1	0.06±0.06	
H2	0.56±0.10	
S1	0.61±0.1	
S2	0.06±.06	

RECOMMENDED PAD LAYOUT: (mm)

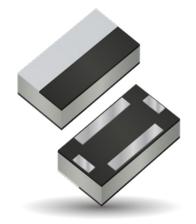
TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP1206A3200ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS


LP1206A3200ANTR				
Parameter	Value	Unit	Notes	
Passband	3.2	GHz		
Insertion Loss @3.2GHz	-0.7	dB		
R.Loss @3.2GHz	-12	dB		
Rejection @ 6.4 -10GHz	-38	dB		
Rejection @ 10 - 12.8GHz	-30	dB		
Power Handling	12	W	RF Continuous	
Impedance	50	Ohm		
Operating Temp.	-40 to +85	°C		
Size	1206			

High Performance Low Pass Filters

LP1206A3300ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Passband: 3300MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

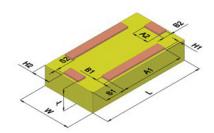
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

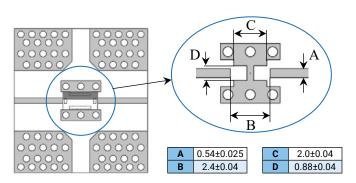
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

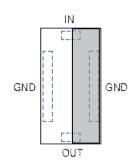
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

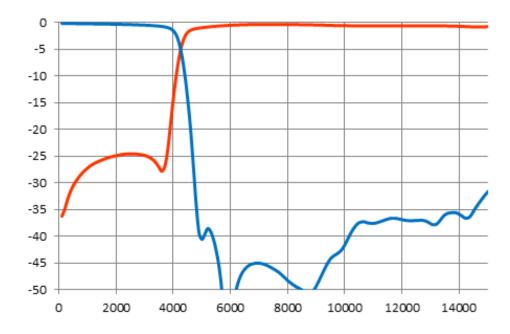
L	3.1±0.1	
W	1.6±0.1	
Т	0.6±0.3	
A1	1.9±0.1	
A2	0.5±0.1	


B1,B2 0.25±0.1			
H1	0.06±0.06		
H2	0.56±0.10		
S1	0.61±0.1		
S2	0.06±.06		

RECOMMENDED PAD LAYOUT: (mm)

TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP1206A3300ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP1206A3300ANTR			
Parameter	Value	Unit	Notes
Passband	3.3	GHz	
Insertion Loss @3.3GHz	-0.7	dB	
R.Loss @3.3GHz	-12	dB	
Rejection @ 6.6 -10GHz	-35	dB	
Rejection @ 10 - 15GHz	-28	dB	
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

High Performance Low Pass Filters

LP1206A3500ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206 Passband: 3500MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's
- · 5G Application

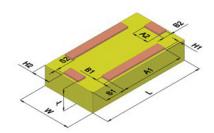
HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, In, 4 hours

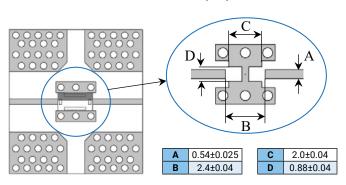
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

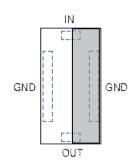
POWER RATING

12W Continuous

DIMENSIONS: mm (inches)


(Bottom View)

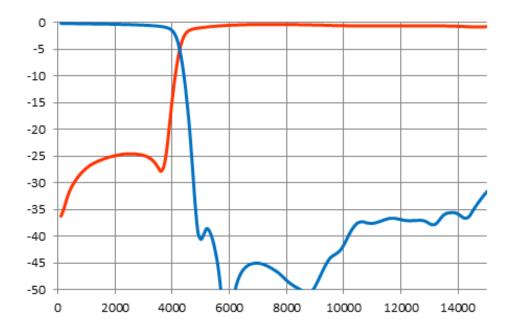
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
A2	0.5±0.1


B1,B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

RECOMMENDED PAD LAYOUT: (mm)

TERMINALS:

(Top View)



Thin-Film RF/Microwave Filters High Performance Low Pass Filters LP1206A3500ANTR - LGA Termination

ELECTRICAL CHARACTERISTICS

LP1206A3500ANTR			
Parameter	Value	Unit	Notes
Passband	3.5	GHz	
Insertion Loss @3.5GHz	-0.7	dB	
R.Loss @3.5GHz	-12	dB	
Rejection @ 6.0-10.5 GHz	-36	dB	
Rejection @ 10.5-15 GHz	-27	dB	
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A5000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206 · Frequency: 5000MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- · Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS:

- 5G \ UWB
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

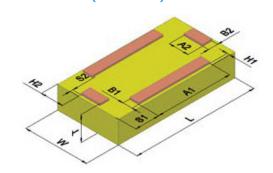
FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

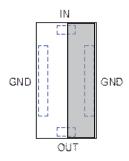
Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

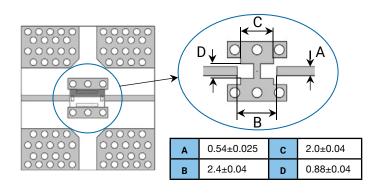

PART NUMBER CODE:

LP 1206 A 5000 ANTR Frequency (MHz)

POWER RATING:

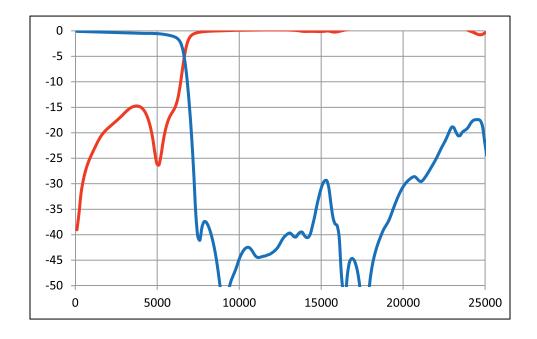
12W continuous


DIMENSIONS - MM (TOP VIEW)


L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
B2	0.5±0.1

B1, B2	0.25±0.1	
H1	0.06±0.06	
H2	0.56±0.10	
S1	0.61±0.1	
S2	0.06±.06	

TERMINALS AND LAYOUT (TOP VIEW)


RECOMMENDED PAD LAYOUT (MM)

ELECTRICAL CHARACTERISTICS

LP1206A5000ANTR			
Parameter	Value	Unit	Notes
Fc	5000	MHz	
Insertion Loss	-0.7	dB	
R. Loss 0-5GHz	-15	dB	
Rejection	-35	dB	Min. 9.0 - 14.0 GHz
Rejection	-25	dB	Min. 14.0 - 20.0
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size		1:	206

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A5200ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small Size: 1206 · Frequency: 5200MHz
- Characteristic Impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- · Low Profile
- · Rugged Construction
- Taped and Reeled
- · RoHS Compliant

APPLICATIONS:

- 5G \ UWB
- Mobile Communications
- Satellite TV Receivers
- **GPS**
- Vehicle Location Systems
- Wireless LAN's

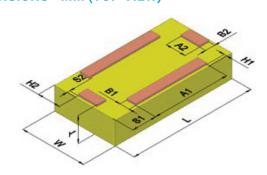
FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

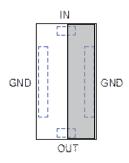
Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

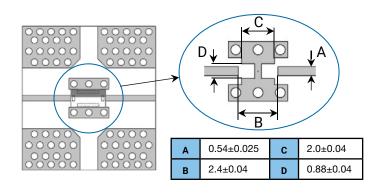

PART NUMBER CODE:

LP 1206 A 5200 ANTR Frequency (MHz)

POWER RATING:

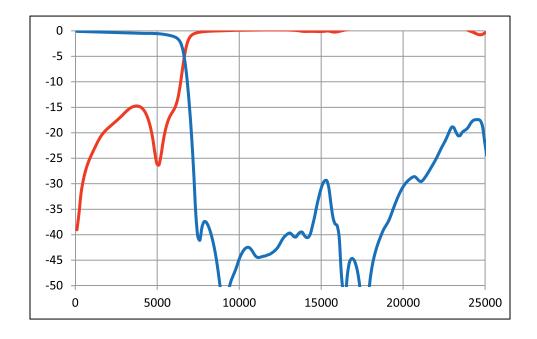
12W continuous


DIMENSIONS - MM (TOP VIEW)


	
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
B2	0.5±0.1

B1, B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

TERMINALS AND LAYOUT (TOP VIEW)


RECOMMENDED PAD LAYOUT (MM)

ELECTRICAL CHARACTERISTICS

LP1206A5000ANTR			
Parameter	Value	Unit	Notes
Fc	5200	MHz	
Insertion Loss	-0.75	dB	
R. Loss 0-5GHz	-15	dB	
Rejection	-35	dB	Min. 8.0 - 14.0 GHz
Rejection	-25	dB	Min. 14.0 - 20.0
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size		1:	206

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A5500ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small Size: 1206 · Frequency: 5500MHz
- Characteristic Impedance: 50Ω
- Operating / Storage Temp: -40°C ÷ +85°C
- · Low Profile
- · Rugged Construction
- Taped and Reeled
- · RoHS Compliant

APPLICATIONS:

- 5G \ UWB
- Mobile Communications
- Satellite TV Receivers
- **GPS**
- Vehicle Location Systems
- Wireless LAN's

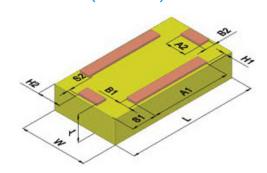
FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

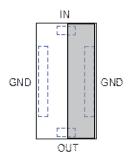
Nickel/Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

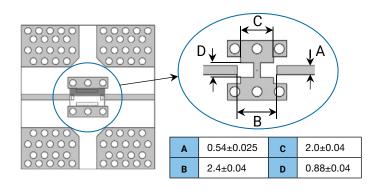

PART NUMBER CODE:

LP 1206 A 5500 ANTR Frequency (MHz)

POWER RATING:

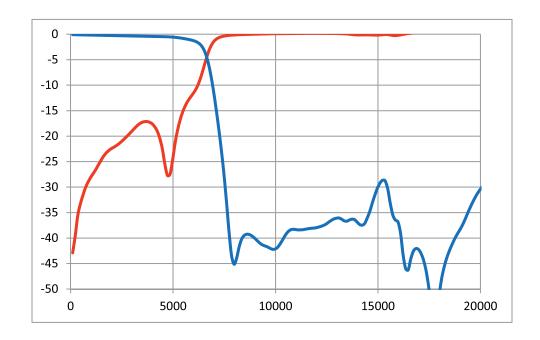
12W continuous


DIMENSIONS - MM (TOP VIEW)


	
L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A1	1.9±0.1
B2	0.5±0.1

B1, B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

TERMINALS AND LAYOUT (TOP VIEW)



RECOMMENDED PAD LAYOUT (MM)

LP1206A5000ANTR			
Parameter	Value	Unit	Notes
Fc	5500	MHz	
Insertion Loss	-1.0	dB	
R. Loss 0-5GHz	-12	dB	
Rejection	-30	dB	Min. 9.0 - 14.0 GHz
Rejection	-27	dB	Min. 14.0 - 20.0 GHz
Power Handling	12	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	1206		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 12W LP1206A6000ANTR - LGA Termination

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206 · Frequency: 6000MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +100°C
- · Low profile
- · Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

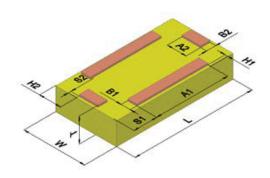
FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample hasis for

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

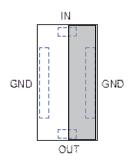
Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

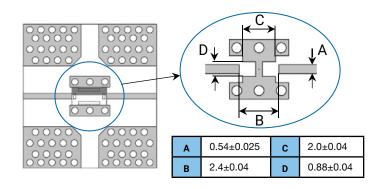

PART NUMBER CODE:

LP 1206 A XXXX ANTR Frequency (MHz)

POWER RATING:

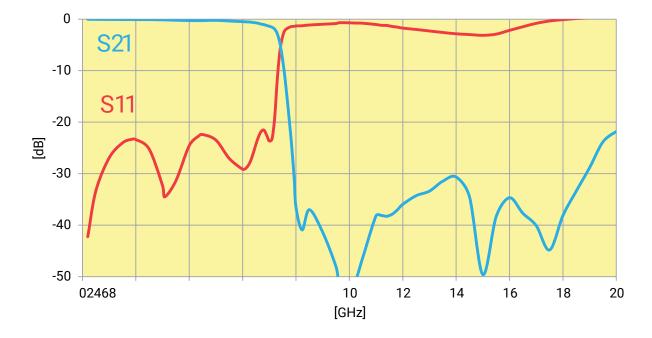
12W continuous


DIMENSIONS - MM (INCHES) (TOP VIEW)


L	3.1±0.1
W	1.6±0.1
Т	0.6±0.3
A 1	1.9±0.1
B2	0.5±0.1

B1, B2	0.25±0.1
H1	0.06±0.06
H2	0.56±0.10
S1	0.61±0.1
S2	0.06±.06

TERMINALS AND LAYOUT (TOP VIEW)



RECOMMENDED PAD LAYOUT (MM)

LP1206A6000ANTR			
Parameter	Value	Unit	Notes
Fc	6000	MHz	
Rejection	-35	dB	Min. 8.4-18GHz
Insertion Loss	-0.6	dB	Max.(6GHz)
R.Loss 0-6GHz	-20	dB	
Power Handling	12	w	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +100	degC	
Size		1	206

High Performance Low Pass Filters

1206 High Performance SMD 8W

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A0700ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 1206
- Frequency: 700MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

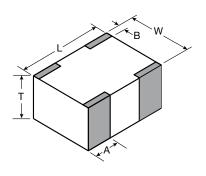
- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

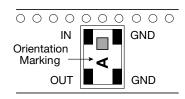
· Static Humidity: 85°C, 85% RH, 160 hours

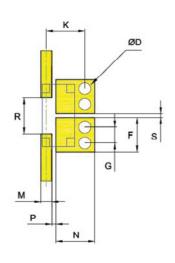
· Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

HOW TO ORDER


DIMENSIONS (TOP VIEW)


mm (inches)

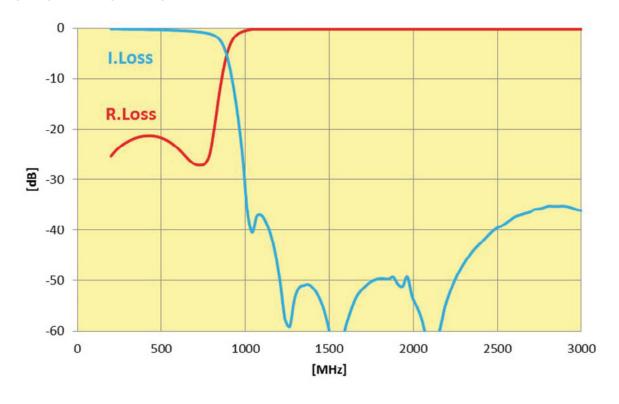
L	3.08±0.1 (0.121±0.004)	
W 1.60±0.1 (0.063±0.004)		
Т	0.87±0.1 (0.034±0.004)	
Α	0.61±0.25 (0.028±0.010)	
В	0.35±0.15 (0.014±0.006)	

TERMINAL AND LAYOUT (TOP VIEW)

RECOMMENDED PAD LAYOUT

mm (inches)

1.70±0.05 (0.067±0.002)
0.78±0.05 (0.031±0.002)
1.91±0.10 (0.075±0.004)
0.54±0.025 (0.021±0.001)
1.93±0.05 (0.076±0.002)
0.21±0.04 (0.008±0.002)
1.80±0.04 (0.071±0.002)
0.20±0.04 (0.008±0.002)
0.60±0.10 (0.024±0.004)


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A0700ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 700MHz	R.Loss @ 700MHz	Attenuation
LP1206A0700ASTR	0.8dB max.	-20dB	-20dB at 980MHz -45dB at 1400MHz -45dB at 2100MHz -30dB at 2800MHz

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A0860ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206
- Frequency: 860MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

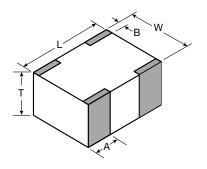
- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

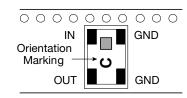
· Static Humidity: 85°C, 85% RH, 160 hours

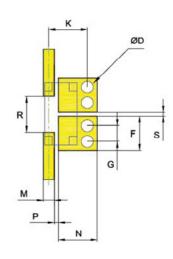
· Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

HOW TO ORDER


DIMENSIONS (TOP VIEW)


mm (inches)

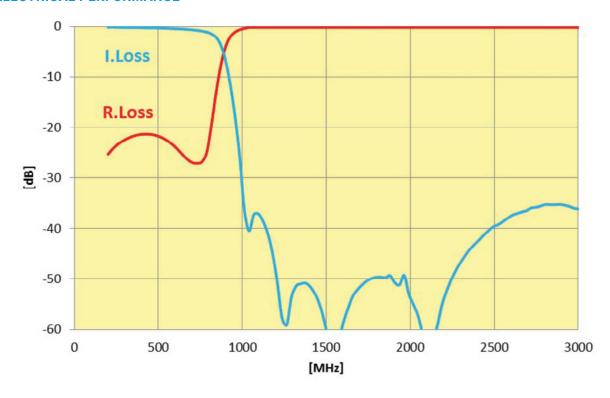
iiiii (iiiciies)				
3.08±0.1 (0.121±0.004)				
1.60±0.1 (0.063±0.004)				
0.87±0.1 (0.034±0.004)				
0.61±0.25 (0.028±0.010)				
0.35±0.15 (0.014±0.006)				

TERMINAL AND LAYOUT (TOP VIEW)

RECOMMENDED PAD LAYOUT

mm (inches)

F	1.70±0.05 (0.067±0.002)
G	0.78±0.05 (0.031±0.002)
К	1.91±0.10 (0.075±0.004)
М	0.54±0.025 (0.021±0.001)
N	1.93±0.05 (0.076±0.002)
Р	0.21±0.04 (0.008±0.002)
R	1.80±0.04 (0.071±0.002)
s	0.20±0.04 (0.008±0.002)
D	0.60±0.10 (0.024±0.004)


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A0860ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 860MHz	R.Loss @ 860MHz	Attenuation
LP1206A0860ASTR	0.85dB max.	-18dB	-25dB at 1204MHz -45dB at 1720MHz -45dB at 2580MHz -30dB at 3440MHz

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1000ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 1000MHz
- · Sharp attenuation slope
- · Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

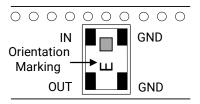
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

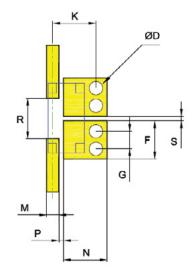
TERMINATION:

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE: LP 1206 A XXXX ASTR Frequency (MHz)


DIMENSIONS

(TOP VIEW)


mm (inches)

(/		
	3.08±0.1	
_	(0.121±0.004)	
w	1.60±0.1	
VV	(0.063±0.004)	
т	0.87±0.1	
	(0.034±0.004)	
Δ	0.61±0.25	
A	(0.028±0.010)	
R	0.35±0.15	
15	(0.014±0.006)	

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT

(mm)			
F	1.70±0.05		
G	0.78±0.05		
K	1.91±0.10		
М	0.54±0.025		
N	1.93±0.05		
Р	0.21±0.04		
R 1.80±0.04			
S	0.20±0.04		
D	0.6±0.1		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1000ASTR - SMD Termination

P/N	I.Loss @ 1000MHz	R.Loss @ 1000MHz	ATTENUATION [min.]
LP1206A1000ASTR	0.7dB max.	-15dB	-30dB at 1500-2000MHz -25dB at 2000-3000MHz -25dB at 3000-4000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1100ASTR - SMD Termination

ITF TECHNOLOGY

 $The ITF\,SMD\,Filter\,is\,based\,on\,thin-film\,multilayer\,technology.\,The\,technology$ provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- Small size: 1206
- Frequency: 1100MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

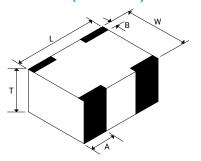
APPLICATIONS:

- · Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

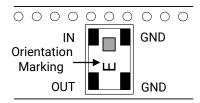
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

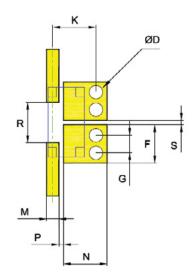

TERMINATION:

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE: LP 1206 A XXXX ASTR Frequency (MHz)

DIMENSIONS


(TOP VIEW)

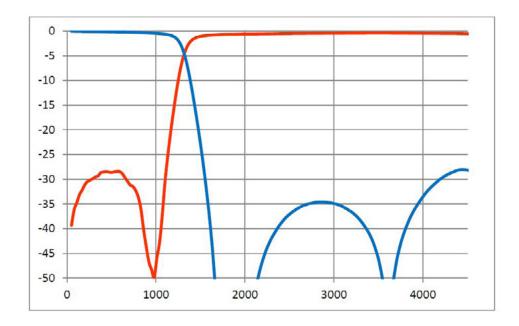

mm (inches)

1	3.08±0.1
	(0.121±0.004)
w	1.60±0.1
VV	(0.063±0.004)
_	0.87±0.1
	(0.034±0.004)
Α	0.61±0.25
A	(0.028±0.010)
В	0.35±0.15
В	(0.014±0.006)

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT

(mm)			
F	1.70±0.05		
G	0.78±0.05		
K	1.91±0.10		
М	0.54±0.025		
N	1.93±0.05		
Р	0.21±0.04		
R	1.80±0.04		
S	0.20±0.04		


 0.6 ± 0.1

D

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1100ASTR - SMD Termination

P/N	I.Loss @ 1100MHz	R.Loss @ 1100MHz	ATTENUATION [min.]
LP1206A1100ASTR	0.8dB max.	-15dB	-30dB at 2000-4000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1500ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 1500MHz
- · Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- Rugged construction
- Taped and reeled
- · Power handling: 8W

APPLICATIONS:

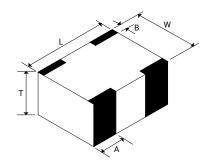
- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

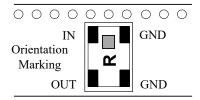
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

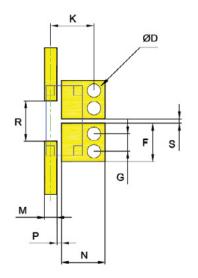

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE:

LP 1206 A XXXX ASTR Frequency


(MHz)

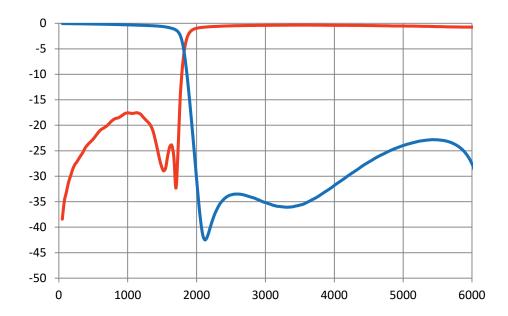
DIMENSIONS (TOP VIEW)



mm (inches)				
L	3.08±0.1 (0.121±0.004)			
w	1.60±0.1 (0.063±0.004)			
т	0.87±0.1 (0.034±0.004)			
Α	0.61±0.25 (0.028±0.010)			
В	0.35±0.15 (0.014±0.006)			

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT



(mm)			
F	1.70±0.05		
G	0.78±0.05		
K	1.91±0.10		
M	0.54±0.025		
N	1.93±0.05		
Р	0.21±0.04		
R	1.80±0.04		
S	0.20±0.04		
D	0.6±0.1		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1500ASTR - SMD Termination

P/N	I.Loss	R.Loss	ATTENUATION
	@ 1500MHz	@ 1500MHz	[min.]
LP1206A1500ASTR	0.8dB max.	-15dB	-30dB at 2000-3000MHz -25dB at 3000-4000MHz -20dB at 4500-6000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1600ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 1600MHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- · Power handling: 8W

APPLICATIONS:

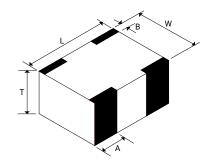
- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample

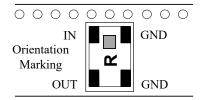
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION:

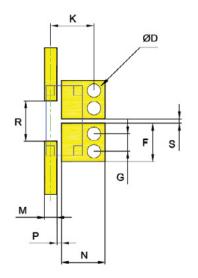

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE:

LP 1206 A XXXX ASTR Frequency


(MHz)

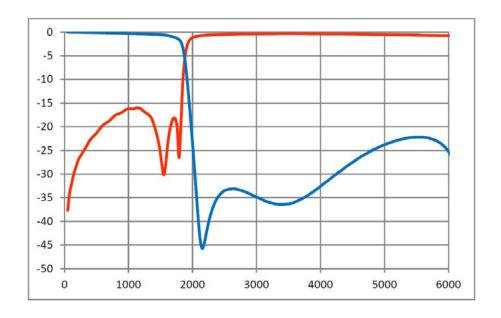
DIMENSIONS (TOP VIEW)



mm (inches) 3.08±0.1 (0.121±0.004) 1.60±0.1 W (0.063±0.004) 0.87±0.1 (0.034±0.004) 0.61±0.25 Α (0.028±0.010) 0.35±0.15 (0.014±0.006)

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT


(mm)			
F	1.70±0.05		
G	0.78±0.05		
K	1.91±0.10		
M	0.54±0.025		
N	1.93±0.05		
Р	0.21±0.04		
R	1.80±0.04		
S	0.20±0.04		
D	0.6±0.1		

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A1600ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 1600MHz	R.Loss @ 1600MHz	ATTENUATION [min.]
LP1206A1600ASTR	0.8dB max.	-15dB	-30dB at 2200-4000MHz -20dB at 4001-6000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A2000ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 2000MHz
- · Sharp attenuation slope
- · Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- · Rugged construction
- Taped and reeled
- · Power handling: 8W

APPLICATIONS:

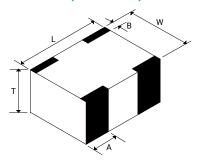
- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

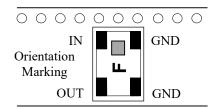
TERMINATION:

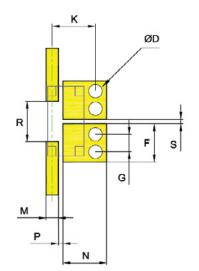

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE:

LP 1206 A XXXX ASTR Frequency (MHz)

DIMENSIONS

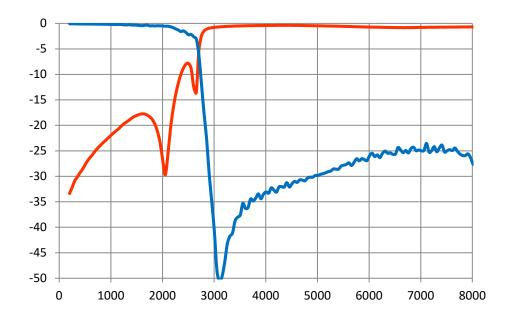

(TOP VIEW)


mm (inches)

(
L	3.08±0.1 (0.121±0.004)		
w	1.60±0.1 (0.063±0.004)		
Т	0.87±0.1 (0.034±0.004)		
A	0.61±0.25 (0.028±0.010)		
В	0.35±0.15 (0.014±0.006)		

TERMINALS (TOP VIEW)

RECOMMENDED PAD LAYOUT



(mm)		
F	1.70±0.05	
G	0.78±0.05	
K	1.91±0.10	
М	0.54±0.025	
N	1.93±0.05	
Р	0.21±0.04	
R	1.80±0.04	
S	0.20±0.04	
D	0.6±0.1	

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A2000ASTR - SMD Termination

P/N	I.Loss	R.Loss	ATTENUATION
	@ 2000MHz	@ 2000MHz	[min.]
LP1206A2000ASTR	0.7dB max.	-15dB	-27dB at 3000-4000MHz -25dB at 4000-6000MHz -20dB at 6000-8000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A2500ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 2500MHz
- · Sharp attenuation slope
- · Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS:

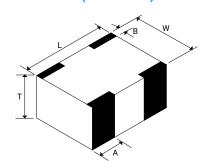
- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample hasis for

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

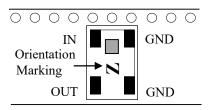
TERMINATION:

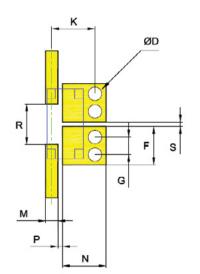

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE:

LP 1206 A XXXX ASTR Frequency (MHz)

DIMENSIONS

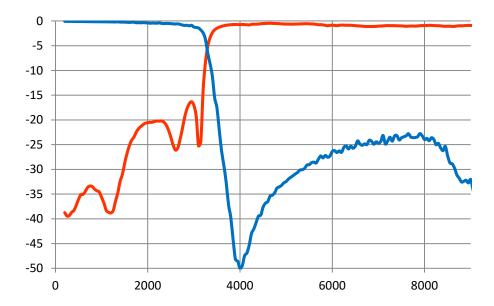

(TOP VIEW)


mm (inches)

iiii (iiiciies)				
L	3.08±0.1			
	(0.121±0.004)			
w	1.60±0.1			
VV	(0.063±0.004)			
-	0.87±0.1			
•	(0.034±0.004)			
Δ	0.61±0.25			
A	(0.028±0.010)			
В	0.35±0.15			
ь	(0.014±0.006)			

TERMINALS AND LAYOUT (TOP VIEW)

RECOMMENDED PAD LAYOUT


(mm)				
F	1.70±0.05			
G	0.78±0.05			
K	1.91±0.10			
М	0.54±0.025			
N	1.93±0.05			
P	0.21±0.04			
R	1.80±0.04			
S	0.20±0.04			
D	0.6±0.1			

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A2500ASTR - SMD Termination

P/N	I.Loss	R.Loss	ATTENUATION
	@ 2500MHz	@ 2500MHz	[min.]
LP1206A2500ASTR	0.7dB max.	-15dB	-25dB at 4000-5000MHz -22dB at 5000-7500MHz -15dB at 7500-8500MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A2600ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES:

- · Small size: 1206
- · Frequency: 2600MHz
- · Sharp attenuation slope
- · Characteristic impedance: 500hm
- Operating / Storage temp: -40°C ÷ +85°C
- · Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS:

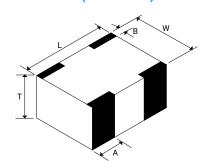
- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample hasis for

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

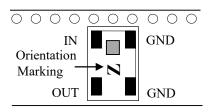
TERMINATION:

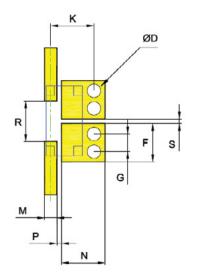

Nickel/ Lead-Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

PART NUMBER CODE:

LP 1206 A XXXX ASTR Frequency (MHz)

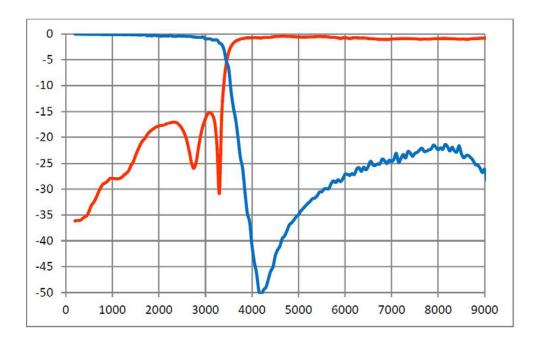
DIMENSIONS


(TOP VIEW)


mm (inches)

iiii (iiiciies)				
L	3.08±0.1			
	(0.121±0.004)			
w	1.60±0.1			
VV	(0.063±0.004)			
-	0.87±0.1			
•	(0.034±0.004)			
Δ	0.61±0.25			
A	(0.028±0.010)			
В	0.35±0.15			
ь	(0.014±0.006)			

TERMINALS AND LAYOUT (TOP VIEW)


RECOMMENDED PAD LAYOUT

(mm)				
F	1.70±0.05			
G	0.78±0.05			
K	1.91±0.10			
М	0.54±0.025			
N	1.93±0.05			
P	0.21±0.04			
R	1.80±0.04			
S	0.20±0.04			
D	0.6±0.1			

P/N	I.Loss	R.Loss	ATTENUATION
	@ 2600MHz	@ 2600MHz	[min.]
LP1206A2600ASTR	0.7dB max.	-15dB	-25dB at 4000-6000MHz -18dB at 6001-8000MHz

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3200ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

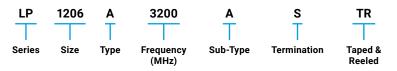
- · Small size: 1206
- Frequency: 3.2GHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

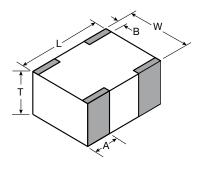
- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

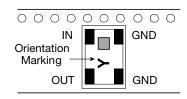

· Static Humidity: 85°C, 85% RH, 160 hours

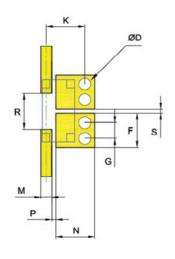
· Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

HOW TO ORDER


DIMENSIONS (TOP VIEW)


mm (inches)

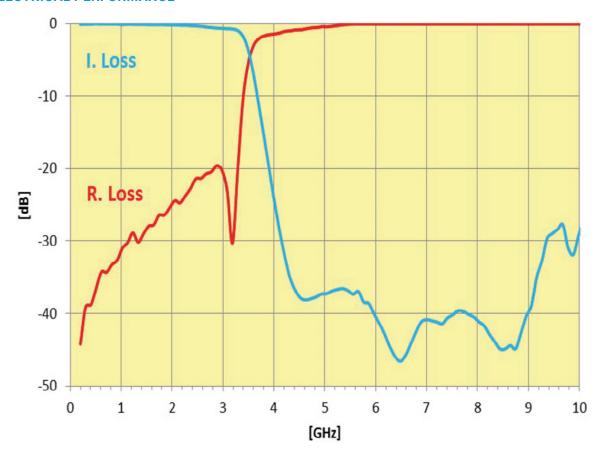
()				
L	3.08±0.1 (0.121±0.004)			
W	1.60±0.1 (0.063±0.004)			
Т	0.87±0.1 (0.034±0.004)			
Α	0.61±0.25 (0.028±0.010)			
В	0.35±0.15 (0.014±0.006)			

TERMINAL AND LAYOUT (TOP VIEW)

RECOMMENDED PAD LAYOUT

mm (inches)

iiiii (iiiciies)				
F	1.70±0.05			
	(0.067±0.002)			
G	0.78±0.05			
G	(0.031±0.002)			
К	1.91±0.10			
N.	(0.075±0.004)			
М	0.54±0.025			
IVI	(0.021±0.001)			
N	1.93±0.05			
IN	(0.076±0.002)			
Р	0.21±0.04			
	(0.008±0.002)			
R	1.80±0.04			
ĸ	(0.071±0.002)			
s	0.20±0.04			
3	(0.008±0.002)			
D	0.60±0.10			
U	(0.024±0.004)			


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3200ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 3.2GHz	R.Loss @ 3.2GHz	Attenuation
LP1206A3200ASTR	0.85dB max.	-20dB	-30dB at 4.48GHz -40dB at 6.4GHz -25dB at 9.6GHz -25dB at 10GHz

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3500ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

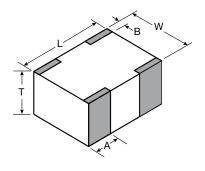
- · Small size: 1206
- Frequency: 3.5GHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION

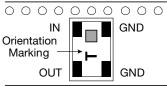
Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

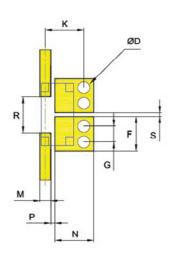

· Static Humidity: 85°C, 85% RH, 160 hours

· Endurance: 125°C, IR, 4 hours

TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


DIMENSIONS (TOP VIEW)


mm (inches)

•	•
L	3.08±0.1 (0.121±0.004)
w	1.60±0.1 (0.063±0.004)
Т	0.87±0.1 (0.034±0.004)
Α	0.61±0.25 (0.028±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINAL AND LAYOUT (TOP VIEW)

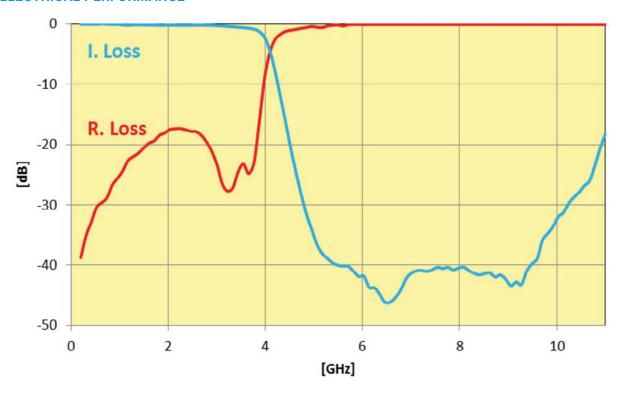
RECOMMENDED PAD LAYOUT

mm (inches)

()			
1.70±0.05 (0.067±0.002)			
0.78±0.05 (0.031±0.002)			
1.91±0.10 (0.075±0.004)			
0.54±0.025 (0.021±0.001)			
1.93±0.05 (0.076±0.002)			
0.21±0.04 (0.008±0.002)			
1.80±0.04 (0.071±0.002)			
0.20±0.04 (0.008±0.002)			
0.60±0.10 (0.024±0.004)			

HOW TO ORDER

LP	1206	Α	3500	Α	S	TR
\top		Τ		T	T	\top
Series	Size	Туре	Frequency (MHz)	Sub-Type	Termination	Taped & Reeled


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3500ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 3.5GHz	R.Loss @ 3.5GHz	Attenuation
LP1206A3500ASTR	0.7dB max.	-18dB	-30dB at 4.9GHz -40dB at 7GHz -25dB at 10.5GHz -15dB at 11GHz

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3600ASTR - SMD Termination

ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

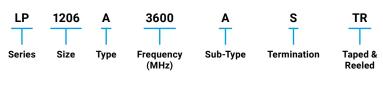
- · Small size: 1206
- Frequency: 3.6GHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W

APPLICATIONS

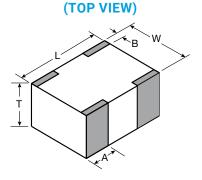
- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

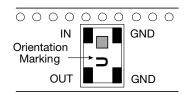

· Static Humidity: 85°C, 85% RH, 160 hours

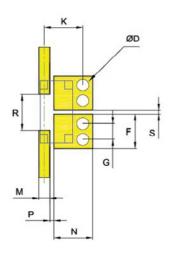
· Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

HOW TO ORDER


DIMENSIONS


mm (inches)

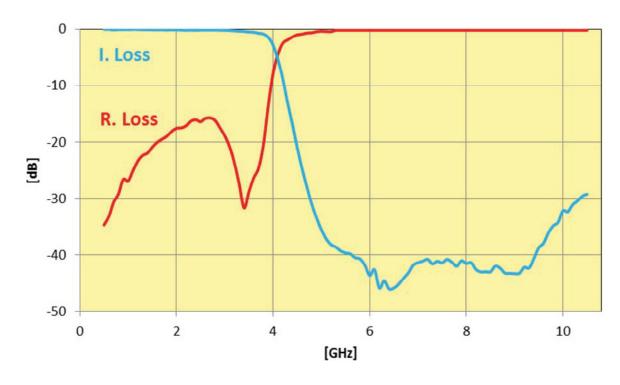
•	
L	3.08±0.1 (0.121±0.004)
W	1.60±0.1 (0.063±0.004)
Т	0.87±0.1 (0.034±0.004)
Α	0.61±0.25 (0.028±0.010)
В	0.35±0.15 (0.014±0.006)

TERMINAL AND LAYOUT (TOP VIEW)

RECOMMENDED PAD LAYOUT

mm (inches)

()				
F	1.70±0.05			
	(0.067±0.002)			
G	0.78±0.05			
G	(0.031±0.002)			
К	1.91±0.10			
	(0.075±0.004)			
М	0.54±0.025			
IVI	(0.021±0.001)			
N	1.93±0.05			
N	(0.076±0.002)			
Р	0.21±0.04			
F	(0.008±0.002)			
R	1.80±0.04			
ĸ	(0.071±0.002)			
s	0.20±0.04			
3	(0.008±0.002)			
D	0.60±0.10			
U	(0.024±0.004)			


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3600ASTR - SMD Termination

ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 3.6GHz	R.Loss @ 3.6GHz	Attenuation
LP1206A3600ASTR	0.7dB max.	-25dB	-30dB at 5.04GHz -35dB at 7.2GHz -25dB at 10.8GHz

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3800ASTR - SMD Termination

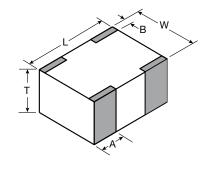
ITF TECHNOLOGY

The ITF SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 1206
- Frequency: 3.8GHz
- Sharp attenuation slope
- Characteristic impedance: 500hm
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- Power handling: 8W


APPLICATIONS

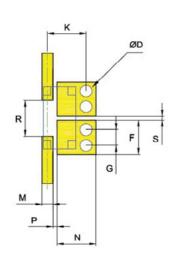
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER

DIMENSIONS (TOP VIEW)

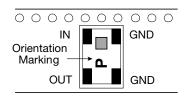
mm (inche		
L	3.08±0.1 (0.121±0.004)	
W	1.60±0.1 (0.063±0.004)	
Т	0.87±0.1 (0.034±0.004)	
A	0.61±0.25 (0.028±0.010)	
В	0.35±0.15 (0.014±0.006)	

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

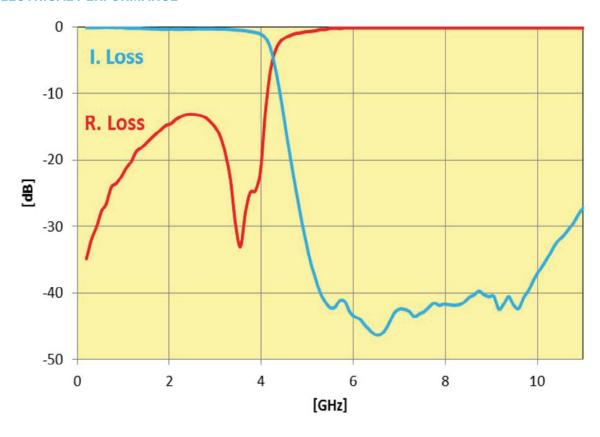
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

F	1.70±0.05 (0.067±0.002)	
G	0.78±0.05 (0.031±0.002)	
К	1.91±0.10 (0.075±0.004)	
М	0.54±0.025 (0.021±0.001)	
N	1.93±0.05 (0.076±0.002)	
Р	0.21±0.04 (0.008±0.002)	
R	1.80±0.04 (0.071±0.002)	
s	0.20±0.04 (0.008±0.002)	
D	0.60±0.10 (0.024±0.004)	

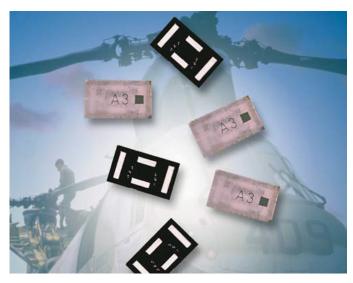
TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters 1206 High Performance Low Pass 8W LP1206A3800ASTR - SMD Termination

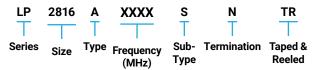
ELECTRICAL CHARACTERISTICS

P/N	I.Loss @ 3.6GHz	R.Loss @ 3.6GHz	Attenuation
LP1206A3800ASTR	0.8dB max.	-20dB	-35dB at 5.32GHz -28dB at 7.6GHz -33dB at 10GHz

TYPICAL ELECTRICAL PERFORMANCE



High Performance Low Pass Filters


2816 High Performance Low Pass 20W

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W **General Information**

HOW TO ORDER

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_R, 4 hours

TERMINATION

Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and

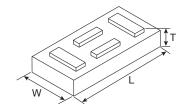
POWER RATING

20W Continuous

ITF TECHNOLOGY

The ITF LGA Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 7x4x1.2 (LxWxT)
- Frequency: 500-2500MHz
- Steep attenuation
- Characteristic impedance: 50Ω
- Operating/Storage temp: -40°C +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

DIMENSIONS (BOTTOM VIEW): mm (inches)

TERMINALS (TOP VIEW)

L	7.00±0.30 (0.276±0.012)			
w	4.00±0.20 (0.157±0.008)			
Т	1.2 max (0.047 max)			

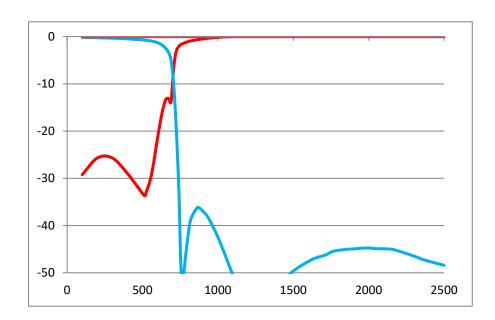
а	0.60±0.15 (0.024±0.006)
b	1.40±0.15 (0.055±0.006)
С	2.00±0.15 (0.079±0.006)
d	3.00±0.15 (0.118±0.006)

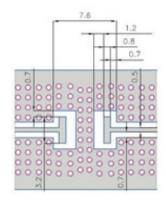
ELECTRICAL SPECIFICATIONS TABLE

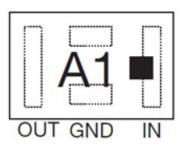
Frequency [MHz]	Insertion Loss [dB]	Return Loss [dB]	Rejection [dB]	Rejection [dB]	Rejection [dB]
500	-0.9	-18	-35 dB @ 1000 MHz	-40 dB @ 1500 - 2500 MHz	
512	-0.85	-18	-40 dB @ 720 MHz	-35 dB @ 1024 MHz	-50dB @ 1500 - 2500 MHz
520	-0.95	-18	-35 dB @ 1040 MHz	-40 dB @ 1500 - 2500 MHz	
570	-0.7	-18	-35 dB @ 1140 MHz	-40 dB @ 1500 - 2500 MHz	
600	-0.7	-18	-35 dB @ 1200 MHz	-40 dB @ 1500 - 2500 MHz	
680	-0.7	-23	-36 dB @ 950 MHz	-40 dB @ 1360 - 2500 MHz	
1300	-0.85	-15	-40 dB @ 850 MHz	-40 dB @ 2000- 7000 MHz	-30 dB @ 7.0 - 10.0 GHz
1400	-0.75	-15	-35 dB @ 1960 MHz	-40 dB @ 2100 - 6000 MHz	-30 dB @ 6.0 - 9.0 GHz
1600	-0.8	-20	-45 dB @ 2240 MHz	-40 dB @ 2240 - 7500 MHz	-35 dB @ 7.5 - 10 GHz
1700	-0.52	-14	-30 dB @ 2380 MHz	-40 dB @ 2500 - 7000 MHz	-30 dB @ 7.0 - 10 GHz
1800	-0.75	-20	-20 dB @ 2520 MHz	-40 dB @ 2800 - 8500 MHz	-35 dB @ 8.5 - 10 GHz
1900	-0.8	-23	-35 dB @ 2660 MHz	-40 dB @ 3000 - 10000 MHz	-40 dB @720 MHz
2500	-0.8	-15	-35 dB @ 3500 MHz	-45 dB @ 5400 - 7500 MHz	-35dB @ 10 GHz

Click on frequency to see full specifications

KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

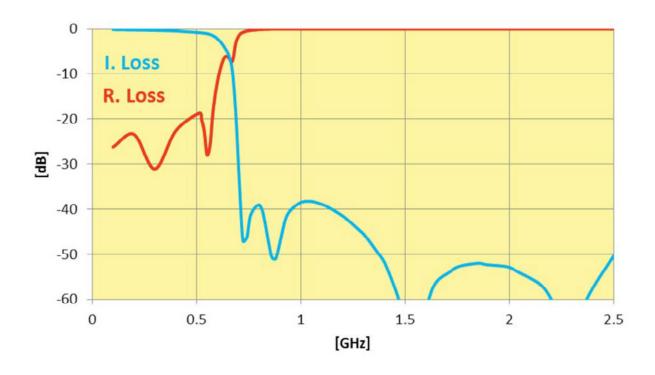

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0500SNTR - LGA Termination

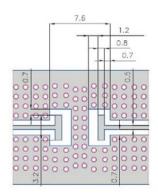

TYPICAL ELECTRICAL PERFORMANCE

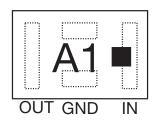

Parameter	Value	Unit	Notes
Fc	500	MHz	
Insertion Loss @500 MHz	-0.9	dB	Max.
R Loss @500MHz	-18	dB	
Rejection @1000MHz	-35	dB	Min.
Rejection @ 1500 - 2500 MHz	-40	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

Click here to return to main table

RECOMMENDED PAD LAYOUT

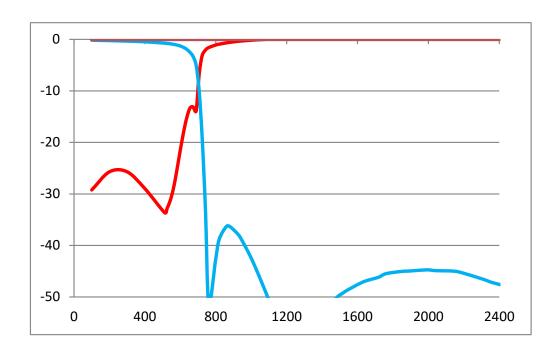

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0512SNTR - LGA Termination

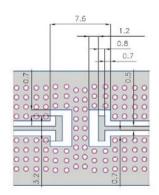

TYPICAL ELECTRICAL PERFORMANCE

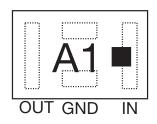

Parameter	Value	Unit	Notes
Fc	512	MHz	
Insertion Loss @512 MHz	-0.85	dB	Max.
R Loss @512MHz	-18	dB	
Rejection @ 720 MHz	-40	dB	Min.
Rejection @1024 MHz	-35	dB	Min.
Rejection @ 1500 - 2500 MHz	-50	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

Click here to return to main table

RECOMMENDED PAD LAYOUT

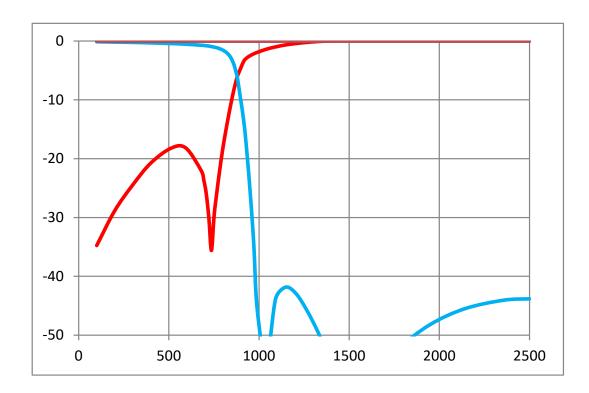

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0520SNTR - LGA Termination

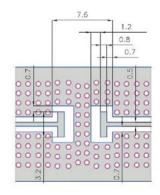

TYPICAL ELECTRICAL PERFORMANCE

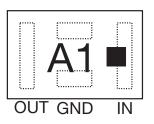

Parameter	Value	Unit	Notes
Fc	520	MHz	
Insertion Loss @520 MHz	-0.95	dB	Max.
R Loss @ 520MHz	-18	dB	
Rejection @1040 MHz	-35	dB	Min.
Rejection @ 1500 - 2500 MHz	-40	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

Click here to return to main table

RECOMMENDED PAD LAYOUT

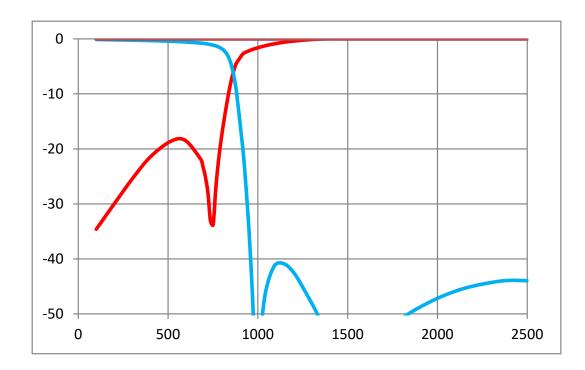

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0570SNTR - LGA Termination

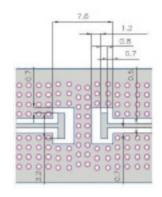

TYPICAL ELECTRICAL PERFORMANCE


Parameter	Value	Unit	Notes
Fc	570	MHz	
Insertion Loss @570MHz	-0.85	dB	Max.
R Loss @570MHz	-18	dB	
Rejection @1140 MHz	-35	dB	Min.
Rejection @ 1500 - 2500 MHz	-40	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

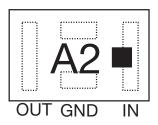
Click here to return to main table

RECOMMENDED PAD LAYOUT


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0600SNTR - LGA Termination

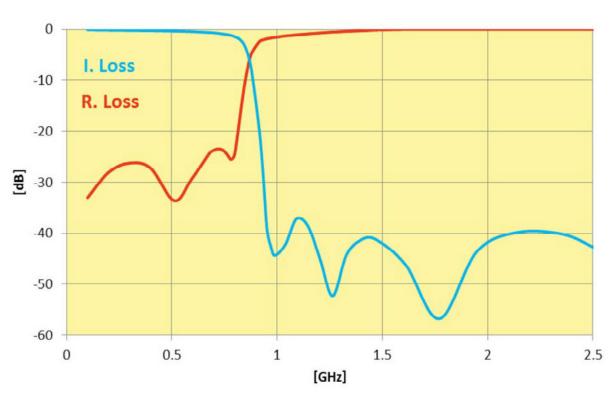

TYPICAL ELECTRICAL PERFORMANCE

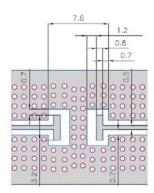
Parameter	Value	Unit	Notes
Fc	600	MHz	
Insertion Loss @600MHz	-0.85	dB	Max.
R Loss @ 600 MHz	-18	dB	
Rejection @1200 MHz	-35	dB	Min.
Rejection @ 1500 - 2500 MHz	-40	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		


Click here to return to main table

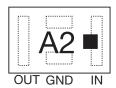
RECOMMENDED PAD LAYOUT

ORIENTATION MARKING CODE


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A0680SNTR - LGA Termination


TYPICAL ELECTRICAL PERFORMANCE

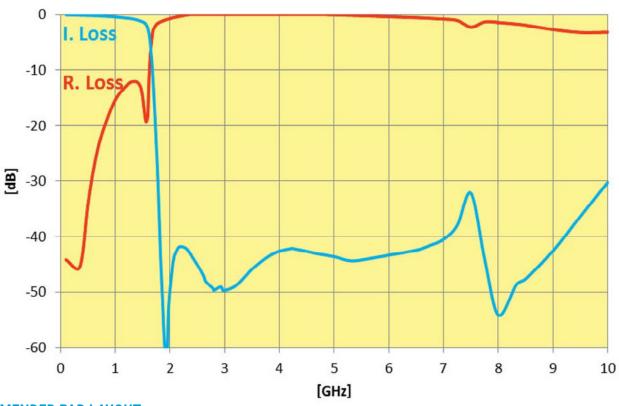
Parameter	Value	Unit	Notes
Fc	680	MHz	
Rejection @950MHz	-36	dB	Min.
Rejection 1.36GHz-2.5GHz	-40	dB	Min.
Insertion Loss @680MHz	-0.7	dB	Max.
R Loss @680MHz	-23	dB	
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

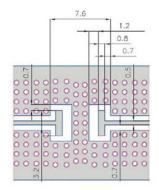

Click here to return to main table

RECOMMENDED PAD LAYOUT

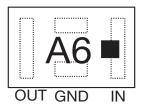
ORIENTATION MARKING CODE

Downloaded from Arrow.com.


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A1300SNTR - LGA Termination


TYPICAL ELECTRICAL PERFORMANCE

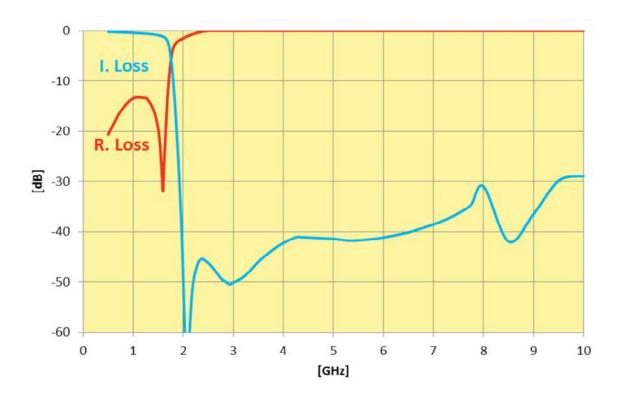
Parameter	Value	Unit	Notes
Fc	1300	MHz	
Rejection @1.82GHz	-40	dB	Min.
Rejection 2GHz-7GHz	-40	dB	Min.
Rejection 7GHz-10GHz	-30	dB	Min.
Insertion Loss @1300MHz	-0.85	dB	Max.
Return Loss @1300MHz	-15	dB	Тур.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

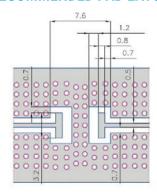

Click here to return to main table

RECOMMENDED PAD LAYOUT

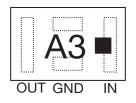
ORIENTATION MARKING CODE

042222


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A1400SNTR - LGA Termination

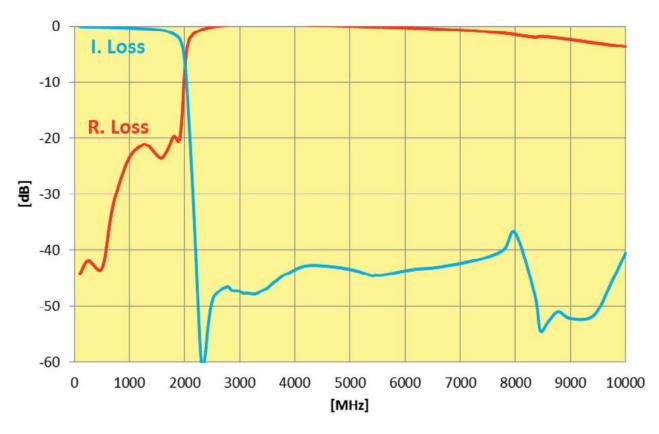

TYPICAL ELECTRICAL PERFORMANCE

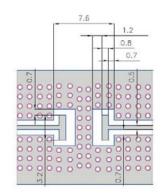
Parameter	Value	Unit	Notes
Fc	1400	MHz	
Rejection @1960MHz	-35	dB	Min.
Rejection 2.1GHz-6GHz	-40	dB	Min.
Rejection 6GHz-9GHz	-30	dB	Min.
Insertion Loss @1400MHz	-0.75	dB	Max.
R Loss @1400MHz	-15	dB	
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		


Click here to return to main table

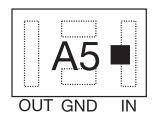
RECOMMENDED PAD LAYOUT

ORIENTATION MARKING CODE


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A1600SNTR - LGA Termination

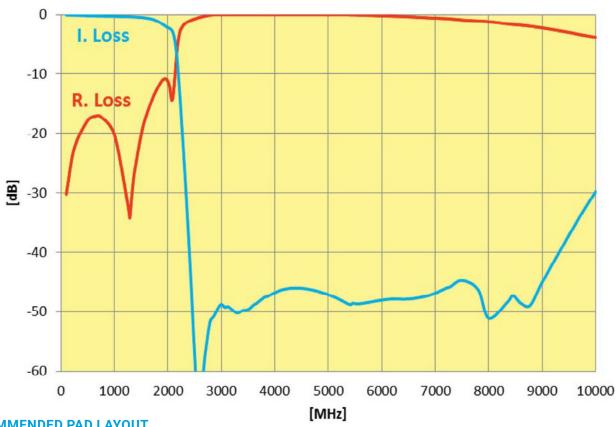

TYPICAL ELECTRICAL PERFORMANCE

Parameter	Value	Unit	Notes
Fc	1600	MHz	
Rejection @2.24GHz	-45	dB	Min.
Rejection 2.24GHz-7.5GHz	-40	dB	Min.
Rejection 7.5GHz-10GHz	-35	dB	Min.
Insertion Loss @1600MHz	-0.8	dB	Max.
Return Loss @1600MHz	-20	dB	Тур.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

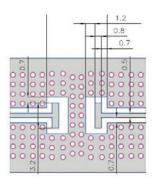

Click here to return to main table

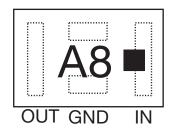
RECOMMENDED PAD LAYOUT

ORIENTATION MARKING CODE



TYPICAL ELECTRICAL PERFORMANCE


Parameter	Value	Unit	Notes
Fc	1700	MHz	
Rejection @2.38GHz	-30	dB	Min.
Rejection 2.5GHz-7GHz	-45	dB	Min.
Rejection 7GHz-10GHz	-30	dB	Min.
Insertion Loss @1700MHz	-0.85	dB	Max.
Return Loss @1700MHz	-14	dB	Тур.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

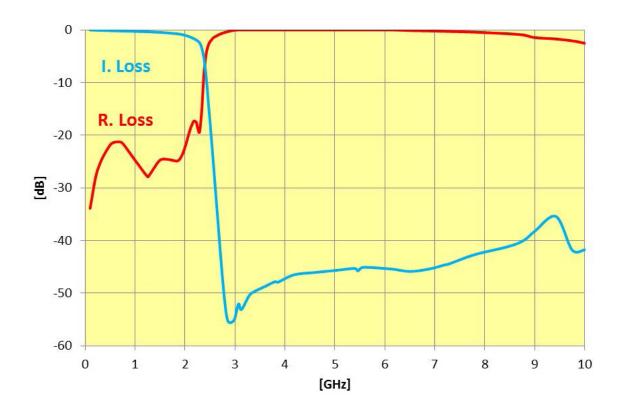

Click here to return to main table

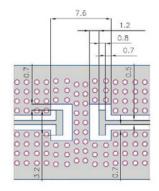
RECOMMENDED PAD LAYOUT

ORIENTATION MARKING CODE

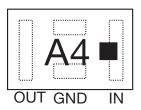
254

042222


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A1800SNTR - LGA Termination

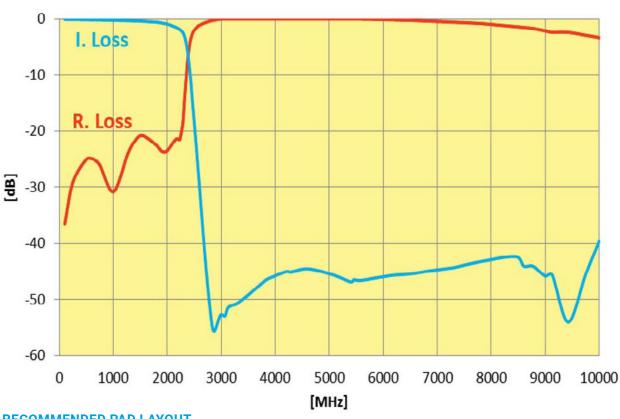

TYPICAL ELECTRICAL PERFORMANCE

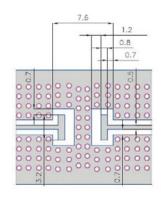
Parameter	Value	Unit	Notes
Fc	1800	MHz	
Rejection @2.52GHz	-19	dB	Min.
Rejection 2.8GHz-8.5GHz	-40	dB	Min.
Rejection 8.5GHz-10GHz	-35	dB	Min.
Insertion Loss @1800MHz	-0.75	dB	Max.
Return Loss @1800MHz	-20	dB	Тур.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		


Click here to return to main table

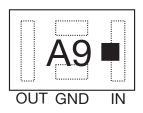
RECOMMENDED PAD LAYOUT

ORIENTATION MARKING CODE


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A1900SNTR - LGA Termination


TYPICAL ELECTRICAL PERFORMANCE

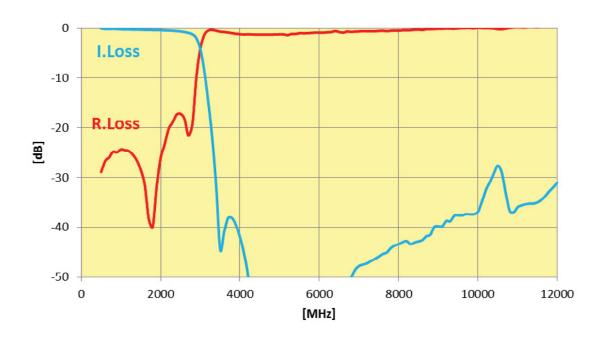
Parameter	Value	Unit	Notes
Fc	1900	MHz	
Rejection @2.66GHz	-35	dB	Min.
Rejection 2.5GHz-10GHz	-40	dB	Min.
Insertion Loss @1900MHz	-0.8	dB	Max.
Return Loss @1900MHz	-23	dB	Тур.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	°C	
Size	7x4x1.2mm		

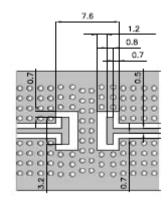

Click here to return to main table

RECOMMENDED PAD LAYOUT

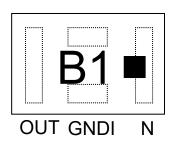
ORIENTATION MARKING CODE

256


Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A2500SNTR - LGA Termination


TYPICAL ELECTRICAL PERFORMANCE

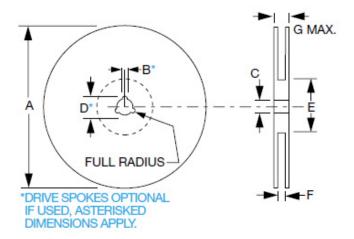
Parameter	Value	Unit	Notes
Fc	2500	MHz	
Rejection @3500MHz	-35	dB	Min.
Insertion Loss @2500MHz	-0.8	dB	Max.
R Loss @2500MHz	-15	dB	
Rejection 5GHz	-45	dB	Min.
Rejection 7.5GHz	-40	dB	Min.
Rejection 10GHz	-35	dB	Min.
Power Handling	20	W	RF Continuous
Impedance	50	Ohm	
Operating Temp.	-40 to +85	degC	
Size	7x4x1.2mm		


Click here to return to main table

RECOMMENDED PAD LAYOUT

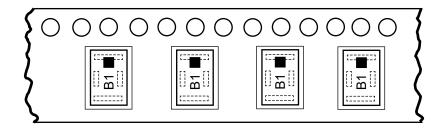
ORIENTATION MARKING CODE

Thin-Film RF/Microwave Filters 2816 High Performance Low Pass 20W LP2816A2500SNTR - LGA Termination



TAPE & REEL

All tape and reel specifications are in compliance with EIA 481-1-A (equivalent to IEC 286 part 3).


- · 12mm carrier
- · Reeled quantities: Reels of 2,000 per 7" reel

REEL DIMENSIONS: millimeters

Α	В	С	D	E	F	G
180±1.0	1.5 min.	13±0.2	20.2 min.	50 min.	13.6±0.1	16.6

CARRIER

High Performance Band Pass Filters

BP0805 Band Pass Filter SMD 5W

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A1308ASTR

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

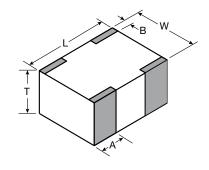
FEATURES

- Small size: 0805
- Frequency: 1308MHz
- Band: 1220-1420MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- · Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER

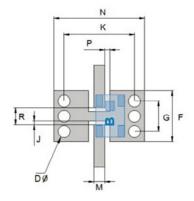


DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.1 (0.080±0.004)	
w	1.55±0.1 (0.061±0.004)	
Т	0.80±0.1 (0.032±0.004)	
A	0.56±0.25 (0.022±0.010)	
В	0.35±0.15 (0.014±0.006)	

FINAL QUALITY INSPECTION

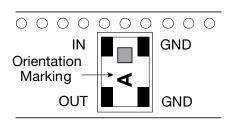

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

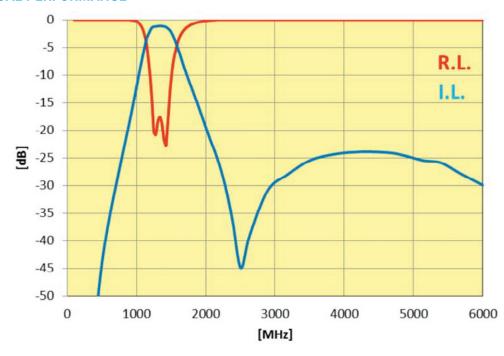


2.5±0.05 G 1.5±0.05 0.19±0.05 3.48±0.05 0.54±0.25 М N 4.48±0.05 0.25±0.05 0.85±0.05

0.6±0.05

mm

TERMINAL AND LAYOUT (TOP VIEW)


Downloaded from Arrow.com.

Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A1308ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	1308 MHz
Impedance	50 Ohm
Band	1220-1420MHz
I. loss at center frequency	1.2dB max.
In-band insertion loss flatness	0.8dB
In-band return loss	12dB
Rejection in [760-945 MHz]	16dBc min.
Rejection in [2920-3105 MHz]	30dBc min
Power handling (CW)	5W
Operating temperature range	-40/+105°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W BP0805A1457ASTR**

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

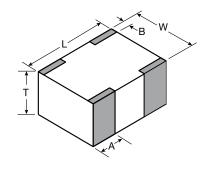
- Small size: 0805
- Frequency: 1457MHz
- Band: 1447-1467MHz
- Characteristic impedance: 500


S

- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

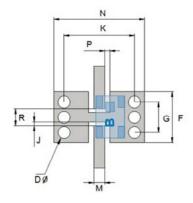

HOW TO ORDER

DIMENSIONS (TOP VIEW)

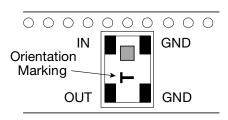
mm (inches)

L	2.03±0.1 (0.080±0.004)	
w	1.55±0.1 (0.061±0.004)	
Т	0.80±0.1 (0.032±0.004)	
A	0.56±0.25 (0.022±0.010)	
В	0.35±0.15 (0.014±0.006)	

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

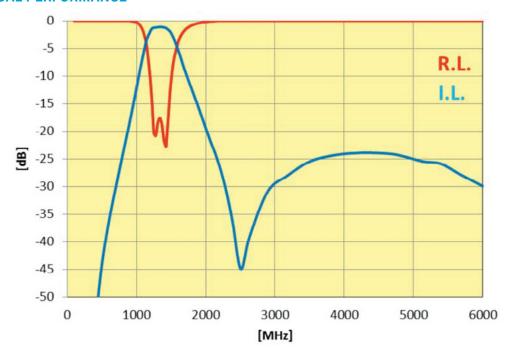
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm 2.5±0.05 G 1.5±0.05 0.19±0.05 3.48±0.05 0.54±0.25 М N 4.48±0.05 0.25±0.05 0.85±0.05 0.6±0.05



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A1457ASTR

ELECTRICAL CHARACTERISTICS

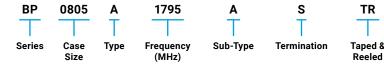
Description	Value
Center frequency	1457 MHz
Impedance	50 Ohm
Band	1447-1467MHz
I. loss 1447-1467MHz	-1.5dB max.
In-band VSWR (return loss)	<1.8 (-11dB)
Rejection 925-960MHz	>=20dB
Rejection in 2110-2170MHz	>=25dB
Rejection in 2300-2400MHz	>=25dB
Rejection in 2500-2690MHz	>=30dB
Rejection 3400-3600MHz	>=30dB
Rejection 5150-5925MHz	>=19dB
Power handling (CW)	5W
Operating temperature range	-40/+105°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A1795ASTR

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

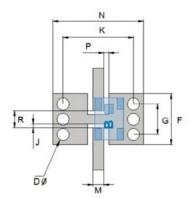
- Small size: 0805
- Frequency: 1795MHz
- Band: 1785-1805MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

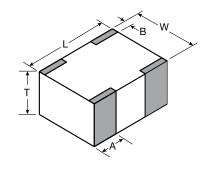
HOW TO ORDER

FINAL QUALITY INSPECTION

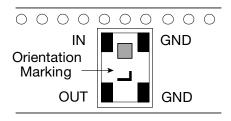

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

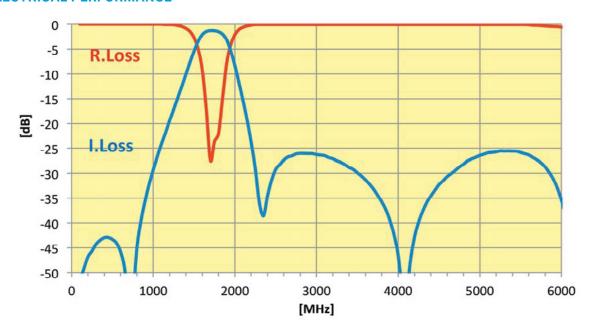
RECOMMENDED PAD LAYOUT


F	2.5±0.05
G	1.5±0.05
J	0.19±0.05
K	3.48±0.05
М	0.54±0.25
N	4.48±0.05
Р	0.25±0.05
R	0.85±0.05
D	0.6±0.05

DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.1 (0.080±0.004)	
w	1.55±0.1 (0.061±0.004)	
т	0.80±0.1 (0.032±0.004)	
Α	0.56±0.25 (0.022±0.010)	
В	0.35±0.15 (0.014±0.006)	



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A1795ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	1795 MHz
Impedance	50 Ohm
Band	1785-1805MHz
I. loss in band	-1.8dB max.
Return loss in band	-15dB
Rejection in [869~894MHz]	-30dBc min.
Rejection in [925~960 MHz]	-30dBc min
Rejection in [2300~2400MHz]	-30dBc min
Rejection in [2496~2690MHz]	-25dBc min , -30dBc typ
Rejection in [3400~3600MHz]	-25dBc min , -30dBc typ
Rejection in [5150~5925MHz]	-25dBc min , -30dBc typ
Power handling (CW)	5W
Operating temperature range	-40/+105°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W BP0805A2065ASTR**

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

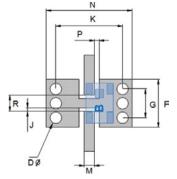
- Small size: 0805
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +125°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- **Base Stations**
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- Wireless LAN's

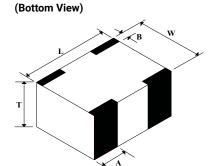
HOW TO ORDER

FINAL QUALITY INSPECTION

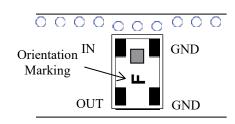

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

TERMINATION


Nickel/ Lead free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

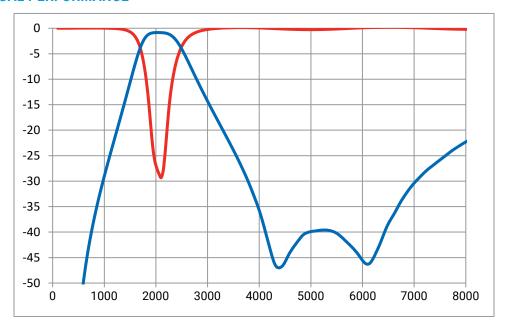
F	2.5±0.05
G	1.5±0.05
J	0.19±0.05
K	3.48±0.05
М	0.54±0.25
N	4.48±0.05
Р	0.25±0.05
R	0.85±0.05
D	0.6±0.05


DIMENSIONS: mm (inches)

L 2.03±0.1 (0.080±0.004) W 1.55±0.1 (0.061±0.004) T 0.8±0.1 (0.032±0.004) A 0.55±0.25 (0.022±0.010) w 0.35±0.15		
W 1.55±0.1 (0.061±0.004) T 0.8±0.1 (0.032±0.004) A 0.56±0.25 (0.022±0.010)		2.03±0.1
W (0.061±0.004) T 0.8±0.1 (0.032±0.004) A 0.56±0.25 (0.022±0.010)	L	(0.080±0.004)
T (0.061±0.004) T (0.032±0.004) A (0.032±0.004) (0.0022±0.010)	14/	1.55±0.1
(0.032±0.004) A 0.56±0.25 (0.022±0.010)	VV	(0.061±0.004)
A 0.56±0.25 (0.022±0.010)	т	0.8±0.1
A (0.022±0.010)	•	(0.032±0.004)
(0.022±0.010)	^	0.56±0.25
w 0.35±0.15	A	(0.022±0.010)
	14/	0.35±0.15
(0.014±0.006)	VV	(0.014±0.006)

TERMINALS AND LAYOUT:

(Top View)



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A2065ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2065 MHz
Impedance	50 Ohm
Band	1930-2200MHz
I. loss in-band	-1.3dB
Return loss in-band	-12 dB
Attenuation @ DC-1000MHz	-20 dB
Attenuation @ 4000-5000 MHz	-25 dB
Attenuation @ 5000-6000 MHz	-30 dB
Power handling (CW)	5W
Operating temperature range	-40/+125°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A2160ASTR

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

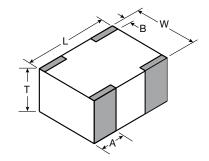
FEATURES

- Small size: 0805
- Frequency: 2160MHz
- Band: 1960-2360MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- · Wireless LAN's

HOW TO ORDER

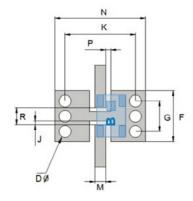


DIMENSIONS (TOP VIEW)

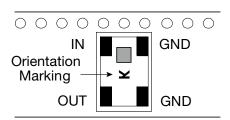
mm (inches)

L	2.03±0.1 (0.080±0.004)
w	1.55±0.1 (0.061±0.004)
Т	0.80±0.1 (0.032±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

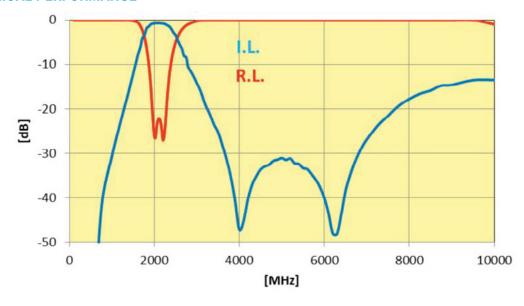
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

F	2.5±0.05
G	1.5±0.05
J	0.19±0.05
K	3.48±0.05
М	0.54±0.25
N	4.48±0.05
Р	0.25±0.05
R	0.85±0.05
D	0.6±0.05



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A2160ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2160 MHz
Impedance	50 Ohm
Band	1960-2360MHz
I. loss at center frequency	0.85dB max
In-band return loss	18dB
Rejection at 440MHz	59dB
Rejection at 4320MHz	42dB
Rejection at 6480MHz	38dB
Power handling (CW)	5W
Operating temperature range	-40/+105°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A3500ASTR

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

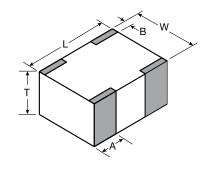
- Small size: 0805
- Band: 3400-3600MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- Base station
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

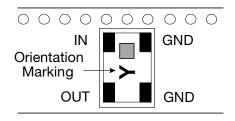
HOW TO ORDER

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

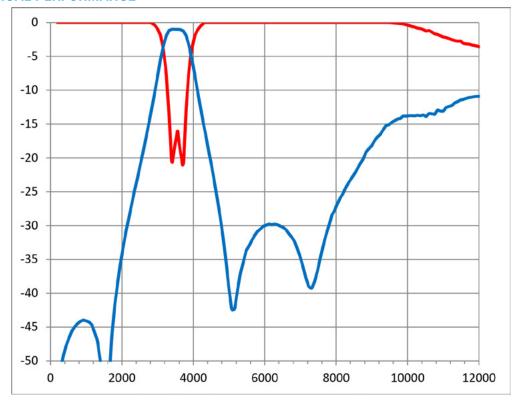
TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.1 (0.080±0.004)
w	1.55±0.1 (0.061±0.004)
Т	0.80±0.1 (0.032±0.004)
A	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A3500ASTR

ELECTRICAL CHARACTERISTICS

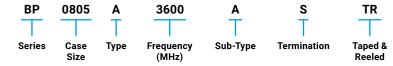
Description	Value
Center frequency	3500 MHz
Impedance	50 ohm
I. loss 3400-3600MHz	-1.3dB max.
In-band return loss	-15dB
Rejection in [370 - 2000MHz]	-20dBc min.
Rejection in [5250-7000MHz]	-25dBc mim
Rejection in [7000-9000MHz]	-15dBc min
Power Handling (CW)	5 Watt
Operating Temperature Range	-40/+105 degC
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A3600ASTR

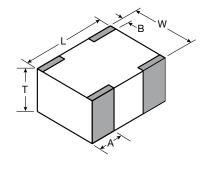
ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 0805
- Band: 3500-3700MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant


APPLICATIONS

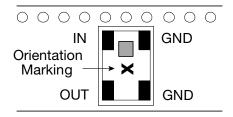
- Base station
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

L	2.03±0.1 (0.080±0.004)
w	1.55±0.1 (0.061±0.004)
Т	0.80±0.1 (0.032±0.004)
A	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

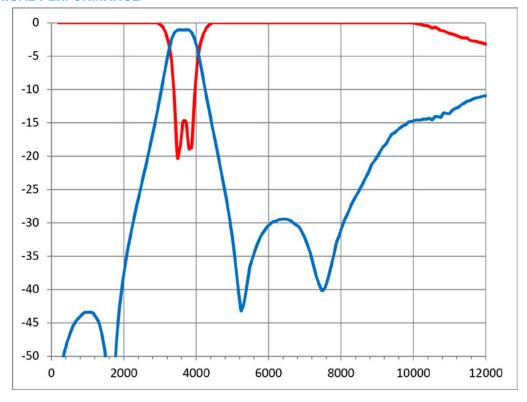

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A3600ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	3600 MHz
Impedance	50 ohm
I. loss 3500-3700MHz	-1.3dB max.
In-band return loss	-15dB
rejection in [370 - 2000MHz]	-25dBc min.
rejection in [5300-7200MHz]	-25dBc mim
rejection in [7200-11000MHz]	-10dBc min
power handling (CW)	5 Watt
operating temperature range	-40/+105 degC
package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A3700ASTR

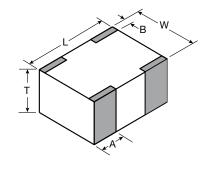
ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 0805
- Band: 3600-3800MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant


APPLICATIONS

- Base station
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

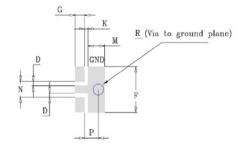
HOW TO ORDER

DIMENSIONS (TOP VIEW)

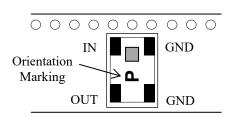
mm (inches)

L	2.03±0.1 (0.080±0.004)	
w	1.55±0.1 (0.061±0.004)	
т	0.80±0.1 (0.032±0.004)	
A	0.56±0.25 (0.022±0.010)	
В	0.35±0.15 (0.014±0.006)	

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

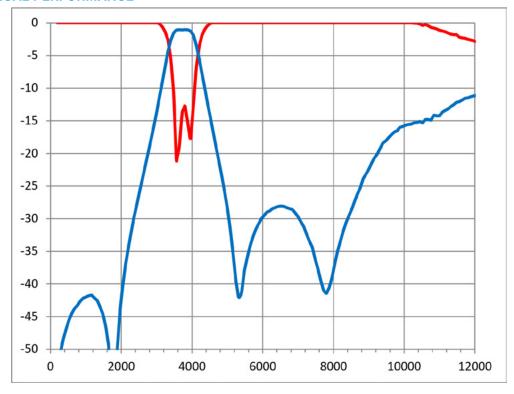
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm	
R	ø0.6
G	0.54
K	0.2
N	0.85
М	0.95
F	2.5
P	0.79
D	0.225



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A3700ASTR

ELECTRICAL CHARACTERISTICS

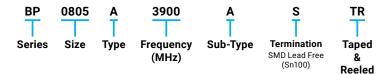
Description	Value
Center frequency	3700 MHz
Impedance	50 ohm
I. loss 3600-3800MHz	-1.3dB max.
In-band return loss	-15dB
rejection in [370 - 2000MHz]	-25dBc min.
rejection in [5300-7400MHz]	-25dBc mim
rejection in [7400-11500MHz]	-10dBc min
power handling (CW)	5 Watt
operating temperature range	-40/+105 degC
package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W BP0805A3900ASTR**

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

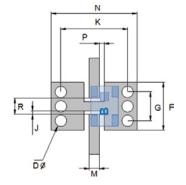
- Small size: 0805
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- · Base Stations
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

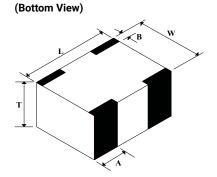
HOW TO ORDER

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

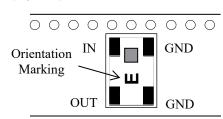
- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT: (mm)

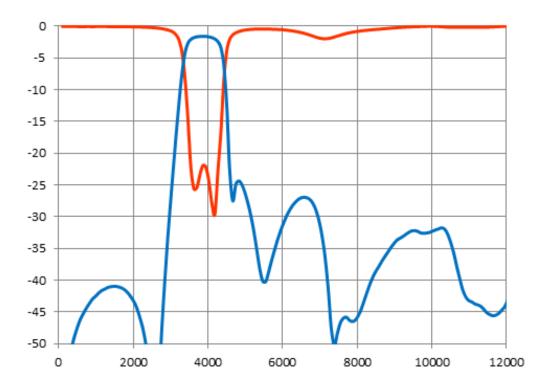
2.5±0.05	
1.5±0.05	
0.19±0.05	
3.48±0.05	
0.54±0.25	
4.48±0.05	
0.25±0.05	
0.85±0.05	
0.6±0.05	


DIMENSIONS: mm (inches)

	2.03±0.1
_	(0.080±0.004)
w	1.55±0.1
VV	(0.061±0.004)
_	0.8±0.1
•	(0.032±0.004)
Δ	0.56±0.25
A	(0.022±0.010)
R	0.35±0.15
В	(0.014±0.006)

TERMINALS AND LAYOUT:

(Top View)



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A3900ASTR

ELECTRICAL CHARACTERISTICS

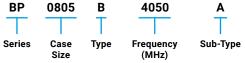
Description	Value
Center frequency	3900 MHz
Impedance	50 Ohm
I. loss 3600-4200Mhz	-2.5 dB
Return loss in-band	-18 dB
Rejection in [DC - 3000Mhz]	-10 dB
Rejection in [5100-6550Mhz]	-22 dB
Rejection in [6550-10000Mhz]	-25 dB
Power handling (CW)	5 Watt
Operating temperature range	-40/+85°C
Package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805B4050ASTR

ITF TECHNOLOGY

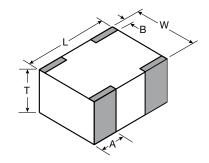
The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 0805
- Band: 4000-4100MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS


- Base stations
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

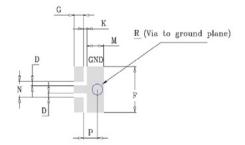
HOW TO ORDER

DIMENSIONS (TOP VIEW)

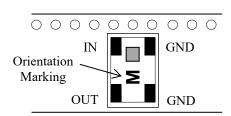
mm (inches)

L	2.03±0.1 (0.080±0.004)	
w	1.55±0.1 (0.061±0.004)	
Т	0.80±0.1 (0.032±0.004)	
Α	0.56±0.25 (0.022±0.010)	
В	0.35±0.15 (0.014±0.006)	

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

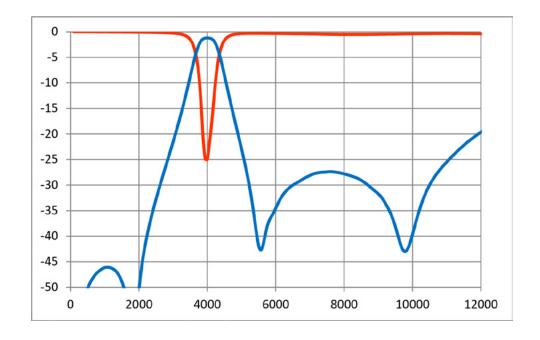
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm	
R	ø0.6
G	0.54
K	0.2
N	0.85
M	0.95
F	2.5
P	0.79
D	0.225



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805B4050ASTR

ELECTRICAL CHARACTERISTICS

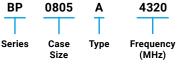
Description	Value
Center frequency	4050 MHz
Impedance	50 ohm
I. loss 4000-4100MHz	-1.3dB max.
In-band return loss	-18dB
Rejection in DC-2000MHz	-25dBc min.
Rejection in 6000-8000MHz	-25dBc mim
Rejection in 10000-12000MHz	-15dBc min
Power handling (CW)	5 Watt
operating temperature range	-40/+105 degC
package	SMD, standard 0805 size

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W** BP0805A4320ASTR

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

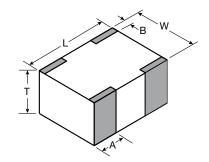

FEATURES

- Small size: 0805
- Frequency: 4320MHz
- Band: 4120-4520MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS

- **Base Stations**
- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

HOW TO ORDER

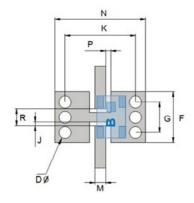


DIMENSIONS (TOP VIEW)

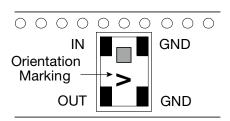
mm (inches)

L	2.03±0.1 (0.080±0.004)
w	1.55±0.1 (0.061±0.004)
Т	0.80±0.1 (0.032±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

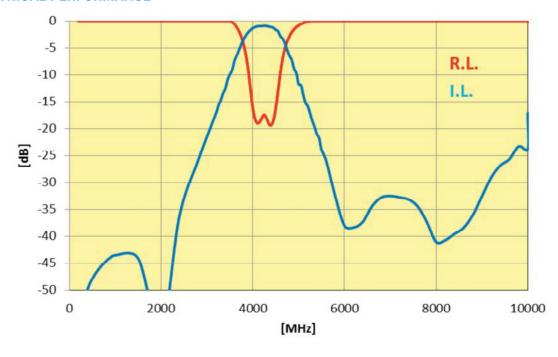
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm		
F	2.5±0.05	
G	1.5±0.05	
J	0.19±0.05	
K	3.48±0.05	
M	0.54±0.25	
N	4.48±0.05	
Р	0.25±0.05	
R	0.85±0.05	
D	0.6±0.05	



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A4320ASTR

ELECTRICAL CHARACTERISTICS

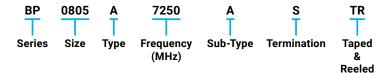
Description	Value
Center frequency	4320 MHz
Impedance	50 Ohm
Band	4120-4520MHz
I. loss at center frequency	1.2dB max
In-band return loss	15dB
Rejection at 2160MHz	45dBc min
Rejection at 6480MHz	39dBc min
Rejection at 8640MHz	44dBc min
Power handling (CW)	5W
Operating temperature range	-40/+105°C
Package	SMD, standard 0805

Thin-Film RF/Microwave Filters **BP0805 Band Pass Filter SMD 5W BP0805A7250ASTR**

ITF TECHNOLOGY

The BP0805 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 0805
- Band: 6625 7875 MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +85°C
- Low profile
- Rugged construction
- · Taped and reeled
- RoHS compliant

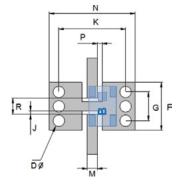
APPLICATIONS

- 5G / UWB Applications
- · Base Stations
- · Mobile communications
- · Satellite TV receivers
- · Vehicle location systems

HOW TO ORDER

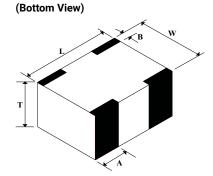
FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:


- · Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I_n, 4 hours

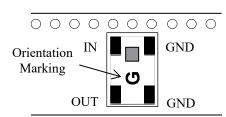
Nickel/ Lead freeSolder coating (Sn100) compatible with automatic

TERMINATION


soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT: (mm)

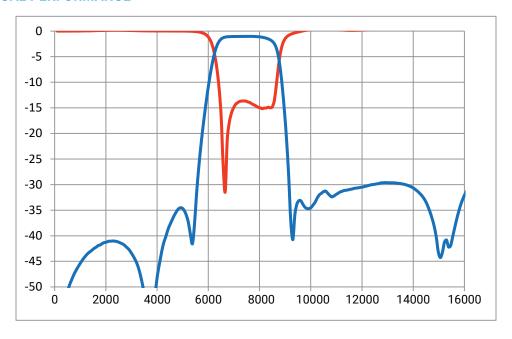
F	2.5±0.05	
G	1.5±0.05	
J	0.19±0.05	
K	3.48±0.05	
М	0.54±0.25	
N	4.48±0.05	
Р	0.25±0.05	
R	0.85±0.05	
D	0.6±0.05	


DIMENSIONS: mm (inches)

	L	2.03±0.1
		(0.080±0.004)
	w	1.55±0.1
		(0.061±0.004)
	Т	0.8±0.1
		(0.032±0.004)
	Α	0.56±0.25
		(0.022±0.010)
	В	0.35±0.15
		(0.014±0.006)

TERMINALS AND LAYOUT:

(Top View)



Thin-Film RF/Microwave Filters BP0805 Band Pass Filter SMD 5W BP0805A7250ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	7250 MHz
Impedance	50 ohm
I. loss 6625-7875Mhz	-1.5 dB
Return loss in-band	-12 dB
Rejection in [DC - 5400 Mhz]	-25 dB
Rejection in [10000 - 15000 Mhz]	-25 dB
Power handling (CW)	5 Watt
Operating temperature range	-40/+85°C
Package	SMD, standard 0805 size

High Performance Band Pass Filters

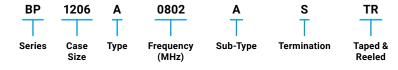
BP1206 Band Pass Filter SMD 8W

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W** BP1206A0802ASTR

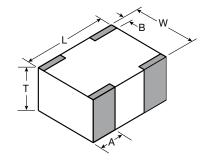
ITF TECHNOLOGY

The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 1206
- Band: 680-925 MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant


APPLICATIONS

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

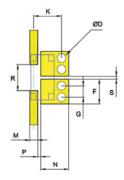
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

	3.08±0.1
	(0.121±0.004)
W	1.60±0.1
	(0.063±0.004)
-	0.87±0.1
	(0.034±0.004)
Α	0.61±0.25
	(0.028±0.010)
В	0.35±0.15
В	(0.014±0.006)

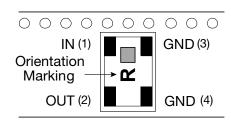
FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

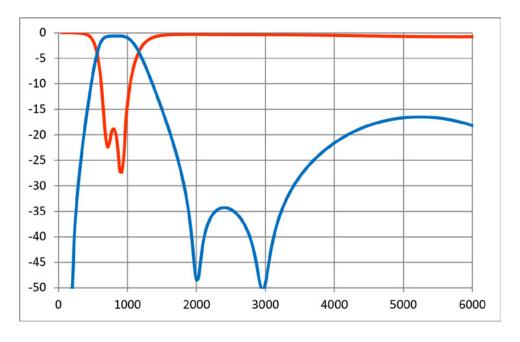
Nickel/Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT

mm

1.70±0.05
0.75±0.05
1.91±0.10
0.54±0.025
1.93±0.05
0.21±0.04
1.80±0.04
0.20±0.04
0.6±0.1

TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A0802ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	802 MHz
Impedance	50 ohm
I.loss 680-925MHz	-1.1dB max.
In-band return loss	-18dB
Rejection in [DC~400MHz]	-15dBc min.
Rejection in [2000~3000MHz]	-30dBc min
Rejection in [3000~4000MHz]	-18dBc min
Power handling (CW)	8 Watt
Operating temperature range	-40/+105 degC
Package	SMD, standard 1206 size

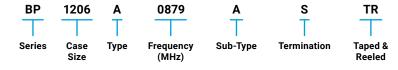
TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A0879ASTR**

ITF TECHNOLOGY

The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 1206
- Band: 800-960 MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant


APPLICATIONS

- **Base Stations**
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

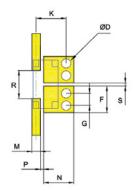
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

L	3.08±0.1 (0.121±0.004)
w	1.60±0.1 (0.063±0.004)
Т	0.87±0.1 (0.034±0.004)
Α	0.61±0.25 (0.028±0.010)
В	0.35±0.15 (0.014±0.006)

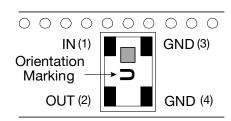
FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

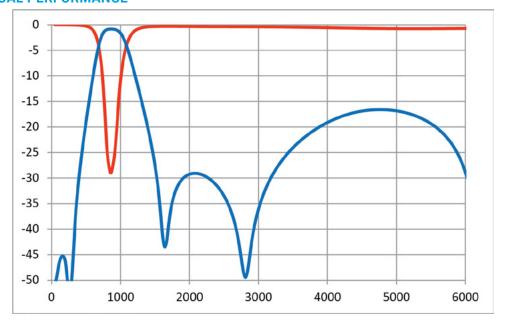
Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


RECOMMENDED PAD LAYOUT

mm

1.70±0.05
0.75±0.05
1.91±0.10
0.54±0.025
1.93±0.05
0.21±0.04
1.80±0.04
0.20±0.04
0.6±0.1

TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A0879ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	879 MHz
Impedance	50 ohm
I. loss 800-960MHz	-1.2dB max.
In-band return loss	-18dB
Rejection in [DC~400MHz]	-22dBc min.
Rejection in [1600~3000MHz]	-28dBc min
Rejection in [3000~4000MHz]	-18dBc min
Power handling (CW)	8 Watt
Operating temperature range	-40/+105 degC
Package	SMD, standard 1206 size

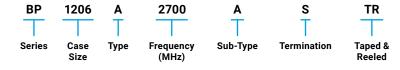
TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A2700ASTR**

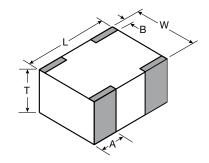
ITF TECHNOLOGY

The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 1206
- Band: 2600-2800 MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant
- Power Handling: 8W CW


APPLICATIONS

- Base Stations.
- Radar Systems.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

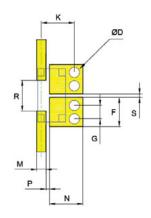
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

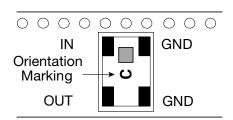
L	3.08±0.1 (0.121±0.004)
w	1.60±0.1 (0.063±0.004)
Т	0.87±0.1 (0.034±0.004)
Α	0.61±0.25 (0.028±0.010)
В	0.35±0.15 (0.014±0.006)

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

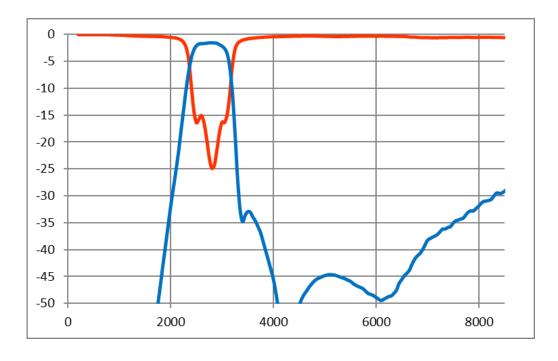
TERMINATION


Nickel/Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm	
F	1.70±0.05
G	0.75±0.05
K	1.91±0.10
М	0.54±0.025
N	1.93±0.05
Р	0.21±0.04
R	1.80±0.04
S	0.20±0.04
D	0.6±0.1

TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A2700ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2700 MHz
Impedance	50 ohm
I. loss 2600-2800MHz	-1.9 dB
In-band Return Loss	-12 dB
Rejection @ 2000 MHz	-27 dB
Rejection @ 4000-6000 MHz	-40dB
Rejection @ 6001-8100 MHz	-27dB
Power Handling (CW)	8 Watt
Operating Temperature Range	-40/+85℃
Package	SMD, standard 1206 size

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A2800ASTR**

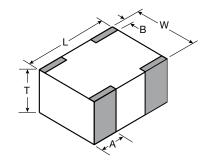
ITF TECHNOLOGY

The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Small size: 1206
- Band: 2700-2900 MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant
- · Power Handling: 8W CW


APPLICATIONS

- · Base Stations.
- Radar Systems.
- · Mobile Communications
- · Satellite TV receivers
- · Vehicle Location Systems
- · Wireless LAN's

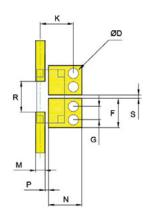
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

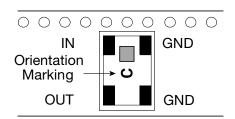
L	3.08±0.1
	(0.121±0.004)
w	1.60±0.1
	(0.063±0.004)
т -	0.87±0.1
	(0.034±0.004)
Α	0.61±0.25
A	(0.028±0.010)
В	0.35±0.15
В	(0.014±0.006)

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

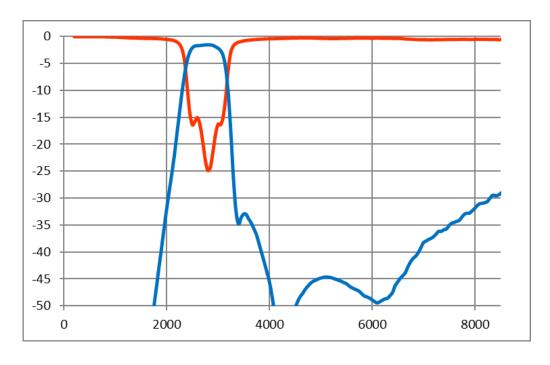

Nickel/Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm	
F	1.70±0.05
G	0.75±0.05
K	1.91±0.10
М	0.54±0.025
N	1.93±0.05
P	0.21±0.04
R	1.80±0.04
S	0.20±0.04
D	0.6±0.1

TERMINAL AND LAYOUT (TOP VIEW)

121521


Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A2800ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2800 MHz
Impedance	50 ohm
I. loss 2700 - 2900 MHz	-1.9 dB
In band Return Loss	-12 db
Rejection @ 2000 MHz	- 27 dB
Rejection @ 4000 - 6000 MHz	-40 dB
Rejection @ 6001 - 8400 MHz	-27 dB
Power handling (CW)	8 Watt
Operating temperature range	-40/+85°C
Package	SMD, standard 1206 size

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A2880ASTR**

ITF TECHNOLOGY

The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

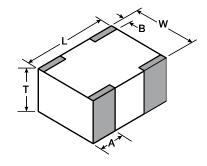
- Small size: 1206
- Band: 2380-3380MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C

TR

Taped &

Reeled

- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant
- Power Handling: 8W CW


APPLICATIONS

- Base Stations.
- Radar Systems.
- Mobile communications
- Satellite TV receivers
- Vehicle location systems
- · Wireless LAN's

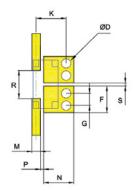
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

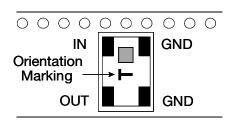
L	3.08±0.1 (0.121±0.004)			
w	1.60±0.1 (0.063±0.004)			
Т	0.87±0.1 (0.034±0.004)			
Α	0.61±0.25 (0.028±0.010)			
В	0.35±0.15 (0.014±0.006)			

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

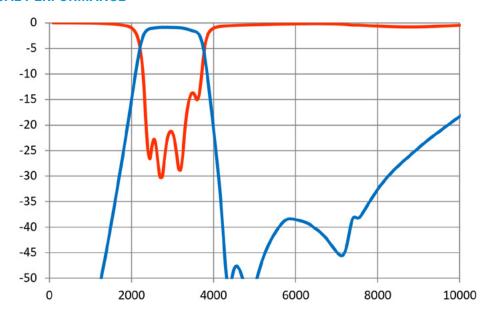

Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm				
F	1.70±0.05			
G	0.75±0.05			
K	1.91±0.10			
М	0.54±0.025			
N	1.93±0.05			
P	0.21±0.04			
R	1.80±0.04			
S	0.20±0.04			
D	0.6±0.1			

TERMINAL AND LAYOUT (TOP VIEW)

081320


Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A2880ASTR**

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2880 MHz
Impedance	50 ohm
I. loss 2380-3380MHz	-1.5dB max.
In-band return loss	-15dB
Rejection in [460-1460] MHz	-30dBc min.
Rejection in [4300-5300] MHz	-30dBc min.
Power handling (CW)	8 Watt
Operating temperature range	-40/+105 degC
Package	SMD, standard 1206 size

TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A2900ASTR**

ITF TECHNOLOGY

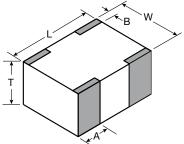
The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- · Small size: 1206
- · Band: 2800-3000 MHz
- Characteristic impedance: 50Ω
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant
- · Power Handling: 8W CW

APPLICATIONS


- · Mobile communications
- Satellite TV receivers
- **GPS**
- · Vehicle location systems
- · Wireless LAN's

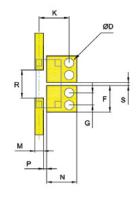
HOW TO ORDER

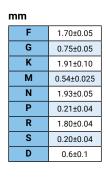
DIMENSIONS (TOP VIEW)

mm (inches)

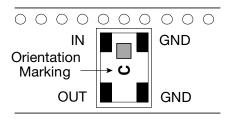
L	3.08±0.1 (0.121±0.004)
W 1.60±0.1 (0.063±0.00	
Т	0.87±0.1 (0.034±0.004)
Α	0.61±0.25 (0.028±0.010)
В	0.35±0.15 (0.014±0.006)

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

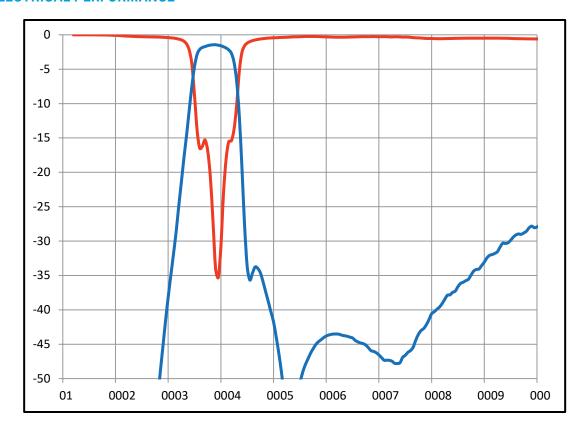

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION


Nickel/Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

TERMINAL AND LAYOUT (TOP VIEW)


Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A2900ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	2900 MHz
Impedance	50 ohm
I. loss 2800 - 3000 MHz	-1.8 dB
In Band Return Loss	-12 dB
Rejection @ 2000 MHz	-27 dB
Rejection @ 4000 - 6000 MHz	-38 dB
Rejection @ 6001 - 8700 MHz	-25 dB
Power Handling (CW)	8 Watt
Operating Temperature Range	-40/+85°C
Package	SMD, standard 1206 size

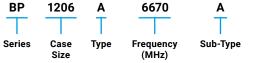
TYPICAL ELECTRICAL PERFORMANCE

Thin-Film RF/Microwave Filters **BP1206 Band Pass Filter SMD 8W BP1206A6670ASTR**

ITF TECHNOLOGY

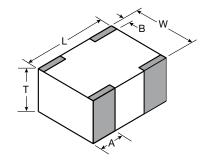
The BP1206 Band Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.


FEATURES

- Small size: 1206
- Band: 5905-7450MHz
- Characteristic impedance: 500
- Operating / Storage temp: -40°C ÷ +105°C
- Low profile
- Rugged construction
- Taped and reeled
- RoHS compliant

APPLICATIONS


- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

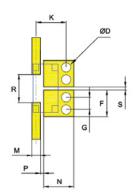
HOW TO ORDER

DIMENSIONS (TOP VIEW)

mm (inches)

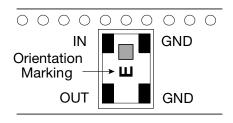
L	3.08±0.1 (0.121±0.004)	
	(0.121±0.004)	
w	1.60±0.1	
VV	(0.063±0.004)	
-	0.87±0.1	
	(0.034±0.004)	
Δ	0.61±0.25	
A	(0.028±0.010)	
	0.35±0.15	
В	(0.014±0.006)	

FINAL QUALITY INSPECTION


Finished parts are 100% tested for electrical parameters and visual/ mechanical characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION


Nickel/ Lead freeSolder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

RECOMMENDED PAD LAYOUT

mm				
F	1.70±0.05			
G	0.75±0.05			
K	1.91±0.10			
М	0.54±0.025			
N	1.93±0.05			
Р	0.21±0.04			
R	1.80±0.04			
S	0.20±0.04			
D	0.6±0.1			

TERMINAL AND LAYOUT (TOP VIEW)

Thin-Film RF/Microwave Filters BP1206 Band Pass Filter SMD 8W BP1206A6670ASTR

ELECTRICAL CHARACTERISTICS

Description	Value
Center frequency	6670 MHz
Impedance	50 ohm
I. loss 5905-7450MHz	-1.5dB max.
In-band return loss	-18dB
Rejection in [1000~3000MHz]	-30dBc min.
Rejection in [4900~5120MHz]	-20dBc min
Rejection in [10800~13000MHz]	-35dBc min
Power handling (CW)	8 Watt
Operating temperature range	-40/+105 degC
Package	SMD, standard 1206 size

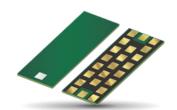
TYPICAL ELECTRICAL PERFORMANCE

Multilayer Organic (MLO®) Technology

MLO® Filters

MLO® Capacitors

MLO® Diplexers


MLO® Inductors

MLO® SMT Crossovers

MLO® High Pass Filters

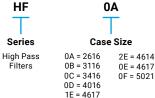
General Information

GENERAL DESCRIPTION

The MLO® High Pass Filters are low profile passive devices with best in class performance based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO® High pass filters utilize high dielectric constant and low loss materials to realize high Q passive printed elements, such as inductors and capacitors, in a multilayer stack. This results in a high performance High Pass Filter design. MLO® High Pass Filters can support both a variety of frequency bands and multiple wireless standards, and are less than 1.0mm in thickness. All filters are expansion matched to most organic PCB materials, thereby resulting in improved reliability over standard silicon and ceramic devices.

FEATURES

- Wide Frequency Range
- **Excellent Isolation**
- Low Loss
- Expansion matched to PCB
- 50Ω Impedance
- Surface Mountable RoHS Compliant
- · High Q


APPLICATIONS

- Mobile Communication
- Vehicle location systems
- Wireless LANs
- Satellite Receivers
- Instrumentation


LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- **Excellent Solderability**
- · Better Heat Dissipation

HOW TO ORDER

00 - Waffle Pack TR - 1000 pcs Tape & Reel TR\250 - 250 pcs Tape & Reel

For RoHS compliant products, please select correct termination style

QUALITY INSPECTION

Finish Parts are 100% electrically tested.

TERMINATION

All finishes are compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase, and manual soldering.

OPERATING TEMPERATURE

-55°C to +85°C

MECHANICAL DIMENSIONS:

inches (mm)

Ca	se size	Length	wiatn	neight	
Α	2616	0.259±0.010 (6.579±0.254)	0.157±0.010 (3.975±0.254)	Varies - see part specification	
В	3116	0.306±0.010 (7.785±0.254)	0.156±0.010 (3.975±0.254)	Varies - see part specification	
С	3416	0.342±0.010 (8.674±0.254)	0.157±0.010 (3.975±0.254)	Varies - see part specification	
D	4016	0.401±0.010 (10.198±0.254)	0.156±0.010 (3.975±0.254)	Varies - see part specification	
Е	4617	0.460±0.010 (11.684±0.254)	0.170±0.010 (4.318±0.254)	Varies - see part specification	
1E	4617	0.460±0.010 (11.684±0.254)	0.174±0.004 (4.41±0.10)	Varies - see part specification	
2E	4614	0.460±0.010 (11.684±0.254)	0.144±0.004 (3.64±0.10)	Varies - see part specification	
F	5021	0.512±0.010 (12.992±0.254)	0.207±0.010 (5.245±0.254)	Varies - see part specification	

300

S2P FILES, DRAWING AND OTHER INFORMATION AVAILABLE IN LINK ON INDIVIDUAL DATASHEETS

Multilayer Organic (MLO®) Filters MLO® High Pass Filters

ELECTRICAL SPECIFICATIONS

Part Number				Typical -3dB		Stopband Rejection Frequency (GHz)		Rated RF Power
	Min	Max	Тур.	Max	Cutoff Frequency (GHz)	-30dB	-40dB	(W)
HF0DA0740A7**	0.74	1.47	0.84	1.20	0.65	0.54	0.52	2
HF0BA0850A7**	0.85	1.94	0.75	1.20	0.77	0.64	0.63	2
HF0BA0930A7**	0.93	1.62	0.87	1.20	0.82	0.69	0.68	2
HF0BA0950A7**	0.95	2.00	0.90	1.20	0.85	0.71	0.65	2
HF0AA1300A7**	1.30	7.00	0.53	1.20	1.10	0.58	0.50	2
HF0AA1330A7**	1.33	6.59	0.55	1.20	1.12	0.59	0.51	2
HF0BA1340A7**	1.34	2.39	0.74	1.20	1.17	1.00	0.97	2
HF0BA1390A7**	1.39	2.52	0.75	1.20	1.21	1.02	1.00	2
HF0BA1420A7**	1.42	2.57	0.70	1.20	1.22	1.03	1.00	2
HF0BA1440A7**	1.44	2.70	0.63	1.20	1.30	1.09	1.06	2
HF0BA1500A7**	1.50	2.83	0.75	1.20	1.38	1.17	1.15	2
HF0BA1540A7**	1.54	2.68	0.82	1.20	1.39	1.18	1.10	2
HF0BA1550A7**	1.55	2.93	0.82	1.20	1.41	1.19	-	2
HF0AA1760A7**	1.76	3.50	0.64	1.20	1.49	1.29	1.26	2
HF0AA1800A7**	1.80	4.21	0.76	1.20	1.59	1.31	1.20	2
HF0BA1840A7**	1.84	2.83	0.85	1.20	1.66	1.43	1.40	2
HF0AA2180A7**	2.18	6.50	0.73	1.20	1.90	1.63	1.60	2
HF0AA2230A7**	2.23	6.50	0.71	1.20	1.93	1.69	1.66	2
HF0AA2290A7**	2.29	7.00	0.73	1.20	1.99	1.74	1.71	2
HF0AA2370A7**	2.37	7.00	0.76	1.20	2.06	1.80	1.77	2
HF0AA2400A7**	2.40	7.00	0.61	1.20	2.01	1.75	1.71	2
HF0AA2410A7**	2.41	7.00	0.75	1.20	2.08	1.81	1.78	2
HF0AA2420A7**	2.42	7.00	0.73	1.20	2.04	1.78	1.75	2
HF0AA2470A7**	2.47	6.50	0.76	1.20	2.13	1.86	1.82	2
HF0AA2480A7**	2.48	6.00	0.71	1.20	2.11	1.84	1.81	2
HF0AA3280A7**	3.28	8.50	0.91	1.20	3.02	2.53	2.43	2
HF0AA3460A7**	3.46	8.50	0.75	1.20	3.14	2.61	2.52	2
HF0AA3540A7**	3.54	8.50	0.85	1.20	2.92	2.42	2.27	2
HF0AA4140A7**	4.14	8.50	0.66	1.20	3.59	2.83	2.71	2
HF0AA4270A7**	4.27	8.00	0.77	1.20	3.76	3.17	-	2
HF0AA4430A7**	4.43	7.00	0.61	1.20	3.88	2.98	2.86	2
HF0AA4500A7**	4.50	7.50	0.65	1.20	3.93	3.08	2.96	2
HF0AA4680A7**	4.68	7.50	0.62	1.20	4.09	3.21	3.08	2
HF0AA6240A7**	6.24	8.00	0.80	1.20	5.37	4.76	4.68	2
HF0AA6380A7**	6.38	8.00	0.74	1.20	5.28	4.61	4.54	2
HF0AA6510A7**	6.51	8.00	0.83	1.20	5.58	4.95	4.88	2

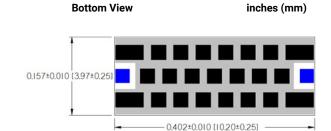
Click on part number to see full specifications

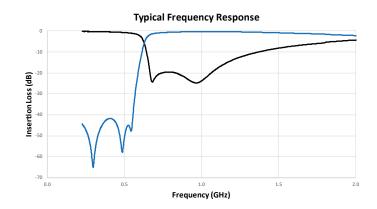
^{**}Packaging: 00 = waffle pack, TR = 1000pcs T&R, $TR \setminus 250 = 250$ pcs T&R

MLO® High Pass Filters

HF0DA0740A7**

ELECTRICAL SPECIFICATIONS

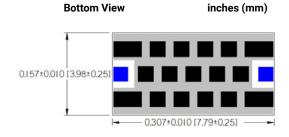

	0.74 - 1.47 GHz	1.2 dB	Max
Pass Band	0.74 - 1.47 GHz	0.84 dB	Тур
	-3dB Cutoff	0.65 GHz	Тур
Rejection	DC - 0.54 GHz	30dB	Min
	DC - 0.52 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

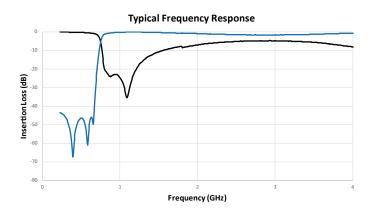

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE D

HF0BA0850A7**


ELECTRICAL SPECIFICATIONS


	0.85 - 1.94 GHz	1.2 dB	Max
Pass Band	0.85 - 1.94 GHz	0.75 dB	Тур
	-3dB Cutoff	0.77 GHz	Тур
Rejection	DC - 0.64 GHz	30 dB	Min
	DC - 0.63 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

Click here to return to main table.

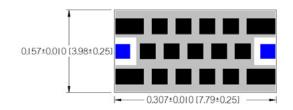
*Data files contain DXF and S2P files

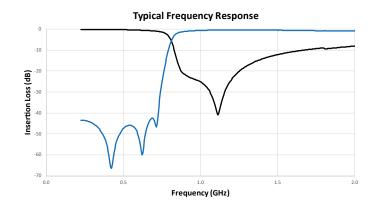
MLO® High Pass Filters

HF0BA0930A7**

ELECTRICAL SPECIFICATIONS

Pass Band	0.93 - 1.62 GHz	1.2 dB	Max
	0.93 - 1.62 GHz	0.87 dB	Тур
	-3dB Cutoff	0.82 GHz	Тур
Rejection	DC - 0.69 GHz	30 dB	Min
	DC - 0.68 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max


Click here to return to main table.



*Data files contain DXF and S2P files

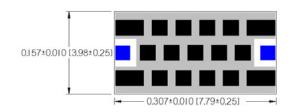
DIMENSIONS - CASE SIZE B

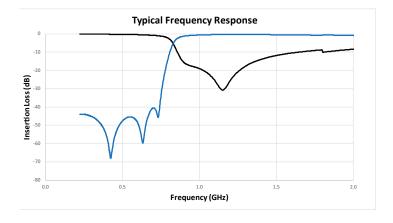
Bottom View inches (mm)

HF0BA0950A7**

ELECTRICAL SPECIFICATIONS

Pass Band	0.95 - 2.00 GHz	1.2 dB	Max
	0.95 - 2.00 GHz	0.90 dB	Тур
	-3dB Cutoff	0.85 GHz	Тур
Rejection	DC - 0.71 GHz	30 dB	Min
	DC - 0.65 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max


Click here to return to main table.



*Data files contain DXF and S2P files

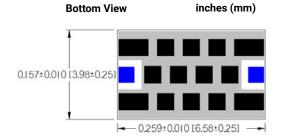
DIMENSIONS - CASE SIZE B

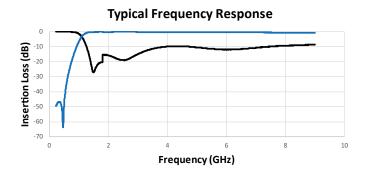
Bottom View inches (mm)

MLO® High Pass Filters

HF0AA1300A7**

ELECTRICAL SPECIFICATIONS

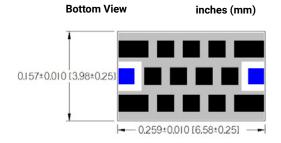

Pass Band	1.30 - 7.00 GHz	1.2 dB	Max
	1.30 - 7.00 GHz	0.53 dB	Тур
	-3dB Cutoff	1.10 GHz	Тур
	DC - 0.58 GHz	30 dB	Min
Rejection	DC - 0.50 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

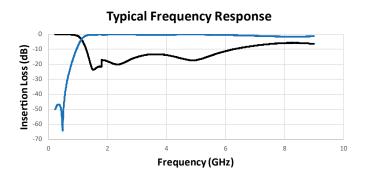

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA1330A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.33 - 6.59 GHz	1.2 dB	Max
	1.33 - 6.59 GHz	0.55 dB	Тур
	-3dB Cutoff	1.12 GHz	Тур
	DC - 0.59 GHz	30 dB	Min
Rejection	DC - 0.51 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

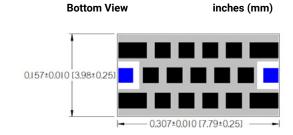
Click here to return to main table.

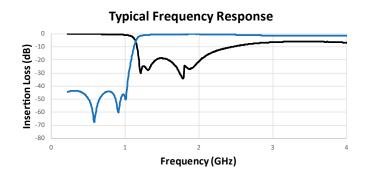
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0BA1340A7**

ELECTRICAL SPECIFICATIONS

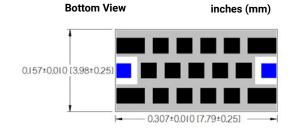

Pass Band	1.34 - 2.39 GHz	1.2 dB	Max
	1.34 - 2.39 GHz	0.74 dB	Тур
	-3dB Cutoff	1.17 GHz	Тур
- · · ·	DC - 1.00 GHz	30 dB	Min
Rejection	DC - 0.97 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

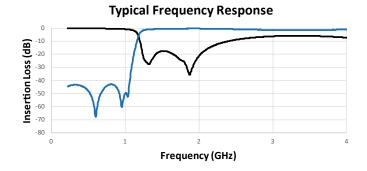

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

HF0BA1390A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.39 - 2.52 GHz	1.2 dB	Max
	1.39 - 2.52 GHz	0.75 dB	Тур
	-3dB Cutoff	1.21 GHz	Тур
Rejection	DC - 1.02 GHz	30 dB	Min
	DC - 1.00 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

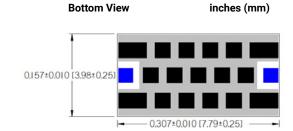
Click here to return to main table.

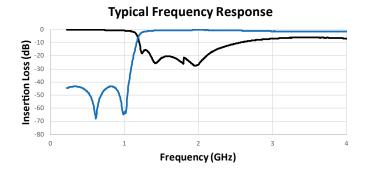
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0BA1420A7**

ELECTRICAL SPECIFICATIONS

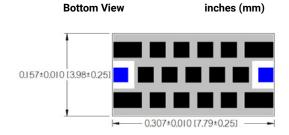

Pass Band	1.42 - 2.57 GHz	1.2 dB	Max
	1.42 - 2.57 GHz	0.70 dB	Тур
	-3dB Cutoff	1.22 GHz	Тур
Rejection	DC - 1.03 GHz	30 dB	Min
	DC - 1.00 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

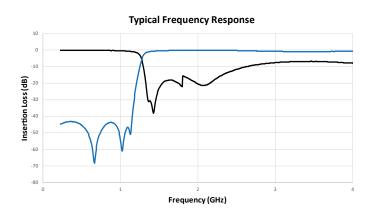

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

HF0BA1440A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.44 - 2.70 GHz	1.2 dB	Max
	1.44 - 2.70 GHz	0.63 dB	Тур
	-3dB Cutoff	1.22 GHz	Тур
Rejection	DC - 1.09 GHz	30 dB	Min
	DC - 1.06 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

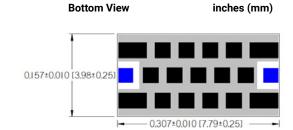
Click here to return to main table.

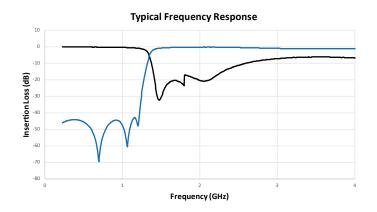
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0BA1500A7**

ELECTRICAL SPECIFICATIONS

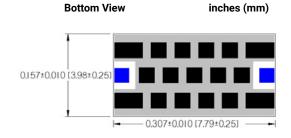

Pass Band	1.50 - 2.83 GHz	1.2 dB	Max
	1.50 - 2.83 GHz	0.75 dB	Тур
	-3dB Cutoff	1.38 GHz	Тур
5 · ··	DC - 1.17 GHz	30 dB	Min
Rejection	DC - 1.15 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

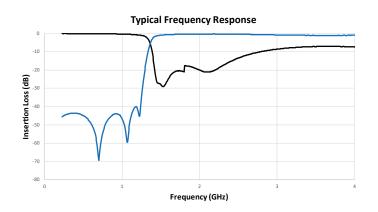

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

HF0BA1540A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.54 - 2.68 GHz	1.2 dB	Max
	1.54 - 2.68 GHz	0.82 dB	Тур
	-3dB Cutoff	1.39 GHz	Тур
Rejection	DC - 1.18 GHz	30 dB	Min
	DC - 1.10 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

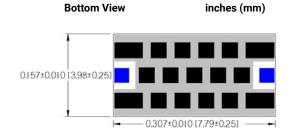
Click here to return to main table.

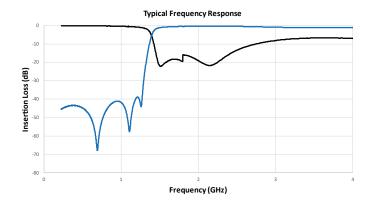
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0BA1550A7**

ELECTRICAL SPECIFICATIONS

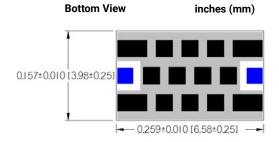

Pass Band	1.55 - 2.93 GHz	1.2 dB	Max
	1.55 - 2.93 GHz	0.82 dB	Тур
	-3dB Cutoff	1.41 GHz	Тур
Rejection	DC - 1.19GHz	30 dB	Min
	-	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

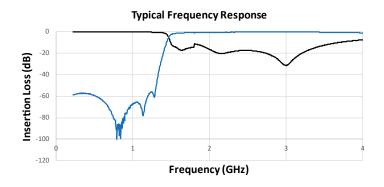

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

HF0AA1760A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.76 - 3.50 GHz	1.2 dB	Max
	1.76 - 3.50 GHz	0.64 dB	Тур
	-3dB Cutoff	1.49 GHz	Тур
D : .:	DC - 1.29 GHz	30 dB	Min
Rejection	DC - 1.26 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

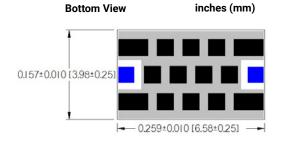
Click here to return to main table.

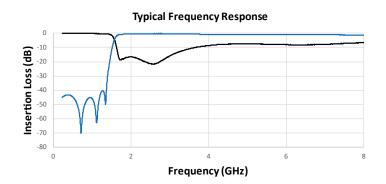
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA1800A7**

ELECTRICAL SPECIFICATIONS

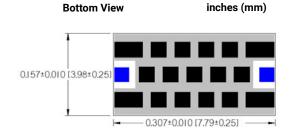

Pass Band	1.80 - 4.21 GHz	1.2 dB	Max
	1.80 - 4.21 GHz	0.76dB	Тур
	-3dB Cutoff	1.59 GHz	Тур
- · · ·	DC - 1.31 GHz	30 dB	Min
Rejection	DC - 1.20 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

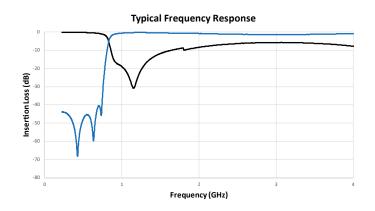

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0BA1840A7**


ELECTRICAL SPECIFICATIONS


Pass Band	1.84 - 2.83 GHz	1.2 dB	Max
	1.84 - 2.83 GHz	0.85 dB	Тур
	-3dB Cutoff	1.66 GHz	Тур
Rejection	DC - 1.43 GHz	30 dB	Min
	DC - 1.40 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

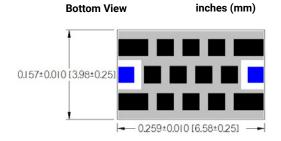
Click here to return to main table.

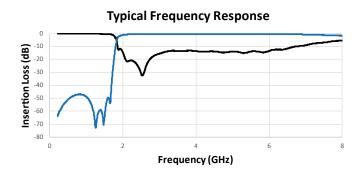
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA2180A7**

ELECTRICAL SPECIFICATIONS

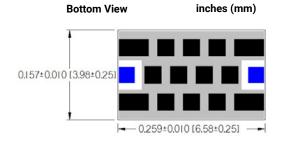

Pass Band	2.18 - 6.50 GHz	1.2 dB	Max
	2.18 - 6.50 GHz	0.73 dB	Тур
	-3dB Cutoff	1.90 GHz	Тур
- · · ·	DC - 1.63 GHz	30 dB	Min
Rejection	DC - 1.60 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

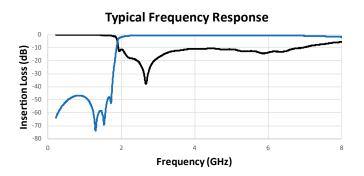

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA2230A7**


ELECTRICAL SPECIFICATIONS


Pass Band	2.23 - 6.50 GHz	1.2 dB	Max
	2.23 - 6.50 GHz	0.71dB	Тур
	-3dB Cutoff	1.93 GHz	Тур
Rejection	DC - 1.69 GHz	30 dB	Min
	DC - 1.66 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

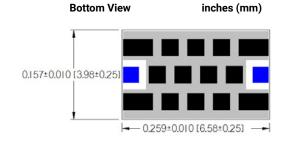
Click here to return to main table.

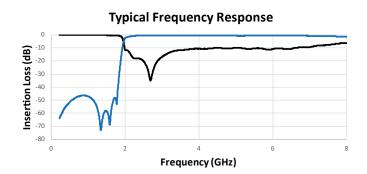
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA2290A7**

ELECTRICAL SPECIFICATIONS

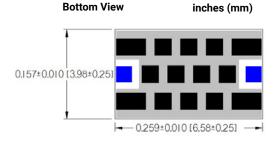

Pass Band	2.29 - 7.00 GHz	1.2 dB	Max
	2.29 - 7.00 GHz	0.73 dB	Тур
	-3dB Cutoff	1.99 GHz	Тур
	DC - 1.74 GHz	30 dB	Min
Rejection	DC - 1.71 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

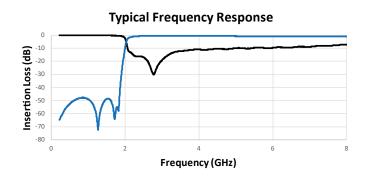

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA2370A7**


ELECTRICAL SPECIFICATIONS


Pass Band	2.37 - 7.00 GHz	1.2 dB	Max
	2.37 - 7.00 GHz	0.76 dB	Тур
	-3dB Cutoff	2.06 GHz	Тур
Rejection	DC - 1.80 GHz	30 dB	Min
	DC - 1.77 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

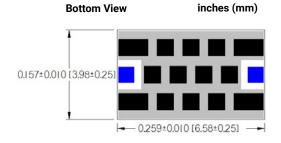
Click here to return to main table.

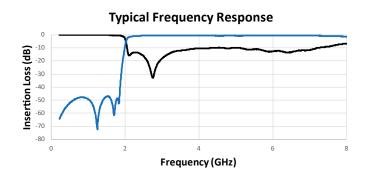
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA2400A7**

ELECTRICAL SPECIFICATIONS

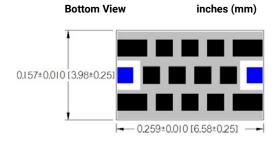

Pass Band	2.40 - 7.00 GHz	1.2 dB	Max
	2.40 - 7.00 GHz	0.61 dB	Тур
	-3dB Cutoff	2.01 GHz	Тур
Rejection	DC - 1.75 GHz	30 dB	Min
	DC - 1.71 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

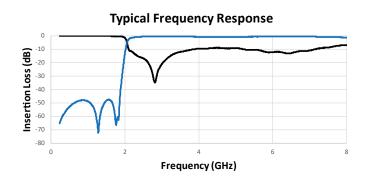

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA2410A7**


ELECTRICAL SPECIFICATIONS


Pass Band	2.41 - 7.00 GHz	1.2 dB	Max
	2.41 - 7.00 GHz	0.75 dB	Тур
	-3dB Cutoff	2.08 GHz	Тур
Rejection	DC - 1.81 GHz	30 dB	Min
	DC - 1.78 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

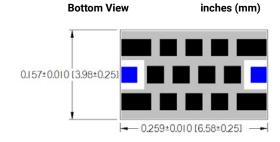
Click here to return to main table.

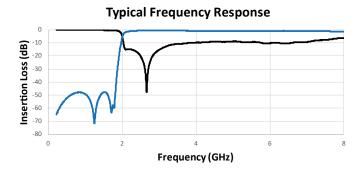
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA2420A7**

ELECTRICAL SPECIFICATIONS

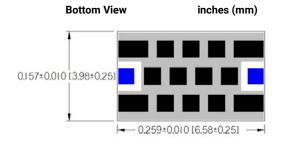

Pass Band	2.42 - 7.00 GHz	1.2 dB	Max
	2.42 - 7.00 GHz	0.73 dB	Тур
	-3dB Cutoff	2.04 GHz	Тур
Rejection	DC - 1.78 GHz	30 dB	Min
	DC - 1.75 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

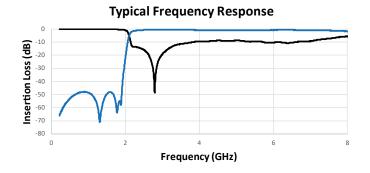

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA2470A7**


ELECTRICAL SPECIFICATIONS


Pass Band	2.47 - 6.50 GHz	1.2 dB	Max
	2.47 - 6.50 GHz	0.76 dB	Тур
	-3dB Cutoff	2.13 GHz	Тур
Rejection	DC - 1.86 GHz	30 dB	Min
	DC - 1.82 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

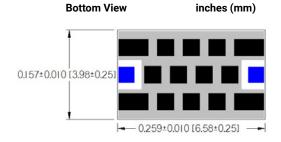
Click here to return to main table.

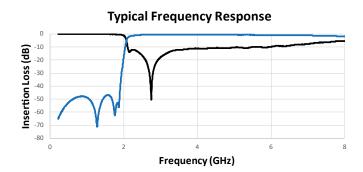
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA2480A7**

ELECTRICAL SPECIFICATIONS

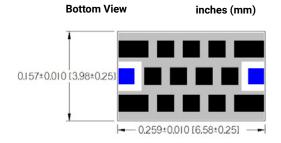

Pass Band	2.48 - 6.00 GHz	1.2 dB	Max
	2.48 - 6.00 GHz	0.71 dB	Тур
	-3dB Cutoff	2.11 GHz	Тур
Rejection	DC - 1.84 GHz	30 dB	Min
	DC - 1.81 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

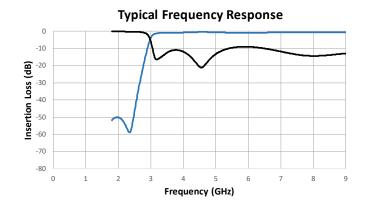

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA3280A7**


ELECTRICAL SPECIFICATIONS


Pass Band	3.28 - 8.50 GHz	1.2 dB	Max
	3.28 - 8.50 GHz	0.91 dB	Тур
	-3dB Cutoff	3.02 GHz	Тур
D : .:	DC - 2.53 GHz	30 dB	Min
Rejection	DC - 2.43 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

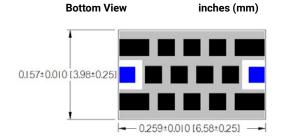
Click here to return to main table.

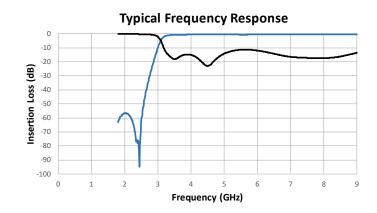
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA3460A7**

ELECTRICAL SPECIFICATIONS

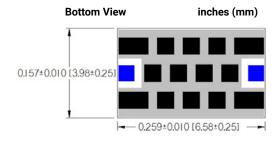

Pass Band	3.46 - 8.50 GHz	1.2 dB	Max
	3.46 - 8.50 GHz	0.75 dB	Тур
	-3dB Cutoff	3.14 GHz	Тур
Rejection	DC - 2.61 GHz	30 dB	Min
	DC - 2.52 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

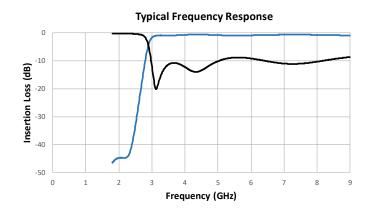

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA3540A7**


ELECTRICAL SPECIFICATIONS


Pass Band	3.54 - 8.50 GHz	1.2 dB	Max
	3.54 - 8.50 GHz	0.85 dB	Тур
	-3dB Cutoff	2.92 GHz	Тур
Rejection	DC - 2.42 GHz	30 dB	Min
	DC - 2.27 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

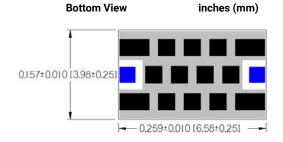
Click here to return to main table.

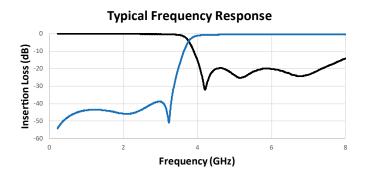
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA4140A7**

ELECTRICAL SPECIFICATIONS

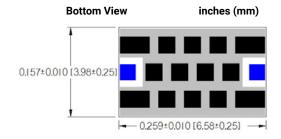

Pass Band	4.14 - 8.50 GHz	1.2 dB	Max
	4.14 - 8.50 GHz	0.66 dB	Тур
	-3dB Cutoff	3.59 GHz	Тур
Rejection	DC - 2.83 GHz	30 dB	Min
	DC - 2.71 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

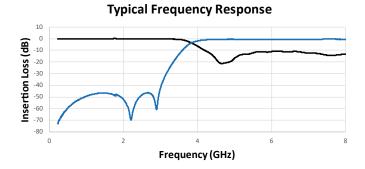

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA4270A7**


ELECTRICAL SPECIFICATIONS


Pass Band	4.27 - 8.00 GHz	1.2 dB	Max
	4.27 - 8.00 GHz	0.77 dB	Тур
	-3dB Cutoff	3.76 GHz	Тур
Rejection	DC - 3.17 GHz	30 dB	Min
	-	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

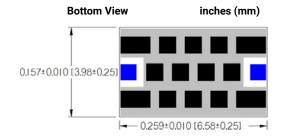
Click here to return to main table.

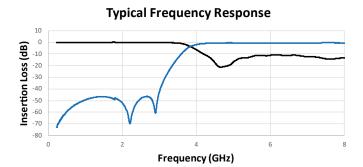
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA4430A7**

ELECTRICAL SPECIFICATIONS

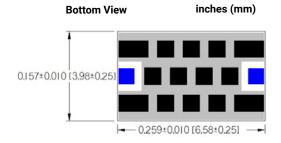

Pass Band	4.43 - 7.00 GHz	1.2 dB	Max
	4.43 - 7.00 GHz	0.61 dB	Тур
	-3dB Cutoff	3.88 GHz	Тур
Rejection	DC - 2.98 GHz	30 dB	Min
	DC - 2.86 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

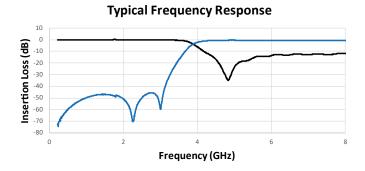

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA4500A7**


ELECTRICAL SPECIFICATIONS


Pass Band	4.50 - 7.50 GHz	1.2 dB	Max
	4.50 - 7.50 GHz	0.65 dB	Тур
	-3dB Cutoff	3.93 GHz	Тур
Rejection	DC - 3.08 GHz	30 dB	Min
	DC - 2.96 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

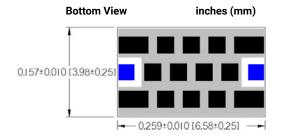
Click here to return to main table.

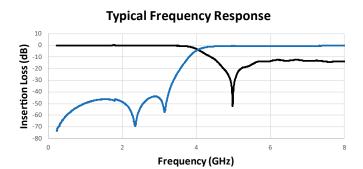
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA4680A7**

ELECTRICAL SPECIFICATIONS

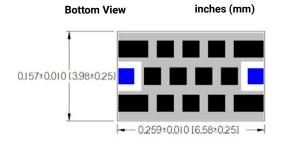

Pass Band	4.68 - 7.50 GHz	1.2 dB	Max
	4.68 - 7.50 GHz	0.62 dB	Тур
	-3dB Cutoff	4.09 GHz	Тур
Rejection	DC - 3.21 GHz	30 dB	Min
	DC - 3.08 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

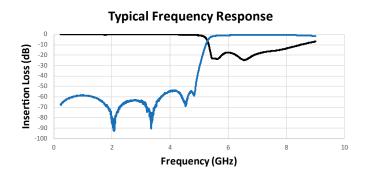

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

HF0AA6240A7**


ELECTRICAL SPECIFICATIONS


Pass Band	6.24 - 8.00 GHz	1.2 dB	Max
	6.24 - 8.00 GHz	0.80 dB	Тур
	-3dB Cutoff	5.37 GHz	Тур
Rejection	DC - 4.76 GHz	30 dB	Min
	DC - 4.68 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

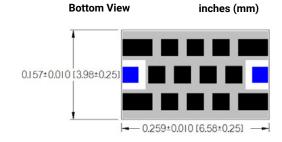
Click here to return to main table.

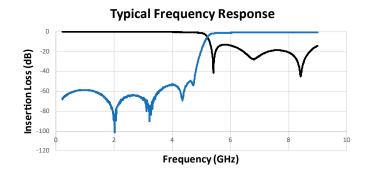
*Data files contain DXF and S2P files

MLO® High Pass Filters

HF0AA6380A7**

ELECTRICAL SPECIFICATIONS

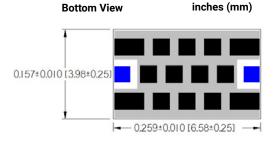

Pass Band	6.38 - 8.00GHz	1.2 dB	Max
	6.38 - 8.00GHz	0.74 dB	Тур
	-3dB Cutoff	5.28 GHz	Тур
Rejection	DC - 4.61 GHz	30 dB	Min
	DC - 4.54 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

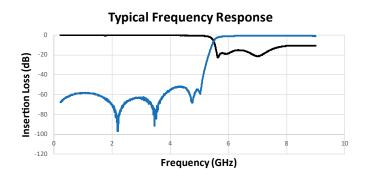

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

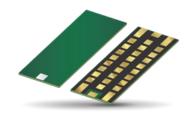
HF0AA6510A7**


ELECTRICAL SPECIFICATIONS


Pass Band	6.51 - 8.00 GHz	1.2 dB	Max
	6.51 - 8.00 GHz	0.83 dB	Тур
	-3dB Cutoff	5.58 GHz	Тур
Rejection	DC - 4.95 GHz	30 dB	Min
	DC - 4.88 GHz	40 dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	2 Watts	Max

Click here to return to main table.

*Data files contain DXF and S2P files



MLO® Low Pass Filters

General Information

GENERAL DESCRIPTION

The MLO® Low Pass Filters are low profile passive devices with best in class performance based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO® low pass filters utilize high dielectric constant and low loss materials to realize high Q passive printed elements, such as inductors and capacitors, in a multilayer stack. This results in a 50Ω Low Pass Filter design. MLO® Low Pass Filters can support both a variety of frequency bands and multiple wireless standards, and are less than 1.0mm in thickness. All filters are expansion matched to most organic PCB materials, thereby resulting in improved reliability over standard Si and ceramic devices.

FEATURES

- · Wide Frequency Range
- · Excellent Isolation
- Low Loss
- Expansion matched to PCB
- 50Ω Impedance
- · Surface Mountable
- RoHS Compliant

APPLICATIONS

- · Mobile Communication
- Vehicle location systems

7

- Wireless LANs
- Satellite Receivers
- Instrumentation

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Excellent Solderability
- · Better Heat Dissipation

HOW TO ORDER

Series Low Pass Filters **0B**

Case Size 0A = 2616

0B = 31160C = 3416 0D = 4016

1F = 4617 2E = 4614 0E = 4617

0F = 5021

Α Type

Frequency

1330

In MHz

Standard **Testing**

Termination 7 - Gold

00

Package Code

00 - Standard TR - 1000 pcs Tape & Reel TR\250 - 250 pcs Tape & Reel

OUALITY INSPECTION

Finished Parts are 100% electrically tested

LEAD-FREE COMPATIBLE

For RoHScompliant products, please select correct termination style

TERMINATION

All finishes are compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase, and manual soldering. **OPERATING TEMPERATURE**

-55°C to +85°C

S2P FILES, DRAWING AND OTHER INFORMATION AVAILABLE IN LINK ON INDIVIDUAL DATASHEETS

ELECTRICAL SPECIFICATIONS

	IL < 1.2dB Passband	Passband	Typical	30dB R	ejection	Power	Thickness
Part Number	DC - f0 (GHz)	Typical (dB)	3dB (GHz)	Min (GHz)	Max (GHz)	(W)	Mils
LP0FA0054A7**	0.054	-0.9	0.071	0.083	0.700	4 Watts	40
LP0FA0056A7**	0.057	-0.9	0.072	0.089	0.700	4 Watts	40
LP0FA0057A7**	0.057	-0.9	0.073	0.090	0.700	4 Watts	40
LP0EA0076A7**	0.076	-0.9	0.096	0.115	0.800	4 Watts	40
LP0EA0080A7**	0.080	-0.9	0.102	0.121	0.800	4 Watts	40
LP0EA0082A7**	0.082	-0.8	0.105	0.125	0.800	4 Watts	40
LP0DA0102A7**	0.102	-0.9	0.132	0.155	0.900	4 Watts	40
LP0DA0107A7**	0.107	-0.9	0.136	0.160	0.900	4 Watts	40
LP0DA0112A7**	0.112	-0.9	0.143	0.167	0.900	4 Watts	40
LP0AA0141A7**	0.141	-0.8	0.172	0.212	2.000	4 Watts	40
LP0AA0145A7**	0.145	-0.9	0.174	0.224	2.000	4 Watts	40
LP0AA0149A7**	0.149	-0.8	0.182	0.224	2.000	4 Watts	40
LP0AA0153A7**	0.153	-0.8	0.189	0.231	2.000	4 Watts	40
LP0AA0156A7**	0.156	-0.8	0.192	0.236	2.000	4 Watts	40
LP0AA0161A7**	0.161	-0.8	0.197	0.241	2.000	4 Watts	40
LP0AA0171A7**	0.171	-0.8	0.207	0.255	2.000	4 Watts	40
LP0AA0174A7**	0.174	-0.8	0.212	0.260	2.000	4 Watts	40
LP0AA0185A7**	0.185	-0.8	0.220	0.270	2.000	4 Watts	40
LP0AA0194A7**	0.194	-0.8	0.241	0.289	2.000	4 Watts	40
LP0AA0204A7**	0.204	-0.8	0.245	0.293	2.000	4 Watts	40
LP0AA0209A7**	0.209	-0.8	0.252	0.303	2.000	4 Watts	40
LP0AA0279A7**	0.279	-0.8	0.339	0.398	2.000	4 Watts	40
LP0AA0290A7**	0.290	-0.8	0.351	0.415	2.000	4 Watts	40
LP0AA0299A7**	0.299	-0.8	0.363	0.427	2.000	4 Watts	40
LP0AA0316A7**	0.316	-0.8	0.378	0.446	2.000	4 Watts	40
LP0AA0322A7**	0.322	-0.8	0.386	0.454	2.000	4 Watts	40
LP0AA0327A7**	0.327	-0.8	0.392	0.462	2.000	4 Watts	40

Click on part number to see full specifications

^{**}Packaging: 00 = waffle pack, TR = 1000pcs T&R, TR\250 = 250pcs T&R

MLO® Low Pass Filters

ELECTRICAL SPECIFICATIONS

	IL < 1.2dB		Typical	30dB F	lejection	40dB R	ejection		
Part Number	Passband DC - f0 (GHz)	Passband Typical (dB)	3dB (GHz)	Min (GHz)	Max (GHz)	Min (GHz)	Max (GHz)	Power (W)	Thickness Mils
LP1EA0320A7**	0.320	-0.9	0.37	0.45	3.20	0.46	1.20	4	40
LP0DA0410A7**	0.410	-0.9	0.49	0.58	5.00	0.60	4.00	4	22
LP1EA0500A7**	0.500	-0.9	0.57	0.67	4.50	0.68	2.25	4	40
LP0CA0550A7**	0.550	-0.9	0.67	0.79	6.00	0.81	4.00	4	22
LP0FA0600A7**	0.600	-1.0	0.77	0.93	9.00	0.96	9.00	4	22
LP1EA0720A7**	0.720	-0.8	0.83	0.97	5.00	0.99	5.00	4	40
LP0BA0790A7**	0.790	-0.9	0.94	1.10	9.00	1.12	7.00	4	22
LP0BA0960A7**	0.960	-0.9	1.15	1.34	4.00	-	-	4	22
LP0BA1010A7**	1.010	-0.9	1.22	1.42	4.00	_	_	4	22
LP0BA1030A7**	1.030	-0.9	1.30	1.63	6.47	1.71	6	4	22
LP2EA1080A7**		-0.9	1.21	1.46		1.48	3.40	4	
	1.080				5.00			+	40
LP0BA1220A7**	1.220	-0.8	1.37	1.55	5.50	1.89	5.00	4	22
LP0BA1330A7**	1.330	-0.9	1.52	1.72	6.00	-	-	4	22
LP0BA1390A7**	1.390	-0.9	1.57	1.79	6.00	-	-	4	22
LP0AA1590A7**	1.590	-0.8	1.84	2.11	9.00	2.15	7.75	4	40
LP0AA1610A7**	1.610	-0.9	1.80	2.22	9.00	2.32	5.00	4	22
LP0AA1620A7**	1.620	-0.7	1.87	2.15	7.00	2.19	6.00	4	40
LP0AA1630A7**	1.630	-0.7	1.91	2.18	8.00	2.22	3.00	4	40
LP0AA1670A7**	1.670	-0.7	2.00	2.30	8.00	2.36	7.00	4	40
LP2EA1680A7**	1.680	-0.8	1.86	2.18	9.00	2.22	4.00	4	40
LP0AA1680A7**	1.680	-0.7	2.01	2.32	8.00	2.38	7.00	4	40
LP2EA1770A7**	1.770	-0.8	1.97	2.33	5.00	2.37	4.50	4	40
LP0DA1780A7**	1.780	-0.9	1.97	2.27	5.00	2.35	4.00	4	40
LP0DA1800A7**	1.800	-0.8	2.02	2.30	6.00	2.40	4.00	4	40
LP0DA1810A7**	1.810	-0.8	2.04	2.29	6.00	2.48	4.00	4	40
LP0DA1840A7**	1.840	-0.7	2.04	2.27	5.50	2.44	4.00	4	40
LP0DA1880A7**	1.880	-0.8	2.05	2.28	6.00	2.42	4.00	4	40
LP0DA1890A7**	1.890	-0.8	2.13	2.38	7.00	-	_	4	40
LP0DA1950A7**	1.950	-0.8	2.20	2.53	8.00	_	_	4	40
LP0DA2100A7**	2.100	-0.8	2.37	2.68	9.00	2.72	5.11	4	22
LP0DA2140A7**	2.140	-0.7	2.38	2.68	9.00	2.72	5.23	4	22
LP0DA2160A7**	2.160	-0.8	2.41	2.72	5.00	-	-	4	22
LP0DA2190A7**	2.190	-0.6	2.44	2.72	6.50	2.93	4.00	4	40
LP0DA2190A7***	2.200	-0.8	2.50	2.79	5.00	4.00	5.00	4	22
LP0DA2200A7**	2.210			2.98			4.25	4	+
		-0.8	2.60		8.50	3.25		_	40
LP0DA2260A7**	2.260	-0.8	2.50	2.86	5.00	4.00	5.00	4	22
LP0AA2300A7**	2.300	-0.9	2.56	3.15	9.00	3.26	9.00		22
LP0AA2490A7**	2.490	-0.7	2.80	3.98	9.00	3.79	5.00	4	40
LP2EA2530A7**	2.530	-0.7	2.87	3.28	9.00	3.32	6.50	4	40
LP0AA2590A7**	2.590	-0.7	2.89	3.71	9.00	3.87	5.20	4	40
LP2EA2600A7**	2.600	-0.7	2.95	3.40	9.00	3.50	6.00	4	40
LP0AA2640A7**	2.640	-0.8	2.97	3.82	9.00	3.98	5.50	4	40
LP0AA2910A7**	2.910	-0.8	3.43	4.07	9.00	4.80	8.00	4	22
LP0AA2980A7**	2.980	-0.7	3.52	4.17	9.00	4.29	8.00	4	22
LP0AA3100A7**	3.100	-0.7	3.65	4.32	9.00	5.00	8.00	4	22
LP0AA3160A7**	3.160	-0.8	3.47	4.36	9.00	4.47	9.00	4	22
LP0AA4080A7**	4.080	-0.7	5.03	5.62	9.00	5.69	9.00	4	22
LP0AA4150A7**	4.150	-0.6	5.16	5.75	9.00	5.82	9.00	4	22
LP0AA4210A7**	4.210	-0.7	5.28	5.87	9.00	6.16	9.00	4	22
LP0AA4370A7**	4.370	-0.8	4.84	6.00	9.00	6.32	9.00	4	22
LP0AA6160A7**	6.160	-0.9	7.09	8.59	13.00	8.82	11.50	4	22

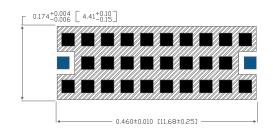
Click on part number to see full specifications

^{**}Packaging: 00 = waffle pack, TR = 1000pcs T&R, TR\250 = 250pcs T&R

MLO® Low Pass Filters

LP1EA0320A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 0.320 GHz	1.2 dB	Max
	DC - 0.320 GHz	0.9 dB	Тур
	3dB Cutoff	0.37 GHz	Тур
n · ··	0.45 - 3.20 GHz	30dB	Min
Rejection	0.46 - 1.20 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

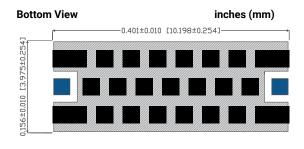
DIMENSIONS - CASE SIZE 1E

Bottom View

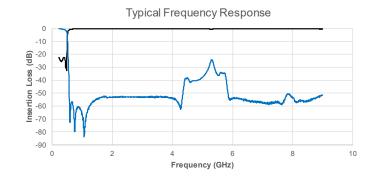
inches (mm)

*Data files contain DXF and S2P files

Typical Frequency Response Insertion Loss (dB) -20 -30 -40 -50 -60 -70 -80 -90 -100 Frequency (GHz)


LP0DA0410A7**

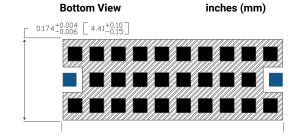
ELECTRICAL SPECIFICATIONS


DC - 0.410 GHz	1.2 dB	Max
DC - 0.410 GHz	0.9 dB	Тур
3dB Cutoff	0.49 GHz	Тур
0.58 - 5.00 GHz	30dB	Min
0.60 - 4.00 GHz	40dB	Min
Thickness	22 Mils	Max
Power	4 Watts	Max
	DC - 0.410 GHz 3dB Cutoff 0.58 - 5.00 GHz 0.60 - 4.00 GHz Thickness	DC - 0.410 GHz 0.9 dB 3dB Cutoff 0.49 GHz 0.58 - 5.00 GHz 30dB 0.60 - 4.00 GHz 40dB Thickness 22 Mils

Click here to return to main table.

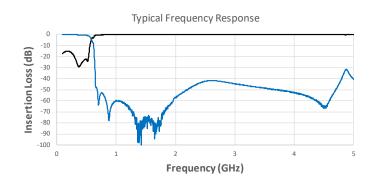
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters


LP1EA0500A7**

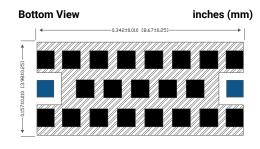
ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.500 GHz	1.2 dB	Max
	DC - 0.500 GHz	0.9 dB	Тур
	3dB Cutoff	0.57 GHz	Тур
Rejection	0.67 - 4.50 GHz	30dB	Min
	0.68 - 2.25 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

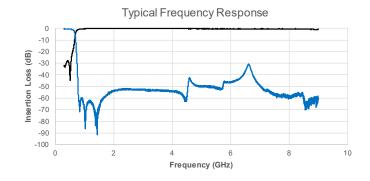

Click here to return to main table.

DIMENSIONS - CASE SIZE 1E

*Data files contain DXF and S2P files


LP0CA0550A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 0.550 GHz	1.2 dB	Max
	DC - 0.550 GHz	0.9 dB	Тур
	3dB Cutoff	0.67 GHz	Тур
Rejection	0.79 - 6.00 GHz	30dB	Min
	0.81 - 4.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

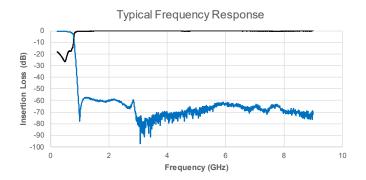
DIMENSIONS - CASE SIZE C

MLO® Low Pass Filters

LP0FA0600A7**

ELECTRICAL SPECIFICATIONS

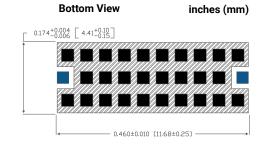
Pass Band	DC - 0.600 GHz	1.2 dB	Max
	DC - 0.600 GHz	1.0 dB	Тур
	3dB Cutoff	0.77 GHz	Тур
Rejection	0.93 - 9.00 GHz	30dB	Min
	0.96 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

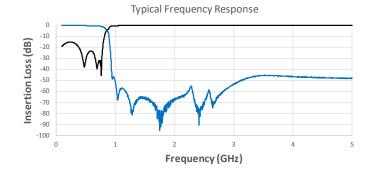
inches (mm) **Bottom View** -0.512±0.010 [12.99±0.25]

DIMENSIONS - CASE SIZE F

*Data files contain DXF and S2P files


LP1EA0720A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 0.720 GHz	1.2 dB	Max
	DC - 0.720 GHz	0.8 dB	Тур
	3dB Cutoff	0.83 GHz	Тур
Rejection	0.97 - 5.00 GHz	30dB	Min
	0.99 - 5.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE 1E

MLO® Low Pass Filters

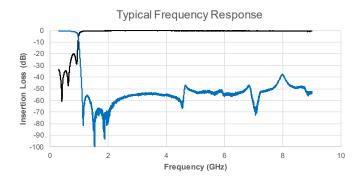
inches (mm)

LP0BA0790A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.790 GHz	1.2 dB	Max
	DC - 0.795 GHz	0.9 dB	Тур
	3dB Cutoff	0.94 GHz	Тур
Rejection	1.10 - 9.00 GHz	30dB	Min
	1.12 - 7.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

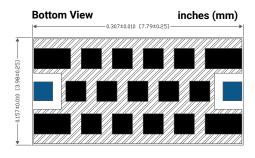
Click here to return to main table.


0.157±0.010 [3.98±0.25]

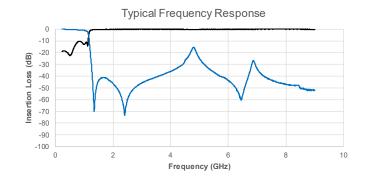
DIMENSIONS - CASE SIZE B

Bottom View

*Data files contain DXF and S2P files


LP0BA0960A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 0.960 GHz	1.2 dB	Max
	DC - 0.960 GHz	0.9 dB	Тур
	3dB Cutoff	1.15 GHz	Тур
Rejection	1.34 - 4.00 GHz	30dB	Min
	– GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE B

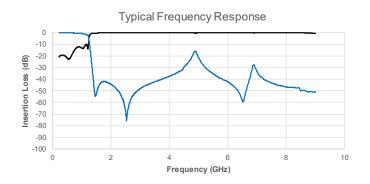
MLO® Low Pass Filters

inches (mm)

LP0BA1010A7**

ELECTRICAL SPECIFICATIONS

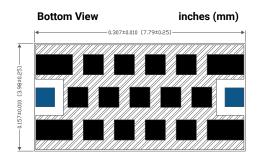
Pass Band	DC - 1.010 GHz	1.2 dB	Max
	DC - 1.010 GHz	0.9 dB	Тур
	3dB Cutoff	1.22 GHz	Тур
Rejection	1.42 - 4.00 GHz	30dB	Min
	– GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

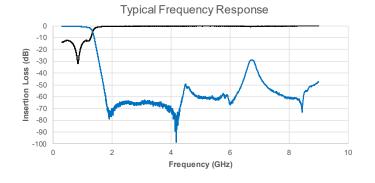
DIMENSIONS - CASE SIZE B

Bottom View

*Data files contain DXF and S2P files


LP0BA1030A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.030 GHz	1.2 dB	Max
	DC - 1.030 GHz	0.9 dB	Тур
	3dB Cutoff	1.30 GHz	Тур
Rejection	1.63 - 6.47 GHz	30dB	Min
	1.71 - 6 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

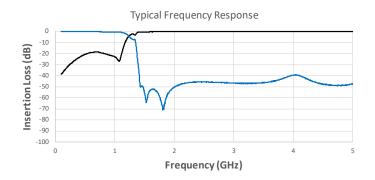
DIMENSIONS - CASE SIZE B

MLO® Low Pass Filters

LP2EA1080A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.080 GHz	1.2 dB	Max
	DC - 1.080 GHz	0.8 dB	Тур
	3dB Cutoff	1.21 GHz	Тур
Rejection	1.46 - 5.00 GHz	30dB	Min
	1.48 - 3.40 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

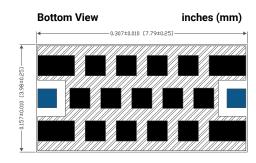

Click here to return to main table.

Bottom View inches (mm) $0.144^{+0.004}_{-0.006}$ $\left[3.64^{+0.10}_{-0.15} \right]$

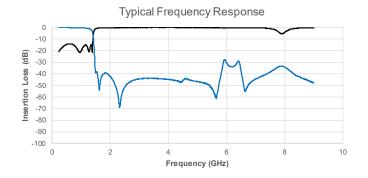
DIMENSIONS - CASE SIZE 2E

*Data files contain DXF and S2P files

0.460±0.010 [11.68±0.25]


LP0BA1220A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.220 GHz	1.2 dB	Max
	DC - 1.220 GHz	0.8 dB	Тур
	3dB Cutoff	1.37 GHz	Тур
	1.55 - 5.50 GHz	30dB	Min
Rejection	1.89 - 5.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

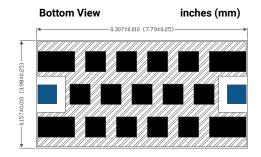
Click here to return to main table.

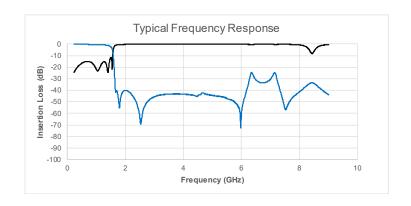
DIMENSIONS - CASE SIZE B

MLO® Low Pass Filters

LP0BA1330A7**

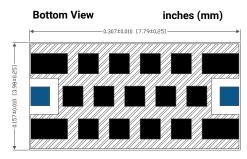
ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.330 GHz	1.2 dB	Max
	DC - 1.330 GHz	0.9 dB	Тур
	3dB Cutoff	1.52 GHz	Тур
Rejection	1.72 - 6.00 GHz	30dB	Min
	- GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

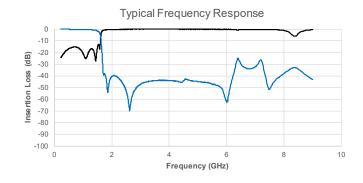

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B


LP0BA1390A7**

ELECTRICAL SPECIFICATIONS

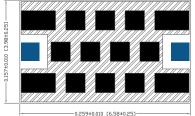

Pass Band	DC - 1.390 GHz	1.2 dB	Max
	DC - 1.390 GHz	0.9 dB	Тур
	3dB Cutoff	1.57 GHz	Тур
Rejection	1.79 - 6.00 GHz	30dB	Min
	– GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE B

MLO® Low Pass Filters

LP0AA1590A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.590 GHz	1.2 dB	Max
	DC - 1.590 GHz	0.8 dB	Тур
	3dB Cutoff	1.84 GHz	Тур
Rejection	2.11 - 9.00 GHz	30dB	Min
	2.15 - 7.75 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

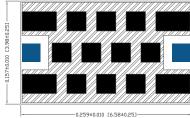
DIMENSIONS - CASE SIZE A

Bottom View inches (mm)

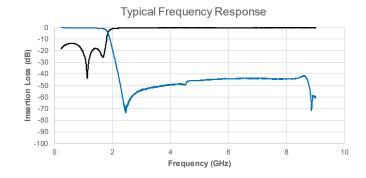
*Data files contain DXF and S2P files

Typical Frequency Response Insertion Loss (dB) -20 -30 -40 -50 -60 -70 -80 10 Frequency (GHz)

LP0AA1610A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.610 GHz	1.2 dB	Max
	DC - 1.610 GHz	0.9 dB	Тур
	3dB Cutoff	1.80 GHz	Тур
	2.22 - 9.00 GHz	30dB	Min
Rejection	2.32 - 5.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

DIMENSIONS - CASE SIZE A

inches (mm) **Bottom View**

MLO® Low Pass Filters

LP0AA1620A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.620 GHz	1.2 dB	Max
	DC - 1.620 GHz	0.7 dB	Тур
	3dB Cutoff	1.87 GHz	Тур
Rejection	2.15 - 7.00 GHz	30dB	Min
	2.19 - 6.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

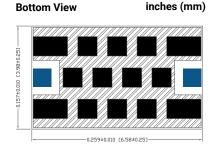
DIMENSIONS - CASE SIZE A

Bottom View

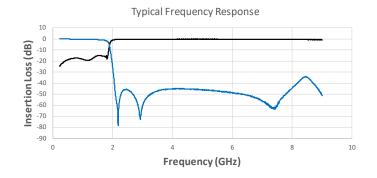
*Data files contain DXF and S2P files

Typical Frequency Response -10 Insertion Loss (dB) -20 -30 -40 -60 -70 -80 -90 -100 Frequency (GHz)

inches (mm)


LP0AA1630A7**

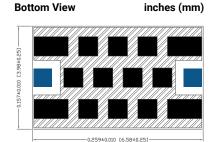
ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.630 GHz	1.2 dB	Max
	DC - 1.630 GHz	0.7 dB	Тур
	3dB Cutoff	1.91 GHz	Тур
	2.18 - 8.00 GHz	30dB	Min
Rejection	2.22 - 3.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

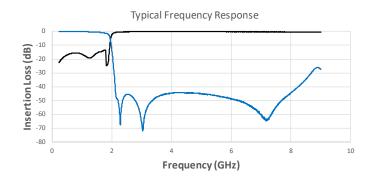
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters


LP0AA1670A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.670 GHz	1.2 dB	Max
	DC - 1.670 GHz	0.7 dB	Тур
	3dB Cutoff	2.00 GHz	Тур
.	2.30 - 8.00 GHz	30dB	Min
Rejection	2.36 - 7.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

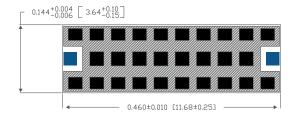

Click here to return to main table.

DIMENSIONS - CASE SIZE A

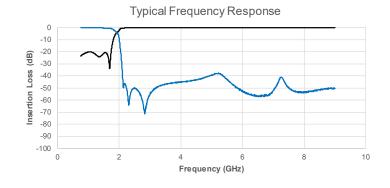
*Data files contain DXF and S2P files

LP2EA1680A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.680 GHz	1.2 dB	Max
	DC - 1.680 GHz	0.8 dB	Тур
	3dB Cutoff	1.86 GHz	Тур
	2.18 - 9.00 GHz	30dB	Min
Rejection	2.22 - 4.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.


DIMENSIONS - CASE SIZE 2E

Bottom View

inches (mm)

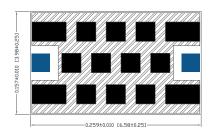
MLO® Low Pass Filters

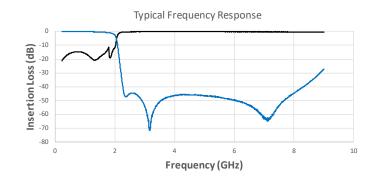
LP0AA1680A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.680 GHz	1.2 dB	Max
	DC - 1.680 GHz	0.7 dB	Тур
	3dB Cutoff	2.01 GHz	Тур
- · · ·	2.32 - 8.00 GHz	30dB	Min
Rejection	2.38 - 7.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES


*Data files contain DXF and S2P files

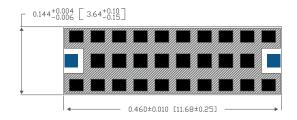
DIMENSIONS - CASE SIZE A

Bottom View

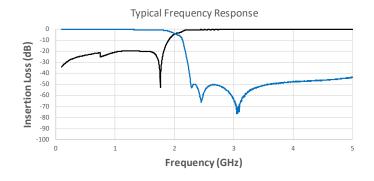
inches (mm)

LP2EA1770A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.770 GHz	1.2 dB	Max
	DC - 1.770 GHz	0.8 dB	Тур
	3dB Cutoff	1.97 GHz	Тур
	2.33 - 5.00 GHz	30dB	Min
Rejection	2.37 - 4.50 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.


DIMENSIONS - CASE SIZE 2E

Bottom View

inches (mm)

MLO® Low Pass Filters

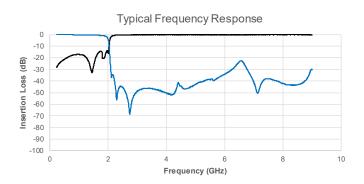
inches (mm)

LP0DA1780A7**

ELECTRICAL SPECIFICATIONS

	DC - 1.780 GHz	1.2 dB	Max
Pass Band	DC - 1.780 GHz	0.9 dB	Тур
	3dB Cutoff	1.97 GHz	Тур
Rejection	2.27 - 5.00 GHz	30dB	Min
	2.35 - 4.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

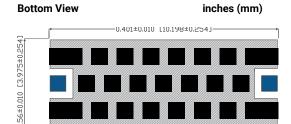
Click here to return to main table.


0.401±0.010 [10.198±0.254] 156±0.010 [3.975±0.254]

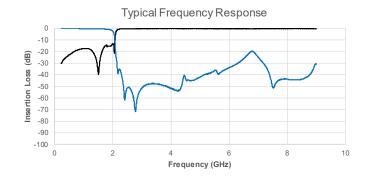
DIMENSIONS - CASE SIZE D

Bottom View

*Data files contain DXF and S2P files


LP0DA1800A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 1.800 GHz	1.2 dB	Max
	DC - 1.800 GHz	0.8 dB	Тур
	3dB Cutoff	2.02 GHz	Тур
	2.30 - 6.00 GHz	30dB	Min
Rejection	2.40 - 4.00 GHz	40dB	Min
Dimension	Thickness	40Mils	Max
RF Power	Power	4 Watts	Max

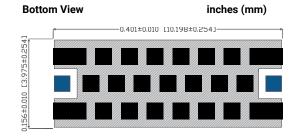
Click here to return to main table.

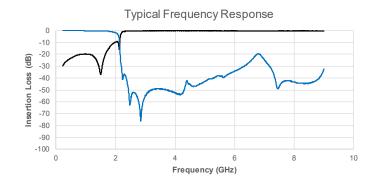
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters

LP0DA1810A7**

ELECTRICAL SPECIFICATIONS

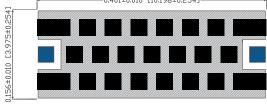

	DC - 1.810 GHz	1.2 dB	Max
Pass Band	DC - 1.810 GHz	0.8 dB	Тур
	3dB Cutoff	2.04 GHz	Тур
Deiestian	2.29 - 6.00 GHz	30dB	Min
Rejection	2.48 - 4.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

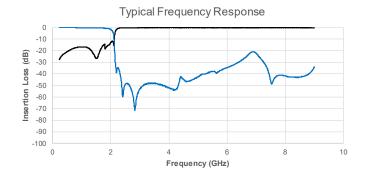
*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE D

LP0DA1840A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 1.840 GHz	1.2 dB	Max
	DC - 1.840 GHz	0.7 dB	Тур
	3dB Cutoff	2.04 GHz	Тур
	2.27 - 5.50 GHz	30dB	Min
Rejection	2.44 - 4.00 GHz	40dB	Min
Dimension	Thickness	40Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters

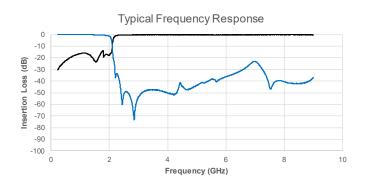
inches (mm)

LP0DA1880A7**

ELECTRICAL SPECIFICATIONS

	DC - 1.880 GHz	1.2 dB	Max
Pass Band	DC - 1.880 GHz	0.8 dB	Тур
	3dB Cutoff	2.05 GHz	Тур
Rejection	2.28 - 6.00 GHz	30dB	Min
	2.42 - 4.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

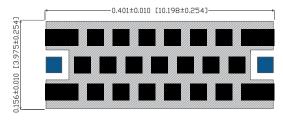

-0.401±0.010 [10.198±0.254]-156±0.010 [3.975±0.254]

DIMENSIONS - CASE SIZE D

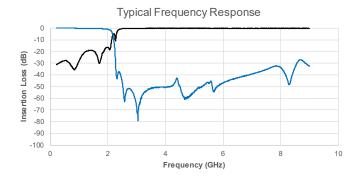
Bottom View

*Data files contain DXF and S2P files

LP0DA1890A7**


ELECTRICAL SPECIFICATIONS

	DC - 1.890 GHz	1.2 dB	Max
Pass Band	DC - 1.890 GHz	0.8 dB	Тур
	3dB Cutoff	2.13 GHz	Тур
	2.38 - 7.00 GHz	30dB	Min
Rejection	– GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

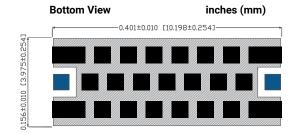

Click here to return to main table.

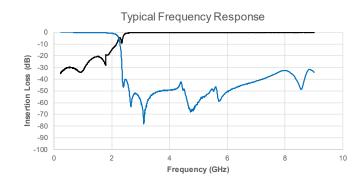
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters

LP0DA1950A7**

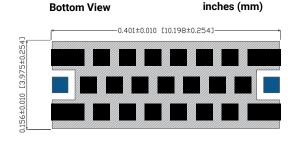
ELECTRICAL SPECIFICATIONS


	DC - 1.950 GHz	1.2 dB	Max
Pass Band	DC - 1.950 GHz	0.8 dB	Тур
	3dB Cutoff	2.20 GHz	Тур
Dejection	2.53 - 8.00 GHz	30dB	Min
Rejection	- GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

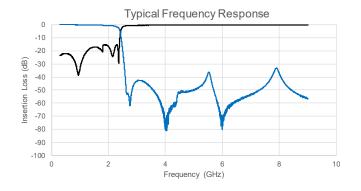

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE D


LP0DA2100A7**

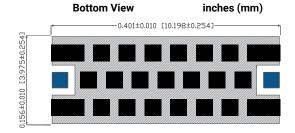
ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.100 GHz	1.2 dB	Max
	DC - 2.100 GHz	0.8 dB	Тур
	3dB Cutoff	2.37 GHz	Тур
	2.68 - 9.00 GHz	30dB	Min
Rejection	2.72 - 5.11 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

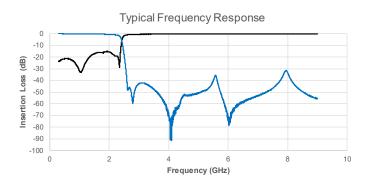
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters


LP0DA2140A7**

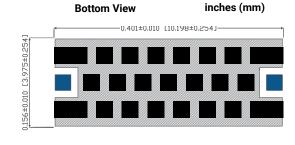
ELECTRICAL SPECIFICATIONS

	DC - 2.140 GHz	1.2 dB	Max
Pass Band	DC - 2.140 GHz	0.7 dB	Тур
	3dB Cutoff	2.38 GHz	Тур
Rejection	2.68 - 9.00 GHz	30dB	Min
	2.72 - 5.23 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

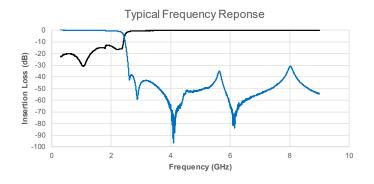

Click here to return to main table.

DIMENSIONS - CASE SIZE D

*Data files contain DXF and S2P files


LP0DA2160A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.160 GHz	1.2 dB	Max
	DC - 2.160 GHz	0.8 dB	Тур
	3dB Cutoff	2.41 GHz	Тур
Rejection	2.72 - 5.00 GHz	30dB	Min
	– GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

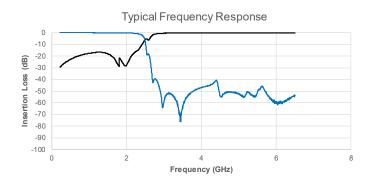
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters

LP0DA2190A7**

ELECTRICAL SPECIFICATIONS

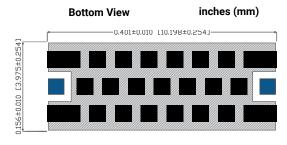
Pass Band	DC - 2.190 GHz	1.2 dB	Max
	DC - 2.190 GHz	0.6 dB	Тур
	3dB Cutoff	2.44 GHz	Тур
	2.79 - 6.50 GHz	30dB	Min
Rejection	2.93 - 4.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

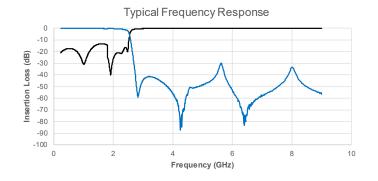
Bottom View inches (mm) -0.401±0.010 L10.198±0.254J-156±0.010 [3.975±0.254

DIMENSIONS - CASE SIZE D

*Data files contain DXF and S2P files


LP0DA2200A7**

ELECTRICAL SPECIFICATIONS


	DC - 2.200 GHz	1.2 dB	Max
Pass Band	DC - 2.200 GHz	0.8 dB	Тур
	3dB Cutoff	2.50 GHz	Тур
	2.84 - 5.00 GHz	30dB	Min
Rejection	4.00 - 5.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE D

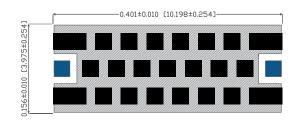
MLO® Low Pass Filters

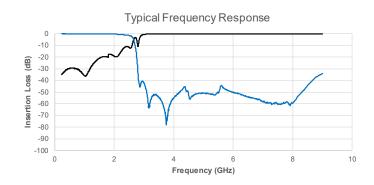
LP0DA2210A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 2.210 GHz	1.2 dB	Max
	DC - 2.210 GHz	0.8 dB	Тур
	3dB Cutoff	2.60 GHz	Тур
Rejection	2.98 - 8.50 GHz	30dB	Min
Rejection	3.25 - 4.25 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

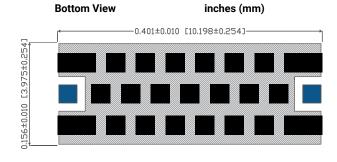

CLICK HERE TO DOWNLOAD DATA FILES


*Data files contain DXF and S2P files

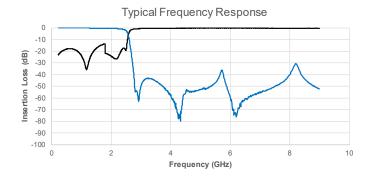
DIMENSIONS - CASE SIZE D

Bottom View

inches (mm)


LP0DA2260A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.260 GHz	1.2 dB	Max
	DC - 2.260 GHz	0.8 dB	Тур
	3dB Cutoff	2.50 GHz	Тур
	2.86 - 5.00 GHz	30dB	Min
Rejection	4.00 - 5.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

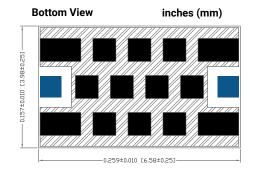
Click here to return to main table.

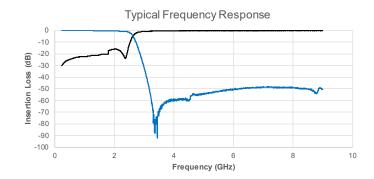
DIMENSIONS - CASE SIZE D

MLO® Low Pass Filters

LP0AA2300A7**

ELECTRICAL SPECIFICATIONS

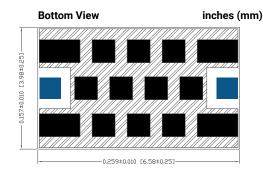

Pass Band	DC - 2.300 GHz	1.2 dB	Max
	DC - 2.300 GHz	0.9 dB	Тур
	3dB Cutoff	2.56 GHz	Тур
	3.15 - 9.00 GHz	30dB	Min
Rejection	3.26 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

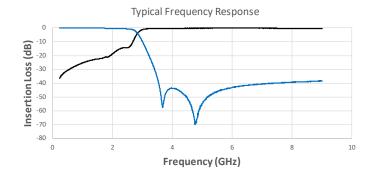
CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA2490A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.490 GHz	1.2 dB	Max
	DC - 2.490 GHz	0.7 dB	Тур
	3dB Cutoff	2.80 GHz	Тур
	3.98 - 9.00 GHz	30dB	Min
Rejection	3.79 - 5.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP2EA2530A7**

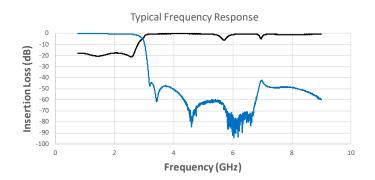
ELECTRICAL SPECIFICATIONS

Pass Band	DC - 2.530 GHz	1.2 dB	Max
	DC - 2.530 GHz	0.7 dB	Тур
	3dB Cutoff	2.87 GHz	Тур
	3.28 - 9.00 GHz	30dB	Min
Rejection	3.32 - 6.50 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

$0.144^{+0.004}_{-0.006}$ $\left[3.64^{+0.10}_{-0.15} \right]$

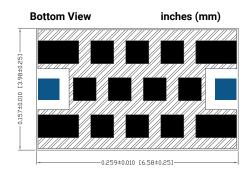
0.460±0.010 [11.68±0.25]


inches (mm)

DIMENSIONS - CASE SIZE 2E

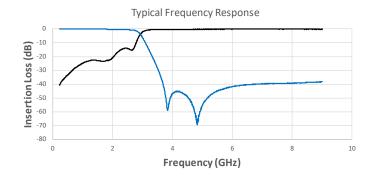
Bottom View

*Data files contain DXF and S2P files


LP0AA2590A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 2.590 GHz	1.2 dB	Max
	DC - 2.590 GHz	0.7 dB	Тур
	3dB Cutoff	2.89 GHz	Тур
	3.71 - 9.00 GHz	30dB	Min
Rejection	3.87 - 5.20 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

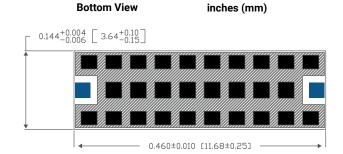

Click here to return to main table.

DIMENSIONS - CASE SIZE A

*Data files contain DXF and S2P files

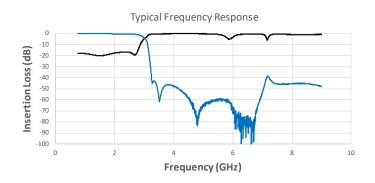
Downloaded from Arrow.com.

MLO® Low Pass Filters


LP2EA2600A7**

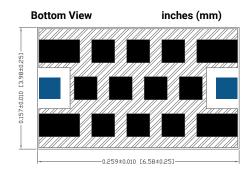
ELECTRICAL SPECIFICATIONS

Pass Band	DC - 2.600 GHz	1.2 dB	Max
	DC - 2.600 GHz	0.7 dB	Тур
	3dB Cutoff	2.95 GHz	Тур
Rejection	3.40 - 9.00 GHz	30dB	Min
Rejection	3.50 - 6.00 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

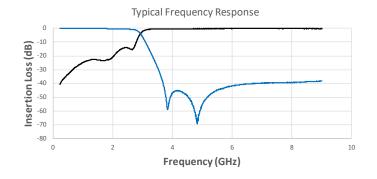

Click here to return to main table.

DIMENSIONS - CASE SIZE 2E

*Data files contain DXF and S2P files


LP0AA2640A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.640 GHz	1.2 dB	Max
	DC - 2.640 GHz	0.8 dB	Тур
	3dB Cutoff	2.97 GHz	Тур
	3.82 - 9.00 GHz	30dB	Min
Rejection	3.98 - 5.50 GHz	40dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

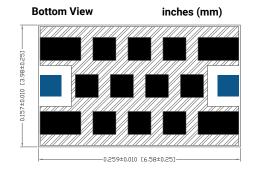
Click here to return to main table.

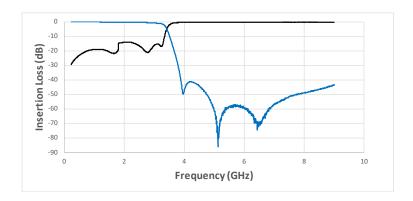
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA2910A7**

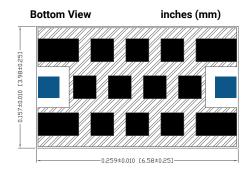
ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.910 GHz	1.2 dB	Max
	DC - 2.910 GHz	0.8 dB	Тур
	3dB Cutoff	3.43 GHz	Тур
	4.07 - 9.00 GHz	30dB	Min
Rejection	4.80 - 8.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

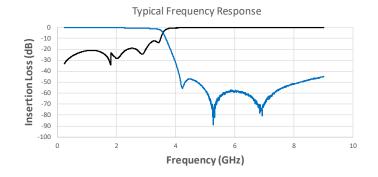

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA2980A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 2.980 GHz	1.2 dB	Max
	DC - 2.980 GHz	0.7 dB	Тур
	3dB Cutoff	3.52 GHz	Тур
Deication	4.17 - 9.00 GHz	30dB	Min
Rejection	4.29 - 8.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

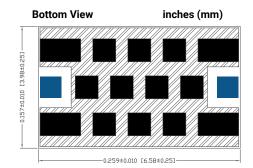
Click here to return to main table.

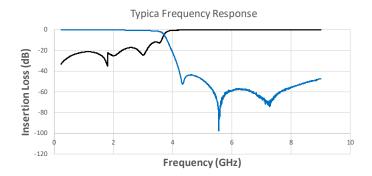
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA3100A7**

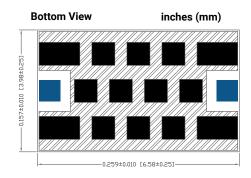
ELECTRICAL SPECIFICATIONS


Pass Band	DC - 3.100 GHz	1.2 dB	Max
	DC - 3.100 GHz	0.7 dB	Тур
	3dB Cutoff	3.65 GHz	Тур
.	4.32 - 9.00 GHz	30dB	Min
Rejection	5.00 - 8.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

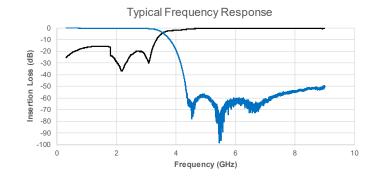

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA3160A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 3.160 GHz	1.2 dB	Max
	DC - 3.160 GHz	0.8 dB	Тур
	3dB Cutoff	3.47 GHz	Тур
	4.36 - 9.00 GHz	30dB	Min
Rejection	4.47 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA4080A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 4.080 GHz	1.2 dB	Max
	DC - 4.080 GHz	0.7 dB	Тур
	3dB Cutoff	5.03 GHz	Тур
D : .:	5.62 - 9.00 GHz	30dB	Min
Rejection	5.69 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

0.157±0.010 [3.98±0.25]

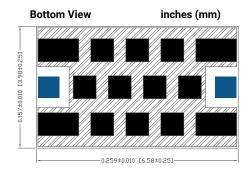
inches (mm)

DIMENSIONS - CASE SIZE A

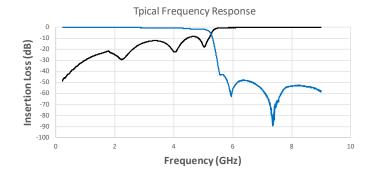
Bottom View

*Data files contain DXF and S2P files

0.259±0.010 [6.58±0.25]


LP0AA4150A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 4.150 GHz	1.2 dB	Max
	DC - 4.150 GHz	0.6 dB	Тур
	3dB Cutoff	5.16 GHz	Тур
D : .:	5.75 - 9.00 GHz	30dB	Min
Rejection	5.82 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

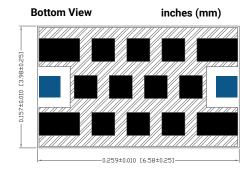
Click here to return to main table.

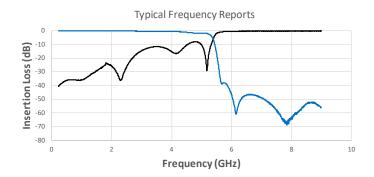
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA4210A7**

ELECTRICAL SPECIFICATIONS

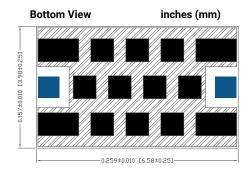

Pass Band	DC - 4.210 GHz	1.2 dB	Max
	DC - 4.210 GHz	0.7 dB	Тур
	3dB Cutoff	5.28 GHz	Тур
- · · ·	5.87 - 9.00 GHz	30dB	Min
Rejection	6.16 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

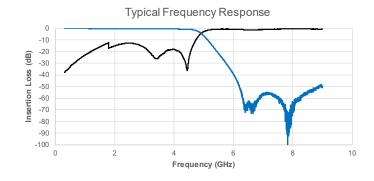
CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA4370A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 4.370 GHz	1.2 dB	Max
	DC - 7.370 GHz	0.8 dB	Тур
	3dB Cutoff	4.84 GHz	Тур
D : .:	6.00 - 9.00 GHz	30dB	Min
Rejection	6.32 - 9.00 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA6160A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 6.160 GHz	1.2 dB	Max
	DC - 6.160 GHz	0.9 dB	Тур
	3dB Cutoff	7.09 GHz	Тур
	8.59 - 13.00 GHz	30dB	Min
Rejection	8.82 - 11.50 GHz	40dB	Min
Dimension	Thickness	22 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

0.157±0.010 [3.98±0.25] 0.259±0.010 [6.58±0.25]

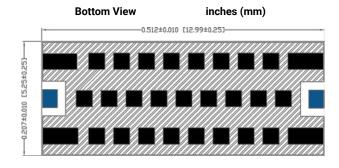
inches (mm)

DIMENSIONS - CASE SIZE A

Bottom View

*Data files contain DXF and S2P files

Typical Frequency Response -10 -20 Insertion Loss (dB) -30 -40 -50 -60 -70 -80 -100 15 Frequency (GHz)


LP0FA0054A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.054 GHz	1.2 dB	Max
	DC - 0.054 GHz	0.9 dB	Тур
	-3dB Cutoff	0.071 GHz	Тур
.	0.083 - 0.7 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

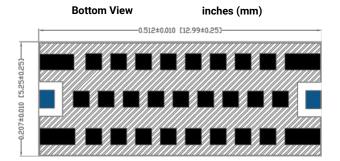
Click here to return to main table.

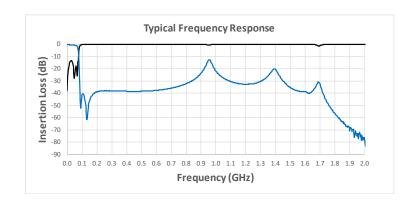
DIMENSIONS - CASE SIZE F

MLO® Low Pass Filters

LP0FA0056A7**

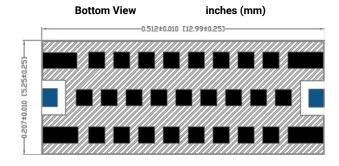
ELECTRICAL SPECIFICATIONS

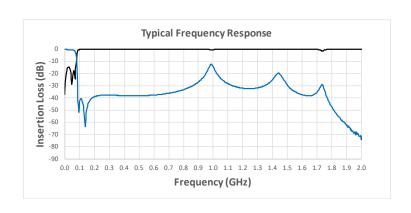

Pass Band	DC - 0.057 GHz	1.2 dB	Max
	DC - 0.057 GHz	0.9 dB	Тур
	-3dB Cutoff	0.072 GHz	Тур
Rejection	0.089 - 0.7 GHz	30 dB	Min
	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE F


LP0FA0057A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.057 GHz	1.2 dB	Max
	DC - 0.057 GHz	0.9 dB	Тур
	-3dB Cutoff	0.073 GHz	Тур
.	0.09 - 0.7 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

DIMENSIONS - CASE SIZE F

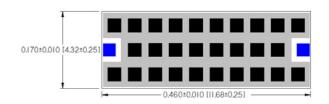
MLO® Low Pass Filters

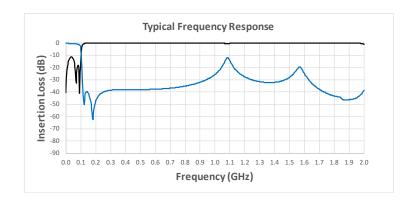
LP0EA0076A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.076 GHz	1.2 dB	Max
	DC - 0.076 GHz	0.9 dB	Тур
	-3dB Cutoff	0.096 GHz	Тур
D : .:	0.115 - 0.8 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.




*Data files contain DXF and S2P files

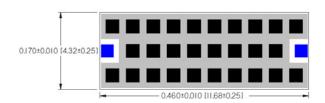
DIMENSIONS - CASE SIZE E

Bottom View

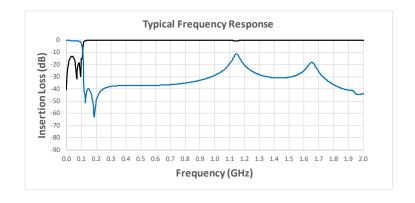
inches (mm)

LP0EA0080A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 0.08 GHz	1.2 dB	Max
	DC - 0.08 GHz	0.9 dB	Тур
	-3dB Cutoff	0.102 GHz	Тур
.	0.121 - 0.8 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.


DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)

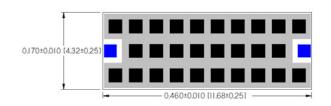
MLO® Low Pass Filters

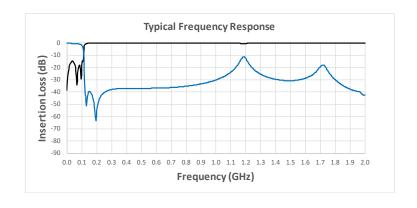
LP0EA0082A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.082 GHz	1.2 dB	Max
	DC - 0.082 GHz	0.8 dB	Тур
	-3dB Cutoff	0.105 GHz	Тур
Rejection	0.125 - 0.8 GHz	30 dB	Min
	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

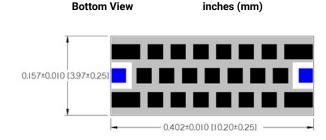


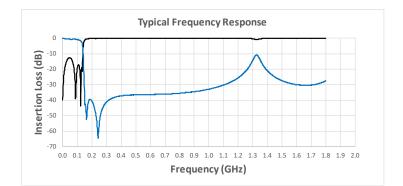

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)


LP0DA0102A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.102 GHz	1.2 dB	Max
	DC - 0.102 GHz	0.9 dB	Тур
	-3dB Cutoff	0.132 GHz	Тур
.	0.155 - 0.9 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

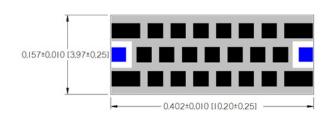
DIMENSIONS - CASE SIZE D

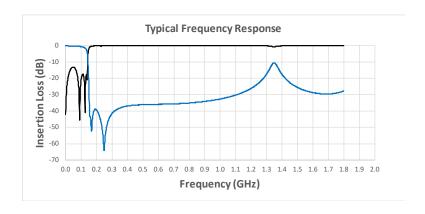
MLO® Low Pass Filters

LP0DA0107A7**

ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.107 GHz	1.2 dB	Max
	DC - 0.107 GHz	0.9 dB	Тур
	-3dB Cutoff	0.136 GHz	Тур
D : .:	0.16 - 0.9 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.



*Data files contain DXF and S2P files

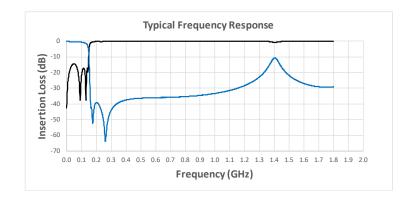
DIMENSIONS - CASE SIZE D

LP0DA0112A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.112 GHz	1.2 dB	Max
	DC - 0.112 GHz	0.9 dB	Тур
	-3dB Cutoff	0.143 GHz	Тур
	0.167 - 0.9 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.


DIMENSIONS - CASE SIZE D

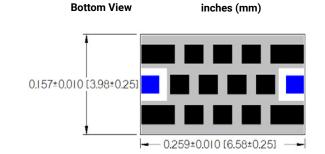
Bottom View

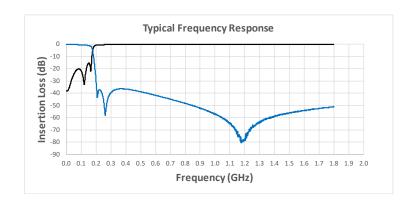
inches (mm)

MLO® Low Pass Filters

LP0AA0141A7**

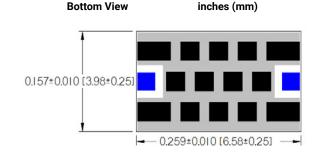
ELECTRICAL SPECIFICATIONS

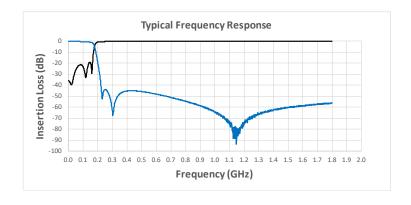

Pass Band	DC - 0.141 GHz	1.2 dB	Max
	DC - 0.141 GHz	0.8 dB	Тур
	-3dB Cutoff	0.172 GHz	Тур
D : .:	0.212 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0145A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.145 GHz	1.2 dB	Max
	DC - 0.145 GHz	0.9 dB	Тур
	-3dB Cutoff	0.174 GHz	Тур
	0.224 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

Click here to return to main table.

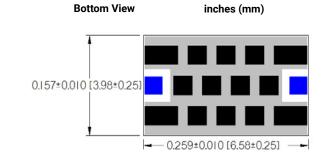
DIMENSIONS - CASE SIZE A

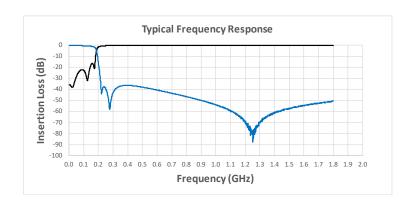
CLICK HERE TO DOWNLOAD DATA FILES

MLO® Low Pass Filters

LP0AA0149A7**

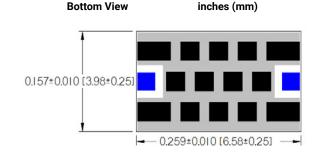
ELECTRICAL SPECIFICATIONS

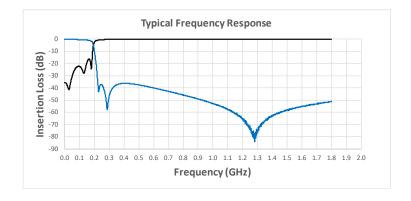

Pass Band	DC - 0.149 GHz	1.2 dB	Max
	DC - 0.149 GHz	0.8 dB	Тур
	-3dB Cutoff	0.182 GHz	Тур
D : .:	0.224 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0153A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.153 GHz	1.2 dB	Max
	DC - 0.153 GHz	0.8 dB	Тур
	-3dB Cutoff	0.189 GHz	Тур
	0.231 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

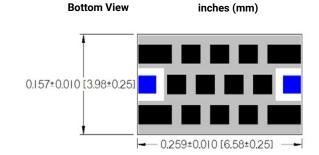
Click here to return to main table.

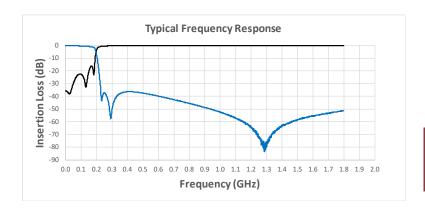
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0156A7**

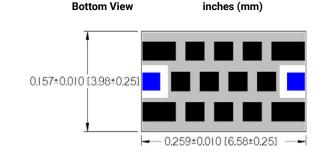
ELECTRICAL SPECIFICATIONS

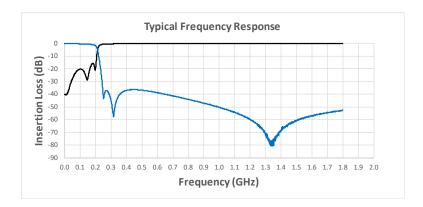

Pass Band	DC - 0.156 GHz	1.2 dB	Max
	DC - 0.156 GHz	0.8 dB	Тур
	-3dB Cutoff	0.192 GHz	Тур
D : .:	0.236 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0161A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.161 GHz	1.2 dB	Max
	DC - 0.161 GHz	0.8 dB	Тур
	-3dB Cutoff	0.197 GHz	Тур
Rejection	0.241 - 2 GHz	30 dB	Min
	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

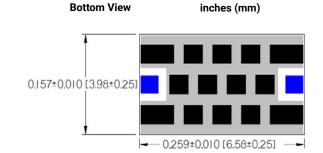
Click here to return to main table.

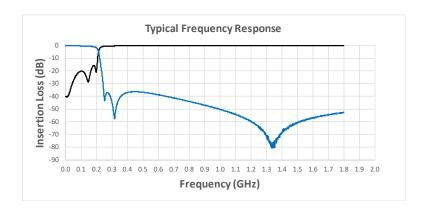
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0171A7**

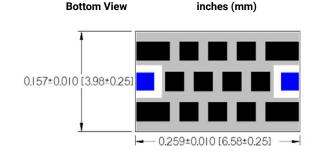
ELECTRICAL SPECIFICATIONS

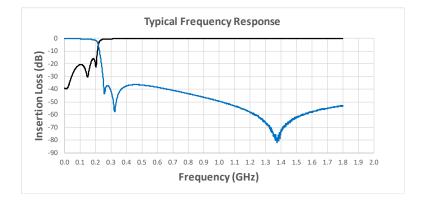

Pass Band	DC - 0.171 GHz	1.2 dB	Max
	DC - 0.171 GHz	0.8 dB	Тур
	-3dB Cutoff	0.207 GHz	Тур
D : .:	0.255 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0174A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 0.174 GHz	1.2 dB	Max
	DC - 0.174 GHz	0.8 dB	Тур
	-3dB Cutoff	0.212 GHz	Тур
	0.26 - 2 GHz	30 dB	Min
Rejection	N/A	40 dB	Min
Dimension	Thickness	40 Mils	Max
RF Power	Power	4 Watts	Max

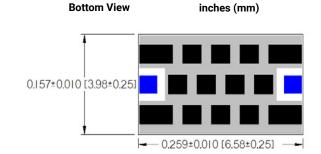
Click here to return to main table.

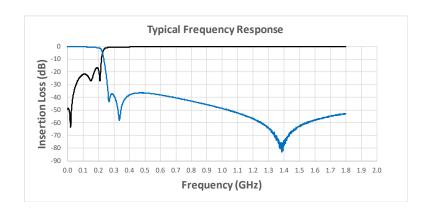
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0185A7**

ELECTRICAL SPECIFICATIONS

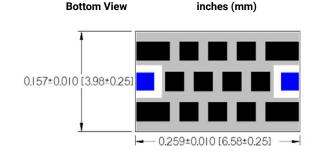

	DC - 0.185 GHz	1.2 dB	Max		
Pass Band	DC - 0.185 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.22 GHz	Тур		
Deigation	0.27 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

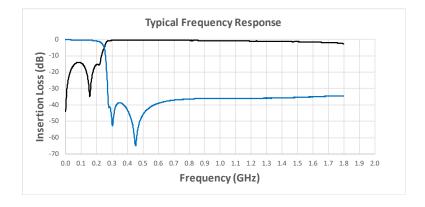

Click here to return to main table.

CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0194A7**


ELECTRICAL SPECIFICATIONS

	DC - 0.194 GHz	1.2 dB	Max		
Pass Band	DC - 0.194 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.241 GHz	Тур		
Deication	0.289 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

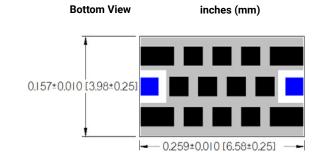
Click here to return to main table.

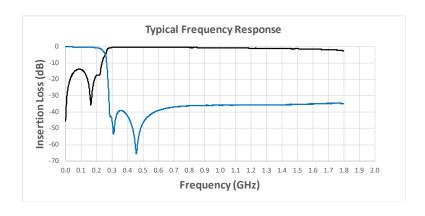
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0204A7**

ELECTRICAL SPECIFICATIONS

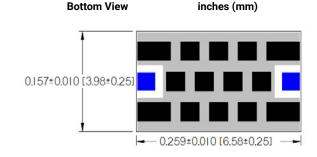

	DC - 0.204 GHz	1.2 dB	Max		
Pass Band	DC - 0.204 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.245 GHz	Тур		
Deication	0.293 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

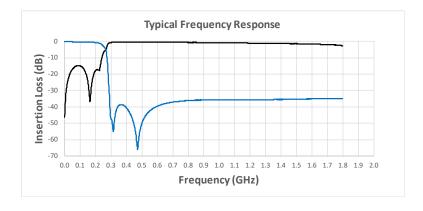

Click here to return to main table.

CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0209A7**


ELECTRICAL SPECIFICATIONS

	DC - 0.209 GHz	1.2 dB	Max		
Pass Band	DC - 0.209 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.252 GHz	Тур		
Deiestien	0.303 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

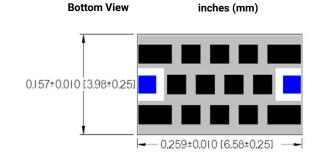
Click here to return to main table.

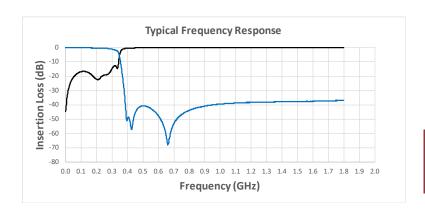
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0279A7**

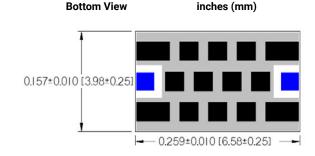
ELECTRICAL SPECIFICATIONS

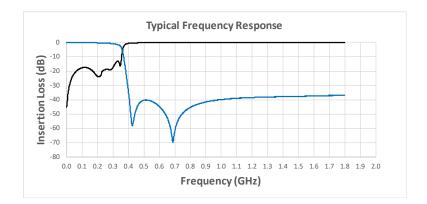

	DC - 0.279 GHz	1.2 dB	Max		
Pass Band	DC - 0.279 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.339 GHz	Тур		
Deigation	0.398 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA0290A7**


ELECTRICAL SPECIFICATIONS

	DC - 0.29 GHz	1.2 dB	Max		
Pass Band	DC - 0.29 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.351 GHz	Тур		
Deiestien	0.415 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

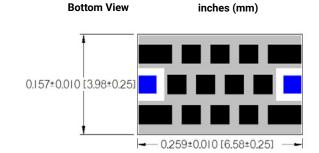
Click here to return to main table.

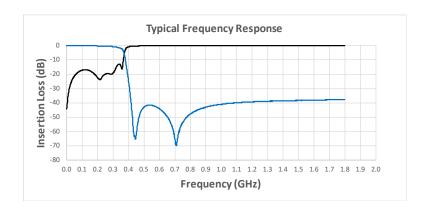
DIMENSIONS - CASE SIZE A

MLO® Low Pass Filters

LP0AA0299A7**

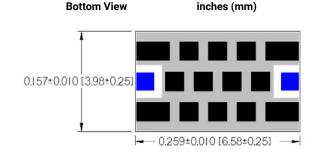
ELECTRICAL SPECIFICATIONS


	DC - 0.299 GHz	1.2 dB	Max		
Pass Band	DC - 0.299 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.363 GHz	Тур		
Rejection	0.427 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

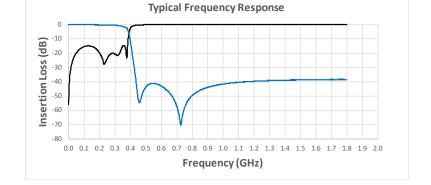

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A



LP0AA0316A7**


ELECTRICAL SPECIFICATIONS

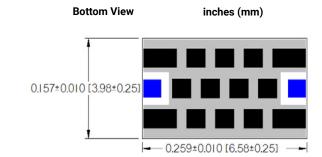
	DC - 0.316 GHz	1.2 dB	Max		
Pass Band	DC - 0.316 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.378 GHz	Тур		
Deiestien	0.446 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

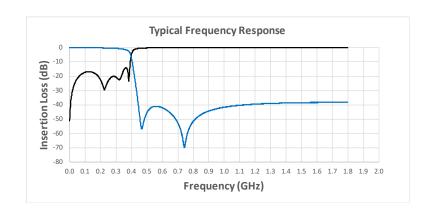
Click here to return to main table.

MLO® Low Pass Filters

LP0AA0322A7**

ELECTRICAL SPECIFICATIONS

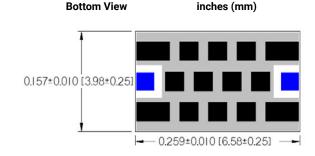

	DC - 0.322 GHz	1.2 dB	Max		
Pass Band	DC - 0.322 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.386 GHz	Тур		
Deigation	0.454 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

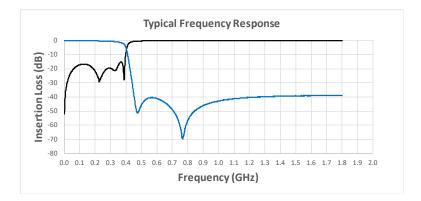

Click here to return to main table.

CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A

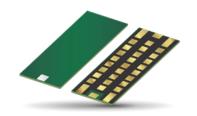

LP0AA0327A7**


ELECTRICAL SPECIFICATIONS

	DC - 0.327 GHz	1.2 dB	Max		
Pass Band	DC - 0.327 GHz	0.8 dB	Тур		
	-3dB Cutoff	0.392 GHz	Тур		
Deication	0.462 - 2 GHz	30 dB	Min		
Rejection	N/A	40 dB	Min		
Dimension	Thickness	40 Mils	Max		
RF Power	Power	4 Watts	Max		

Click here to return to main table.

DIMENSIONS - CASE SIZE A



MLO® Band Pass Filters

BP Series

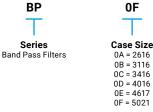
FEATURES

- Low insertion loss
- High rejection out-of-band
- Steep roll-off
- 50Ω Impedance
- Expansion matched to PCB
- Surface Mount
- **RoHS Compliant**

GENERAL DESCRIPTION

The BP series of MLO® High Performance Band Pass Filters exhibit low insertion loss, steep roll-offs, and very high rejection of out of band frequencies. MLO® Band Pass Filters support many frequency bands and multiple wireless standards, and are less than 1.0mm in thickness.

MLO components are low profile devices with best in class performance based on KYOCERA AVX patented multilayer organic high density interconnect technology. MLO components utilize high dielectric constant and low loss materials to realize high Q passive printed elements, such as inductors and capacitors, in a multilayer stack. All MLO components are expansion matched to most organic PCB materials, thereby resulting in improved reliability over standard Si and ceramic devices


APPLICATIONS

- Wireless Communications Systems
- Military Radios
- **EMS Radios**
- UAVs
- **Basestations**
- Wireless access points and terminals
- Instrumentation

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- **Excellent Solderability**
- Low Parasitics
- **Better Heat Dissipation**

HOW TO ORDER

Package Code 00 - Waffle Pack TR - 1000 pcs Tape & Reel TR\250 - 250 pcs Tape & Reel

OUALITY INSPECTION

Finished Parts are 100% electrically tested

For RoHScompliant products, please select correct termination style

TERMINATION

All finishes are compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase, and manual soldering.

OPERATING TEMPERATURE

-55°C to +85°C

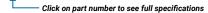
S2P FILES, DRAWING AND OTHER INFORMATION AVAILABLE IN LINK ON INDIVIDUAL DATASHEETS

ELECTRICAL SPECIFICATIONS

Fe		С	Passbai	nd Ripple	<1.5dB	l	nsertion L	oss < 5dl	3	Low	Band			D . IDE		
Part Number			<1	.5 dB Rip	ple		< 5	dB		DC - 30 dB	DC - 40 dB	30	dB	40	dB	Rated RF Power
Part Number		Тур	Min	Max	BW	Min	Max	BW	Тур	Max	Max	Entry	Exit	Entry	Exit	rowei
	GHz	dB	Ghz	Ghz	Ghz	Ghz	Ghz	Ghz	dB	Ghz	Ghz	Ghz	Ghz	Ghz	Ghz	(W)
BP0IA0110A7**	0.110	1.7	0.092	0.135	0.043	0.088	0.138	0.050	2.2	0.688	0.063	0.181	1.000	0.187	0.950	1
BP0IA0115A7**	0.115	1.7	0.094	0.138	0.044	0.090	0.142	0.051	2.4	0.066	0.064	0.187	1.000	0.192	0.950	1
BP0IA0120A7**	0.120	1.7	0.095	0.143	0.048	0.092	0.146	0.054	2.5	0.069	0.066	0.191	1.000	0.197	0.950	1
BP0IA0170A7**	0.170	1.4	0.132	0.224	0.092	0.128	0.228	0.100	2	0.096	0.093	0.297	1.000	0.307	0.950	1
BP0IA0175A7**	0.175	1.4	0.135	0.231	0.096	0.132	0.235	0.103	2.3	0.100	0.096	0.304	1.000	0.314	0.950	1
BP0IA0180A7**	0.180	1.6	0.143	0.228	0.085	0.137	0.234	0.097	2.2	0.103	0.099	0.312	1.000	0.322	0.950	1
BP0EA0270A7**	0.270	1.6	0.231	0.316	0.085	0.224	0.325	0.100	2.4	0.161	0.155	0.424	2.000	0.444	2.000	1
BP0EA0280A7**	0.280	1.7	0.234	0.321	0.088	0.227	0.327	0.100	2.2	0.164	0.158	0.431	2.000	0.447	2.000	1
BP0EA0290A7**	0.290	1.7	0.244	0.339	0.096	0.241	0.345	0.105	2.3	0.170	0.164	0.454	2.000	0.473	2.000	1
BP0EA0400A7**	0.400	1.3	0.303	0.494	0.191	0.296	0.500	0.203	1.9	0.215	0.206	0.660	2.500	0.687	2.100	1
BP0EA0420A7**	0.420	1.3	0.316	0.514	0.198	0.309	0.520	0.211	2	0.224	0.215	0.690	2.500	0.719	2.000	1
BP0EA0430A7**	0.430	1.3	0.323	0.529	0.207	0.316	0.535	0.219	1.9	0.230	0.221	0.706	2.500	0.736	2.000	1
BP0DA0585A7**	0.585	1.3	0.472	0.735	0.262	0.461	0.745	0.284	2.1	0.360	0.000	0.985	3.000	0.000	0.000	1
BP0DA0595A7**	0.595	1.3	0.478	0.745	0.267	0.467	0.756	0.289	1.9	0.365	0.000	1.002	3.000	0.000	0.000	1
BP0DA0650A7**	0.650	1.3	0.485	0.776	0.291	0.490	0.787	0.297	2	0.374	0.000	1.030	3.000	0.000	0.000	1

Click on part number to see full specifications

^{**}Packaging: 00 = waffle pack, TR = 1000pcs T&R, TR\250 = 250pcs T&R


362

Multilayer Organic (MLO®) Filters **MLO® Band Pass Filters**

ELECTRICAL SPECIFICATIONS - CONTINUED

	F	С	Passbar	nd Ripple	<1.5dB	I	nsertion l	oss < 5d	В	Low	Band	High Band				
				•		DC - 30 dB	DC - 40 dB	30 dB 40 dB				Rated RF				
Part Number		Тур	Min	Max	BW	Min	Max	BW	Тур	Max	Max	Entry	Exit	Entry	Exit	Power
	GHz	dB	Ghz	Ghz	Ghz	Ghz	Ghz	Ghz	dB	Ghz	Ghz	Ghz	Ghz	Ghz	Ghz	(W)
BP0CA0770A7**	0.770	0.97	0.628	0.954	0.326	0.620	0.970	0.350	1.97	0.480	0.460	1.190	4.500	1.230	4.000	1
BP0CA0810A7**	0.810	1.3	0.668	0.985	0.317	0.657	1.006	0.349	2	0.511	0.500	1.256	4.000	1.290	4.000	1
BP0CA0825A7**	0.825	1.3	0.680	0.985	0.305	0.668	1.000	0.353	2	0.511	0.504	1.261	4.000	1.296	4.000	1
BP0CA0855A7**	0.825	1.4	0.708	1.032	0.303	0.691	1.021	0.353	2	0.513	0.526	1.314	4.000	1.347	3.800	
																1
BP0CA1070A7**	1.070	1.1	0.887	1.313	0.426	0.864	1.329	0.465	2.1	0.693	0.672	1.647	4.000	1.682	4.000	1
BP0CA1090A7**	1.090	1.3	0.898	1.329	0.431	0.881	1.350	0.469	2.1	0.698	0.683	1.676	4.500	1.716	4.275	1
BP0CA1100A7**	1.100	0.95	0.881	1.365	0.484	0.860	1.390	0.530	1.62	0.680	0.660	1.680	5.000	1.730	4.500	1
BP0FA1100A7**	1.100	1.19	0.915	1.340	0.425	0.870	1.390	0.520	1.97	0.670	0.640	1.720	16.700	1.780	11.110	1
BP0FA1130A7**	1.130	1.35	0.928	1.398	0.470	0.890	1.440	0.550	2.18	0.680	0.660	1.760	15.540	1.790	11.700	1
BP0CA1160A7**	1.160	1.3	0.943	1.340	0.397	0.910	1.397	0.486	2	0.719	0.704	1.727	4.750	1.820	4.275	1
BP0FA1190A7**	1.190	1.28	1.031	1.387	0.356	0.990	1.440	0.450	1.96	0.760	0.740	1.740	18.000	1.780	16.290	1
BP0CA1610A7**	1.610	0.89	1.290	2.006	0.716	1.270	2.050	0.780	1.74	1.040	1.020	2.500	9.000	2.570	6.260	1
BP0EA1950A7**	1.950	0.94	1.486	2.573	1.087	1.440	2.640	1.200	1.46	1.190	1.160	3.140	9.000	3.220	7.500	1
BP0EA1980A7**	1.980	0.98	1.506	2.629	1.123	1.470	2.680	1.210	1.43	1.210	1.170	3.270	9.000	3.370	7.620	1
BP0EA2000A7**	2	1.8	1.878	2.121	0.243	1.838	2.18	0.343	2.2	1.48	1.454	2.675	9	2.729	8.000	1
BP0EA2055A7**	2.055	1.8	1.944	2.18	0.237	1.902	2.223	0.321	2.1	1.518	1.492	2.77	9	2.817	8.000	1
BP0EA2090A7**	2.090	1.08	1.580	2.759	1.179	1.450	2.840	1.390	1.33	1.280	1.230	3.400	9.000	3.600	7.920	1
BP0EA2135A7**	2.135	1.8	2.002	2.266	0.263	1.961	2.325	0.363	2.2	1.561	1.529	2.841	9	2.882	8.000	1
BP0BA2150A7**	2.150	1.4	1.768	2.548	0.780	1.750	2.579	0.829	1.8	1.344	0.000	3.305	9.000	0.000	0.000	1
BP0BA2260A7**	2.260	1.3	1.838	2.642	0.804	1.820	2.673	0.854	1.9	1.397	0.000	3.444	9.000	0.000	0.000	1
BP0BA2290A7**	2.290	1.2	1.884	2.751	0.868	1.866	2.715	0.849	1.8	1.433	0.000	3.548	9.000	0.000	0.000	1
BP0EA2423A7**	2.423	1.6	2.168	2.646	0.478	2.138	2.746	0.609	2.3	1.758	1.732	3.29	9	3.325	9.000	1
BP0EA2500A7**	2.500	1.36	2.084	3.003	0.470	2.020	3.210	1.190	2.38	1.690	1.640	3.710	9.000	3.800	7.500	1
BP0EA2510A7**	2.500	1.6	2.245	2.774	0.529	2.209	2.832	0.623	2.30	1.822	1.796	3.366	9.000	3.402	9.000	1
BP0EA2540A7**	2.540	1.11	2.243	3.161	1.084	2.020	3.210	1.190	1.88	1.700	1.640	3.800	8.300	3.402	7.800	1
BP0EA2568A7**	2.568	1.11	2.286	2.864	0.578	2.020	2.923	0.667	2.1	1.871	1.844	3.485	10	3.521	9.000	1
BP0EA2620A7**	2.620	1.55	2.141	3.169	1.028	2.090	3.280	1.190	2.21	1.740	1.680	3.910	7.800	3.960	7.700	1
BP0EA3060A7**	3.06	1.6	2.783	3.34	0.558	2.741	3.42	0.68	2.1	2.261	2.223	4.099	11	4.14	10.200	1
BP0EA2000A7**	3.123	1.5	2.847	3.43	0.584	2.799	3.485	0.685	2.2	2.319	2.288	4.153	12	4.2	9.000	1
BP0EA3180A7**	3.180	0.84	2.505	4.016	1.510	2.450	4.140	1.690	1.67	1.810	1.750	5.250	18.430	5.460	15.500	1
BP0BA3270A7**	3.270	2.2	3.242	3.314	0.071	3.156	3.381	0.225	2.3	2.334	2.219	4.337	9.000	4.580	9.000	1
BP0BA3280A7**	3.280	2.2	3.225	3.340	0.116	3.150	3.412	0.262	2.2	2.361	2.246	4.376	9.000	4.700	9.000	1
BP0EA3284A7**	3.284	1.5	3.019	3.586	0.567	2.972	3.629	0.657	2.1	2.447	2.292	4.324	11.5	5.091	9.000	1
BP0EA3310A7**	3.310	0.97	2.695	4.107	1.412	2.620	4.190	1.570	1.85	1.910	1.860	5.220	19.050	5.410	15.940	1
BP0BA3350A7**	3.350	2.3	3.282	3.429	0.146	3.208	3.506	0.299	2.3	2.386	2.267	4.480	9.000	4.580	9.000	1
BP0EA3430A7**	3.430	0.83	2.683	4.370	1.687	2.640	4.460	1.820	1.8	1.950	1.890	5.590	20.000	5.830	16.000	1
BP0AA3580A7**	3.580	1.2	2.972	4.304	1.332	2.943	4.351	1.408	1.6	2.068	0.000	5.292	9.000	6.300	9.000	1
BP0EA3597A7**	3.597	1.9	3.325	3.923	0.597	3.237	3.998	0.76	2.4	2.621	2.538	4.896	10	4.93	9.000	1
BP0BA3630A7**	3.630	2.1	3.513	3.746	0.233	3.438	3.829	0.392	2.2	2.594	2.460	4.884	9.000	5.039	9.000	1
BP0AA3700A7**	3.700	1.1	3.046	4.481	1.435	3.020	4.533	1.513	1.8	2.152	0.000	5.500	9.000	6.300	9.000	1
BP0EA3720A7**	3.72	2	3.408	3.981	0.573	3.319	4.169	0.85	2.5	2.661	2.575	5.051	12.5	5.098	9.000	1
BP0BA3750A7**	3.750	2	3.657	3.835	0.178	3.588	3.918	0.330	2.1	2.694	2.558	5.097	9.000	5.241	9.000	1
BP0AA3790A7**	3.790	1	3.200	4.589	1.389	3.150	4.646	1.496	2.1	2.199	0.000	5.661	9.000	6.060	9.000	1
BP0EA3827A7**	3.827	2.1	3.508	4.169	0.661	3.408	4.297	0.889	2.4	2.726	2.64	5.18	14	5.222	9.000	1
BP0BA3900A7**	3.900	2	3.847	3.960	0.112	3.755	4.058	0.304	2.2	2.735	2.600	5.229	9.000	6.000	9.000	1
BP0EA4260A7**	4.260	1.3	3.389	5.422	2.032	3.325	5.462	2.136	2.2	2.621	2.261	6.920	9.000	0.000	0.000	1
BP0EA4363A7**	4.363	1.6	3.933	4.847	0.914	3.863	4.927	1.064	2.2	3.121	3.009	6.019	13	6.072	10.500	1
BP0EA4400A7**	4.400	1.0	3.456	5.627	2.171	3.420	5.670	2.250	1.8	2.699	2.613	7.109	9.000	0.000	0.000	1
BP0EA4440A7**			+													1
	4.440	1.1	3.554	5.513	1.959	3.490	5.660	2.170	1.78	2.890	2.790	7.060	13.800	7.390	9.260	
BP0EA4550A7**	4.55	1.7	4.052	5.071	1.019	3.922	5.16	1.239	2	3.196	3.084	6.278	15.5	6.302	11.000	1
BP0EA4583A7**	4.583	1.1	3.542	5.932	2.390	3.521	5.979	2.459	1.6	2.770	2.667	7.400	9.000	0.000	0.000	1
BP0EA4600A7**	4.600	1.14	3.806	5.696	1.890	3.660	5.780	2.120	1.79	2.990	2.900	7.150	9.680	7.500	9.550	1
BP0EA4649A7**	4.649	1.8	4.371	5.285	0.914	4.016	5.381	1.365	2.7	3.259	3.159	6.497	12	6.596	11.000	1
BP0EA4680A7**	4.680	1.18	3.743	5.776	2.033	3.700	5.930	2.230	1.77	3.050	2.960	7.370	9.860	7.730	8.400	1

^{**}Packaging: 00 = waffle pack, TR = 1000pcs T&R, $TR \setminus 250 = 250$ pcs T&R

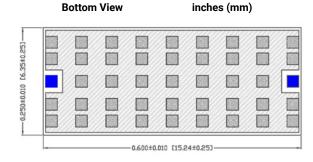
MLO® Band Pass Filters

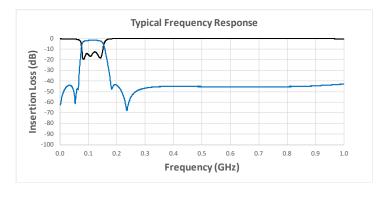
MECHANICAL DIMENSIONS:

inches (mm)

Case	e Size	Length	Width	Height					
Α	2616	0.259±0.010 (6.579±0.254)	0.157±0.010 (3.975±0.254)	Varies - see part specification					
В	3116	0.306±0.010 (7.785±0.254)	0.156±0.010 (3.975±0.254)	Varies - see part specification					
С	3416	0.342±0.010 (8.674±0.254)	0.157±0.010 (3.975±0.254)	Varies - see part specification					
D	4016	0.401±0.010 (10.198±0.254)	0.156±0.010 (3.975±0.254)	Varies - see part specification					
Е	4617	0.460±0.010 (11.684±0.254)	0.170±0.010 (4.318±0.254)	Varies - see part specification					
E1	4617	0.460±0.010 (11.684±0.254)	0.174±0.010 (4.4196±0.254)	Varies - see part specification					
E2	4614	0.460±0.010 (11.684±0.254)	0.144±0.010 (3.6576±0.254)	Varies - see part specification					
F	5021	0.512±0.010 (12.992±0.254)	0.207±0.010 (5.245±0.254)	Varies - see part specification					
I	6025	.600±0.010 (15.24±0.254)	0.250±0.010 (6.35±0.254)	Varies - see part specification					

BP0IA0110A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.1	10	1.7	dB Fc Typ
Pass Band	0.088	0.138	5.0	dB Max
Pass Dallu	0.088	0.138	2.2	dB Typ
	0.092	0.135	1.5	dB Ripple
	DC	0.063	30	dB Min
Rejection	0.181	0.950	30	dB Min
Rejection	DC	0.063	40	dB Min
	0.187	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

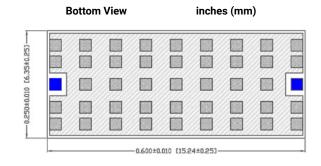
Click here to return to main table.

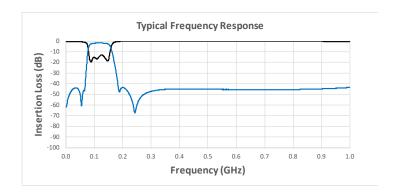
*Data files contain DXF and S2P files

MLO® Band Pass Filters

BP0IA0115A7**

ELECTRICAL SPECIFICATIONS

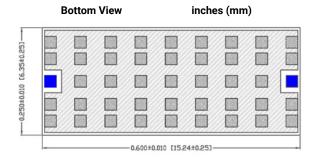

	Min (GHz)	Max (GHz)		
	0.1	15	1.7	dB Fc Typ
Pass Band	0.090	0.142	5.0	dB Max
Pass Dallu	0.090	0.142	2.4	dB Typ
	0.094	0.138	1.5	dB Ripple
	DC	0.064	30	dB Min
Rejection	0.187	0.950	30	dB Min
Rejection	DC	0.064	40	dB Min
	0.192	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

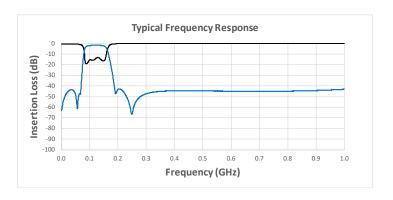

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE I

BP0IA0120A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.1	20	1.7	dB Fc Typ
Pass Band	0.092	0.146	5.0	dB Max
Pass Dallu	0.092	0.146	2.5	dB Typ
	0.095	0.143	1.5	dB Ripple
	DC	0.066	30	dB Min
Rejection	0.191	0.950	30	dB Min
Rejection	DC	0.066	40	dB Min
	0.197	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	Power		Watts Max

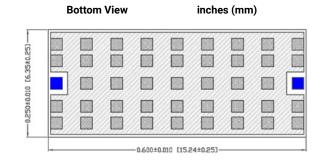
Click here to return to main table.

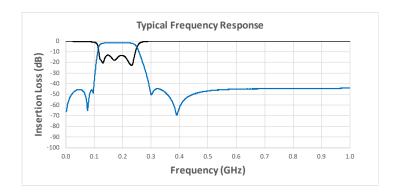
*Data files contain DXF and S2P files

MLO® Band Pass Filters

BP0IA0170A7**

ELECTRICAL SPECIFICATIONS

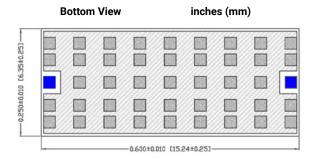

	Min (GHz)	Max (GHz)		
	0.1	70	1.4	dB Fc Typ
Pass Band	0.128	0.228	5.0	dB Max
Pass Band	0.128	0.228	2	dB Typ
	0.132	0.224	1.5	dB Ripple
	DC	0.093	30	dB Min
Rejection	0.297	0.950	30	dB Min
Rejection	DC	0.093	40	dB Min
	0.307	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

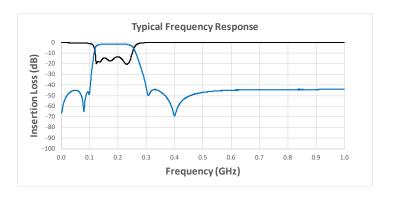

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE I

BP0IA0175A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.1	75	1.4	dB Fc Typ
Pass Band	0.132	0.235	5.0	dB Max
Pass Dallu	0.132	0.235	2.3	dB Typ
	0.135	0.231	1.5	dB Ripple
	DC	0.096	30	dB Min
Rejection	0.304	0.950	30	dB Min
Rejection	DC	0.096	40	dB Min
	0.314	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Power		1	Watts Max

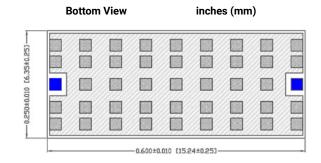
Click here to return to main table.

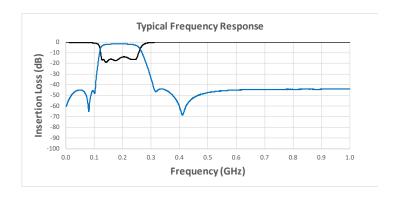
*Data files contain DXF and S2P files

MLO® Band Pass Filters

BP0IA0180A7**

ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.1	80	1.6	dB Fc Typ
Pass Band	0.137	0.234	5.0	dB Max
Pass Dallu	0.137	0.234	2.2	dB Typ
	0.143	0.228	1.5	dB Ripple
	DC	0.099	30	dB Min
Rejection	0.312	0.950	30	dB Min
Rejection	DC	0.099	40	dB Min
	0.322	0.950	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.

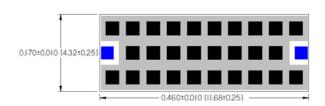
*Data files contain DXF and S2P files

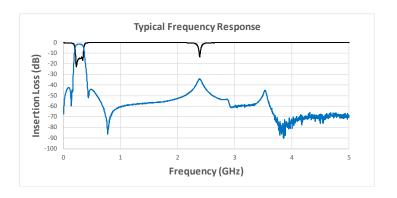
DIMENSIONS - CASE SIZE I

BP0EA0270A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.2	70	1.6	dB Fc Typ
Pass Band	0.224	0.325	5.0	dB Max
Pass Dallu	0.224	0.325	2.4	dB Typ
	0.231	0.316	1.5	dB Ripple
	DC	0.155	30	dB Min
Rejection	0.424	2.000	30	dB Min
Rejection	DC	0.155	40	dB Min
	0.444	2.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Power		1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View inches (mm)

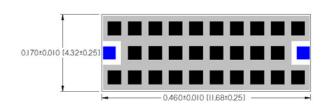
MLO® Band Pass Filters

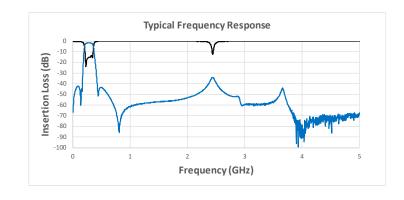
BP0EA0280A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.2	280	1.7	dB Fc Typ
Pass Band	0.227	0.327	5.0	dB Max
Pass Band	0.227	0.327	2.2	dB Typ
	0.234	0.321	1.5	dB Ripple
	DC	0.158	30	dB Min
Rejection	0.431	2.000	30	dB Min
Rejection	DC	0.158	40	dB Min
	0.447	2.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

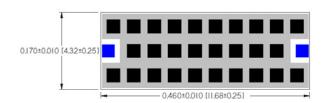
Bottom View

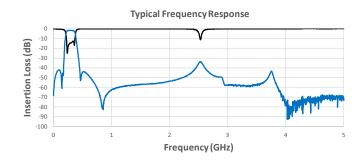
inches (mm)

BP0EA0290A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.2	.90	1.7	dB Fc Typ
Pass Band	0.241	0.345	5.0	dB Max
Pass Dallu	0.241	0.345	2.3	dB Typ
	0.244	0.339	1.5	dB Ripple
	DC	0.164	30	dB Min
Rejection	0.454	2.000	30	dB Min
Rejection	DC	0.164	40	dB Min
	0.473	2.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

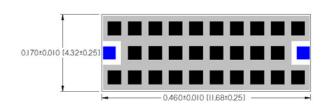
MLO® Band Pass Filters

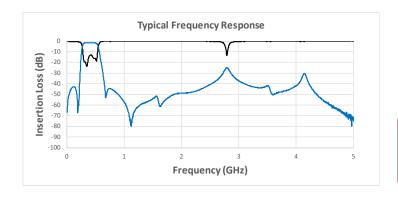
BP0EA0400A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.4	100	1.3	dB Fc Typ
Pass Band	0.296	0.500	5.0	dB Max
Pass Dallu	0.296	0.500	1.9	dB Typ
	0.303	0.494	1.5	dB Ripple
	DC	0.206	30	dB Min
Rejection	0.660	2.100	30	dB Min
Rejection	DC	0.206	40	dB Min
	0.687	2.100	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

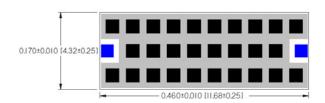
Bottom View

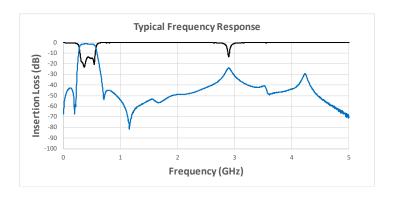
inches (mm)

BP0EA0420A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	0.4	20	1.3	dB Fc Typ	
Pass Band	0.309	0.520	5.0	dB Max	
Pass Dallu	0.309	0.520	2	dB Typ	
	0.316	0.514	1.5	dB Ripple	
	DC	0.215	30	dB Min	
Rejection	0.690	2.000	30	dB Min	
Rejection	DC	0.215	40	dB Min	
	0.719	2.000	40	dB Min	
Dimension	Thickness		40	Mils Max	
RF Power	Power		1	Watts Max	


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

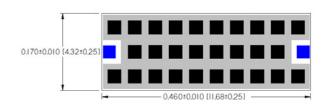
MLO® Band Pass Filters

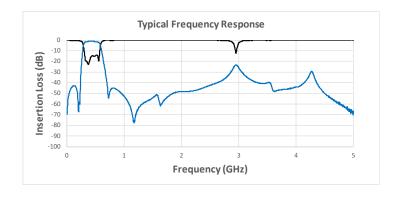
BP0EA0430A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.4	30	1.3	dB Fc Typ
Pass Band	0.316	0.535	5.0	dB Max
Pass Band	0.316	0.535	1.9	dB Typ
	0.323	0.529	1.5	dB Ripple
	DC	0.221	30	dB Min
Dejection	0.706	2.000	30	dB Min
Rejection	DC	0.221	40	dB Min
	0.736	2.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

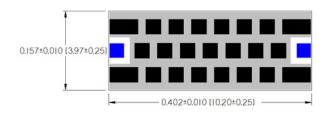
DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)

BP0DA0585A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.5	85	1.3	dB Fc Typ
Pass Band	0.461	0.745	5.0	dB Max
Pass Dallu	0.461	0.745	2.1	dB Typ
	0.472	0.735	1.5	dB Ripple
	DC	0.000	30	dB Min
Rejection	0.985	0.000	30	dB Min
Rejection	DC	0.000	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.

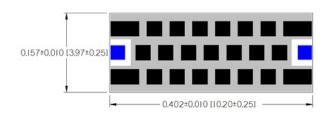
*Data files contain DXF and S2P files

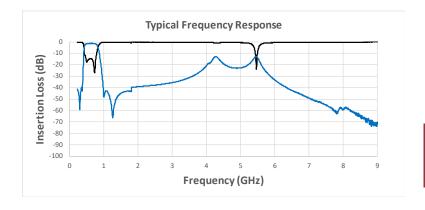
MLO® Band Pass Filters

BP0DA0595A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.5	95	1.3	dB Fc Typ
Pass Band	0.467	0.756	5.0	dB Max
Pass Band	0.467	0.756	1.9	dB Typ
	0.478	0.745	1.5	dB Ripple
	DC	0.000	30	dB Min
Rejection	1.002	0.000	30	dB Min
Rejection	DC	0.000	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



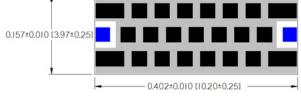
*Data files contain DXF and S2P files

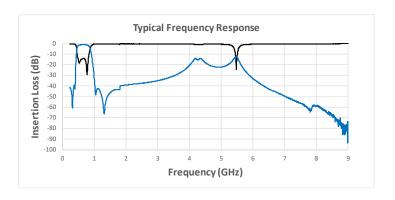
DIMENSIONS - CASE SIZE D

Bottom View inches (mm)

BP0DA0650A7**

ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.6	50	1.3	dB Fc Typ
Pass Band	0.490	0.787	5.0	dB Max
Pass Dallu	0.490	0.787	2	dB Typ
	0.485	0.776	1.5	dB Ripple
	DC	0.000	30	dB Min
Rejection	1.030	0.000	30	dB Min
Rejection	DC	0.000	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Power		1	Watts Max


Click here to return to main table.

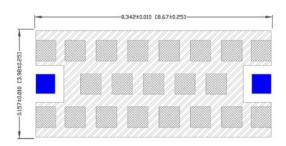
*Data files contain DXF and S2P files

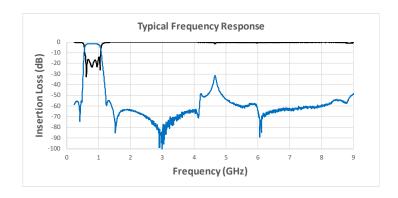
MLO® Band Pass Filters

BP0CA0770A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.7	70	0.97	dB Fc Typ
Pass Band	0.620	0.970	5.0	dB Max
Pass Band	0.620	0.970	1.97	dB Typ
	0.628	0.954	1.5	dB Ripple
	DC	0.460	30	dB Min
Rejection	1.190	4.000	30	dB Min
Rejection	DC	0.460	40	dB Min
	1.230	4.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

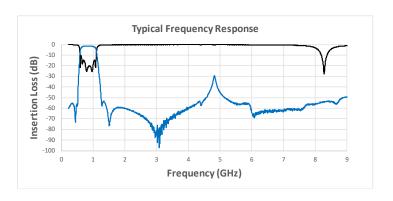
DIMENSIONS - CASE SIZE C

Bottom View inches (mm)

BP0CA0810A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	0.8	310	1.3	dB Fc Typ
Pass Band	0.657	1.006	5.0	dB Max
Pass Dallu	0.657	1.006	2	dB Typ
	0.668	0.985	1.5	dB Ripple
	DC	0.500	30	dB Min
Rejection	1.256	4.000	30	dB Min
Rejection	DC	0.500	40	dB Min
	1.290	4.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	Power		Watts Max
·				


Click here to return to main table.

*Data files contain DXF and S2P files

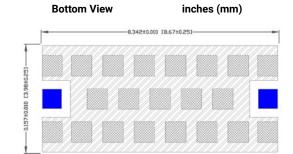
DIMENSIONS - CASE SIZE C

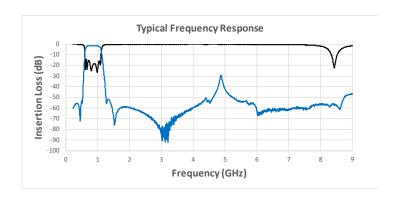
Bottom View inches (mm) -0.342±0.010 [8.67±0.25]

MLO® Band Pass Filters

BP0CA0825A7**

ELECTRICAL SPECIFICATIONS

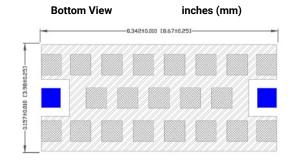

	Min (GHz)	Max (GHz)		
	0.8	25	1.3	dB Fc Typ
Pass Band	0.668	1.021	5.0	dB Max
Pass Band	0.668	1.021	2	dB Typ
	0.680	0.985	1.5	dB Ripple
	DC	0.504	30	dB Min
Rejection	1.261	4.000	30	dB Min
Rejection	DC	0.504	40	dB Min
	1.296	4.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

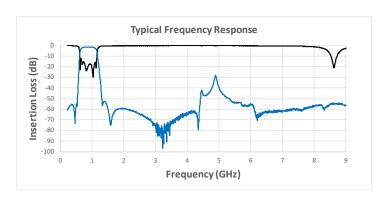

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE C

BP0CA0855A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	0.8	55	1.4	dB Fc Typ
Pass Band	0.691	1.053	5.0	dB Max
Pass Dallu	0.691	1.053	2	dB Typ
	0.708	1.032	1.5	dB Ripple
	DC	0.526	30	dB Min
Rejection	1.314	3.800	30	dB Min
Rejection	DC	0.526	40	dB Min
	1.347	3.800	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

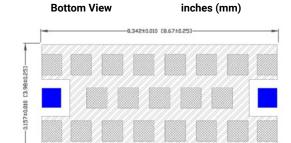
Click here to return to main table.

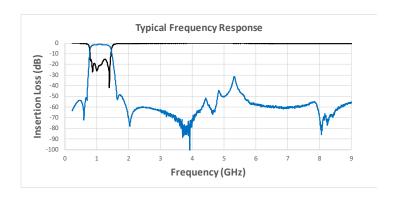
*Data files contain DXF and S2P files

MLO® Band Pass Filters

BP0CA1070A7**

ELECTRICAL SPECIFICATIONS

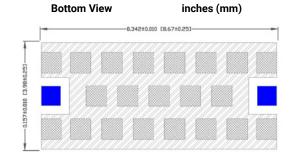

	Min (GHz)	Max (GHz)		
	1.0	70	1.1	dB Fc Typ
Pass Band	0.864	1.329	5.0	dB Max
Pass Band	0.864	1.329	2.1	dB Typ
	0.887	1.313	1.5	dB Ripple
	DC	0.672	30	dB Min
Rejection	1.647	4.000	30	dB Min
Rejection	DC	0.672	40	dB Min
	1.682	4.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	1	Watts Max

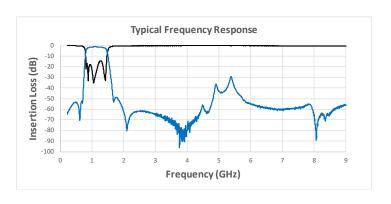

Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE C

BP0CA1090A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	1.0	90	1.3	dB Fc Typ
Pass Band	0.881	1.350	5.0	dB Max
Pass Dallu	0.881	1.350	2.1	dB Typ
	0.898	1.329	1.5	dB Ripple
	DC	0.683	30	dB Min
Rejection	1.676	4.275	30	dB Min
Rejection	DC	0.683	40	dB Min
	1.716	4.275	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	Power		Watts Max

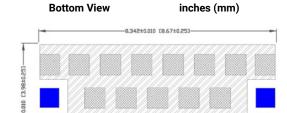
Click here to return to main table.

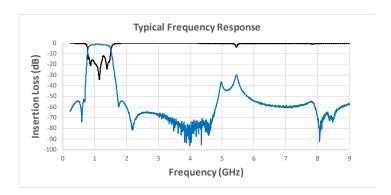
*Data files contain DXF and S2P files

MLO® Band Pass Filters

BP0CA1100A7**

ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	1.1	00	0.95	dB Fc Typ
Pass Band	0.860	1.390	5.0	dB Max
Pass Dallu	0.860	1.390	1.62	dB Typ
	0.881	1.365	1.5	dB Ripple
	DC	0.660	30	dB Min
Rejection	1.680	4.500	30	dB Min
Rejection	DC	0.660	40	dB Min
	1.730	4.500	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.

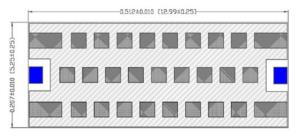
*Data files contain DXF and S2P files

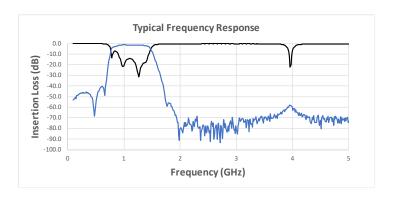
DIMENSIONS - CASE SIZE C

BP0FA1100A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	1.1	00	1.19	dB Fc Typ
	0.870	1.390	5.0	dB Max
Pass Band	0.870	1.390	1.97	dB Typ
	0.915	1.340	1.5	dB Ripple
	DC	0.640	30	dB Min
Rejection	1.720	11.110	30	dB Min
Rejection	DC	0.640	40	dB Min
	1.780	11.110	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE F

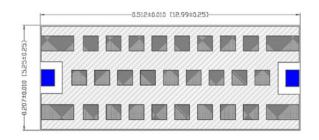
Bottom View inches (mm)

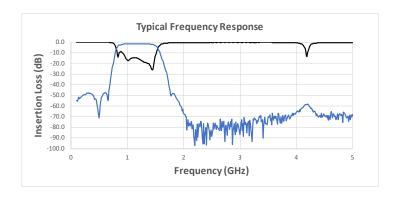
MLO® Band Pass Filters

BP0FA1130A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	1.1	30	1.35	dB Fc Typ
Pass Band	0.890	1.440	5.0	dB Max
Pass Dallu	0.890	1.440	2.18	dB Typ
	0.928	1.398	1.5	dB Ripple
	DC	0.660	30	dB Min
Rejection	1.760	11.700	30	dB Min
Rejection	DC	0.660	40	dB Min
	1.790	11.700	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

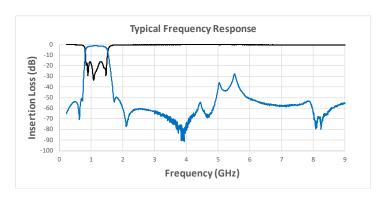
DIMENSIONS - CASE SIZE F

Bottom View inches (mm)

BP0CA1160A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	1.1	60	1.3	dB Fc Typ	
Pass Band	0.910	1.397	5.0	dB Max	
Pass Band	0.910	1.397	2	dB Typ	
	0.943	1.340	1.5	dB Ripple	
	DC	0.704	30	dB Min	
Rejection	1.727	4.275	30	dB Min	
Rejection	DC	0.704	40	dB Min	
	1.820	4.275	40	dB Min	
Dimension	Thickness		40	Mils Max	
RF Power	Pov	wer	1	Watts Max	


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE C

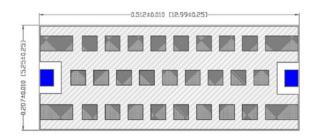
Bottom View inches (mm) -0.342±0.010 [8.67±0.25] 157±0.010 [3.98±0.25]

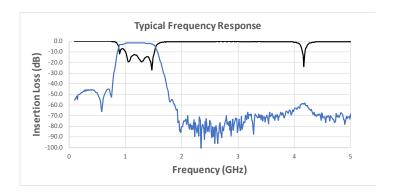
MLO® Band Pass Filters

BP0FA1190A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	1.1	90	1.28	dB Fc Typ
Pass Band	0.990	1.440	5.0	dB Max
Pass Band	0.990	1.440	1.96	dB Typ
	1.031	1.387	1.5	dB Ripple
	DC	0.740	30	dB Min
Rejection	1.740	16.290	30	dB Min
Rejection	DC	0.740	40	dB Min
	1.780	16.290	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

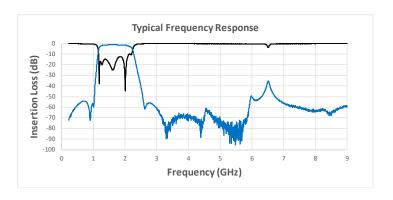
DIMENSIONS - CASE SIZE F

inches (mm) **Bottom View**

BP0CA1610A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	1.6	09	0.9	dB Fc Typ
Pass Band	1.267	2.053	5.0	dB Max
Pass Band	1.267	2.053	1.7	dB Typ
	1.290	2.006	1.5	dB Ripple
	DC	1.027	30	dB Min
Rejection	2.540	9.000	30	dB Min
	DC	1.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max


Click here to return to main table.

CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE C

Bottom View inches (mm) -0.342±0.010 [8.67±0.25] 157±0.010 [3.98±0.25]

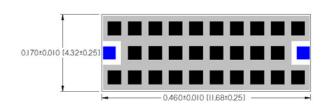
MLO® Band Pass Filters

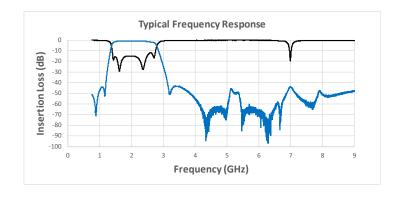
BP0EA1950A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	1.9	50	0.9	dB Fc Typ
Pass Band	1.472	2.597	5.0	dB Max
Pass Band	1.472	2.597	1.5	dB Typ
	1.486	2.573	1.5	dB Ripple
	DC	1.169	30	dB Min
Rejection	3.198	15.000	30	dB Min
Rejection	DC	1.135	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

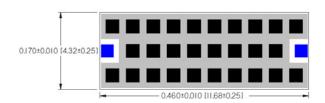
Bottom View

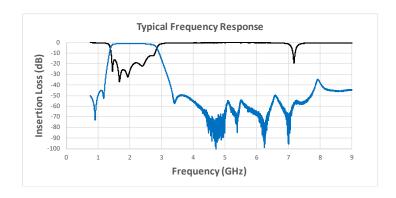
inches (mm)

BP0EA1980A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	1.9	080	1.0	dB Fc Typ	
Pass Band	1.493	2.656	5.0	dB Max	
Pass Dallu	1.493	2.656	1.4	dB Typ	
	1.506	2.629	1.5	dB Ripple	
	DC	1.188	30	dB Min	
Rejection	3.326	15.000	30	dB Min	
Rejection	DC	1.153	40	dB Min	
	3.438	9.000	40	dB Min	
Dimension	Thickness		22	Mils Max	
RF Power	Pov	wer	2	Watts Max	


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

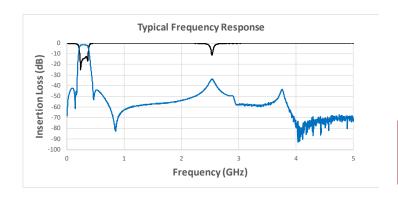
MLO® Band Pass Filters

BP0EA2090A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.0	90	1.1	dB Fc Typ
Pass Band	1.569	2.783	5.0	dB Max
Pass Dallu	1.569	2.783	1.3	dB Typ
	1.580	2.759	1.5	dB Ripple
	DC	1.250	30	dB Min
Rejection	3.466	15.000	30	dB Min
Rejection	DC	1.211	40	dB Min
	3.577	6.413	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

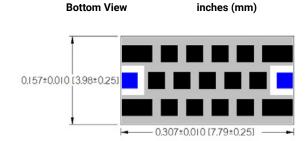
Click here to return to main table.

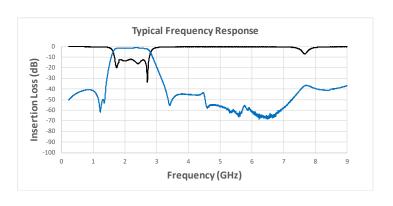

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)


BP0BA2150A7**


ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.2	260	1.3	dB Fc Typ
Pass Band	1.820	2.673	5.0	dB Max
Pass Band	1.820	2.673	1.9	dB Typ
	1.838	2.642	1.5	dB Ripple
n · ··	DC	1.397	30	dB Min
Rejection	3.444	9.000	30	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.

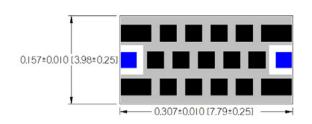
DIMENSIONS - CASE SIZE B

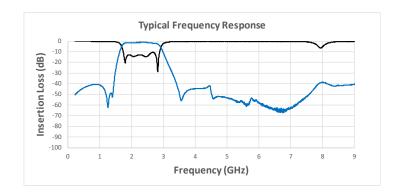
MLO® Band Pass Filters

BP0BA2260A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.2	203	1.3	dB Fc Typ
Pass Band	1.820	2.673	5.0	dB Max
Pass Band	1.820	2.673	1.9	dB Typ
	1.838	2.642	1.5	dB Ripple
	DC	1.397	30	dB Min
Rejection	3.444	9.000	30	dB Min
Rejection	DC	0.000	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	2	Watts Max


Click here to return to main table.



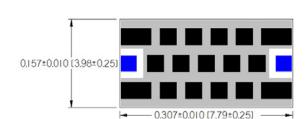
*Data files contain DXF and S2P files

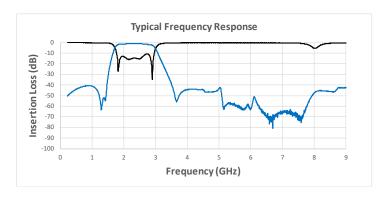
DIMENSIONS - CASE SIZE B

Bottom View inches (mm)

inches (mm)

BP0BA2290A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	2.2	90	1.2	dB Fc Typ
Pass Band	1.866	2.715	5.0	dB Max
Pass Band	1.866	2.715	1.8	dB Typ
	1.884	2.751	1.5	dB Ripple
Daisatian	DC	1.433	30	dB Min
Rejection	3.548	9.000	30	dB Min
Dimension	Thickness		40	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.

DIMENSIONS - CASE SIZE B

Bottom View

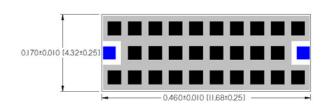
MLO® Band Pass Filters

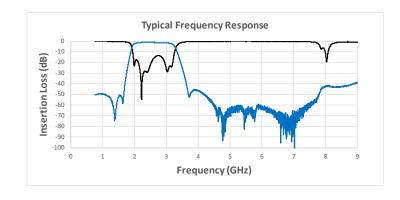
BP0EA2500A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.5	500	1.4	dB Fc Typ
Pass Band	2.064	3.034	5.0	dB Max
Pass Band	2.064	3.034	2.4	dB Typ
	2.084	3.003	1.5	dB Ripple
	DC	0.680	30	dB Min
Rejection	3.722	15.000	30	dB Min
Rejection	DC	0.660	40	dB Min
	3.807	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

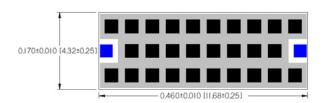
Bottom View

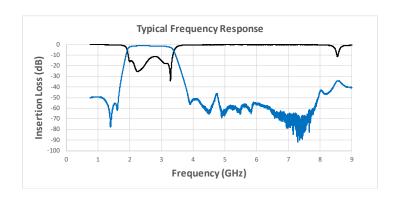
inches (mm)

BP0EA2540A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.5	540	1.1	dB Fc Typ
Pass Band	2.058	3.140	5.0	dB Max
Pass Dallu	2.058	3.140	1.9	dB Typ
	2.077	3.161	1.5	dB Ripple
	DC	1.658	30	dB Min
Rejection	3.851	6.150	30	dB Min
Rejection	DC	1.604	40	dB Min
	3.956	7.600	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max


Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

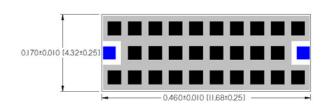
MLO® Band Pass Filters

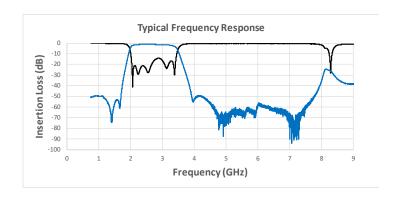
BP0EA2620A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.6	20	1.6	dB Fc Typ
Pass Band	2.122	3.212	5.0	dB Max
Pass Band	2.122	3.212	2.2	dB Typ
	2.141	3.169	1.5	dB Ripple
	DC	1.704	30	dB Min
Rejection	3.938	15.000	30	dB Min
Rejection	DC	1.650	40	dB Min
	4.036	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

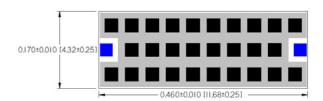
Bottom View

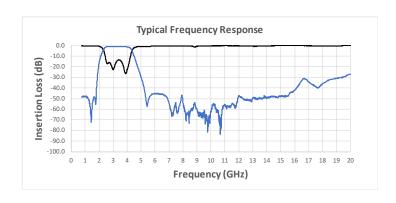
inches (mm)

BP0EA3180A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.1	80	0.8	dB Fc Typ
Pass Band	2.468	4.050	5.0	dB Max
Pass Dallu	2.468	4.050	1.7	dB Typ
	2.505	4.016	1.5	dB Ripple
	DC	1.776	30	dB Min
Rejection	5.272	8.000	30	dB Min
Rejection	DC	1.719	40	dB Min
	3.600	15.200	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

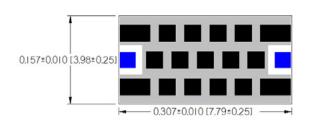
Bottom View

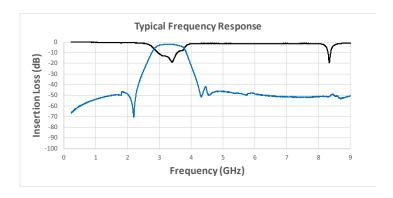
MLO® Band Pass Filters

BP0BA3270A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.2	270	2.2	dB Fc Typ
Pass Band	3.156	3.381	5.0	dB Max
Pass Dallu	3.156	3.381	2.3	dB Typ
	3.242	3.314	1.5	dB Ripple
	DC	2.334	30	dB Min
Rejection	4.337	9.000	30	dB Min
Rejection	DC	2.219	40	dB Min
	4.457	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

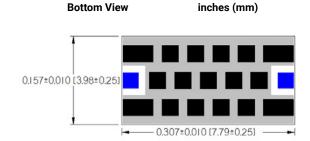

Click here to return to main table.

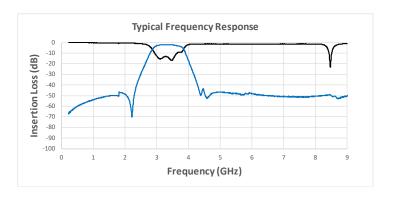


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

BP0BA3280A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	3.2	82	2.2	dB Fc Typ
Pass Band	3.150	3.412	5.0	dB Max
Pass Dallu	3.150	3.412	2.2	dB Typ
	3.225	3.340	1.5	dB Ripple
	DC	2.361	30	dB Min
Rejection	4.376	9.000	30	dB Min
Rejection	DC	2.246	40	dB Min
	4.503	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.

*Data files contain DXF and S2P files

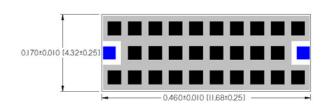
MLO® Band Pass Filters

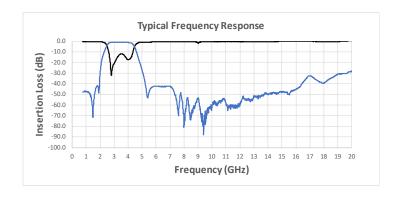
BP0EA3310A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.3	10	1.0	dB Fc Typ
Pass Band	2.670	4.057	5.0	dB Max
Pass Dallu	2.670	4.057	1.9	dB Typ
	2.695	4.107	1.5	dB Ripple
	DC	1.901	30	dB Min
Rejection	5.322	15.675	30	dB Min
Rejection	DC	0.000	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

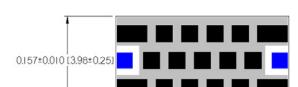
inches (mm)

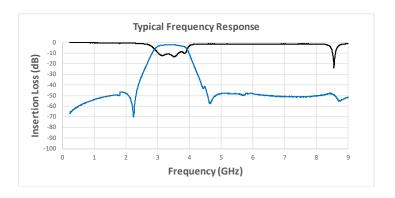
inches (mm)

BP0BA3350A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	3.3	50	2.3	dB Fc Typ	
Pass Band	3.208	3.506	5.0	dB Max	
Pass Dallu	3.208	3.506	2.3	dB Typ	
	3.282	3.429	1.5	dB Ripple	
	DC	2.386	30	dB Min	
Rejection	4.480	9.000	30	dB Min	
Rejection	DC	2.267	40	dB Min	
	4.607	9.000	40	dB Min	
Dimension	Thickness		22	Mils Max	
RF Power	Pov	wer	2	Watts Max	


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

Bottom View

- 0.307±0.010 [7.79±0.25]

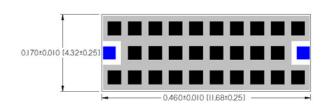
MLO® Band Pass Filters

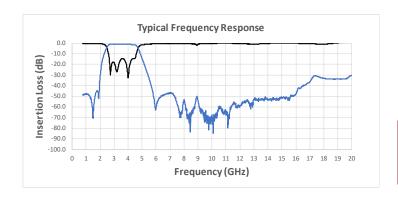
BP0EA3430A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.4	30	0.8	dB Fc Typ
Pass Band	2.658	4.404	5.0	dB Max
Pass Dallu	2.658	4.404	1.8	dB Typ
	2.683	4.370	1.5	dB Ripple
	DC	1.924	30	dB Min
Rejection	5.689	16.150	30	dB Min
Rejection	DC	1.867	40	dB Min
	5.929	15.200	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.



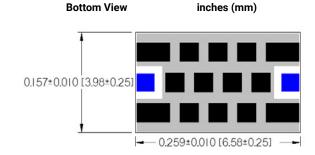

*Data files contain DXF and S2P files

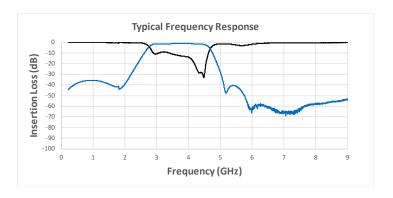
DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)

BP0AA3580A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	3.5	80	1.2	dB Fc Typ
Pass Band	2.943	4.351	5.0	dB Max
Pass Dallu	2.943	4.351	1.6	dB Typ
	2.972	4.304	1.5	dB Ripple
	DC	2.068	30	dB Min
Rejection	5.292	9.000	30	dB Min
Rejection	DC	0.000	40	dB Min
	6.300	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

Click here to return to main table.

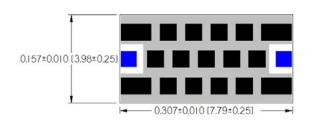
*Data files contain DXF and S2P files

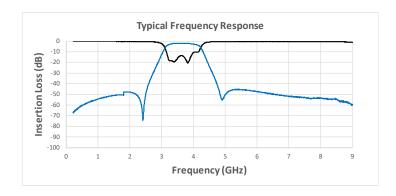
MLO® Band Pass Filters

BP0BA3630A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.6	30	2.1	dB Fc Typ
Pass Band	3.438	3.829	5.0	dB Max
Pass Dallu	3.438	3.829	2.2	dB Typ
	3.513	3.746	1.5	dB Ripple
	DC	2.594	30	dB Min
Rejection	4.884	9.000	30	dB Min
Rejection	DC	2.460	40	dB Min
	5.039	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

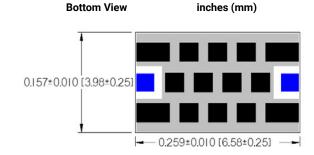

Click here to return to main table.

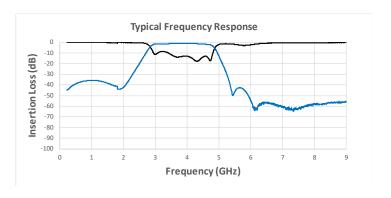


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

BP0AA3700A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)			
	3.7	'00	1.1	dB Fc Typ	
Pass Band	3.018	4.533	5.0	dB Max	
Pass Dallu	3.018	4.533	1.8	dB Typ	
	3.046	4.481	1.5	dB Ripple	
	DC	2.152	30	dB Min	
Rejection	5.500	9.000	30	dB Min	
Rejection	DC	0.000	40	dB Min	
	6.300	9.000	40	dB Min	
Dimension	Thickness		22	Mils Max	
RF Power	Pov	wer	2	Watts Max	

Click here to return to main table.

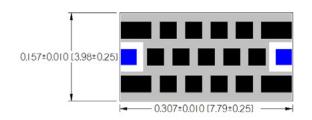
*Data files contain DXF and S2P files

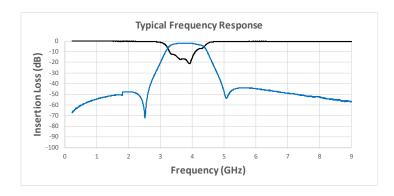
MLO® Band Pass Filters

BP0BA3750A7**

ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)		
	3.7	'50	2.0	dB Fc Typ
Pass Band	3.588	3.918	5.0	dB Max
Pass Dallu	3.588	3.918	2.1	dB Typ
	3.657	3.835	1.5	dB Ripple
	DC	2.694	30	dB Min
Rejection	5.097	9.000	30	dB Min
Rejection	DC	2.558	40	dB Min
	5.241	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Pov	wer	2	Watts Max

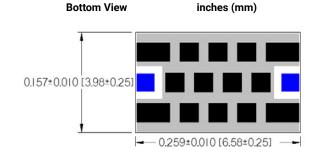

Click here to return to main table.

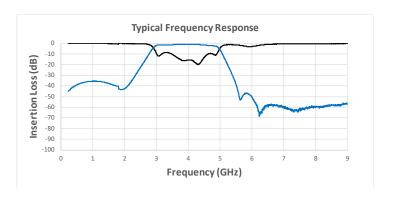


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE B

BP0AA3790A7**


ELECTRICAL SPECIFICATIONS


	Min (GHz)	Max (GHz)			
	3.7	'90	1.0	dB Fc Typ	
Pass Band	3.087	4.646	5.0	dB Max	
Pass Dallu	3.087	4.646	2.1	dB Typ	
	3.108	4.589	1.5	dB Ripple	
	DC	2.199	30	dB Min	
Rejection	5.661	9.000	30	dB Min	
Rejection	DC	0.000	40	dB Min	
	5.880	9.000	40	dB Min	
Dimension	Thickness		22	Mils Max	
RF Power	Pov	wer	2	Watts Max	

Click here to return to main table.

*Data files contain DXF and S2P files

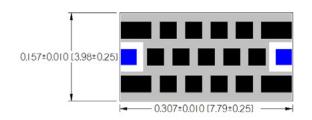
MLO® Band Pass Filters

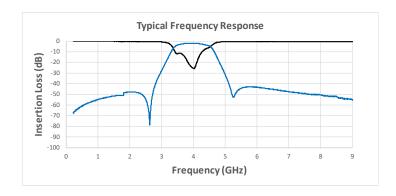
KYOCERa

BP0BA3900A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.9	000	2.0	dB Fc Typ
Pass Band	3.755	4.058	5.0	dB Max
Pass Dallu	3.755	4.058	2.2	dB Typ
	3.847	3.960	1.5	dB Ripple
Daile ation	DC	2.735	30	dB Min
	5.229	9.000	30	dB Min
Rejection	DC	2.600	40	dB Min
	5.373	9.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

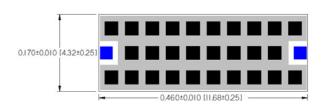
DIMENSIONS - CASE SIZE B

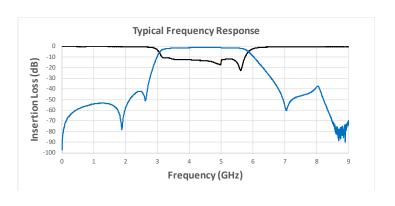
Bottom View inches (mm)

BP0EA4260A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.260		1.3	dB Fc Typ
	3.325	5.462	5.0	dB Max
Pass Band	3.325	5.462	2.0	dB Typ
	3.389	5.422	1.5	dB Ripple
	DC	2.621	30	dB Min
Rejection	6.920	9.000	30	dB Min
	DC	2.541	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max


Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

inches (mm) **Bottom View**

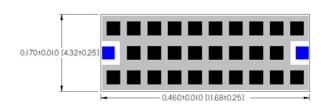
MLO® Band Pass Filters

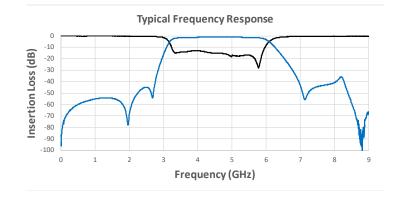
BP0EA4400A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.4	100	1.1	dB Fc Typ
Pass Band	3.420	5.670	5.0	dB Max
Pass Band	3.420	5.670	1.8	dB Typ
	3.456	5.627	1.5	dB Ripple
Dais ation	DC	2.699	30	dB Min
	7.109	9.000	30	dB Min
Rejection	DC	2.613	40	dB Min
	0.000	0.000	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

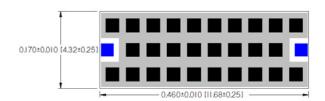
Bottom View

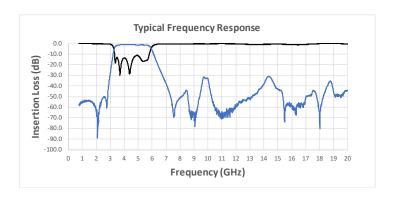
inches (mm)

BP0EA4440A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	4.4	40	1.1	dB Fc Typ	
Pass Band	3.516	5.547	5.0	dB Max	
Pass Band	3.516	5.547	1.8	dB Typ	
	3.554	5.513	1.5	dB Ripple	
	DC	2.827	30	dB Min	
Rejection	7.079	9.025	30	dB Min	
Rejection	DC	2.736	40	dB Min	
	7.419	7.838	40	dB Min	
Dimension	Thickness		22	Mils Max	
RF Power	Power		2	Watts Max	


Click here to return to main table



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

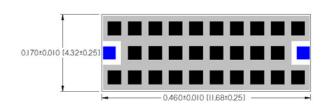
MLO® Band Pass Filters

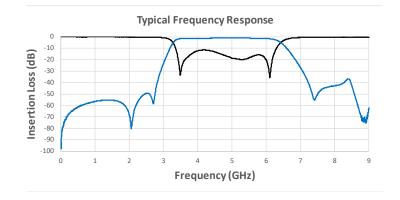
BP0EA4583A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.583		1.1	dB Fc Typ
Pass Band	3.521	5.979	5.0	dB Max
Pass Band	3.521	5.979	1.6	dB Typ
	3.542	5.932	1.5	dB Ripple
Rejection	DC	2.770	30	dB Min
	7.419	9.000	30	dB Min
	DC	2.667	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

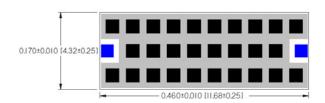
Bottom View

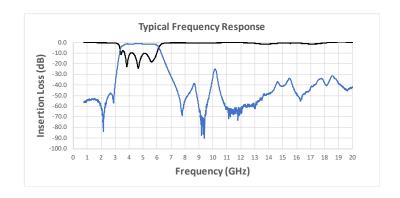
inches (mm)

BP0EA4600A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.600		3.8	dB Fc Typ
Pass Band	5.730	2.000	5.0	dB Max
Pass Band	5.730	2.000	1.7	dB Typ
	5.696	1.890	1.5	dB Ripple
	DC	2.839	30	dB Min
Rejection	9.510	7.647	30	dB Min
	DC	7.293	40	dB Min
	8.164	8.164	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

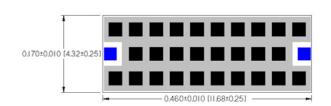
MLO® Band Pass Filters

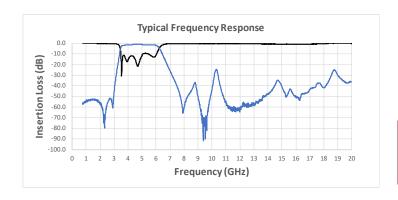
BP0EA4680A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.6	80	1.2	dB Fc Typ
Pass Band	3.705	5.810	5.0	dB Max
Pass Band	3.705	5.810	1.8	dB Typ
	3.743	5.776	1.5	dB Ripple
	DC	2.987	30	dB Min
Dairestian	7.509	9.662	30	dB Min
Rejection	DC	2.896	40	dB Min
	7.875	8.245	40	dB Min
Dimension	Thickness		22	Mils Max
RF Power	Power		2	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

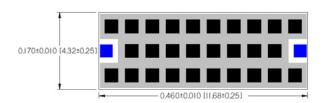
Bottom View

inches (mm)

BP0EA2055A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	2.0	55	1.8	dB Fc Typ	
Pass Band	1.902	2.223	5.0	dB Max	
Pass Band	1.902	2.223	2.1	dB Typ	
	1.944	2.180	1.5	dB Ripple	
	DC	1.492	30	dB Min	
Deiresten	2.770	8.000	30	dB Min	
Rejection	DC	1.492	40	dB Min	
	2.817	8.000	40	dB Min	
Dimensions	Thickness		22	Mils Max	
RF Power	Power		1	Watts Max	
<u>-</u>					


Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

MLO® Band Pass Filters

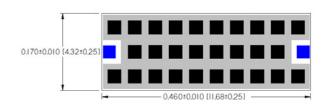
KYOCERa

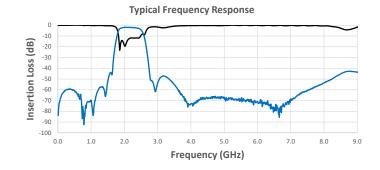
BP0EA2135A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.135		1.8	dB Fc Typ
Pass Band	1.961	2.325	5.0	dB Max
Pass band	1.961	2.325	2.2	dB Typ
	2.002	2.266	1.5	dB Ripple
	DC	1.529	30	dB Min
Rejection	2.841	8.000	30	dB Min
	DC	1.529	40	dB Min
	2.882	8.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Power		1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

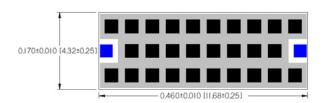
Bottom View

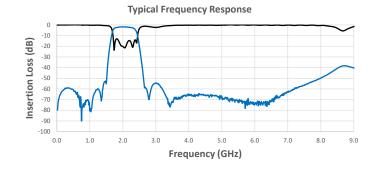
inches (mm)

BP0EA2000A7**

ELECTRICAL SPECIFICATIONS

(GHz)	Max (GHz)		
2.000		1.8	dB Fc Typ
1.838	2.180	5.0	dB Max
1.838	2.180	2.2	dB Typ
1.878	2.121	1.5	dB Ripple
DC	1.454	30	dB Min
2.675	8.000	30	dB Min
DC	1.454	40	dB Min
2.729	8.000	40	dB Min
Thickness		22	Mils Max
Power		1	Watts Max
	2.0 1.838 1.838 1.878 DC 2.675 DC 2.729 Thick	2.000 1.838	2.000 1.8 1.838 2.180 5.0 1.838 2.180 2.2 1.878 2.121 1.5 DC 1.454 30 2.675 8.000 30 DC 1.454 40 2.729 8.000 40 Thickness 22 Power 1


Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

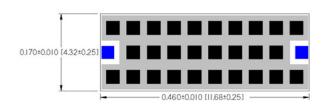
MLO® Band Pass Filters

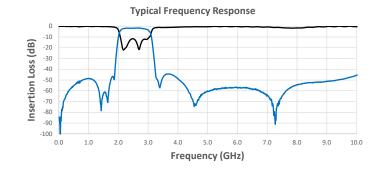
BP0EA2510A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.5	510	1.6	dB Fc Typ
Pass Band	2.209	2.832	5.0	dB Max
Pass Band	2.209	2.832	2.1	dB Typ
	2.245	2.774	1.5	dB Ripple
	DC	1.796	30	dB Min
Poinction	3.366	9.000	30	dB Min
Rejection	DC	1.796	40	dB Min
	3.402	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

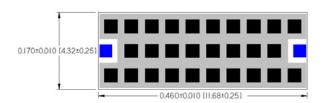
inches (mm)

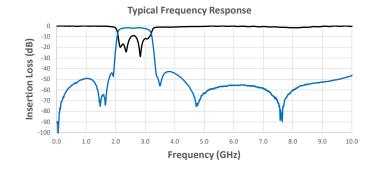
BP0EA2568A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	2.5	68	1.9	dB Fc Typ	
Pass Band	2.256	2.923	5.0	dB Max	
Pass Band	2.256	2.923	2.1	dB Typ	
	2.286	2.864	1.5	dB Ripple	
	DC	1.844	30	dB Min	
Rejection	3.485	9.000	30	dB Min	
Rejection	DC	1.844	40	dB Min	
	3.521	9.000	40	dB Min	
Dimensions	Thickness		22	Mils Max	
RF Power	Pov	wer	1	Watts Max	

Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)

MLO® Band Pass Filters

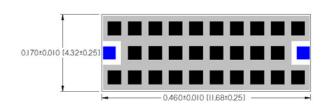
KYOCERa

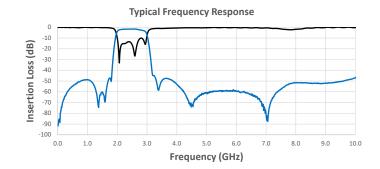
BP0EA2423A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	2.4	23	1.6	dB Fc Typ
Pass Band	2.138	2.746	5.0	dB Max
Pass Band	2.138	2.746	2.3	dB Typ
	2.168	2.646	1.5	dB Ripple
	DC	1.732	30	dB Min
Poinction	3.290	9.000	30	dB Min
Rejection	DC	1.732	40	dB Min
	3.325	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

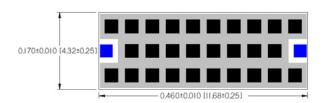
inches (mm)

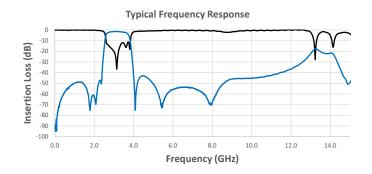
BP0EA3123A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.1	23	1.5	dB Fc Typ
Pass Band	2.799	3.485	5.0	dB Max
Pass Dallu	2.799	3.485	2.2	dB Typ
	2.847	3.430	1.5	dB Ripple
	DC	2.288	30	dB Min
Rejection	4.153	9.000	30	dB Min
Rejection	DC	2.288	40	dB Min
	4.200	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Power		1	Watts Max

Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

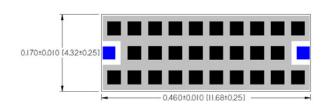
inches (mm)

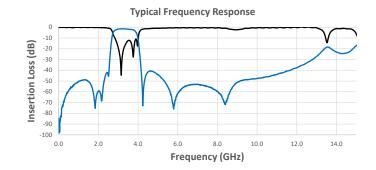
MLO® Band Pass Filters

BP0EA3284A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.2	284	1.5	dB Fc Typ
Pass Band	2.972	3.629	5.0	dB Max
Pass Band	2.972	3.629	2.1	dB Typ
	3.019	3.586	1.5	dB Ripple
	DC	2.292	30	dB Min
Dejection	4.324	9.000	30	dB Min
Rejection	DC	2.292	40	dB Min
	5.091	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

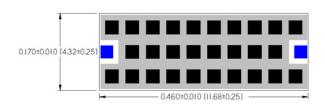
DIMENSIONS - CASE SIZE E

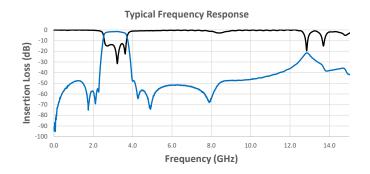
Bottom View inches (mm)

BP0EA3060A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.0	60	1.6	dB Fc Typ
Pass Band	2.741	3.420	5.0	dB Max
Pass Dallu	2.741	3.420	2.1	dB Typ
	2.783	3.340	1.5	dB Ripple
	DC	2.223	30	dB Min
Rejection	4.099	10.200	30	dB Min
Rejection	DC	2.223	40	dB Min
	4.140	10.200	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Power		1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View inches (mm)

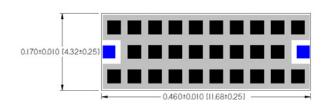
MLO® Band Pass Filters

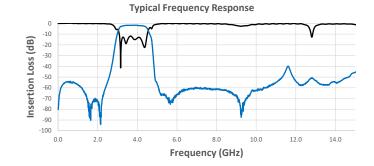
KYOCERa

BP0EA3720A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.7	'20	2	dB Fc Typ
Pass Band	3.319	4.169	5.0	dB Max
Pass Band	3.319	4.169	2.5	dB Typ
	3.408	3.981	1.5	dB Ripple
	DC	2.575	30	dB Min
Rejection	5.051	9.000	30	dB Min
Rejection	DC	2.575	40	dB Min
	5.098	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max


Click here to return to main table.



*Data files contain DXF and S2P files

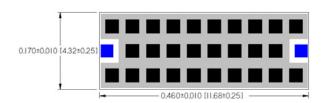
DIMENSIONS - CASE SIZE E

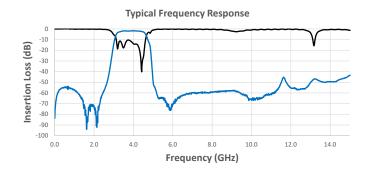
Bottom View inches (mm)

BP0EA3827A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)			
	3.8	27	2.1	dB Fc Typ	
Pass Band	3.408	4.297	5.0	dB Max	
Pass Dallu	3.408	4.297	2.4	dB Typ	
	3.508	4.169	1.5	dB Ripple	
	DC	2.640	30	dB Min	
Rejection	5.180	9.000	30	dB Min	
Rejection	DC	2.640	40	dB Min	
	5.222	9.000	40	dB Min	
Dimensions	Thickness		22	Mils Max	
RF Power	Pov	Power		Watts Max	


Click here to return to main table.



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

inches (mm) **Bottom View**

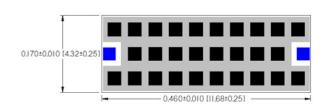
MLO® Band Pass Filters

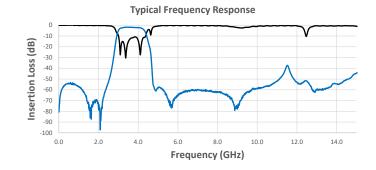
BP0EA3597A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	3.5	597	1.9	dB Fc Typ
Pass Band	3.237	3.998	5.0	dB Max
Pass Band	3.237	3.998	2.4	dB Typ
	3.325	3.923	1.5	dB Ripple
	DC	2.538	30	dB Min
Dejection	4.896	9.000	30	dB Min
Rejection	DC	2.538	40	dB Min
	4.930	9.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

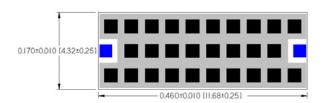
inches (mm)

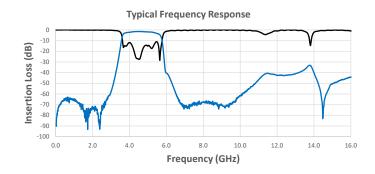
BP0EA4550A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.5	550	1.7	dB Fc Typ
Pass Band	3.922	5.160	5.0	dB Max
Pass Dallu	3.922	5.160	2	dB Typ
	4.052	5.071	1.5	dB Ripple
	DC	3.084	30	dB Min
Rejection	6.278	11.000	30	dB Min
Rejection	DC	3.084	40	dB Min
	6.302	11.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Power		1	Watts Max

Click here to return to main table.


CLICK HERE TO DOWNLOAD DATA FILES


*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)

MLO® Band Pass Filters

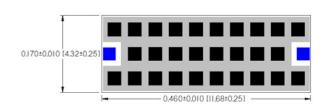
KYOCERa

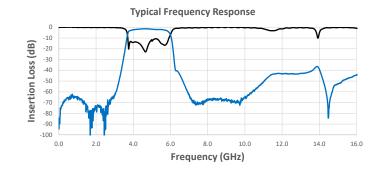
BP0EA4649A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.6	649	1.8	dB Fc Typ
Pass Band	4.016	5.381	5.0	dB Max
Pass Band	4.016	5.381	2.7	dB Typ
	4.371	5.285	1.5	dB Ripple
	DC	3.159	30	dB Min
Dejection	6.497	11.000	30	dB Min
Rejection	DC	3.159	40	dB Min
	6.596	11.000	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Pov	wer	1	Watts Max

Click here to return to main table.




*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

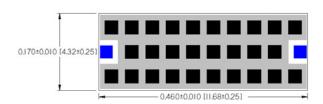
inches (mm)

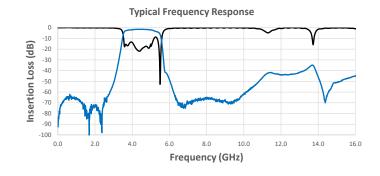
BP0EA4363A7**

ELECTRICAL SPECIFICATIONS

	Min (GHz)	Max (GHz)		
	4.3	163	1.6	dB Fc Typ
Pass Band	3.863	4.927	5.0	dB Max
Pass Dallu	3.863	4.927	2.2	dB Typ
	3.933	4.847	1.5	dB Ripple
	DC	3.009	30	dB Min
Rejection	6.019	10.500	30	dB Min
Rejection	DC	3.009	40	dB Min
	6.072	10.500	40	dB Min
Dimensions	Thickness		22	Mils Max
RF Power	Power		1	Watts Max

Click here to return to main table.

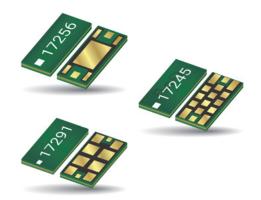



*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE E

Bottom View

inches (mm)



MLO® X Band Filters

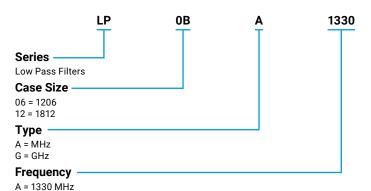
General Information

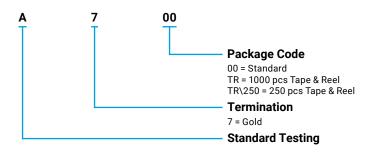
GENERAL DESCRIPTION

MLO® X Band Filters are low profile passive devices with best in class performance based on KYOCERA AVX's patented multilayer organic high density interconnect technology. MLO® X Band Filters utilize high dielectric constant and low loss materials to realize high Q passive printed elements, such as inductors and capacitors, in a multilayer stack. This results in a 50Ω MLO® X Band Filters design. MLO® X Band Filters can support both a variety of frequency bands and multiple wireless standards, and are less than 1.0mm in thickness. All filters are expansion matched to most organic PCB materials, thereby resulting in improved reliability over standard Si and ceramic devices.

FEATURES

- Wide Frequency Range
- Excellent Isolation
- Low Loss
- Expansion matched to PCB
- 50Ω Impedance
- Surface Mountable
- RoHS Compliant


APPLICATIONS


- Satellite
- Communications
- Radar
- Maritime Communications

LAND GRID ARRAY **ADVANTAGES**

- · Inherent Low Profile
- · Excellent Solderability
- Better Heat Dissipation

HOW TO ORDER

QUALITY INSPECTION

B = 13.30 Ghz

Finished Parts are 100% electrically tested

TERMINATION

All finishes are compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase, and manual soldering.

OPERATING TEMPERATURE

-55°C to +85°C

For RoHScompliant products, please select correct termination style

S2P FILES. DRAWING AND OTHER INFORMATION **AVAILABLE IN LINK ON INDIVIDUAL DATASHEETS**

LOW PASS X BAND FILTERS

Part Number	IL <1.5 dB Passband	Passband	Typical	30 dB R	ejection	Footprint	Thick	ness
Part Number	DC- Fo (GHz)	Typical	3dB	Min	Max	Footprint	Typical	Max
LP0AA7640A700	7.640	0.9	8.624	10.427	16.000	Α	16	22
LP0AA7720A700	7.719	0.9	8.909	9.764	16.000	Α	16	22
LP0AA8200A700	8.204	0.9	9.123	10.752	16.000	Α	16	22
LP06A8750A700	8.750	0.9	10.21	12.926	28.500	1206	9	13
LP06A9230A700	9.232	0.9	10.75	13.073	28.500	1206	9	13
LP06A9410A700	9.421	0.9	11.51	13.787	28.500	1206	9	13
LP12G1020A700	10.213	0.9	12.31	13.923	20.653	1812	16	22
LP12G1040A700	10.441	0.9	12.92	14.952	21.100	1812	16	22
LP12G1070A700	10.697	0.9	12.94	14.69	21.651	1812	16	22

Click on part number to see full specifications

HIGH PASS X BAND FILTERS

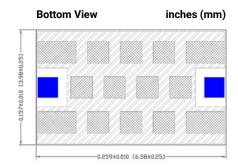
Dout muss how	IL <2 dB I	Passband	Passband	Typical	30 dB	Factorint	Thick	ness
Part number	Min	Max	Typical	Typical 3dB		Footprint	Typical	Max
HF12A7750A700	7.746	19.000	1	6.985	6004	1812	26	28
HF12A8000A700	8.007	19.000	1	7.199	6173	1812	26	28
HF12A8360A700	8.357	19.000	1	7.448	6399	1812	26	28
HF06G1270A700	12.695	27.550	1	10.43	8360	1206	26	28
HF06G1280A700	12.747	28.158	1	10.58	8337	1206	26	28
HF06G1340A700	13.440	28.757	1	11.14	8824	1206	26	28

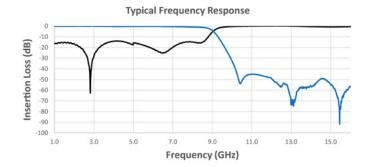
Click on part number to see full specifications

MLO® X Band Low Pass Filters

LP0AA7640A7**

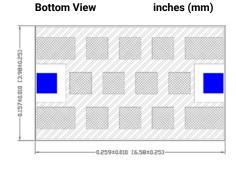
ELECTRICAL SPECIFICATIONS

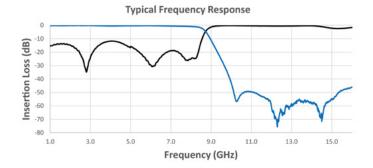

Pass Band	DC - 7.64	1.5 dB	Max
	DC - 7.64	0.9 dB	Typical
	3dB cutoff	8.624 dB	Typical
Rejection	10.427 - 16.000	30 dB	Min
Dimension	Thiston	16 mils	Typical
Dilliension	Thickness	22 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP0AA7720A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 7.719	1.5 dB	Max
	DC - 7.719	0.9 dB	Typical
	3dB cutoff	8.909 dB	Typical
Rejection	9.764 - 16.000	30 dB	Min
Dimension		16 mils	Typical
	Thickness	22 mils	Max

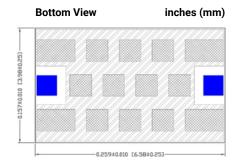
Click here to return to main table.

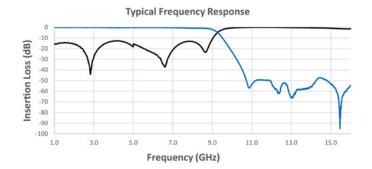
DIMENSIONS - CASE SIZE A

MLO® X Band Low Pass Filters

LP0AA8200A7**

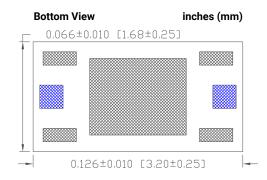
ELECTRICAL SPECIFICATIONS

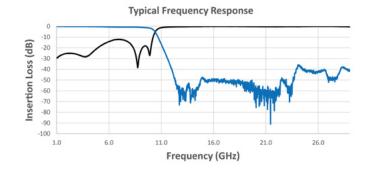

Pass Band	DC - 8.204	1.5 dB	Max
	DC - 8.204	0.9 dB	Typical
	3dB cutoff	9.123 dB	Typical
Rejection	10.752 - 16.000	30 dB	Min
Dimension	Thiston	16 mils	Typical
Dilliension	Thickness	22 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE A


LP06A8750A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 8.75	1.5 dB	Max
	DC - 8.75	0.9 dB	Typical
	3dB cutoff	10.21 dB	Typical
Rejection	12.926 - 28.500	30 dB	Min
Dimension		9 mils	Typical
	Thickness	13 mils	Max

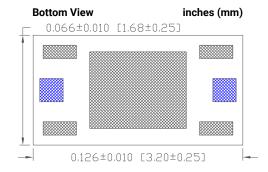
Click here to return to main table.

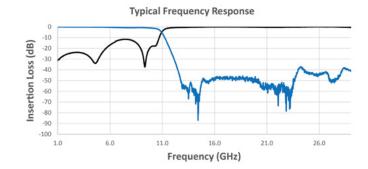
DIMENSIONS - CASE SIZE 1206

MLO® X Band Low Pass Filters

LP06A9230A7**

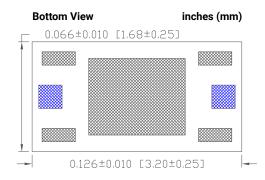
ELECTRICAL SPECIFICATIONS

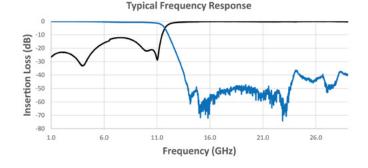

	DC - 9.232	1.5 dB	Max
Pass Band	DC - 9.232	0.9 dB	Typical
	3dB cutoff	10.75 dB	Typical
Rejection	13.073 - 28.500	30 dB	Min
Dimension	Thickness	9 mils	Typical
Difficitsion	THICKHESS	13 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE 1206


LP06A9410A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 9.421	1.5 dB	Max
	DC - 9.421	0.9 dB	Typical
	3dB cutoff	11.51 dB	Typical
Rejection	13.787 - 28.500	30 dB	Min
Dimension		9 mils	Typical
	Thickness	13 mils	Max

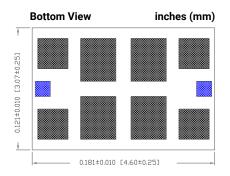
Click here to return to main table.

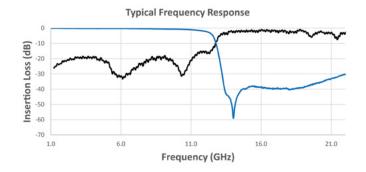
DIMENSIONS - CASE SIZE 1206

MLO® X Band Low Pass Filters

LP12G1020A7**

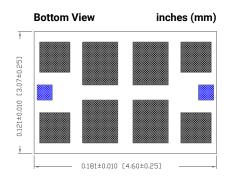
ELECTRICAL SPECIFICATIONS

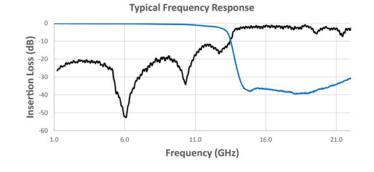

Pass Band	DC - 10.213	1.5 dB	Max
	DC - 10.213	0.9 dB	Typical
	3dB cutoff	12.31 dB	Typical
Rejection	13.923 - 20.653	30 dB	Min
Dimension	Thickness	16 mils	Typical
	THICKHESS	22 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE 1812


LP12G1040A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 10.441	1.5 dB	Max
	DC - 10.441	0.9 dB	Typical
	3dB cutoff	12.92 dB	Typical
Rejection	14.952 - 21.100	30 dB	Min
Dimonolon	Thirtman	16 mils	Typical
Dimension	Thickness	22 mils	Max

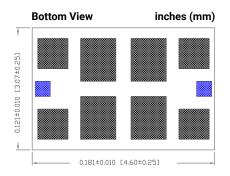
Click here to return to main table.

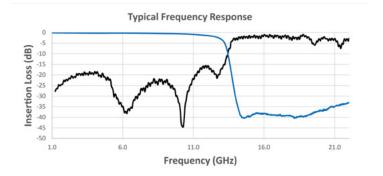
DIMENSIONS - CASE SIZE 1812

MLO® X Band Low Pass Filters

LP12G1070A7**

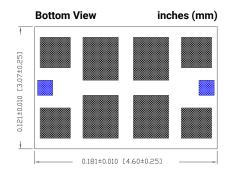
ELECTRICAL SPECIFICATIONS

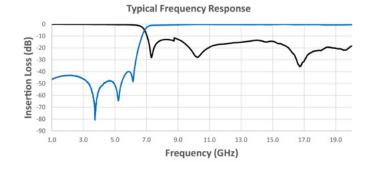

Pass Band	DC - 10.697	1.5 dB	Max
	DC - 10.697	0.9 dB	Typical
	3dB cutoff	12.94 dB	Typical
Rejection	14.690 - 21.651	30 dB	Min
Dimension	Thickness	16 mils	Typical
	THICKHESS	22 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE 1812


HF12A7750A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 7.746	2 dB	Max
	DC - 7.746	1 dB	Typical
	3dB cutoff	6.985 dB	Typical
Rejection	DC - 6.004	30 dB	Min
Dimension	Thiston	26 mils	Typical
	Thickness	28 mils	Max

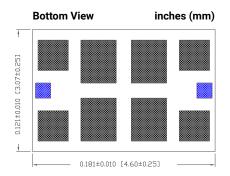
Click here to return to main table.

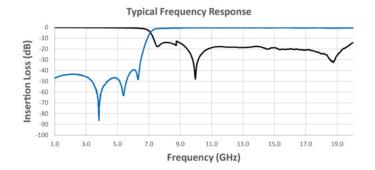
DIMENSIONS - CASE SIZE 1812

MLO® X Band High Pass Filters

HF12A8000A7**

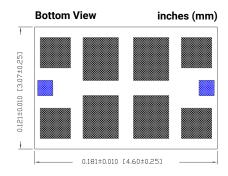
ELECTRICAL SPECIFICATIONS

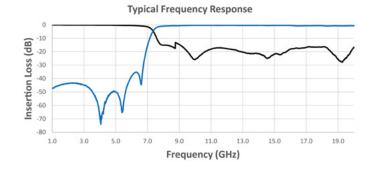

Pass Band	DC - 8.007	2 dB	Max
	DC - 8.007	1 dB	Typical
	3dB cutoff	7.199 dB	Typical
Rejection	DC - 6.173	30 dB	Min
Dimension	Thickness	26 mils	Typical
Dilliension	THICKHESS	28 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE 1812


HF12A8360A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 8.357	2 dB	Max
	DC - 8.357	1 dB	Typical
	3dB cutoff	7.448 dB	Typical
Rejection	DC - 6.399	30 dB	Min
Dimension	Thickness	26 mils	Typical
		28 mils	Max

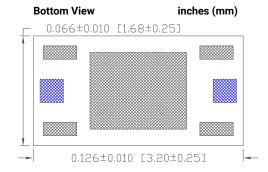
Click here to return to main table.

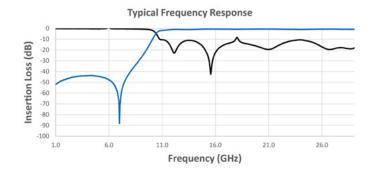
DIMENSIONS - CASE SIZE 1812

MLO® X Band High Pass Filters

HF06G1270A7**

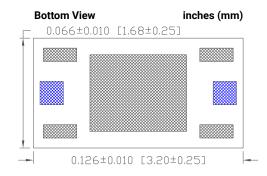
ELECTRICAL SPECIFICATIONS

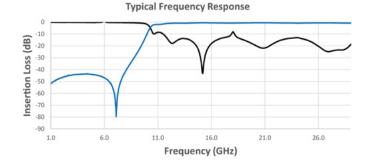

Pass Band	DC - 12.695	2 dB	Max
	DC - 12.695	1 dB	Typical
	3dB cutoff	10.43 dB	Typical
Rejection	DC - 8.360	30 dB	Min
Dimension	Thickness	26 mils	Typical
		28 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

DIMENSIONS - CASE SIZE 1206


HF06G1280A7**


ELECTRICAL SPECIFICATIONS

Pass Band	DC - 12.747	2 dB	Max
	DC - 12.747	1 dB	Typical
	3dB cutoff	10.58 dB	Typical
Rejection	DC - 8.337	30 dB	Min
Dimension	Thickness	26 mils	Typical
		28 mils	Max

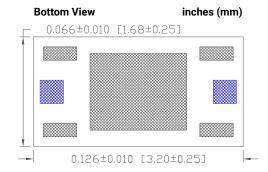
Click here to return to main table.

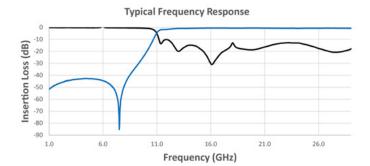
DIMENSIONS - CASE SIZE 1206

MLO® X Band High Pass Filters

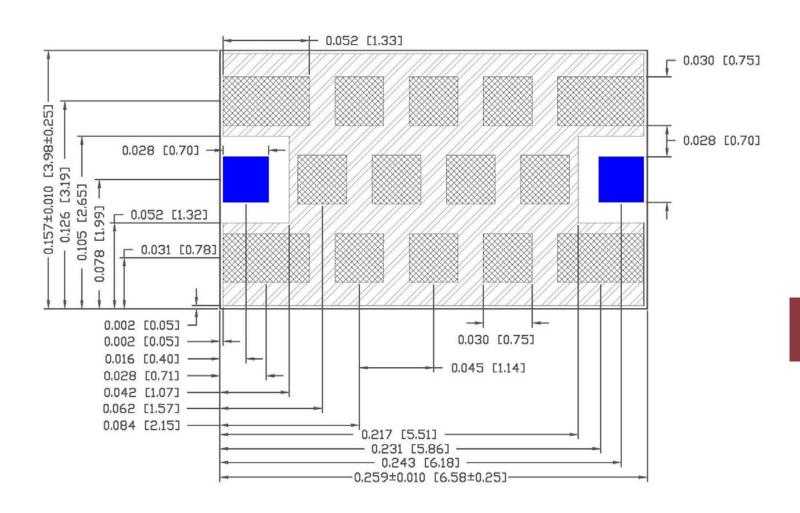
HF06G1340A7**

ELECTRICAL SPECIFICATIONS


Pass Band	DC - 13.44	2 dB	Max
	DC - 13.44	1 dB	Typical
	3dB cutoff	11.14 dB	Typical
Rejection	DC - 8.824	30 dB	Min
Dimension	Thickness	26 mils	Typical
		28 mils	Max


Click here to return to main table.

*Data files contain DXF and S2P files

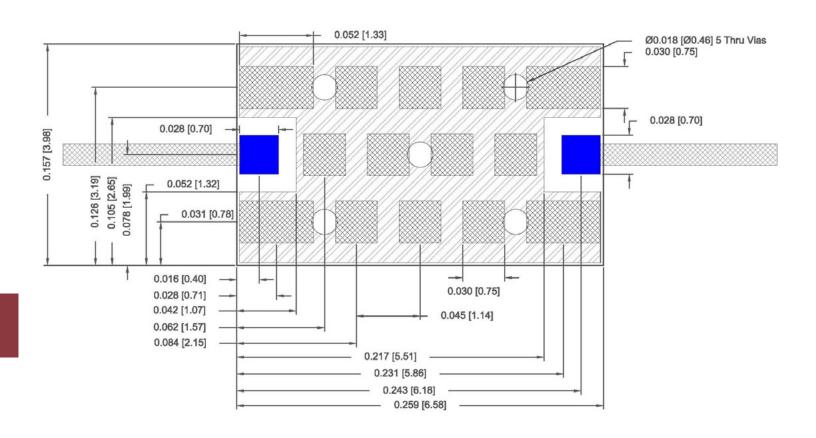

DIMENSIONS - CASE SIZE 1206

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.


Dimensions nominal unless otherwise noted.

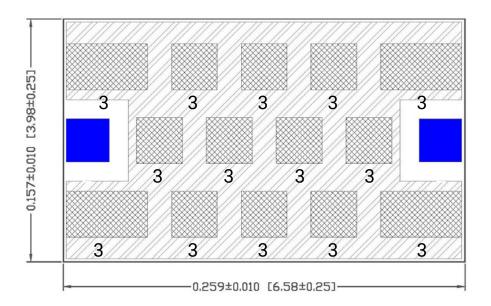
All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed

SUGGESTED PCB LAYOUT

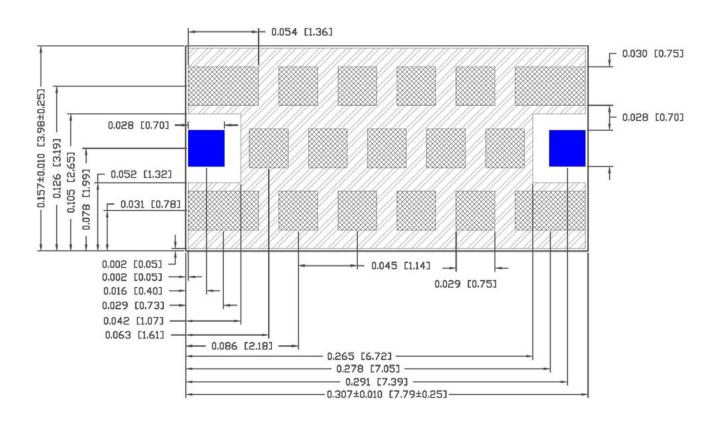
Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.


Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.

All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.


PAD CONNECTIONS

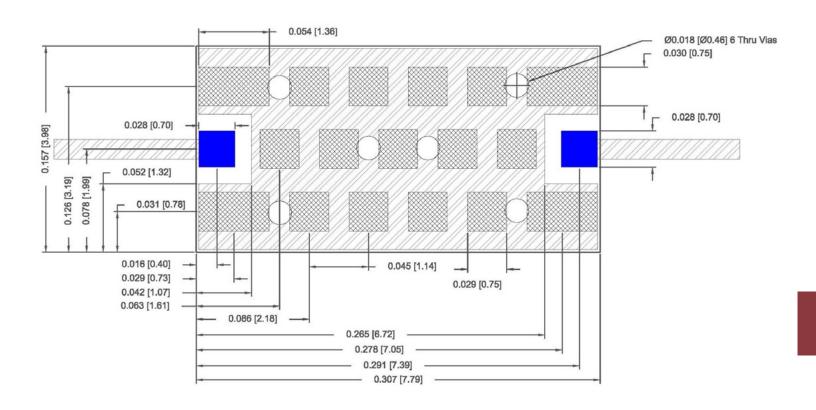
Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.


Dimensions nominal unless otherwise noted.

All contact areas are gold plated, including I/O pads.

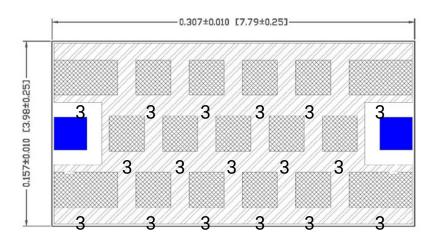
100 mil cavity height above device. Please contact factory if alternate clearance is needed

SUGGESTED PCB LAYOUT

Dimensions in inches [mm].

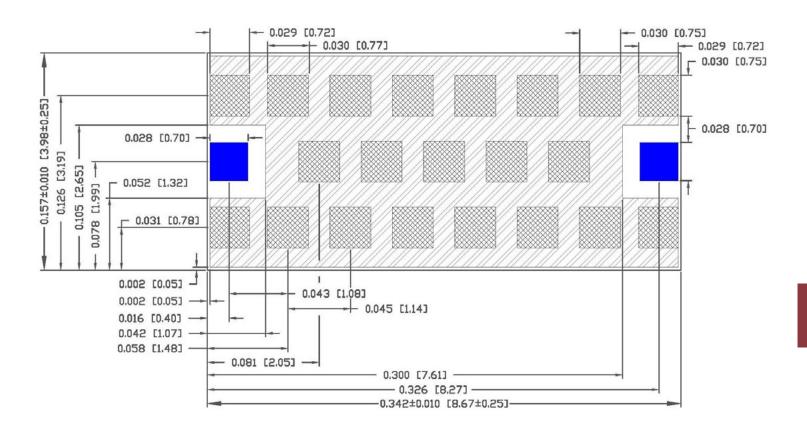
Dimensions nominal unless otherwise noted.

Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.


All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.

PAD CONNECTIONS


Footprint B

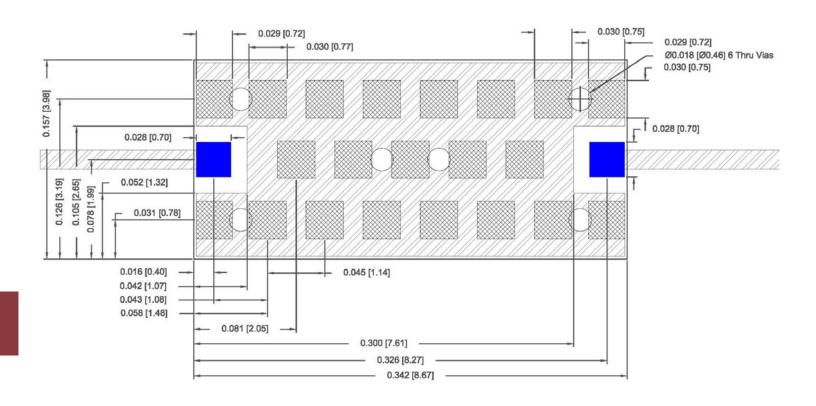
Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.


Dimensions nominal unless otherwise noted.

All contact areas are gold plated, including I/O pads.

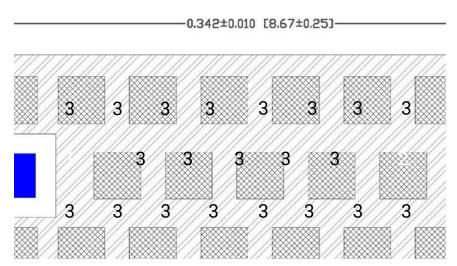
100 mil cavity height above device. Please contact factory if alternate clearance is needed

SUGGESTED PCB LAYOUT

Dimensions in inches [mm].

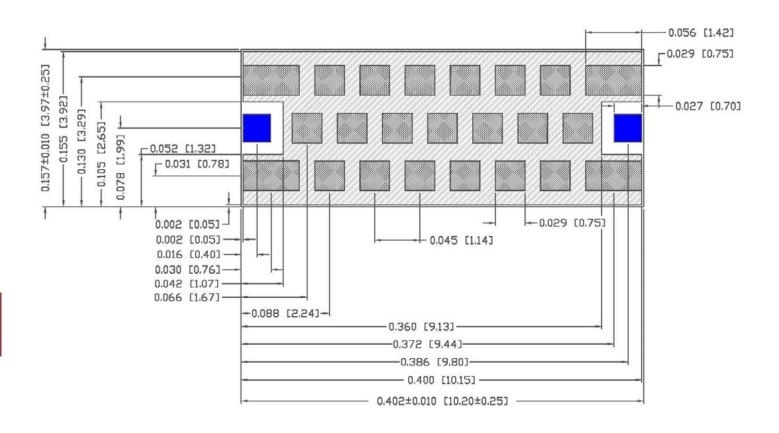
Dimensions nominal unless otherwise noted.

Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown.


Please see DXF file in part data package.

All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.


PAD CONNECTIONS

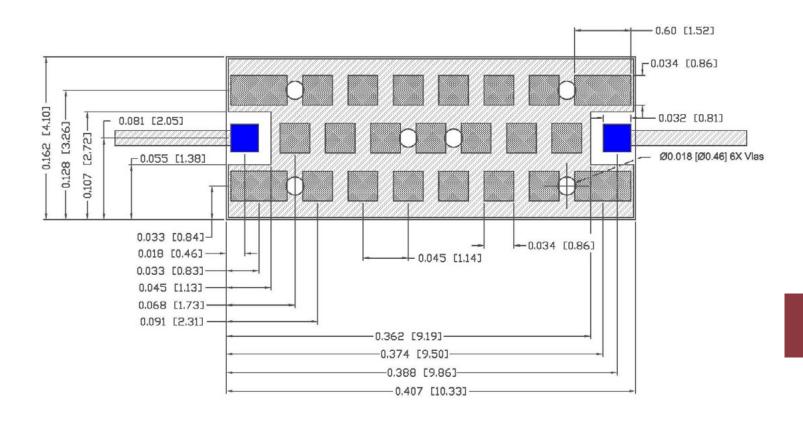
Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.


Dimensions nominal unless otherwise noted.

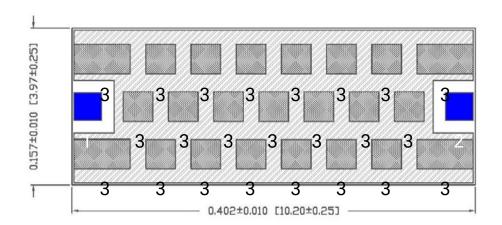
All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed

SUGGESTED PCB LAYOUT

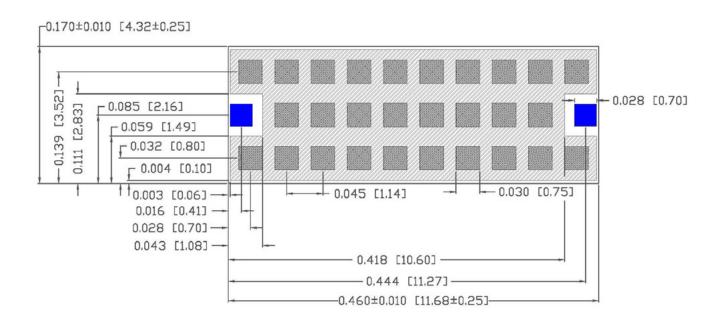
Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.


Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.

All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.


PAD CONNECTIONS

Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

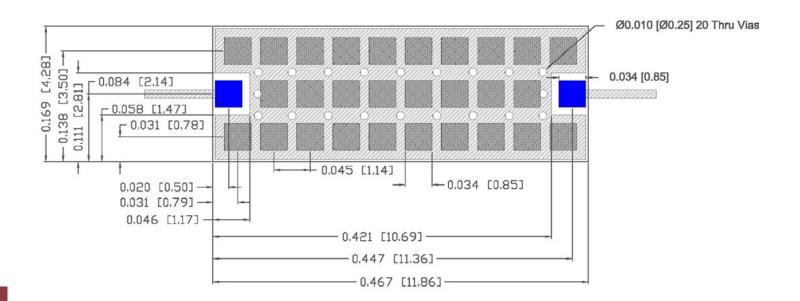
MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.

Dimensions nominal unless otherwise noted.


All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed

Footprint E

SUGGESTED PCB LAYOUT

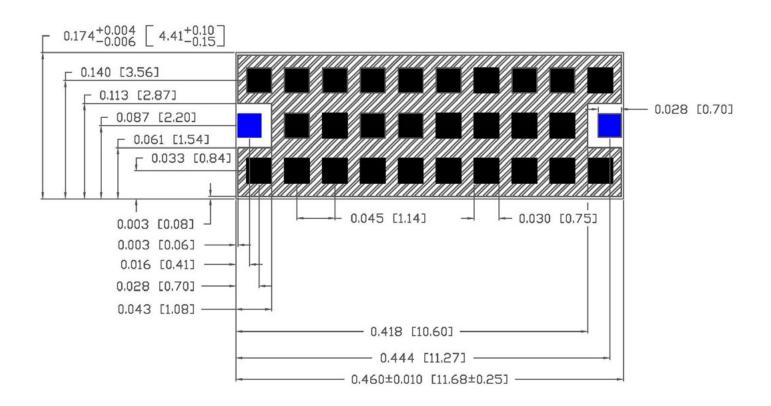
Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.

Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.

All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.


PAD CONNECTIONS

0.170±0.010 [4.32±0.25]-3 3 -0.460±0.010 [11.68±0.25]-

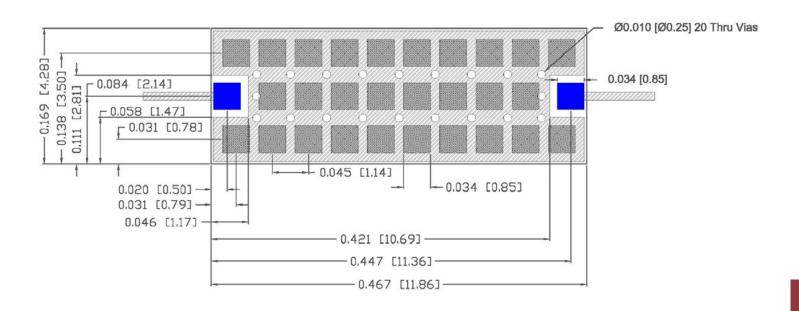
Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in black.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.


Dimensions nominal unless otherwise noted.

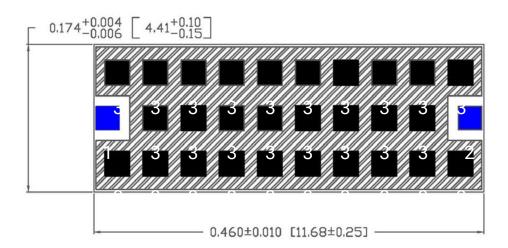
All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed

SUGGESTED PCB LAYOUT

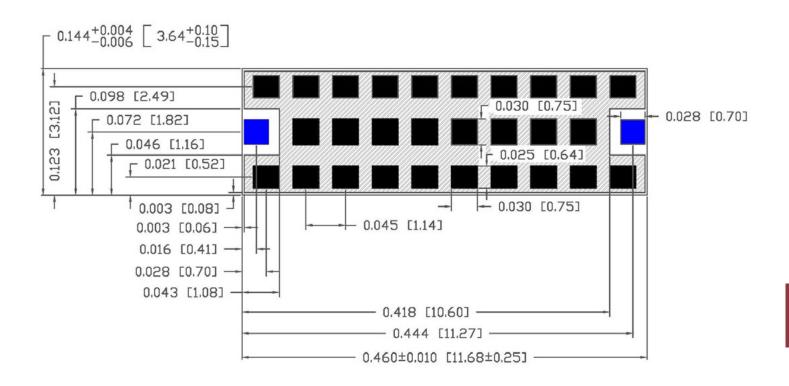
Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.


Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.

All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.


PAD CONNECTIONS

Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in black. Dimensions in inches [mm]

MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in black.

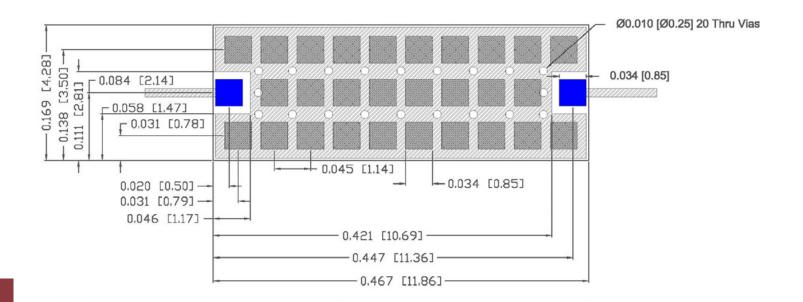
Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.

Dimensions nominal unless otherwise noted.

All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed


Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout,

and Mounting Recommendations

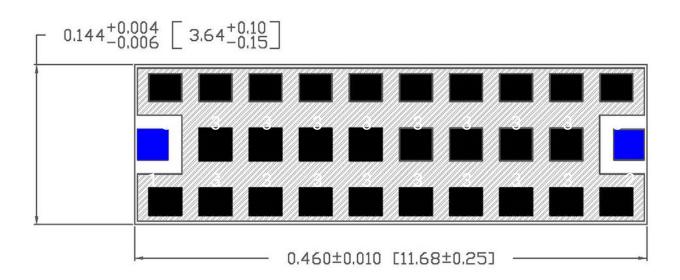
Footprint E2

SUGGESTED PCB LAYOUT

Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.

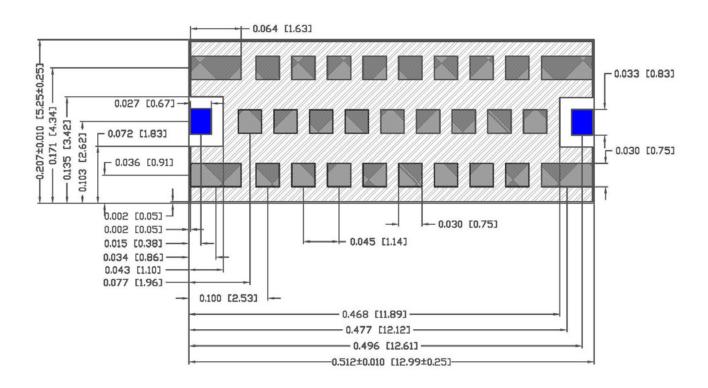
Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.


All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.

Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout, and Mounting Recommendations **Footprint E2**

PAD CONNECTIONS



Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in Black. Dimensions in inches [mm]

Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout, and Mounting Recommendations **Footprint F**

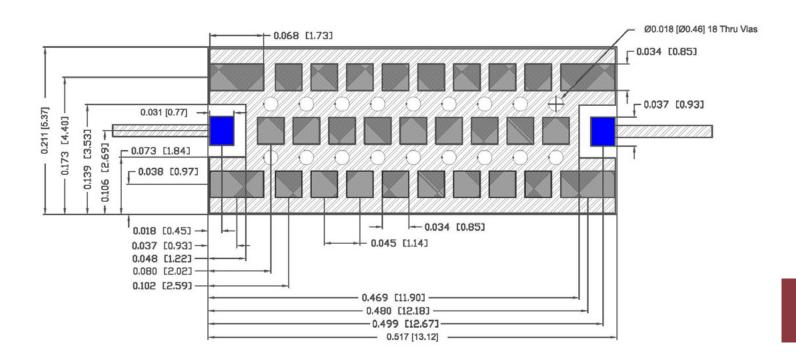
MECHANICAL SPECIFICATIONS

Input / output pads shown in Blue. Grounding pads shown in gray.

Dimensions in inches [mm]

Tolerances are +/-0.002 [0.05], unless noted.

Dimensions nominal unless otherwise noted.


All contact areas are gold plated, including I/O pads.

100 mil cavity height above device. Please contact factory if alternate clearance is needed

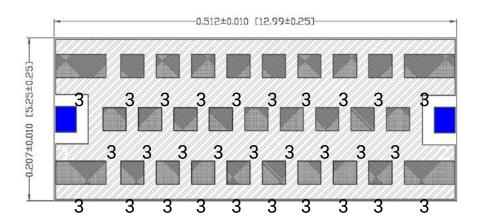
Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout, and Mounting Recommendations **Footprint F**

SUGGESTED PCB LAYOUT

Dimensions in inches [mm].

Dimensions nominal unless otherwise noted.

Line width for I/O pads should be designed to match 50-ohm characteristic impedance, depending on PCB material and thickness. Grounding for these lines not shown. Please see DXF file in part data package.


All contact areas are gold plated, including I/O pads.

Grounding is solid copper under solder mask, with solder mask defined pads for ground openings. I/O pads are not shorted to ground.

Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout, and Mounting Recommendations **Footprint F**

PAD CONNECTIONS

Pins 1 & 2 are input / output. Shown in Blue. Pin 3 - grounding pads. Shown in gray. Dimensions in inches [mm]

Multilayer Organic (MLO®) Filters Mechanical Specifications, Pad Layout, and Mounting Recommendations

MOUNTING RECOMMENDATIONS

AUTOMATED SMT ASSEMBLY

The following section describes the guidelines for automated SMT assembly of MLO® RF devices which are typically Land Grid Array (LGA) packages or side termination SMT pacages.

Control of solder and solder paste volume is critical for surface mount assembly of MLO® RF devices onto the PCB.

Stencil thickness and aperture openings should be adjusted according to the optimal solder volume. The following are general recommendations for SMT mounting of MLO® devices onto the PCB.

SMT REFLOW PROFILE

Common IR or convection reflow SMT processes shall be used for the assembly. Standard SMT reflow profiles, for eutectic and Pb free solders, can be used to surface mount the MLO® devices onto the PCB. In all cases, a temperature gradient of 3°C/sec, or less, should be maintained to prevent warpage of the package and to ensure that all joints reflow properly. Additional soak time and slower preheating time may be required to improve the out-gassing of solder paste. In addition, the reflow profile depends on the PCB density and the type of solder paste used. Standard noclean solder paste is generally recommended. If another type of flux is used, complete removal of flux residual may be necessary. Example of a typical lead free reflow profile is shown below.

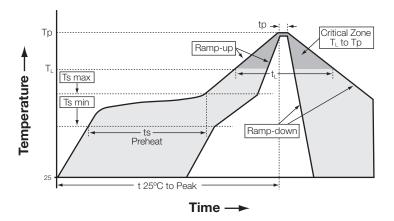


Figure A. Typical Lead Free Profile and Parameters

Profile Parameter	Pb free, Convection, IR/Convection
Ramp-up rate (Tsmax to Tp	3°C/second max.
Preheat temperature (Ts min to Ts max)	150°C to 200°C
Preheat time (ts)	60 - 180 seconds
Time above TL, 217°C (t,)	60 - 120 seconds
Peak temperature (Tp)	260°C
Time within 5°C of peak temperature (tp)	10 - 20 seconds
Ramp-down rate	4°C/second max.
Time 25°C to peak temperature	6 minutes max.

Multilayer Organic (MLO®) Capacitors

General Information

GENERAL DESCRIPTION

Based on its patented multilayer low loss organic (MLO®) technology. These new capacitors represent a paradigm shift from traditional ceramic and thin film passive SMD components. Multilayer Organic Capacitors (MLOC) are polymer based capacitors that use high conductivity copper interconnects in a multilayer fashion. The ability to fabricate these components on large area substrates and state of the art laser direct imaging allow for improved cost benefits and tolerance control. The end result is a state of the art low ESR and high SRF low profile RF capacitor that can support frequencies well above one GHz. Additionally MLOCs are expansion matched to printed circuit boards to allow for improved reliability.

FEATURES

- Low ESR
- Hi-O®
- High Self Resonance
- **Tight Tolerance**
- Low Dielectric Absorption (0.0015%)

APPLICATIONS

- · RF Power Amplifiers
- · Low Noise Amplifiers
- · Filter Networks
- · Instrumentation

HOW TO ORDER

Temperature **Coefficient Code**

Capacitance EIA Capacitance Code in pF. First two digits = significant figures or "R" for decimal place. Third digit = number of zeros or after "R" significant figures.

1R8

Capacitance **Tolerance Code** $P = \pm 0.02 pF$

 $A = \pm .05 pF$ $B = \pm .10 pF$ $C = \pm .25 pF$ $D = \pm .5 pF$ F = ±1% G = ±2%

Failure Rate Code Applicable

Termination Style Code

Case	Length (L)	Width (W)	Thickness (T)	Band Width (B)	Castellation Radius (R)
06.00	0.063 ± 0.004	0.033 ± 0.004	0.025 ± 0.004	0.015 ± 0.005	0.008 ± 0.002
0603	(1.600 ± 0.102)	(0.838 ± 0.102)	(0.635 ± 0.102)	(0.381 ± 0.127)	(0.203 ± 0.051)

TAPE & REEL: All tape and reel specifications are in compliance with EIA RS481 (equivalent to IEC 286 part 3).

- -8mm carrier
- -7" reel, 3,000 pcs per reel

Multilayer Organic (MLO®) Capacitors **Mechanical & Environmental Specifications**

ENVIRONMENTAL CHARACTERISTICS

TEST	CONDITIONS	REQUIREMENT
Life (Endurance) MIL-STD-202F Method 108A	125°C, 2UR, 1000 hours	No visible damage ΔC/C ≤2% for C≥5pF ΔC/C ≤0.25pF for C<5pF
Accelerated Damp Heat Steady State MIL-STD-202F Method 103B	85°C, 85% RH, UR, 1000 hours	No visible damage ΔC/C ≤2% for C≥5pF ΔC/C ≤0.25pF for C<5pF
Temperature Cycling MIL-STD-202F Method 107E MIL-STD-883D Method 1010.7	-55°C to +125°C, 15 cycles − ML0®	No visible damage ΔC/C ≤2% for C≥5pF ΔC/C ≤0.25pF for C<5pF
Resistance to Solder Heat IEC-68-2-58	260°C ± 5°C for 10 secs.	C remains within initial limits

MECHANICAL SPECIFICATIONS

TEST	CONDITIONS	REQUIREMENT
Solderability IEC-68-2-58	Components completely immersed in a solder bath at 235°C for 2 secs.	Terminations to be well tinned, minimum 95% coverage
Leach Resistance IEC-68-2-58	Components completely immersed in a solder bath at 260±5°C for 60 secs.	Dissolution of termination faces ≤15% of area Dissolution of termination edges ≤25% of length
Adhesion MIL-STD-202F Method 211A	A force of 5N applied for 10 secs.	No visible damage
Termination Bond Strength IEC-68-2-21 Amend. 2	Tested as shown in diagram	No visible damage C/C ≤2% for C≥5pF ΔG/C ≤0.25pF for C<5pF
Robustness of Termination IEC-68-2-21 Amend. 2	A force of 5N applied for 10 secs.	No visible damage
Storage	12 months minimum with components stored in "as received" packaging	Good solderability

QUALITY & RELIABILITY

MLO® capacitors utilize high density interconnect wiring technology on well established low loss organic materials.

FINAL QUALITY INSPECTION

Finished parts are tested for standard electrical parameters and visual/ mechanical characteristics. Each production lot is 100% evaluated for: capacitance and proof voltage at 2.5 U_{R} . In addition, production is periodically evaluated for:

- · Average capacitance with histogram printout for capacitance distribution;
- IR and Breakdown Voltage distribution;
- Temperature Coefficient;
- Solderability;
- Dimensional, mechanical and temperature stability.

QUALITY ASSURANCE

The reliability of these multilayer organic capacitors has been extensively

studied. Various methods and standards have been used to ensure a high quality component including JEDEC, Mil Spec and IPC testing. KYOCERA AVX quality assurance policy is based on well established international industry standards. The reliability of the capacitors is determined by accelerated testing under the following conditions:

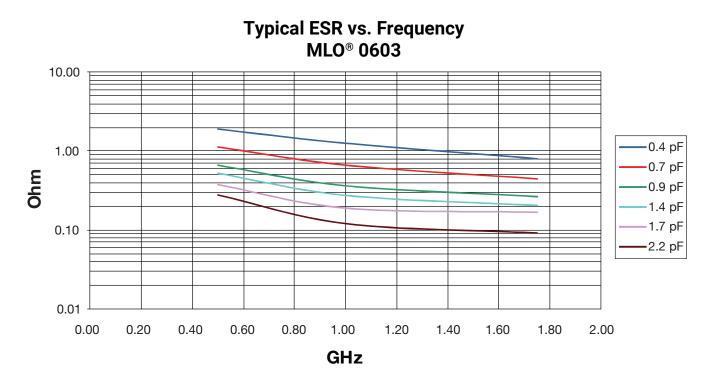
Life (Endurance)	125°C, 2U _R , 1000 hours
Accelerated Damp	85°C, 85% RH, U _R ,
Heat Steady State	1000 hours.

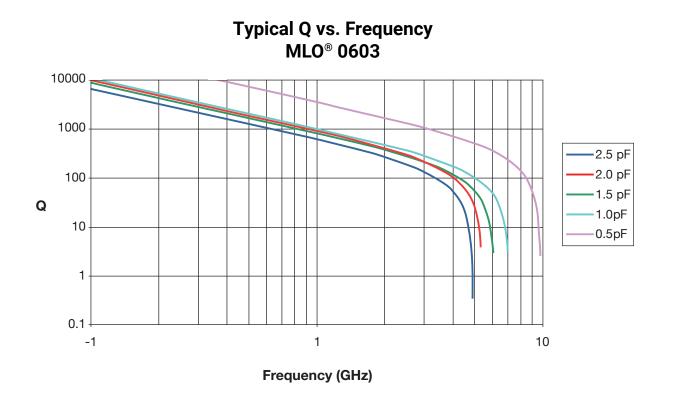
TABLE I: CASE SIZE ML03

Cap. pF	Cap. Tol.	WVDC
0.1	P, A, B	50, 250
0.2	P, A, B	50, 250
0.3	P, A, B	50, 250
0.4	P, A, B	50, 250
0.5	P, A, B, C	50, 250
0.6	P, A, B, C	50, 250
0.7	P, A, B, C	50, 250
0.8	P, A, B, C	50, 250
0.9	P, A, B, C	50, 250
1.0	P, A, B, C	50, 250
1.1	P, A, B, C	50, 250
1.2	P, A, B, C	50, 250

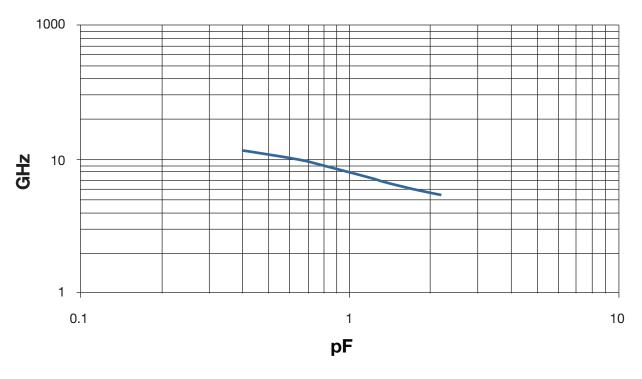
Cap. pF	Cap. Tol.	WVDC
1.3	P, A, B, C	50, 250
1.4	P, A, B, C	50, 250
1.5	P, A, B, C	50, 250
1.6	P, A, B, C	50, 250
1.7	P, A, B, C	50, 250
1.8	P, A, B, C	50, 250
1.9	P, A, B, C	50, 250
2.0	P, A, B, C	50, 250
2.2	P, A, B, C	50, 250
2.4	P, A, B, C	50, 250
2.5	P, A, B, C	50, 250
2.7	P, A, B, C	50, 250

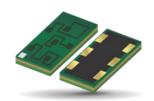
Cap. pF	Cap. Tol.	WVDC
3.0	P, A, B, C	50, 250
3.3	P, A, B, C	50, 250
3.6	P, A, B, C	50, 250
3.9	P, A, B, C	50, 250


Note: Capacitance measured at 1MHz.



KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


012218

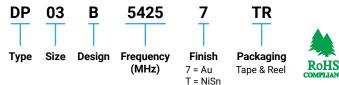


Typical Self Resonant Frequency vs. Capacitance MLO® 0603

Multilayer Organic (MLO®) Diplexers **0603 WLAN/BT**

MLO® TECHNOLOGY

The 0603 diplexer is a best in class low profile multilayer organic passive device that is based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO™ diplexer uses high dielectric constant and low loss materials to realize high Q passive printed elements such as inductors, and capacitors in a multilayer stack up. The MLO™ diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN, GSM, and BT. These diplexers are less than 0.5mm in height and are ideally suited for band switching for dual band systems. All diplexers are expansion matched to printed circuit boards thereby resulting in improved reliability vs. ceramic and Si components.


APPLICATIONS

- WiFi
- WiMax
- GPS
- Cellular Bands

LAND GRID ARRAY ADVANTAGES

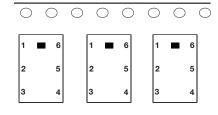
- · Inherent Low Profile
- · Excellent Solderability
- · Low Parasitics
- · High Heat Dissipation

HOW TO ORDER

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

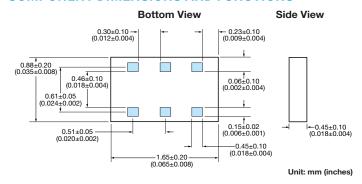
OPERATING TEMPERATURE


-40°C to +85°C

TERMINATION

Finishes available in Ni Au, Ni Sn and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.

ORIENTATION IN TAPE


Top View

POWER CAPACITY

4.5W Maximum

COMPONENT DIMENSIONS AND FUNCTIONS

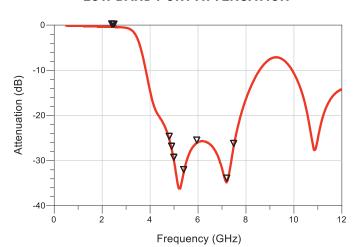
Terminal No.	Terminal Name	
1	GND	
2	Common	
3	GND	
4	Low Frequency Port	
5	GND	
6	High Frequency Port	

PART NUMBER: DP03B54257TR

Electrical Characteristics @ 25°C

No.	Parameter	Freq. (MHz)	Port	Specification	Typ. value	Unit
1	Insertion Loss	2400-2496	Low	0.55 max	0.40	dB
2	Insertion Loss	4900-5950	High	1.2 max	0.80	dB
3	Attenuation	500-2700	High	28 min	35	dB
4	Attenuation	9800-11900	High	10 min	14	dB
6	Attenuation	4800-4992	Low	20 min	25	dB
7	Attenuation	4900-5950	Low	23 min	27	dB
8	Attenuation	7200-7500	Low	26 min	30	dB
9	Isolation	500-2700	Low-High	28 min	35	dB
10	Isolation	4900-5950	Low-High	22 min	25	dB
11	VSWR	2400-2500	Ant	2.0 max	1.5	-
12	VSWR	4900-5950	Ant	2.0 max	1.3	-
13	VSWR	2400-2500	Low	2.0 max	1.5	-
14	VSWR	4900-5950	High	2.0 max	1.3	-

Mechanical Characteristics @ 25°C

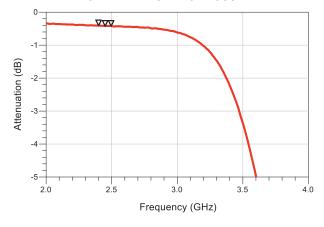

1.65 x 0.88
0.065 x 0.035)
0.42 (0.017)
0.77

Multilayer Organic (MLO®) Diplexers **0603 WLAN/BT**

S PARAMETER MEASUREMENTS

LOW BAND PORT ATTENUATION

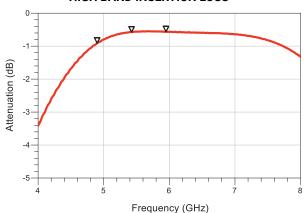
Low Band Attenuation


Frequency	Attenuation
4.800 GHz	25.302
4.992 GHz	29.935
4.900 GHz	27.471
5.400 GHz	32.647
5.590 GHz	26.099
7.200 GHz	34.531
7.488 GHz	26.860

Attenuation (dB)	-20 -30 -40 -50	***************************************					P		Z
	0	 2	4	6		8	10)	12
			Fre	quen	су (GH	z)			
			liah R	and A	∆ttenu	ation			

HIGH BAND PORT ATTENUATION

Frequency	Attenuation
0.500 GHz	35.133
2.400 GHz	39.019
2.450 GHz	41.406
2.496 GHz	42.793
2.700 GHz	31.607
9.800 GHz	13.967
11.90 GHz	28.352

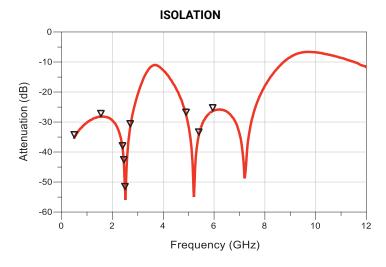

LOW BAND INSERTION LOSS

Low Band Insertion Loss

Frequency	Insertion Loss
2.400 GHz	0.404
2.450 GHz	0.418
2.496 GHz	0.420

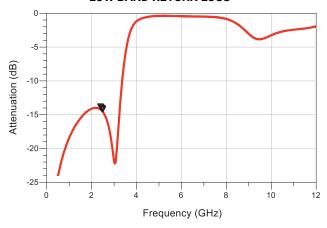
HIGH BAND INSERTION LOSS

High Band Insertion Loss

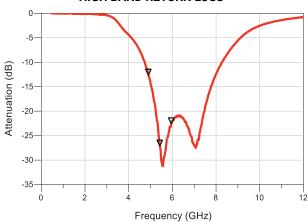

_	
Frequency	Insertion Loss
4.900 GHz	0.909
5.400 GHz	0.577
5.950 GHz	0.562

Multilayer Organic (MLO®) Diplexers **0603 WLAN/BT**

S PARAMETER MEASUREMENTS


Common Return Loss

Frequency	Return Loss	VSWR
2.400 GHz	14.066	1.494
2.450 GHz	14.162	1.487
2.496 GHz	14.325	1.476
4.900 GHz	12.750	1.599
5.400 GHz	24.603	1.125
5.950 GHz	21.310	1.188

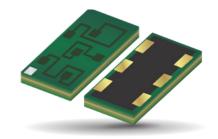

Isolation

Frequency	Attenuation
0.500 GHz	32.253
1.550 GHz	28.144
2.400 GHz	28.913
2.450 GHz	43.562
2.496 GHz	52.470
2.700 GHz	31.566
4.900 GHz	27.731
5.400 GHz	34.304
5.950 GHz	26.249

LOW BAND RETURN LOSS

HIGH BAND RETURN LOSS

Low Band Return Loss


Frequency	Return Loss	VSWR
2.400 GHz	14.232	1.482
2.450 GHz	14.429	1.469
2.496 GHz	14.572	1.459

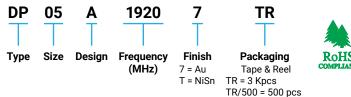
High Band Return Loss

9		
Frequency	Return Loss	VSWR
4.900 GHz	12.587	
5.400 GHz	27.577	1.087
5.950 GHz	22.533	1.161

Multilayer Organic (MLO®) Diplexers 0805 CDMA

MLO® TECHNOLOGY

The 0603 diplexer is a best in class low profile multilayer organic passive device that is based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO™ diplexer uses high dielectric constant and low loss materials to realize high Q passive printed elements such as inductors, and capacitors in a multilayer stack up. The MLO™ diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN, GSM, and BT. These diplexers are less than 0.5mm in height and are ideally suited for band switching for dual band systems. All diplexers are expansion matched to printed circuit boards thereby resulting in improved reliability vs. ceramic and Si components.


APPLICATIONS

Multiband applications including WCDMA, WLAN, WiMax, GPS, and cellular bands

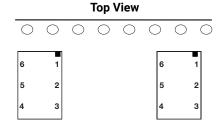
LAND GRID ARRAY ADVANTAGES

- · Low Insertion Loss
- · Excellent Solderability
- · Low Parasitics
- · Low Profile

HOW TO ORDER

OUALITY INSPECTION

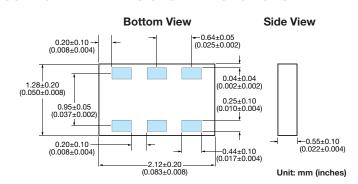
Finished parts are 100% tested for electrical parameters and visual characteristics.


OPERATING TEMPERATURE

-40°C to +85°C

TERMINATION

Finishes available in Ni Au, Ni Sn and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.

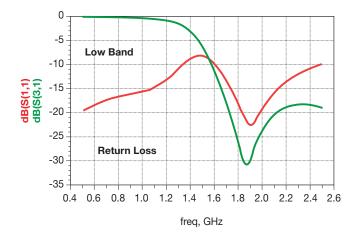

ORIENTATION IN TAPE

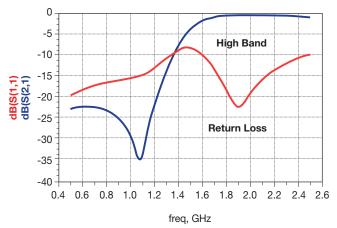
POWER CAPACITY

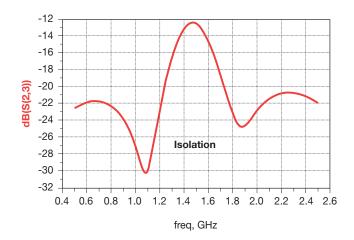
4.5W Maximum

COMPONENT DIMENSIONS AND FUNCTIONS

Terminal No.	Terminal Name
1	High Frequency Port
2	GND
3	Low Frequency Port
4	GND
5	Common Port
6	GND


PART NUMBER: DP05A19207TR


Specification @ 25°C	
Size [mm(inches)]	2.12 x 1.28 (0.083 x 0.050)
Height [mm(inches)]	0.55 (0.021)
Volume (mm^3)	1.5
Frequency Range (F1) (MHz)	859±35
Frequency Range (F2) (MHz)	1920±70
Insertion Loss (F1, at Fc) (dB)	-0.4
Insertion Loss (F2, at Fc) (dB)	-0.6
Attenuation (F1) at (F2) (dB)	-23
Attenuation (F2) at (F1) (dB)	-23
VSWR (Input @ F1)	1.4
VSWR (Input @ F2)	1.3
VSWR (Lowband @ F1)	1.4
VSWR (Highband @ F2)	1.4


Multilayer Organic (MLO®) Diplexers 0805 CDMA

S PARAMETER MEASUREMENTS

Note: Measurements were taken using an Anritsu 4 port VNA; Diplexer was mounted on a custom evaluation board. To reduce systematic errors from the VNA, the coaxial measurement cables, and evaluation board, a Short-Open-Load-Thru (SOLT) calibration was performed, using a custom fabricated calibration substrate. This is the most common coaxial calibration methods.

Multilayer Organic (MLO®) Diplexers **0805 WCDMA**

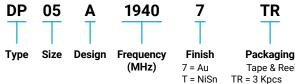
MLO® TECHNOLOGY

The 0805 diplexer is a best in class low profile multilayer organic passive device that is based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO® diplexer uses high dielectric constant and low loss materials to realize high Q passive printed passive elements such as inductors and capacitors in a multilayer stack up. The MLO® diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN, and GSM and are less than 0.6mm in thickness. These components are ideally suited for band switching for dual band systems. All diplexers are expansion matched to FR4 thereby resulting in improved reliability over standard Si and ceramic devices.

APPLICATIONS

Multiband applications including WCDMA, WLAN, WiMax, GPS, and cellular bands

LAND GRID ARRAY ADVANTAGES


TR

Tape & Reel

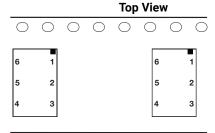
TR/500 = 500 pcs

- · Low Insertion Loss
- · Excellent Solderability
- · Low Parasitics
- Low Profile

HOW TO ORDER

OUALITY INSPECTION

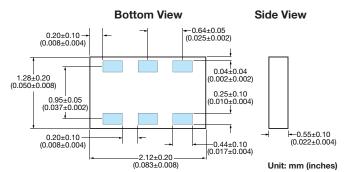
Finished parts are 100% tested for electrical parameters and visual characteristics.


OPERATING TEMPERATURE

-40°C to +85°C

TERMINATION

Finishes available in Ni/Sn, Immersion Sn, Immersion Au and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.


ORIENTATION IN TAPE

POWER CAPACITY

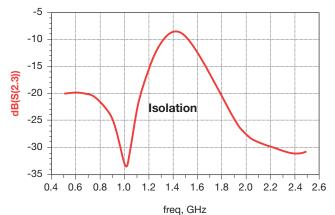
4.5W Maximum

COMPONENT DIMENSIONS AND FUNCTIONS

Terminal No.	Terminal Name
1	High Frequency Port
2	GND
3	Low Frequency Port
4	GND
5	Common Port
6	GND

PART NUMBER: DP05A19407TR

Specification @ 25°C	
Size [mm(inches)]	2.12 x 1.28 (0.083 x 0.050)
Height [mm(inches)]	0.55 (0.021)
Volume (mm^3)	1.5
Frequency Range (F1) (MHz)	892±68
Frequency Range (F2) (MHz)	1940±230
Insertion Loss (F1, at Fc) (dB)	-0.4
Insertion Loss (F2, at Fc) (dB)	-0.65
Attenuation (F1) at (F2) (dB)	-23
Attenuation (F2) at (F1) (dB)	-20
VSWR (Input @ F1)	1.3
VSWR (Input @ F2)	1.4
VSWR (Lowband @ F1)	1.4
VSWR (Highband @ F2)	1.2


Multilayer Organic (MLO®) Diplexers **0805 WCDMA**

S PARAMETER MEASUREMENTS

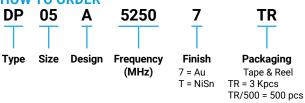
Note: Measurements were taken using an Anritsu 4 port VNA; Diplexer was mounted on a custom evaluation board. To reduce systematic errors from the VNA, the coaxial measurement cables, and evaluation board, a Short-Open-Load-Thru (SOLT) calibration was performed, using a custom fabricated calibration substrate. This is the most common coaxial calibration methods.

Multilayer Organic (MLO®) Diplexers

0805 WLAN

MLO® TECHNOLOGY

The 0805 diplexer is a best in class low profile multilayer organic passive device that is based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO® diplexer uses high dielectric constant and low loss materials to realize high Q passive printed elements such as inductors and capacitors in a multilayer stack up. The MLO® diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN and GSM. These components which are less than 0.6mm in thickness are ideally suited for band switching for dual band systems. All diplexers are expansion matched to FR4 thereby resulting in improved reliability over standard Si and ceramic devices.


APPLICATIONS

Multiband applications including WiFi, WiMax, GPS, and cellular bands

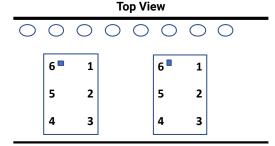
LAND GRID ARRAY ADVANTAGES

- · Low Insertion Loss
- · Excellent Solderability
- · Low Parasitics
- · Low Profile

HOW TO ORDER

OUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

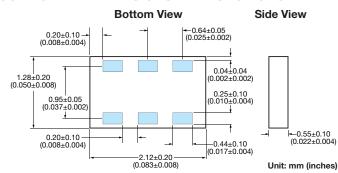

OPERATING TEMPERATURE

-40°C to +85°C

TERMINATION

Finishes available in Ni/Sn, Immersion Sn, Immersion Au and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.

ORIENTATION IN TAPE



Note part will be packaged with dot near hole in tape. Location of dot may vary.

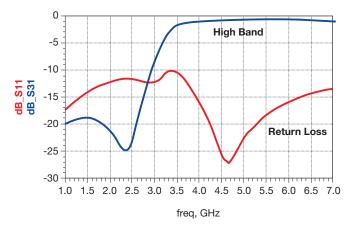
POWER CAPACITY

4.5W Maximum

COMPONENT DIMENSIONS AND FUNCTIONS

Terminal No. Terminal Nam		
1	High Frequency Port	
2	GND	
3	Low Frequency Port	
4	GND	
5	Common Port	
6	GND	

PART NUMBER: DP05A52507TR


0 15 11 0 0500	
Specification @ 25°C	
Size [mm(inches)]	2.12 x 1.28 (0.083 x 0.050)
Height [mm(inches)]	0.55 (0.021)
Volume (mm^3)	1.5
Frequency Range (F1) (MHz)	2450±50
Frequency Range (F2) (MHz)	5250±100
Insertion Loss (F1) (dB)	-0.5
Insertion Loss (F2) (dB)	-0.5
Attenuation (F1) at (F2) (dB)	-20
Attenuation (F2) at (F1) (dB)	-20
Return Loss (Lowband @ F1) (dB)	-12
Return Loss (Highband @ F2) (dB)	-12
Isolation (Lowband @ F1) (dB)	-25
Isolation (Highband @ F2) (dB)	-21

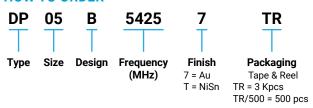

Multilayer Organic (MLO®) Diplexers **0805 WLAN**

S PARAMETER MEASUREMENTS

Multilayer Organic (MLO®) Diplexers **0805 WLAN/BT**

MLO® TECHNOLOGY

The 0805 MLO® diplexer is best in class low profile multilayer organic passive device that is based on KYOCERA AVX patented multilayer organic high density interconnect technology. The MLO® diplexer uses high dielectric constant and low loss materials to realize high Q passive printed elements such as inductors and capacitors in a multilayer stack up. The MLO® diplexers can support multiple wireless standards such as WCDMA, CDMA, WLAN and GSM. These components which are less than 0.5mm in thickness are ideally suited for band switching for dual band systems. All MLO® diplexers are expansion matched to FR4 thereby resulting in improved reliability over standard Si and ceramic devices.


APPLICATIONS

Multiband applications including WiFi, BT, WiMax, GPS, and cellular bands

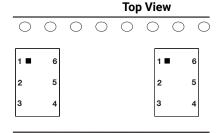
LAND GRID ARRAY ADVANTAGES

- · Low Insertion Loss
- · Excellent Solderability
- · Low Parasitics
- · Matched CTE to PCB

HOW TO ORDER

QUALITY INSPECTION

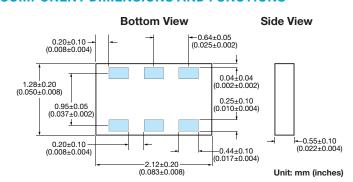
Finished parts are 100% tested for electrical parameters and visual characteristics.


OPERATING TEMPERATURE

-40°C to +85°C

TERMINATION

Finishes available in Ni/Sn, Immersion Sn, Immersion Au and OSP coatings which are compatible with automatic soldering technologies which include reflow, wave soldering, vapor phase and manual.

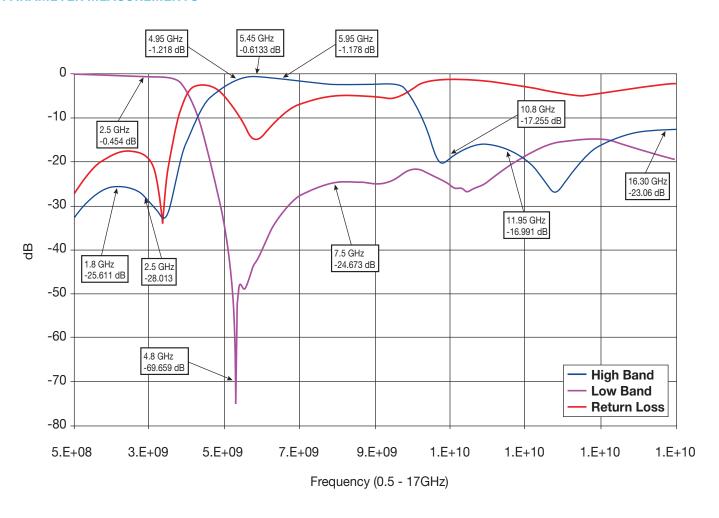

ORIENTATION IN TAPE

POWER CAPACITY

4.5W Maximum

COMPONENT DIMENSIONS AND FUNCTIONS

Terminal No.	Terminal Name
1	Low Frequency Port
2	GND
3	High Frequency Port
4	GND
5	Common Port
6	GND


PART NUMBER: DP05B54257TR

Specification @ 25°C	
Size [mm(inches)]	2.12 x 1.28 (0.083 x 0.050)
Height [mm(inches)]	0.55 (0.021)
Volume (mm^3)	1.5
Pass Band Range (F1) (MHz)	2450 +/-50MHz
Pass Band Range (F2) (MHz)	5425 +/-525MHz
Insertion Loss (F1) (dB)	-0.5
Insertion Loss (F2) (dB)	-1.0
Attenuation (F1) 4800MHz - 6000MHz (dB)	-36
Attenuation 3 x (F1) (dB)	-31
Attenuation (F2) 1800MHz - 2500MHz (dB)	-26
Attenuation 2 x (F2) (dB)	-13
Attenuation 3 x (F2) (dB)	-15
VSWR (Input @ F1)	1.2
VSWR (Input @ F2)	1.7
VSWR (Lowband @ F1)	1.2
VSWR (Highband @ F2)	1.7

Multilayer Organic (MLO®) Diplexers **0805 WLAN/BT**

S PARAMETER MEASUREMENTS

012419

Multilayer Organic (MLO®) Diplexers **Automated SMT Assembly/SMT Reflow Profile**

AUTOMATED SMT ASSEMBLY

The following section describes the guidelines for automated SMT assembly of MLO® RF devices which are typically Land Grid Array (LGA) packages or side termination SMT pacages.

Control of solder and solder paste volume is critical for surface mount assembly of MLO® RF devices onto the PCB. Stencil thickness and aperture openings should be adjusted according to the optimal solder volume. The following are general recommendations for SMT mounting of MLO® devices onto the PCB.

SMT REFLOW PROFILE

Common IR or convection reflow SMT processes shall be used for the assembly. Standard SMT reflow profiles, for eutectic and Pb free solders, can be used to surface mount the MLO® devices onto the PCB. In all cases, a temperature gradient of 3°C/sec, or less, should be maintained to prevent warpage of the package and to ensure that all joints reflow properly. Additional soak time and slower preheating time may be required to improve the out-gassing of solder paste. In addition, the reflow profile depends on the PCB density and the type of solder paste used. Standard noclean solder paste is generally recommended. If another type of flux is used, complete removal of flux residual may be necessary. Example of a typical lead free reflow profile is shown below.

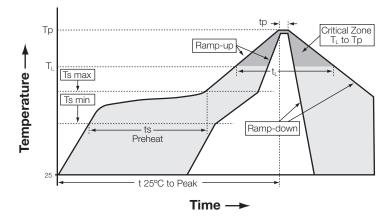


Figure A. Typical Lead Free Profile and Parameters

Profile Parameter	Pb free, Convection, IR/Convection
Ramp-up rate (Tsmax to Tp	3°C/second max.
Preheat temperature (Ts min to Ts max)	150°C to 200°C
Preheat time (ts)	60 - 180 seconds
Time above TL, 217°C (tL)	60 - 120 seconds
Peak temperature (Tp)	260°C
Time within 5°C of peak temperature (tp)	10 - 20 seconds
Ramp-down rate	4°C/second max.
Time 25°C to peak temperature	6 minutes max.

Tight Tolerance

The Multilayer Organic Tight Tolerance Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. The MLO® Tight Tolerance Inductor series of components are based on KYOCERA AVX patented multilayer organic technology (US patent 6,987,307). MLO® Tight Tolerance Inductors incorporate very low loss organic materials which allow for high Q and high stability over frequency. MLO® Tight Tolerance Inductors are surface mountable and are expansion matched to FR4 printed wiring boards. MLO® Tight Tolerance Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- Mobile communications
- Satellite Applications
- **GPS**
- Collision Avoidance
- Wireless LAN's

FEATURES

- Tight Tolerance
- High Frequency
- · High Withstanding Voltage
- Low DC Resistance
- Surface Mountable
- 0402 Case Size
- **RoHS Compliant Finishes**
- Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

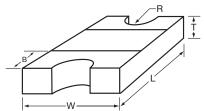
- · Inherent Low Profile
- **Excellent Solderability**
- · Low Parasitics
- · Better Heat Dissipation
- · Expansion Matched to PCB

HOW TO ORDER

Inductance Expressed in nH (2 significant digits + number of zeros) for values <10nH,

letter R denotes decimal point. Example: 22nH = 220

4.7nH = 4R7


Tolerance $A = \pm 0.05 nH$ $B = \pm 0.1 nH$ $G = \pm 2\%$

Termination Sn100

TR **Packaging** 5000pcs T&R

DIMENSIONS mm (inches)

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

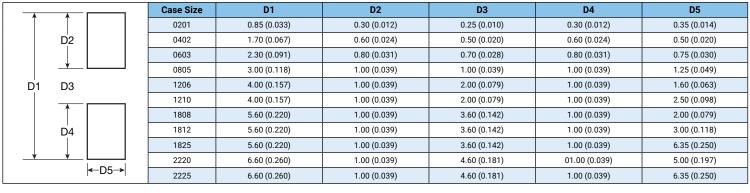
TERMINATION

RoHS compliant Sn finish.

OPERATING TEMPERATURE

-55°C to +125°C

mm (inches)


L	W	T	R	В
1.00±0.10	0.58±0.075	0.35±0.10	0.125±0.050	0.23±0.0508
(0.040±0.004)	(0.023±0.003)	(0.014±0.004)	(0.005±0.002)	(0.0092±0.002)

Tight Tolerance

RECOMMENDED FOOTPRINT

mm (inches)

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

- · Pad width equal to component width. It is permissible to decrease this to as low as
- 85% of component width but it is not advisable to go below this.
- · Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for relow and 1.0mm to wave soldering.

0402 ELECTRICAL SPECIFICATIONS

L (nH) 450MHz	Available Inductance Tolerance A = ±0.05nH, B = ±0.1nH, G = ±2%	Q 450MHz	Idc max (mA)	Rdc max (mΩ)	SRF min (GHz)
0.8	±0.05nH, ±0.1nH	15	450	100	7
0.9	±0.05nH, ±0.1nH	15	450	100	7
1	±0.05nH, ±0.1nH	15	420	100	7
1.1	±0.05nH, ±0.1nH	15	410	100	7
1.2	±0.05nH, ±0.1nH	15	410	110	7
1.3	±0.05nH, ±0.1nH	15	295	13	7
1.5	±0.05nH, ±0.1nH	15	295	150	7
1.6	±0.05nH, ±0.1nH	15	230	150	7
1.8	±0.05nH, ±0.1nH	15	295	160	7
2	±0.05nH, ±0.1nH	15	230	18	7
2.2	±0.05nH, ±0.1nH	15	230	200	7
2.4	±0.05nH, ±0.1nH	15	230	200	7
2.7	±0.05nH, ±0.1nH	15	230	250	7
3	±0.05nH, ±0.1nH	15	200	300	7
3.3	±0.05nH, ±0.1nH	15	200	340	7
3.6	±0.05nH, ±0.1nH	15	180	350	7
3.9	±0.05nH, ±0.1nH	15	180	400	7
4.7	±0.1nH	15	170	480	7
5.6	±0.1nH	15	150	500	7
6.8	±0.1nH	15	140	600	7
8.2	±0.1nH	15	115	800	6
10	±2%	15	105	1000	5
12	±2%	15	95	1100	4
15	±2%	15	95	1200	4
18	±2%	15	85	1500	3
22	±2%	15	75	1900	3
27	±2%	15	75	2100	3
30	±2%	15	65	2200	2
32	±2%	15	65	2200	2

Specifications based on performance of component assembled properly on printed circuit board with 500 nominal impedance.

High Current

The Multilayer Organic High Current Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. Based on KYOCERA AVX patented multilayer organic technology (US patent 6,987,307), the 0402 size Multilayer Organic High Current Inductor allows for much higher current handling over similar multilayer ceramic chip inductors, a 50% average increase in current handling over comparable thin film products with similar Q, and current handling approaching that of wire wound ceramic chip inductors. MLO® High Current Inductors incorporate very low loss organic materials which allow for high Q and high stability over frequency. They are surface mountable and are expansion matched to FR4 printed wiring boards. MLO® High Current Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- · Mobile communications
- Satellite Applications
- **GPS**
- Collision Avoidance
- Wireless LAN's

FEATURES

- High Q
- · High SRF
- · High Frequency
- · High Current Handling
- Low DC Resistance
- · Surface Mountable
- · 0402 Case Size
- · RoHS Compliant Finishes
- · Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

- · Inherent Low Profile
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation
- · Expansion Matched to PCB

HOW TO ORDER

Inductance

Expressed in nH (2 significant digits + number of zeros) for values <10nH, letter R denotes decimal point.

Example: 22nH = 220 4.7nH = 4R7 $B = \pm 0.1 nH$

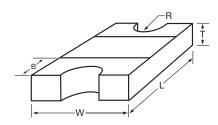
Tolerance

X

 $C = \pm 0.2nH$ $D = \pm 0.5 nH$

 $G = \pm 2\%$

 $H = \pm 3\%$ $J = \pm 5\%$ **Termination**


Sn100

TR **Packaging**

5000pcs T&R

COMPLIANT

DIMENSIONS

OUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

TERMINATION

RoHS compliant Sn finish.

OPERATING TEMPERATURE

-55°C to +125°C

mm (inches)

				()
L	W	Т	R	В
1.00±0.10	0.58±0.075	0.35±0.10	0.125±0.050	0.23±0.0508
(0.040±0.004)	(0.023±0.003)	(0.014±0.004)	(0.005±0.002)	(0.0092±0.002)

Multilayer Organic (MLO®) Inductors **High Current**

0402 ELECTRICAL SPECIFICATIONS

	450 MHz Test Frequency			MHz equency) MHz equency		MHz equency			
L (nH) 450 MHz	Available Inductance Tolerance B = ±0.1nH, C = ±0.2nH D = ±0.5nH, G = ±2% H = ±3%, J = ±5%	Q 450 MHz	L (nH) 900 MHz	Q 900 MHz	L (nH) 1900 MHz	Q 1900 MHz	L (nH) 2400 MHz	Q 2400 MHz	SRF Min (GHz)	Rdc Max (mΩ)	Idc Max (mA)
0.8	±0.1nH, ±0.2nH, ±0.5nH	30	0.8	42	0.8	55	0.8	61	>20	100	875
0.9	±0.1nH, ±0.2nH, ±0.5nH	26	0.9	36	0.9	47	0.9	52	>20	100	835
1	±0.1nH, ±0.2nH, ±0.5nH	25	1.0	34	1.0	45	1.0	50	>20	100	800
1.1	±0.1nH, ±0.2nH, ±0.5nH	24	1.1	33	1.1	43	1.1	48	20	100	782
1.2	±0.1nH, ±0.2nH, ±0.5nH	24	1.2	33	1.2	44	1.2	48	20	110	751
1.3	±0.1nH, ±0.2nH, ±0.5nH	25	1.3	34	1.3	44	1.3	49	19	130	725
1.5	±0.1nH, ±0.2nH, ±0.5nH	25	1.5	35	1.5	45	1.5	50	19	150	679
1.6	±0.1nH, ±0.2nH, ±0.5nH	25	1.6	35	1.6	45	1.6	49	18	150	660
1.8	±0.1nH, ±0.2nH, ±0.5nH	25	1.8	35	1.8	45	1.8	49	18	160	626
2	±0.1nH, ±0.2nH, ±0.5nH	26	2.0	35	2.0	45	2.1	49	17	180	596
2.2	±0.1nH, ±0.2nH, ±0.5nH	27	2.2	36	2.2	46	2.2	50	16	200	571
2.4	±0.1nH, ±0.2nH, ±0.5nH	27	2.4	37	2.4	47	2.4	50	15	200	549
2.7	±0.1nH, ±0.2nH, ±0.5nH	27	2.7	36	2.7	46	2.7	48	14	250	521
3	±0.1nH, ±0.2nH, ±0.5nH	27	3.0	36	3.0	44	3.1	46	12	300	497
3.3	±0.1nH, ±0.2nH, ±0.5nH	27	3.3	36	3.3	44	3.4	46	11	340	476
3.6	±0.1nH, ±0.2nH, ±0.5nH	27	3.6	37	3.7	45	3.8	46	10	350	457
3.9	±0.1nH, ±0.2nH, ±0.5nH	28	3.9	38	4.0	46	4.1	47	10	400	441
4.7	±0.1nH, ±0.2nH, ±0.5nH	29	4.7	39	4.9	45	5.1	44	9	480	405
5.6	±0.1nH, ±0.2nH, ±0.5nH	30	5.7	40	6.0	44	6.3	42	8	500	375
6.8	±2%, ±3%, ±5%	30	6.9	39	7.5	41	8.0	37	7	600	343
8.2	±2%, ±3%, ±5%	29	8.4	37	9.4	37	10.4	31	6	800	315
10	±2%, ±3%, ±5%	30	10.3	38	12.0	35	13.9	27	5	1000	290
12	±2%, ±3%, ±5%	32	12.5	40	15.7	31	19.8	19	4	1100	265
15	±2%, ±3%, ±5%	32	15.9	38	22.3	24	33.0	9	4	1200	240
18	±2%, ±3%, ±5%	28	19.4	32	31.1	15	60.0	0.3	3	1500	210
22	±2%, ±3%, ±5%	30	24.0	34	44.7	11	n/a	n/a	3	1900	202
27	±2%, ±3%, ±5%	29	30.5	30	n/a	n/a	n/a	n/a	3	2100	184
30	±2%, ±3%, ±5%	28	34.0	27	n/a	n/a	n/a	n/a	2	2200	180
32	±2%, ±3%, ±5%	28	37.7	27	n/a	n/a	n/a	n/a	2	2200	175

Specifications based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance.

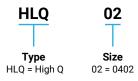
Idc max: Maximum 15°C rise in component temperature over ambient.

Hi-Q

The Multilayer Organic Hi-Q Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. The MLO® Hi-Q Inductor series of components are based on KYOCERA AVX patented multilayer organic technology (US patent 6,987,307 and 7,439,840). MLO® Hi-Q Inductors incorporate very low loss organic materials and low profile copper which allow for high Q and high stability over frequency. MLO® Hi-Q Inductors are surface mountable and are expansion matched to FR4 printed wiring boards. MLO® Hi-Q Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- · Mobile communications
- Satellite Applications
- **GPS**
- Collision Avoidance
- Wireless LAN's


FEATURES

- · High Q
- High SRF
- **High Frequency**
- Low DC Resistance
- Surface Mountable
- 0402 Case Size
- **RoHS Compliant Finishes**
- Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

- · Inherent Low Profile
- **Excellent Solderability**
- Low Parasitics
- **Better Heat Dissipation**
- Expansion Matched to PCB

HOW TO ORDER

Inductance Expressed in nH (2 significant digits + number of zeros) for values <10nH,

letter R denotes decimal point. Example:

22nH = 220 4.7nH = 4R7

Tolerance $B = \pm 0.1 nH$


 $C = \pm 0.2nH$ $H = \pm 3\%$

DIMENSIONS

mm (inches)

				(/
L	W	Т	R	В
1.00±0.10	0.58±0.075	0.35±0.10	0.125±0.050	0.23±0.0508
(0.040±0.004)	(0.023±0.003)	(0.014±0.004)	(0.005±0.002)	(0.0092±0.002)

OUALITY INSPECTION

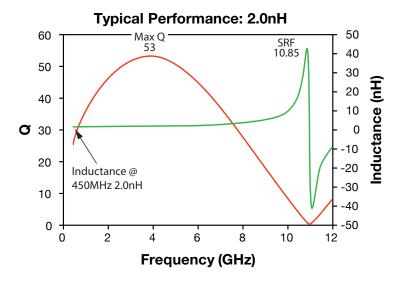
Finished parts are 100% tested for electrical parameters and visual characteristics.

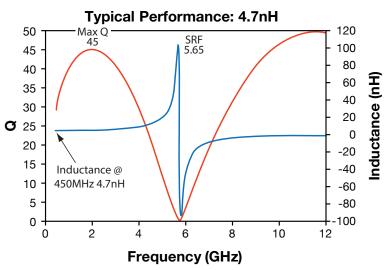
TERMINATION

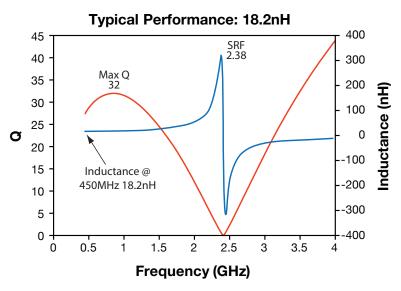
RoHS compliant Sn finish.

OPERATING TEMPERATURE

-55°C to +125°C




0402 ELECTRICAL SPECIFICATIONS


L (nH) 450MHz	Available Inductance Tolerance B = ±0.1nH, C = ±0.2nH H = ±3%	Q min 450MHz	SRF min (GHz)	Rdc max (mΩ)	Idc max (mA)
0.8	±0.1nH, ±0.2nH	17	7	100	350
0.9	±0.1nH, ±0.2nH	17	7	100	350
1	±0.1nH, ±0.2nH	17	7	100	330
1.1	±0.1nH, ±0.2nH	17	7	100	330
1.2	±0.1nH, ±0.2nH	17	7	110	330
1.3	±0.1nH, ±0.2nH	17	7	130	330
1.5	±0.1nH, ±0.2nH	17	7	150	330
1.6	±0.1nH, ±0.2nH	17	7	150	300
1.8	±0.1nH, ±0.2nH	17	7	160	300
2	±0.1nH, ±0.2nH	17	7	180	245
2.2	±0.1nH, ±0.2nH	17	7	200	245
2.4	±0.1nH, ±0.2nH	17	7	200	245
2.7	±0.1nH, ±0.2nH	17	7	250	245
3	±0.1nH, ±0.2nH	17	7	300	225
3.3	±0.1nH, ±0.2nH	17	7	340	225
3.6	±0.1nH, ±0.2nH	17	7	350	200
3.9	±0.1nH, ±0.2nH	17	7	400	200
4.7	±0.1nH, ±0.2nH	17	7	480	195
5.6	±0.1nH, ±0.2nH	17	7	500	170
6.8	±3%	17	7	600	160
8.2	±3%	17	6	800	130
10	±3%	17	5	1000	120
12	±3%	17	4	1100	110
15	±3%	17	4	1200	110
18	±3%	17	3	1500	110
22	±3%	17	3	1900	95
27	±3%	17	3	2100	95
30	±3%	17	2	2200	85
32	±3%	17	2	2200	85

Specifications based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance. Idc max: Maximum 15° C rise in component temperature over ambient.

Multilayer Organic (MLO®) Inductors **Automated SMT Assembly/SMT Reflow Profile**

AUTOMATED SMT ASSEMBLY

The following section describes the guidelines for automated SMT assembly of MLO® RF devices which are typically Land Grid Array (LGA) packages or side termination SMT packages.

Control of solder and solder paste volume is critical for surface mount assembly of MLO® RF devices onto the PCB. Stencil thickness and aperture openings should be adjusted according to the optimal solder volume. The following are general recommendations for SMT mounting of MLO® devices onto the PCB.

SMT REFLOW PROFILE

Common IR or convection reflow SMT processes shall be used for the assembly. Standard SMT reflow profiles, for eutectic and Pb free solders, can be used to surface mount the MLO® devices onto the PCB. In all cases, a temperature gradient of 3°C/sec, or less, should be maintained to prevent warpage of the package and to ensure that all joints reflow properly. Additional soak time and slower preheating time may be required to improve the out-gassing of solder paste. In addition, the reflow profile depends on the PCB density and the type of solder paste used. Standard no-clean solder paste is generally recommended. If another type of flux is used, complete removal of flux residual may be necessary. Example of a typical lead free reflow profile is shown below.

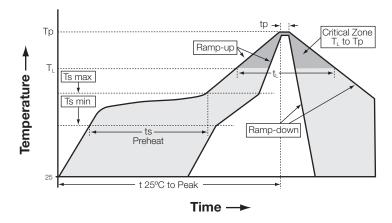
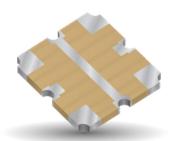



Figure A. Typical Lead Free Profile and Parameters

Profile Parameter	Pb free, Convection, IR/Convection
Ramp-up rate (Tsmax to Tp	3°C/second max.
Preheat temperature (Ts min to Ts max)	150°C to 200°C
Preheat time (ts)	60 - 180 seconds
Time above TL, 217°C (tL)	60 - 120 seconds
Peak temperature (Tp)	260°C
Time within 5°C of peak temperature (tp)	10 - 20 seconds
Ramp-down rate	4°C/second max.
Time 25°C to peak temperature	6 minutes max.

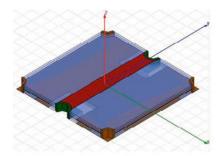
Multilayer Organic (MLO®) SMT Crossovers **RF-DC**

GENERAL DESCRIPTION

The MLO® SMT RF-DC Crossover is a very low profile crossover that intersects an RF and DC circuit trace in an SMT package. The RF-DC Crossover is a low cost solution for applications where a critical RF circuit trace intersects a DC circuit precluding the need for an expensive multilayer printed circuit board. The SMT package can support frequencies up to 6 GHz. MLO® crossovers have been subjected to JEDEC reliability standards and 100% electrically tested. The RF-DC crossovers are available in NiSn.

FEATURES

- DC 6.0 GHz
- RF DC Crossover
- Low Loss
- DC Isolation
- Surface Mountable
- Tape and Reel
- · 100% Tested


APPLICATIONS

- · Military and Commercial Radar
- **Medical Imaging Electronics**
- · Communications Transmitter
- · Optical Drivers

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- **Excellent Solderability**
- · Low Parasitics
- Better Heat Dissipation

TOP VIEW

HOW TO ORDER

Packaging T = 1000pcs T&R T/250 = 250 pcs T&RB = Bulk

	Frequency (GHz)	Port Impedance (ohms)	Ins. Loss (dB max)	Return Loss (dB min)	Power (Watts)	θJC (°C /Watts)	Operating Temperature (°C)
	DC -2.5	50	0.05	20	30	140	-55 to +85
	2.5 - 4.0	50	0.10	20	19	140	-55 to +85
Г	4.0 - 6.0	50	0.15	15	9	140	-55 to +85

^{*} Specification based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance.

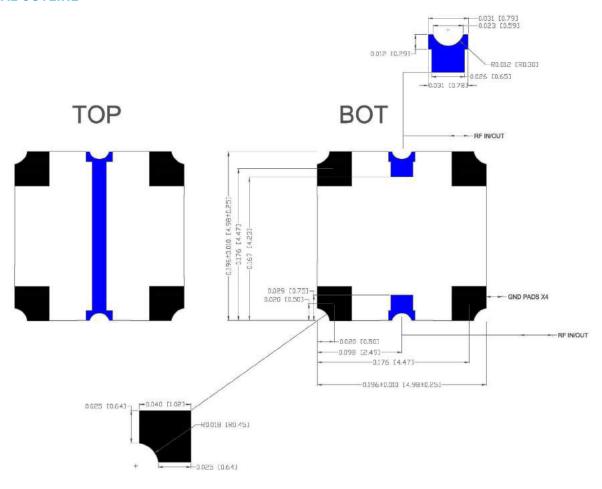
OUALITY INSPECTION

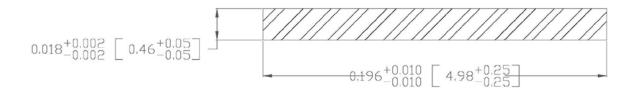
Finished parts are 100% tested for electrical parameters and visual characteristics.

TERMINATION

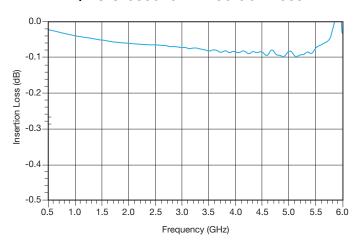
NiSn compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase and manual.

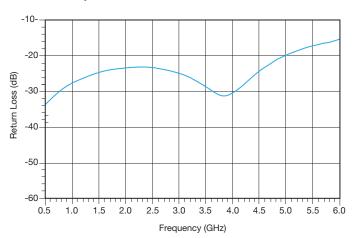
OPERATING TEMPERATURE


- 55°C to +85°C


Multilayer Organic (MLO®) SMT Crossovers **RF-DC**

MECHANICAL OUTLINE

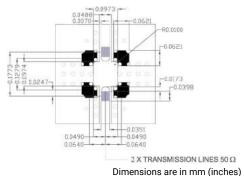

SIDE



RF-DC SMT CROSSOVER PERFORMANCE: 0.3 GHZ TO 6 GHZ

RF/DC Crossover - Insertion Loss

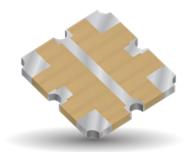
RF/DC Crossover - Return Loss



MOUNTING PROCEDURE

MLO® SMT crossovers require 50Ω transmission lines leading to and from all of the RF ports. Proper grounding is required in order to ensure optimal device performance. If these conditions are not met then performance para-meters including insertion loss, return loss and any isolation may not meet published values. All of the MLO® components utilize castellated interconnects which allow for high yield assembly, expansion matched and halogen free dielectric. When mounting the user must be mindful of the following: a) ensure the RF pads of the device are in contact with the circuit trace of the printed circuit board and b) the ground plane of neither the component nor the PCB is in contact with the RF signal. Parts are specifically oriented in the tape and reel.

MOUNTING FOOTPRINT


To ensure proper electrical and thermal performance there must be a ground plane with 100% solder connection underneath the part.

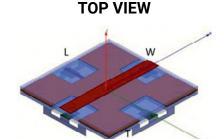
Multilayer Organic (MLO®) SMT Crossovers

RF-RF

GENERAL DESCRIPTION

The MLO® SMT RF-RF Crossover is a very low profile crossover that intersects an RF and RF circuit trace in an SMT package. The RF-RF Crossover is a low cost solution for applications where a critical RF circuit trace intersects a RF circuit precluding the need for an expensive multilayer printed circuit board. The SMT package can support frequencies up to 6 GHz. MLO® crossovers have been subjected to JEDEC reliability standards and 100% electrically tested. The RF-RF crossovers are available in NiSn.

FEATURES


- DC 6.0 GHz
- RF RF Crossover
- Low Loss
- High Isolation
- Surface Mountable
- Tape and Reel
- 100% Tested

APPLICATIONS

- · Military and Commercial Radar
- · Medical Imaging Electronics
- · Communications Transmitter
- · Optical Drivers

LAND GRID ARRAY ADVANTAGES

- · Inherent Low Profile
- · Excellent Solderability
- · Low Parasitics
- · Better Heat Dissipation

HOW TO ORDER

Packaging T= 1000pcs T&R T/250 = 250pcs T&R B= Bulk

Frequency (GHz)	Port Impedance (ohms)	Ins. Loss (dB max)	Return Loss (dB min)	Isolation (dB min)	Power (Watts)	θJC (°C /Watts)	Operating Temperature (°C)
DC -2.5	50	0.05	20	50	30	150	-55 to +85
2.5 - 4.0	50	0.10	18	30	19	150	-55 to +85
4.0 - 6.0	50	0.15	10	20	9	150	-55 to +85

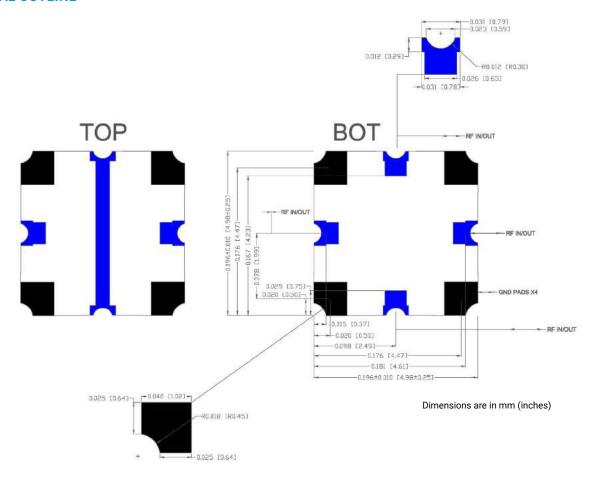
^{*} Specification based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance.

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

TERMINATION

NiSn compatible with automatic soldering technologies: Pb free reflow, wave soldering, vapor phase and manual.

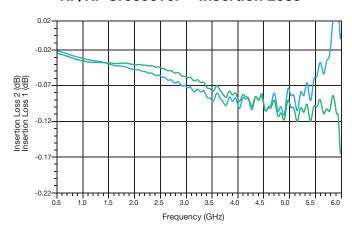

OPERATING TEMPERATURE

- 55°C to +85°C

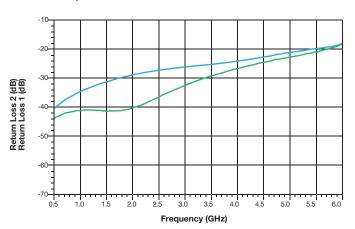
Multilayer Organic (MLO®) SMT Crossovers **RF-RF**

MECHANICAL OUTLINE

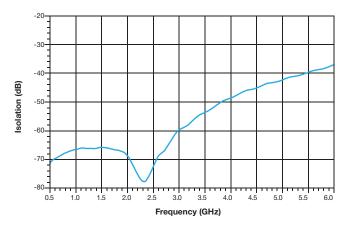
SIDE $0.018^{+0.002}_{-0.002}$ $\left[\begin{array}{c} 0.46^{+0.05}_{-0.05} \end{array}\right]$ $0.196^{+0.010}_{-0.010}$ $\left[\begin{array}{c} 4.98^{+0.25}_{-0.25} \end{array}\right]$

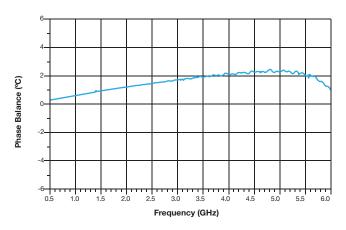

Dimensions are in mm (inches)

Multilayer Organic (MLO®) SMT Crossovers **RF-RF**



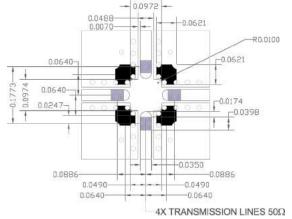
RF-RF SMT CROSSOVER PERFORMANCE: 0.3 GHZ TO 6 GHZ


RF/RF Crossover - Insertion Loss


RF/RF Crossover - Return Loss

RF/RF Crossover - Isolation

RF/RF Crossover - Phase Balance



MOUNTING PROCEDURE

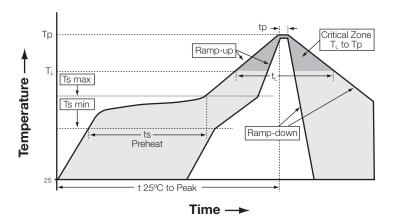
MLO® SMT crossovers require 50Ω transmission lines leading to and from all of the RF ports. Proper grounding is required in order to ensure optimal device performance. If these conditions are not met then performance parameters including insertion loss, return loss and any isolation may not meet published values. All of the MLO® components utilize castellated interconnects which allow for high yield assembly, expansion matched and halogen free dielectric. When mounting the user must be mindful of the following: a) ensure the RF pads of the device are in contact with the circuit trace of the printed circuit board and b) the ground plane of neither the component nor the PCB is in contact with the RF signal. Parts are specifically oriented in the tape and reel.

MOUNTING FOOTPRINT

To ensure proper electrical and thermal performance there must be a ground plane with 100% solder connection underneath the part.

Dimensions are in mm (inches)

Multilayer Organic (MLO®) SMT Crossovers **Automated SMT Assembly/SMT Reflow Profile**

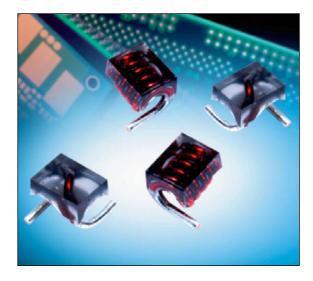

AUTOMATED SMT ASSEMBLY

The following section describes the guidelines for automated SMT assembly of MLO® RF devices which are typically Land Grid Array (LGA) packages or side termination SMT packages.

Control of solder and solder paste volume is critical for surface mount assembly of MLO® RF devices onto the PCB. Stencil thickness and aperture openings should be adjusted according to the optimal solder volume. The following are general recommendations for SMT mounting of MLO® devices onto the PCB.

SMT REFLOW PROFILE

Common IR or convection reflow SMT processes shall be used for the assembly. Standard SMT reflow profiles, for eutectic and Pb free solders, can be used to surface mount the MLO® devices onto the PCB. In all cases, a temperature gradient of 3°C/sec, or less, should be maintained to prevent warpage of the package and to ensure that all joints reflow properly. Additional soak time and slower preheating time may be required to improve the out-gassing of solder paste. In addition, the reflow profile depends on the PCB density and the type of solder paste used. Standard no-clean solder paste is generally recommended. If another type of flux is used, complete removal of flux residual may be necessary. Example of a typical lead free reflow profile is shown below:



Profile Parameter	Pb free, Convection, IR/Convection			
Ramp-up rate (Tsmax to Tp)	3°C/second max.			
Preheat temperature (Ts min to Ts max)	150°C to 200°C			
Preheat time (ts)	60 - 180 seconds			
Time above T _L , 217°C (t _L)	60 - 120 seconds			
Peak temperature (Tp)	260°C			
Time within 5°C of peak temperature (tp)	10 - 20 seconds			
Ramp-down rate	4°C/second max.			
Time 25°C to peak temperature	6 minutes max.			

RF/Microwave Inductors

AL Series - Air Core Inductors

GENERAL DESCRIPTION

Air Core RF Inductors, part of the wound air core inductor family, are ideal for RF circuits, broadband I/O filtering, frequency selection, or impedance matching. The air core inductor provides better performance over solid core inductors with higher Q, and better current handling capabilities.

FEATURES

- · Air Core Construction
- · High Q
- · High Current
- · Excellent SRF
- Many inductance values ranging from 1.65nH to 538nH

APPLICATIONS

- RF Applications
- RF Circuits
- Broadband I/O Filtering
- · Impedance Matching/Tuning
- · Decoupling/Bypassing

HOW TO ORDER

05A Size

Size 05A = 060505B = 0605

12A = 1212 12B = 1212

016 = 1516023 = 2523

02N5 = 2.5nH12N5 = 12.5nH 130N = 130nH G

Tolerance G = 2%J = 5%K = 10%

Т

Termination T = Sn/Ag over Cu (96.5% Sn, 3% Ag, 0.5% Cu)

R = 7" reel S = 13" reel* *AL016 & AL023 Only

ELECTRICAL SPECIFICATIONS

Technical Data	All technical data related to an ambient temperature of +25°C
Inductance Range	1.65nH to 538nH
Inductance Tolerance	2%, 5%, 10%
Rated Current	1.5A to 4.0A
Operating Temperature	-40°C to +125°C
Termination	96.5% Tin/3% Silver over 0.5% Copper

ELECTRICAL SPECIFICATIONS

Part Number	Turns	Inductance (nH)	Tolerance (%)	Q min.	Q typ.	Test Freq. (MHz)	DCR max (mΩ)	SRF GHz (min.)	Ir max Amps
AL05A1N65KTR	2	1.65	K	100	-	800	4	10	1.60
AL05A2N55*TR	3	2.55	J, K	100		800	5	8.2	1.60
AL05A3N85*TR	4	3.85	G, J, K	100	-	800	6	7.5	1.60
AL05A5N45*TR	5	5.45	G, J	100	•	800	8	7	1.60
AL05B05N6*TR	6	5.6	G, J	100	-	800	9	6.5	1.60
AL05B7N15*TR	7	7.15	G, J	100	-	800	10	6	1.60
AL05B08N8*TR	8	8.8	G, J	100	-	800	12	6	1.60
AL05B9N85*TR	9	9.85	G, J	100	•	800	13	5.2	1.60
AL05B12N5*TR	10	12.55	G, J	100	-	800	14	4.6	1.60
AL12A02N5KTR	1	2.5	K	145	-	150	1.1	12.5	4.00
AL12A05N0*TR	2	5	J, K	140	-	150	1.8	6.5	4.00
AL12A08N0*TR	3	8	G, J	140		150	2.6	5	4.00
AL12A12N5*TR	4	12.5	G, J	137	-	150	3.4	3.3	4.00
AL12A18N5*TR	5	18.5	G, J	132	-	150	3.9	2.5	4.00
AL12B17N5*TR	6	17.5	G, J	100	-	150	4.5	2.2	4.00
AL12B22N0*TR	7	22	G, J	102		150	5.2	2.1	4.00
AL12B28N0*TR	8	28	G, J	105	-	150	6	1.8	4.00
AL12B35N5*TR	9	35.5	G, J	112		150	6.8	1.5	4.00
AL12B43N0*TR	10	43	G, J	106	-	150	7.9	1.2	4.00
AL01622N0*TS	4	22	G, J	100	135	150	4.2	3.2	3.00
AL01627N0*TS	5	27	G, J	100	135	150	4	2.7	3.50
AL01633N0*TS	5	33	G, J	100	130	150	4.8	2.5	3.00
AL01639N0*TS	6	39	G, J	100	135	150	4.4	2.1	3.00
AL01647N0*TS	6	47	G, J	100	135	150	5.6	2.1	3.00
AL01656N0*TS	7	56	G, J	100	125	150	6.2	1.5	3.00
AL01668N0*TS	7	68	G, J	100	120	150	8.2	1.5	2.50
AL01682N0*TS	8	82	G, J	100	120	150	9.4	1.3	2.50
AL016100N*TS	9	100	G, J	100	115	150	12.3	1.2	1.70
AL016120N*TS	9	120	G, J	100	125	150	17.3	1.1	1.50
AL02390N0*TS	9	90	G, J	95	114	50	15	1.140	3.50
AL023111N*TS	10	111	G, J	87	104	50	15	1.020	3.50
AL023130N*TS	11	130	G, J	87	104	50	20	0.900	3.00
AL023169N*TS	12	169	G, J	95	114	50	25	0.875	3.00
AL023206N*TS	13	206	G, J	95	114	50	30	0.800	3.00
AL023222N*TS	14	222	G, J	92	110	50	35	0.730	3.00
AL023246N*TS	15	246	G, J	95	114	50	35	0.685	3.00
AL023307N*TS	16	307	G, J	95	114	50	35	0.660	3.00
AL023380N*TS	17	380	G, J	95	114	50	50	0.590	2.50
AL023422N*TS	18	422	G, J	95	114	50	60	0.540	2.50
AL023491N*TS	19	491	G, J	95	114	50	65	0.535	2.00
AL023538N*TS	20	538	G, J	87	104	50	90	0.490	2.00

*Tolerance: G= ± 2%, J: ± 5%, K: ± 10%

a. Test Equipment: L/Q: HP-4291B With HP16193A test fixture or equivalent.

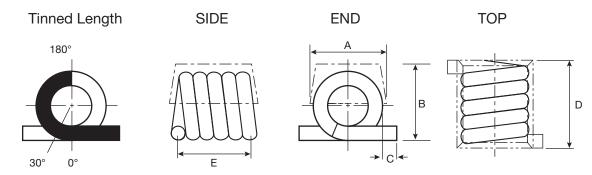
SRF: HP8753E /HP8720D or equivalent.

RDC: Chroma 16502 or equivalent.

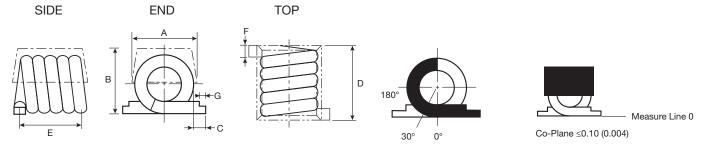
b. Operating temperature range: -40 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}.$

c. For Temperature Rise: 15°C

d. Storage Temp.: -40°C to +85°C.


e. MSL: Level 1

AL Series - Air Core Inductors

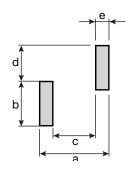


PHYSICAL DIMENSIONS

AL12A, AL12B, AL016, AL023

AL05A, AL05B

TINNED LENGTH BETWEEN 30° AND 180°

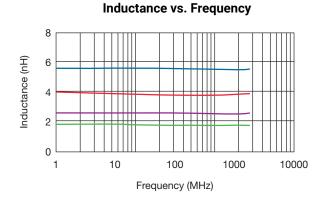

mm (inches)

Part Number	Α	A B C		D E		F	G
AL05A	1.42 ± 0.13 (0.056 ± 0.005)	1.37 ± 0.15 (0.056 ± 0.005)	0.89 ± 0.25 (0.035 ± 0.010)	2.21 ± 0.25 (0.087 ± 0.010)	1.83 ± 0.25 (0.072 ± 0.010)	0.51 max. (0.200 max.)	0.35 min. (0.014 min.)
AL05B	1.42 ± 0.13 (0.056 ± 0.005)	1.37 ± 0.15 (0.056 ± 0.005)	0.89 ± 0.25 (0.035 ± 0.010)	4.04 ± 0.30 (0.159 ± 0.012)	3.66 ± 0.30 (0.144 ± 0.012)	0.51 max. 0.200 max.	0.35 min. 0.014 min.
AL12A	3.05 max. (0.120 max.)	3.18 max. (0.125 max.)	0.58 ± 0.38 (0.023 ± .0.015)	3.68 max. (0.145 max.)	2.92 ± 0.25 (0.115 ± 0.010)	-	-
AL12B	3.05 max. (0.120 max.)	3.18 max. (0.125 max.)	0.58 ± 0.38 (0.023 ± 0.015)	6.86 max. (0.270 max.)	5.84 ± 0.25 (0.230 ± 0.010)	-	-
AL016			4.83 max. (0.190 max.)	4.32 ± 0.39 (0.170 ± 0.015)	-	_	
AL023	6.35 max. (0.250 max.)	5.90 max. (0.232 max.)	1.02 ± 0.39 (0.040 ± 0.015)	10.55 max. (0.415 max.)	7.98 ± 0.51 (0.314 ± 0.020)	-	-

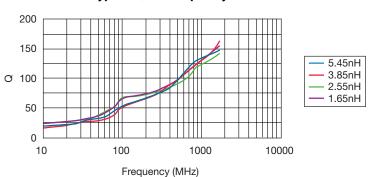
RECOMMENDED LAND PATTERNS

MM (INCHES)

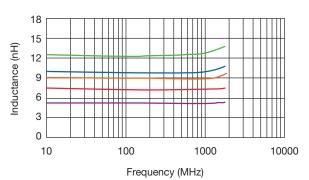
Part Number	Α	В	С	D	E
AL05A	2.62	2.46	1.04	1.02	0.79
	(0.103)	(0.097)	(0.041)	(0.040)	(0.031)
AL05B	4.45	2.46	2.87	1.02	0.79
	(0.175)	(0.097)	(0.113)	(0.040)	(0.031)
AL12A	4.19	3.30	1.65	2.79	1.27
	(0.165)	(0.130)	(0.065)	(0.110)	(0.050)
AL12B	7.24	3.30	4.70	2.79	1.27
	(0.285)	(0.130)	(0.185)	(0.110)	(0.050)
AL016	5.80	5.16	2.85	2.62	1.48
	(0.228)	(0.203)	(0.112)	(0.103)	(0.058)
AL023	10.0	4.70	5.95	2.42	2.04
	(0.394)	(0.185)	(0.234)	(0.095)	(0.080)



AL Series - Air Core Inductors

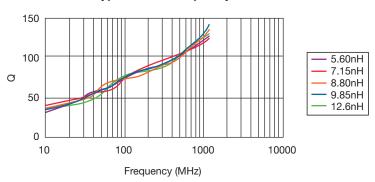


PERFORMANCE SPECIFICATIONS

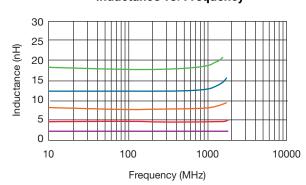


AL05A

Typical Q vs. Frequency

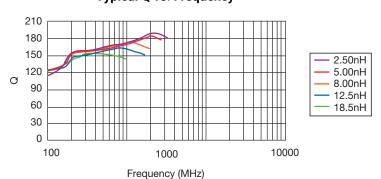


Inductance vs. Frequency



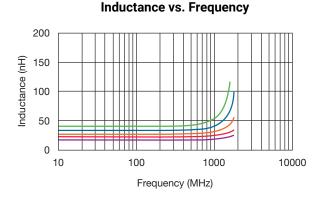
AL05B

Typical Q vs. Frequency

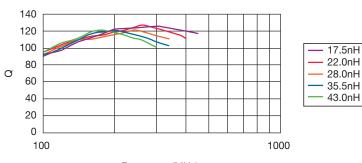


Inductance vs. Frequency

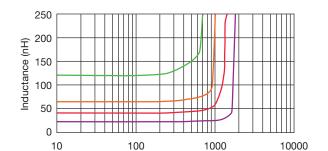
AL12A


Typical Q vs. Frequency

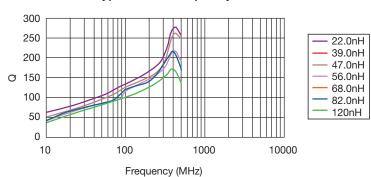
AL Series - Air Core Inductors



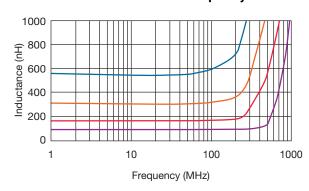
PERFORMANCE SPECIFICATIONS


AL12B

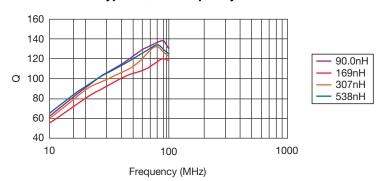
Typical Q vs. Frequency


Frequency (MHz)

Inductance vs. Frequency

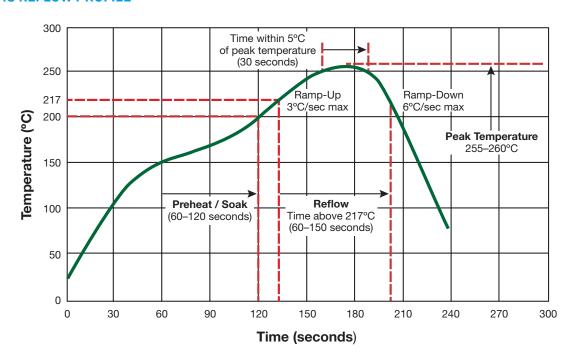

AL016

Typical Q vs. Frequency

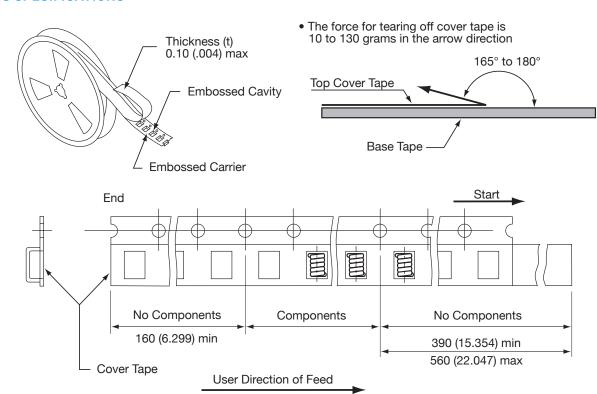

Frequency (MHz)

Inductance vs. Frequency

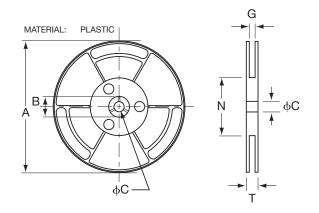
AL023

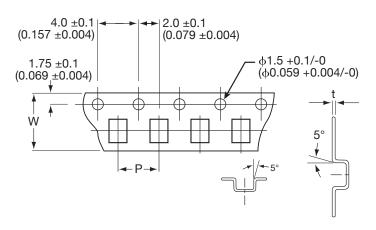

Typical Q vs. Frequency

AL Series - Air Core Inductors


TYPICAL ROHS REFLOW PROFILE

AL Series - Air Core Inductors




PACKAGING SPECIFICATIONS

CARRIER TAPE REELS

DIMENSIONS OF CARRIER TAPE

mm (inches)

Series	ITEM	Α	В	С	N	G	Т	W	P	t
AL05A	DIM.	178	21	13	75	8.4	12.5	8	4	0.30
ALUSA	TOL.	±2.0	±0.8	±0.8	±2.0	+1.5	+1.5	±0.3	±0.1	±0.05
AL05B	DIM.	180	21	13	50	12.4	18.4	12	4	0.35
ALUSB	TOL.	MAX	±0.8	+0.5/-0.2	MIN	+2.0	MAX	±0.30	±0.10	±0.05
AL12A	DIM.	178	25	15	75	12.5	16.4	12	8	0.25
ALIZA	TOL.	±2.0	±1.0	±0.5	±2.0	+1.5	+1.5	±0.2	±0.1	±0.05
AL12B	DIM.	178	50	15	75	16.5	20.4	16	8	0.25
ALIZB	TOL.	±2.0	±1.0	±0.5	±2.0	+1.5	+1.5	±0.2	±0.1	±0.05
AL016	DIM.	340	20.2	13	100	16.5	25.5	16	12	0.30
ALUTO	TOL.	MAX	MIN	±0.5	REF	±0.5	±0.5	±0.30	±0.10	±0.05
AL023	DIM.	340	20.2	13	100	24.5	30.4	24.0	12.0	0.35
AL023	TOL.	MAX	MIN	±0.5	REF	±0.5	±0.5	±0.30	±0.10	±0.05

AS Series - Square Air Core Inductors

GENERAL DESCRIPTION

Square Air Core RF Inductors, part of the wound air core inductor family, are ideal for RF circuits, broadband I/O filtering, frequency selection, or impedance matching. The unique square cross section of the air core inductor provides better performance, and offers manufacturing advantages over toroidal coils.

FEATURES

- · Square cross section construction
- Available in 0806, 0807, and 0908 sizes
- 20 Inducance values ranging from 5.5nH to 27.3nH
- · High Q
- · High Current
- · Excellent SRF

APPLICATIONS

- · RF Applications
- · RF Circuits
- · Broadband I/O Filtering
- · Impedance Matching

HOW TO ORDER

07 = 0807

08 = 0908

Size 06 = 0806

12N3 = 12.3nH

Inductance 05N5 = 5.5nH06N0 = 6.0nH

05N5

Tolerance

G = 2%J = 5%K = 10%

T

Termination T = Sn/Ag over Cu (96.5% Sn, 3% Ag, 0.5% Cu)

R = 7 inch reel (2000 pieces per reel)

ELECTRICAL SPECIFICATIONS

Technical Data	All technical data related to an ambient temperature of +25°C
Inductance Range	5.5nH to 27.3nH
Inductance Tolerance	2%, 5%, 10%
Rated Current	2.7A, 2.9A, 4.4A
Operating Temperature	-40°C to +125°C
Termination	96.5% Tin/3% Silver over 0.5% Copper

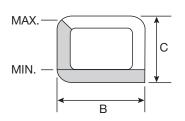
ELECTRICAL SPECIFICATIONS

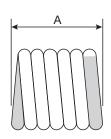
Part Number	Turns	Inductance (nH)	Tolerance (%)	Q min.	Test Freq. (MHz)	DCR max (mΩ)	SRF (GHz)	Ir max (A)
AS0605N5*TR	3	5.5	G, J, K	60	400	3.4	4.9	2.9
AS0606N0*TR	3	6	G, J, K	64	400	6.0	5.2	2.9
AS0608N9*TR	4	8.9	G, J, K	90	400	7.0	4.3	2.9
AS0612N3*TR	5	12.3	G, J, K	90	400	8.0	4.8	2.9
AS0615N7*TR	6	15.7	G, J, K	90	400	9.0	4.4	2.9
AS0619N4*TR	7	19.4	G, J, K	90	400	10.0	4	2.9
AS0706N9*TR	3	6.9	G, J, K	100	400	6.0	4.6	2.7
AS0710N2*TR	4	10.2	G, J, K	100	400	7.0	4	2.7
AS0711N2*TR	4	11.2	G, J, K	90	400	6.3	3.6	2.7
AS0713N7*TR	5	13.7	G, J, K	100	400	8.0	4.3	2.7
AS0717N0*TR	6	17	G, J, K	100	400	9.0	4	2.7
AS0722N0*TR	7	22	G, J, K	100	400	10.0	3.5	2.7
AS0808N1*TR	3	8.1	G, J, K	130	400	6.0	5.2	4.4
AS0812N1*TR	4	12.1	G, J, K	130	400	7.0	4.3	4.4
AS0814N7*TR	4	14.7	G, J, K	90	400	7.2	3	4.4
AS0816N6*TR	5	16.6	G, J, K	130	400	8.0	3.4	4.4
AS0821N5*TR	6	21.5	G, J, K	130	400	9.0	3.7	4.4
AS0823N0*TR	6	23	G, J, K	130	400	10.0	2.6	4.4
AS0825N0*TR	7	25	G, J, K	130	400	10	2.5	4.4
AS0827N3*TR	7	27.3	G, J, K	130	400	10	3.2	4.4

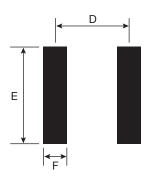
Note: 1. *Tolerance: G=±2%, J=±5%, K=±10%

- Inductance & Q measured on the HP4291B. With HP16193A test fixture.
- 3. SRF measured using the HP8753E

- 4. Operating Temperature range: -40°C to +125°C
- 5. Electrical Specifications at 25°C


KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


472


AS Series – Square Air Core Inductors

PHYSICAL DIMENSIONS

mm (inches)

Part Number	A	В	С	D	E	F
AS0605N5*TR	1.346±0.102	1.829±0.254	1.397±0.102	0.962	2.60	0.51
	(0.053±0.004)	(0.072±0.01)	(0.055±0.004)	(0.038)	(0.102)	(0.020)
AS0606N0*TR	1.295±0.102	1.829±0.254	1.397±0.102	0.99	2.60	0.51
	(0.051±0.004)	(0.072±0.01)	(0.055±0.004)	(0.390)	(0.102)	(0.020)
AS0608N9*TR	1.626±0.152	1.829±0.254	1.397±0.102	1.27	2.60	0.51
	(0.640±0.006)	(0.072±0.01)	(0.055±0.004)	(0.050)	(0.102)	(0.020)
AS0612N3*TR	1.930±0.152	1.829±0.254	1.397±0.102	1.63	2.60	0.51
	(0.076±0.006)	(0.072±0.01)	(0.055±0.004)	(0.064)	(0.102)	(0.020)
AS0615N7*TR	2.286±0.152	1.829±0.254	1.397±0.102	1.96	2.60	0.51
	(0.09±0.006)	(0.072±0.01)	(0.055±0.004)	(0.070)	(0.102)	(0.020)
AS0619N4*TR	2.591±0.152	1.829±0.254	1.397±0.102	2.29	2.60	0.51
	(0.102±0.006)	(0.072±0.01)	(0.055±0.004)	(0.090)	(0.102)	(0.020)
AS0706N9*TR	1.295±0.102	1.829±0.254	1.524±0.254	1.02	2.60	0.51
	(0.051±0.004)	(0.072±0.01)	(0.060±0.010)	(0.040)	(0.102)	(0.020)
AS0710N2*TR	1.626±0.152	1.829±0.254	1.524±0.254	1.32	2.60	0.51
	(0.064±0.006)	(0.072±0.01)	(0.060±0.010)	(0.052)	(0.102)	(0.020)
AS0711N2*TR	1.549±0.152	1.829±0.254	1.524±0.254	1.24	2.60	0.51
	(0.061±0.006)	(0.072±0.01)	(0.060±0.010)	(0.049)	(0.102)	(0.020)
AS0713N7*TR	1.930±0.152	1.829±0.254	1.524±0.254	1.57	2.60	0.51
	(0.076±0.006)	(0.072±0.01)	(0.060±0.010)	(0.062)	(0.102)	(0.020)
AS0717N0*TR	2.286±0.152	1.829±0.254	1.524±0.254	1.93	2.60	0.51
	(0.09±0.006)	(0.072±0.01)	(0.060±0.010)	(0.076)	(0.102)	(0.020)
AS0722N0*TR	2.591±0.152	1.829±0.254	1.524±0.254	2.29	2.60	0.51
	(0.102±0.006)	(0.072±0.01)	(0.060±0.010)	(0.090)	(0.102)	(0.020)
AS0808N1*TR	1.473±0.152	2.134±0.152	1.829±0.152	1.12	2.80	0.64
	(0.058±0.006)	(0.084±0.006)	(0.072±0.006)	(0.044)	(0.110)	(0.025)
AS0812N0*TR	1.854±0.152	2.134±0.152	1.829±0.152	1.45	2.80	0.64
	(0.073±0.006)	(0.084±0.006)	(0.072±0.006)	(0.570)	(0.110)	(0.025)
AS0814N7*TR	1.549±0.152	2.134±0.152	1.829±0.152	1.24	2.80	0.64
	(0.061±0.006)	(0.084±0.006)	(0.072±0.006)	(0.049)	(0.110)	(0.025)
AS0816N6*TR	2.210±0.152	2.134±0.152	1.829±0.152	1.83	2.80	0.64
	(0.087±0.006)	(0.084±0.006)	(0.072±0.006)	(0.072)	(0.110)	(0.025)
AS0821N5*TR	2.565±0.152	2.134±0.152	1.829±0.152	2.18	2.80	0.64
	(0.101±0.006)	(0.084±0.006)	(0.072±0.006)	(0.086)	(0.110)	(0.025)
AS0823N0*TR	2.235±0.152	2.134±0.152	1.829±0.152	1.90	2.80	0.64
	(0.088±0.006)	(0.084±0.006)	(0.072±0.006)	(0.075)	(0.110)	(0.025)
AS0825N0*TR	2.972±0.152	2.134±0.152	1.829±0.152	2.57	2.80	0.64
	(0.117±0.006)	(0.084±0.006)	(0.072±0.006)	(0.101)	(0.110)	(0.025)
AS0827N3*TR	2.972±0.152	2.134±0.152	1.829±0.152	2.57	2.80	0.64
	(0.117±0.006)	(0.084±0.006)	(0.072±0.006)	(0.101)	(0.110)	(0.025)

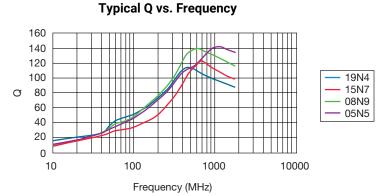
AS Series - Square Air Core Inductors

RELIABILITY PERFORMANCE

RELIABILITY EXPERIMENT FOR ELECTRICAL

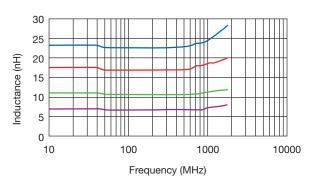
Test Item	Accept Criteria	Test Condition	Standard Source		
Humidity Test	Change from an initial value L: within ±5% no visible damage.	+40°C ± 2°C, humidity of 90% ±5% (total 96 hours).	MIL-STD-202G Method 103B Test Condition B		
High Temperature Test	1.Change from an initial value L: within ±5% 2.no visible damage.	1.Temperature: +125°C ± 2°C. 2.Test time: 48±2hrs.	IEC 68-2 Test Condition B		
Low Temperature Test	Change from an initial value L:within ±5% no visible damage.	1.Temperature: -25°C ± 2°C. 2.Test time: 48 ± 2hrs.	IEC 68-2 Test Condition A		
Thermal Shock	1.Change from an initial value L:within ±5% 2.no visible damage.	+125°C±5°C (30 minutes) \sim -55±5°C (30 minutes), temperature switch time: 5 minutes (total 50 cycles) Wind speeds10m/sec.	Reference MIL-STD-202G Method 107G Test Condition A-2		
Life Test	1.Change from an initial value L: within ±5% 2. no visible damage.	+70°C ± 5°C (250Hours).	Reference MIL-STD-202G Method 108A Test Condition B		

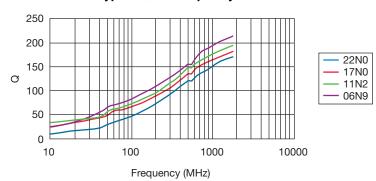
RELIABILITY EXPERIMENT FOR PHYSICAL


RELIABILITY EXPERIM	LINITORFITTSICAL				
Test Item	Accept Criteria	Test Condition	Standard Source		
Vibration Test	 Change from an initial value within ±5% no visible damage. 	10-55-10HZ, amplitude: 1.5mm, direction: X, Y, Z axes, each axis 2 hours (total 6 hours).	MIL-STD-202G Method 201A		
Soldering Heat Resistance Test	1. no visible damage.	12551: ~2601: for 3~5 Sec	Reference: MIL-STD-202G Method 210F Test Condition K (Reflow)		
Solder Ability Test	1. Lead must have 95% above coverage.	Soak in 245°C solder pot of 3~5 Sec.	Reference: J-STD-002D		

AS Series - Square Air Core Inductors

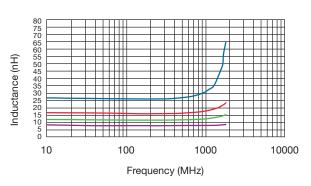
PERFORMANCE SPECIFICATIONS


Inductance vs. Frequency 30 25 Inductance (nH) 20 15 10 5 0 10 100 1000 10000 Frequency (MHz)

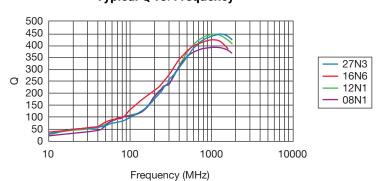

AS07

AS06

Inductance vs. Frequency

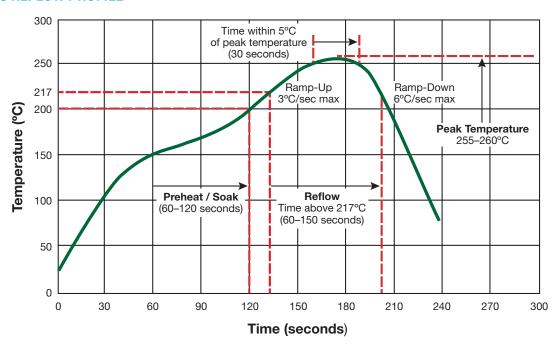


Typical Q vs. Frequency

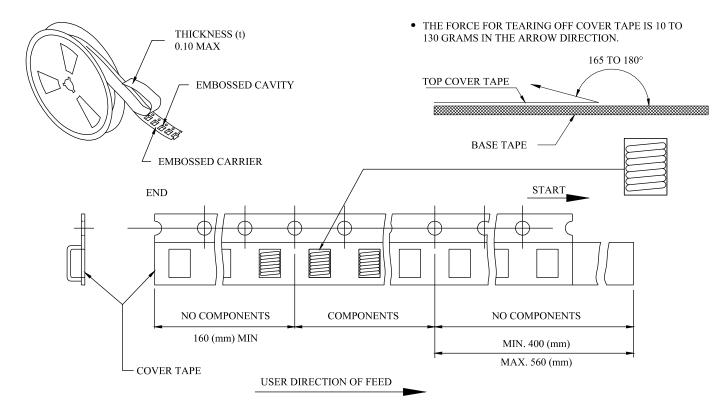


AS08

Inductance vs. Frequency


Typical Q vs. Frequency

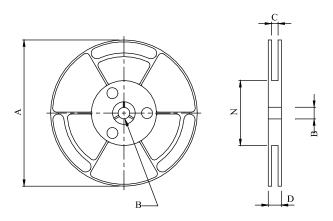
AS Series - Square Air Core Inductors



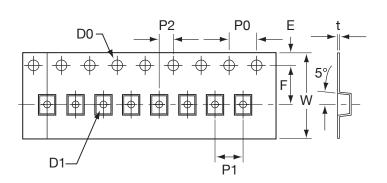
TYPICAL ROHS REFLOW PROFILE

Test Condition	Standard Source
IR/convection reflow: Peak Temp 255°C ~260°C for 3~5 sec. in air, through 3 Cycle. Temperature Ramp:+1~4°C/sec.; Above 217°C, must keep 90 s -120 s.	Reference MIL-STD 202G Method 210F Test Condition K (Reflow)

PACKAGING SPECIFICATIONS

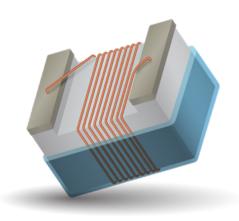


KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


AS Series - Square Air Core Inductors

CARRIER TAPE REELS

DIMENSIONS OF CARRIER TAPE



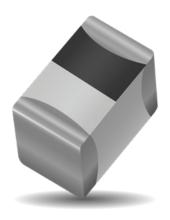
mm (inches)

ITEM	Α	В	С	G	N	Т	W	E	F	P1	P2	P0	D0	D1	t
DIM.	178	25	15	12.5	75	16.4	12.0	1.75	5.50	4.00	2.0	4.0	1.5	1.0	0.23
	(7.008)	(0.984)	(0.591)	(0.492)	(2.953)	(0.646)	(0.472)	(0.069)	(0.217)	(0.157)	(0.079)	(0.157)	(0.059)	(0.039)	(0.009)
TOL.	±2.0	±1.0	±0.5	+1.5	±2.0	+1.5	±0.2	±0.1	±0.1	±0.1	±0.1	±0.1	+0.1	±0.1	±0.05
	(0.079)	(0.039)	(0.020)	(0.059)	(0.079)	(0.059)	(0.008)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.020)

LCWC Series - Wire Wound Chip Inductor

GENERAL DESCRIPTION

The LCWC series of wire wound ceramic inductors includes ultra-compact inductors that provide high Q factors, with a high current range available. LCWC is used in RF products such as cellular phones (CDMA/GSM/PHS), cordless phones (DECT/CT1CT2), remote controls, security systems, wireless PDAs, smart phones, etc. LCWC is used in broadband applications such as CATV filters, tuners, cable modems and XDSL tuners, and set top boxes. LCWC is used in IT applications such as USB 2.0 and IEEE 1394. LCWC has a tighter tolerance down to ±2%, and an operating temperature of -40°C to +125°C.


LCWC Series Datasheet can be found in the Chip Inductors Catalog

▼ View LCWC Series Datasheet

LCCI Series - Multi-Layer Ceramic Chip Inductors

GENERAL DESCRIPTION

Suitable for high-frequency applications, KYOCERA AVX LCCI series has a tight tolerance in physical dimensions, a tight inductance tolerance, excellent Q and a guaranteed SRF range. The LCCI series features a ceramic integrated structure, resulting in high product quality and outstanding reliability. All parts are lead-free and comply with RoHS standards. The LCCI series has an operating temperature of -40°C to +85°C. Also, the surface mounting applicability supports reflow soldering conditions without sacrificing any frequency characteristics.

LCCI Series Datasheet can be found in the Chip Inductors Catalog

View LCCI Series Datasheet

RF/Microwave Multilayer Capacitors (MLC)

100A Series Porcelain Superchip® Multilayer Capacitors

FEATURES

- Case A Size (.055" x .055")
- Lowest ESR/ESL
- · High Q
- Low Noise
- · Capacitance Range 0.1 pF to 100 pF
- · Extended WVDC up to 250 VDC
- · Ultra-Stable Performance
- High Self-Resonance
- · Established Reliability (QPL)

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 100A Series RF/Microwave Capacitors. This is KYOCERA AVX most versatile high Q, high self resonant multilayer capacitor. High density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: Microwave/RF/IF Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	90 ± 20 PPM/°C
Capacitance Range	0.1 pF to 100 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 10,000 @ 1 MHz.
Insulation Resistance (IR)	0.1 pF to 100 pF 10 ⁶ Megohms min. @ 25°C at rated WVDC 10 ⁵ Megohms min. @ 125°C at rated WVDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

(100 pcs)

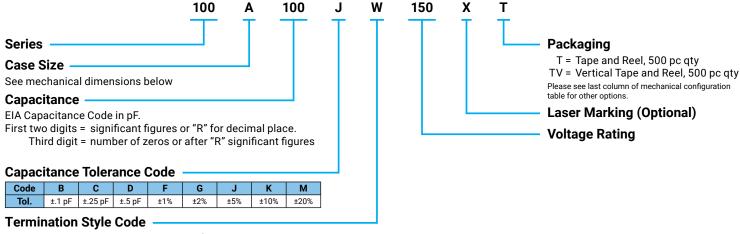
ENVIRONMENTAL CHARACTERISTICS

Themal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Termination Styles	Available in various surface mount styles. See Mechanical Configurations, page 3
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

RF/Microwave Multilayer Capacitors (MLC)

100A Series Porcelain Superchip® Multilayer Capacitors

CAPACITANCE VALUES


Cap.	Сар.	Tol.	Rated	WVDC	Cap.	Сар.	Tol.	Rated	WVDC	Сар.	Cap.	Tol.	Rated	WVDC
Code	(pF)	101.	STD.	EXT.	Code	(pF)	101.	STD.	EXT.	Code	(pF)	101.	STD.	EXT.
0R1	0.1	В			2R2	2.2				160	16			
0R2	0.2			GE	2R4	2.4			GE	180	18			Ж
0R3	0.3	B, C		Ϋ́	2R7	2.7			EXTENDED VOLTAGE	200	20			VOLTAGE
0R4	0.4	D, C		EXTENDED VOLTAGE	3R0	3.0			707	220	22			.70
0R5	0.5				3R3	3.3		Q:	240	24			>	
0R6	0.6			N N	3R6	3.6	B, C, D		NDI	270	27			
0R7	0.7			1	3R9	3.9	0, 0, 0		TE	300	30	F, G, J		250
0R8	0.8			Ä	4R3	4.3			EX	330	33	K, M		230
0R9	0.9				4R7	4.7				360	36			
1R0	1.0				5R1	5.1				390	39			ED
1R1	1.1		150	250	5R6	5.6		150	250	430	43		150	N
1R2	1.2				6R2	6.2		<u> </u> 		470	47			EXTENDED
1R3	1.3	B, C, D			6R8	6.8				510	51			Û
1R4	1.4			GE	7R5	7.5	B, C, J		GE	560	56			
1R5	1.5			Y.	8R2	8.2	K, M		T.	620	62			L.
1R6	1.6			<u> </u>	9R1	9.1			707	680	68			VOLT.
1R7	1.7			Q	100	10			EXTENDED VOLTAGE	750	75	ECI		
1R8	1.8			EXTENDED VOLTAGE	110	11	E C 1		NDF	820	82	F, G, J K, M		200
1R9	1.9				120	12	F, G, J K, M		TE	910	91	13,141		_
2R0	2.0				130	13	13,101		EX	101	100			EXT
2R1	2.1				150	15								

vrms = 0.707 x WVDC

Special values, tolerances, different WVDC and matching available. Please consult factory.

Note: Extended WVDC does not apply to CDR products

HOW TO ORDER

Please see 2nd Column Mechanical Configuration Table

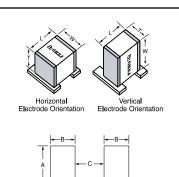
The above part number refers to a 100 A Series (case size A) 10 pF capacitor, J tolerance (±5%), 150 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), Laser Marking and Tape and Reel 1000 pc qty packaging.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100A Series Porcelain Superchip® Multilayer Capacitors

MECHANICAL CONFIGURATION

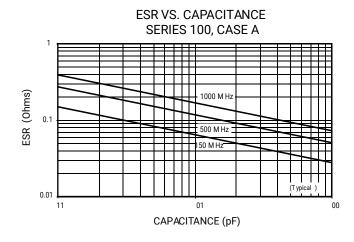
Series & Case	Term.	MIL-PRF-55681	Case Size	Outline W/T is a		Dimensions ches (mm)			ermination and Material	Pkg	Pkg
Size	Code	WIL-PRF-55061	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Type & Qty	Code
100A	W	CDR12BG	A Solder Plate	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100A	Р	CDR12BG	A 🕯 Pellet	Y→ ← ↓ w	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45)	.010 + .010005	Heavy Tin/ Lead Coated, over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100A	Т	N/A	A Solderable Nickel Barrier	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	max.	(0.25 + 0.25 - 0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100A	CA	CDR11BG	A 😭 Gold Chip	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \overline{w} \\ \hline \to \left L \right \leftarrow \uparrow \to \left T \right \leftarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100

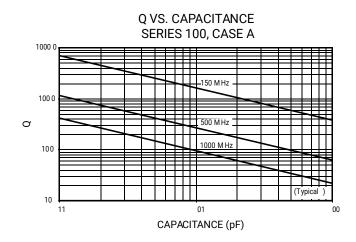
NON-MECHANICAL CONFIGURATION

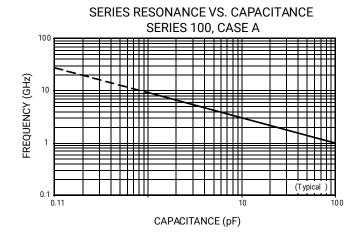

Series & Case	Term.	MIL-PRF-55681	Case Size	Outline W/T is a		Dimensions thes (mm)			ermination and Material	Pkg	Pkg
Size	Code	WIL-PRF-55061	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Type & Qty	Code
100A	WN	Meets Requirements	A Solder	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100A	PN	Meets Requirements	A 💭 Pellet	Y→ ← ↓ w	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 + .010005 (0.25 + 0.25 - 0.13)	Heavy Tin/ Lead Coated, over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100A	TN	Meets Requirements	A Solderable Nickel Barrier	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100

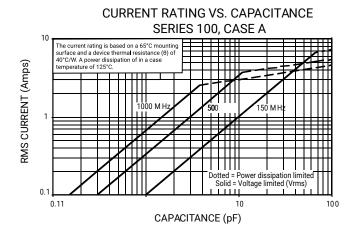
RF/Microwave Multilayer Capacitors (MLC)

100A Series Porcelain Superchip® Multilayer Capacitors

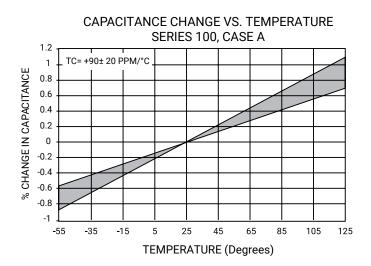

SUGGESTED MOUNTING PAD DIMENSIONS

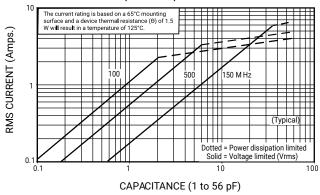


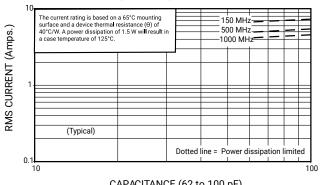

		Case A			
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.
Vertical Mount	Normal	.070	.050	.030	.130
vertical Mount	High Density	.050	.030	.030	.090
Horizontal Mount	Normal	.080	.050	.030	.130
monizontal Mount	High Density	.060	.030	.030	.090


Dimensions are in inches.

PERFORMANCE DATA





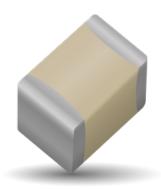

PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 100, CASE A, EXTENDED VOLTAGE

CURRENT RATING VS. CAPACITANCE SERIES 100, CASE A, EXTENDED VOLTAGE

CAPACITANCE (62 to 100 pF)

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100A Series Porcelain Superchip® Multilayer Capacitors


SAMPLE KITS

	· LL IXIIO					
Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 1	-	DK0001	100A Porcelain Superchip®	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 ±0.1	\$160.00
Kit 1T	ROHS	DK0001T	15 pcs. min. per value	0.1 to 2.0	1.6, 1.8, 2.0 ±0.25	\$160.00
Kit 2	-	DK0002	100A Porcelain Superchip®	10.10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3 ±0.1	44.000
Kit 2T	ROHS	DK0002T	16 different values, 15 pc. min. per value	1.0 to 10	3.9, 4.7, 5.6, 6.8, 8.2 ±0.25 10 ±5%	\$160.00
Kit 3	-	DK0003	100A Porcelain Superchip®	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30,	\$160.00
Kit 3T	RoHS	DK0003T	16 different values, 15 pc. min. per value	10 10 100	33, 39, 47, 56, 68, 82, 100 ± 5%	\$100.00

RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

FUNCTIONAL APPLICATIONS

- Bypass
- Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- · UHF/Microwave RF **Power Amplifiers**
- Oscillators
- Low Noise Amplifiers
- Filter Networks
- · Timing Circuits

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A					
Moisture Resistance	Mil-STD-202, Method 106					
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours					
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC					
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations					
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.					

FEATURES

- Case B Size (.110" x .110")
- Capacitance Range 0.1pF to 1000pF
- · Extended WVDC up to 1500 VDC
- · Low ESR/ESL
- · High Q
- · Low Noise
- · Ultra-Stable Performance
- · High Self-Resonance
- · Established Reliability (QPL)

PACKAGING OPTIONS

(100 pcs)

Tape & Reel

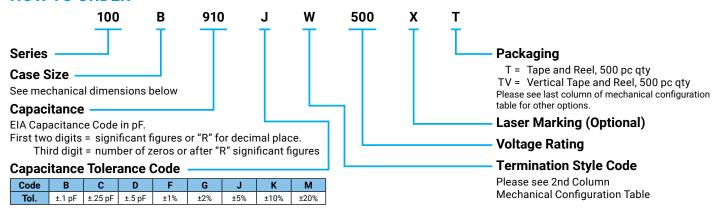
Orientation Tape & Reel

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)
Capacitance Range	0.1pF to 1000pF
Operating Temperature	-55°C to +125°C*
Quality Factor	greater than 10,000 at 1 MHz
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC. 10 ⁵ Megohms min. @ +125°C at rated WVDC. 510 pF to 1000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra [·] WV	ted 'DC	Cap.	Cap.	Tol.	Rated	WVDC	CAP.	CAP. (pF)	TOL.	RATED	WVDC
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Coue	(pr)		STD.	EXT.	CODE	(pr)		STD.	EXT.
0R1	0.1	В			2R4	2.4				200	20				151	150			EXT.
0R2	0.2			E	2R7	2.7			ш	220	22				161	160		300	LXI.
0R3	0.3	B, C		'AG	3R0	3.0			AG.	240	24			Ж	181	180		300	1000
0R4	0.4	ъ, с		EXTENDED VOLTAGE	3R3	3.3			EXTENDED VOLTAGE	270	27			VOLTAGE	201	200			VOLT.
0R5	0.5			Š	3R6	3.6	В, С,		Š	300	30			.70,	221	220			VOLI.
0R6	0.6			DEI	3R9	3.9	D, O,		DEI	330	33			>	241	240			EXT.
0R7	0.7			EN	4R3	4.3	_		EN	360	36				271	270			
0R8	0.8			X	4R7	4.7			X	390	39				301	300			
0R9	0.9			1	5R1	5.1			_	430	43		500	1500	331	330		200	600
1R0	1.0				5R6	5.6				470	47	F, G,			361	360	F, G,		
1R1	1.31		500	1500	6R2	6.2		500	1500	510	51	J, K,			391	390	J, K,		VOLT.
1R2	1.2				6R8	6.8	В, С,			560	56	M			431	430	M		
1R3	1.3	B, C,			7R5	7.5	J, K,			620	62			Q	471	470			EXT.
1R4	1.4	D		ЭE	8R2	8.2	M		Ή	680	68			IDE	511	510			
1R5	1.5			74C	9R1	9.1			1AC	750	75			EXTENDED	561	560		100	
1R6	1.6			70,	100	10			70,	820	82			E	621	620			
1R7	1.7			Λ Q.	110	11			Λ Q	910	91				681	680			300
1R8	1.8			IDE	120	12	F, G, J,		IDE	101	100			-	751	750			
1R9	1.9			EXTENDED VOLTAGE	130	13	K, M		EXTENDED VOLTAGE	111	110				821	820		50	
2R0	2.0			EX	150	15			EX.	121	120		300	1000	911	910			
2R1	2.1				160	16				131	130			1000	102	1000			VOLT
2R2	2.2				180	18													

VRMS = 0.707 X WVDC

HOW TO ORDER

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin /Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

[•] SPECIAL VALUES, TOLERANCES, DIFFERENT WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

MECHANICAL CONFIGURATION

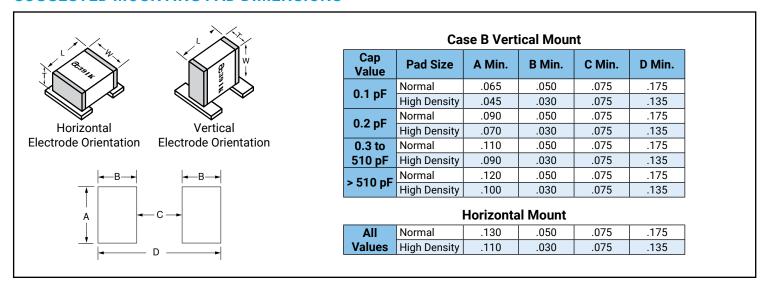
Series	Term.	MIL-PRF-	Case Size	Outline W/T is		Dimensions	3			Terminations and Mater				
& Case Size	Code	55681	& Type	a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Material	S	Pkg Type	Pkg Code	
100B	w	CDR14BG	B Solder Plate	Y→ ← ↓ <u>w</u> → L ← † → T ←	.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)			Tin / Lead, Solder Plated over Nickel Barrier Termination					
100B	Р	CDR14BG	B Pellet	Y→ ← ↓ <u>w</u> → L ← ↑→ T ←	.110+ .03501 (2.79 + 0.89-0.25)	.110 ±.015 (2.79 ±0.38)	2.79 ±0.38) .102		.015 (0.38)	Heavy Tin/Lead Coated, over Nickel Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	Т	N/A	B Solderable Nickel	Y→ ← ↓ w	.110+ .03501 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)	(2.59) J.015 (0.38) L.010 (0.25) max.		Nic	RoHS Compl Tin Plated o kel Barrier Ter	ver	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100	
100B	CA	CDR13BG	B Gold Chip	Y→ ← <u>↓</u> <u>w</u>	.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)			Nic	RoHS Compliant Gold Plated over Nickel Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100	
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid \iota_{L} \mid \leftarrow & \downarrow & \rightarrow \mid \leftarrow \\ \hline \underline{w}_{L} & & & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & & \uparrow \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs	C20	
100B	AR	CDR22BG	B Axial Ribbon		.135 ±.015 (3.43 ±0.38)			N/A	.250	.093±.005	.004 ± .001	Box, 20 or 100 pcs	B20 or B100	
100B	RR	CDR24BG	B Radial Ribbon	<u>→</u> L ←		.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.		(6.35) min.	(2.36 ±0.13)	(.102±.025)	Box, 20 or 100 pcs	B20 or B100	
100B	RW	CDR23BG	B Radial Wire	→ L ← → W ←	.145 ±.020				.500	#26 /		Box, 20 or 100 pcs	B20 or B100	
100B	AW	CDR25BG	B Axial Wire	→ L	(3.68 ±0.51)				(12.7)			Box, 20 or 100 pcs	B20 or B100	

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

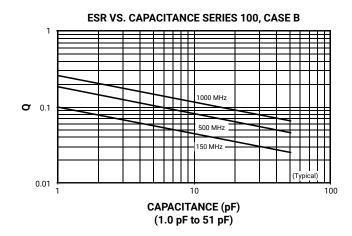
RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

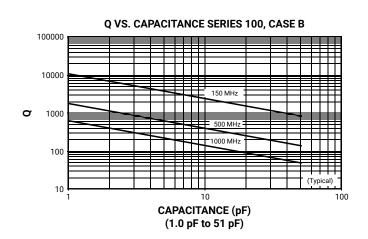
NON-MAGNETIC MECHANICAL CONFIGURATION

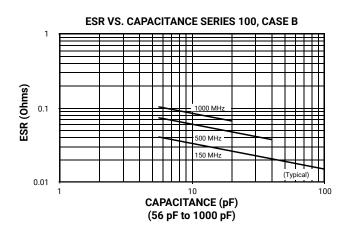
Series	Term.	MIL-PRF-	Case Size	Outline W/T is		Dimensions	;	D		Termination and Materia	al	Pkg	I
& Case Size	Code	55681	& Type	a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Materials		Туре	Pkg Code
100B	WN	Meets Requirements	B Non-Mag	Y→ ← ↓ <u>w</u>	.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)		Tin / Lead, Solder Plated over Nickel Barrier Termination				T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	PN	Meets Requirements	B Solderable Nickel	Y→ ← ↓	.110+ .03501 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)		Tin / Lead, Coa netic Barrier T		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac,100 pcs	T1K or T TV1K or TV C100
100B	TN	Meets Requirements	B Non-Mag Solderable Barrier	Y→ ← ↓	.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				RoHS Complia Tin Plated ove netic Barrier T	r	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	MN	Meets Requirements	B Microstrip	↓ → └			.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs	C20
100B	AN	Meets Requirements	B Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \rightarrow \mid \leftarrow \\ \hline \psi_{L} & \longrightarrow \mid L \mid \leftarrow & \frac{\downarrow}{T} \rightarrow \mid \top \mid \leftarrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & \frac{\uparrow}{T} \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.135 ±.015 (3.43 ±0.38)					.093±.005	.004 ± .001	Box, 20 or 100 pcs	B20 or B100
100B	FN	Meets Requirements	B Radial Ribbon	$\begin{array}{c c} & & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ \rightarrow \mid L \mid \leftarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ \end{array} \downarrow V_L$.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A		(2.36 ±0.13)	(.102±.025)	Box, 20 or 100 pcs	B20 or B100
100B	RN	Meets Requirements	B Radial Wire	<u>†</u> † L ←	.145 ±.020		max.		.500 (12.7)	#26 A		Box, 20 or 100 pcs	B20 or B100
100B	BN	Meets Requirements	B Axial Wire	→ L	(3.68 ±0.51)				.500 (12.7)	.016 (.406) dia. nominal		Box, 20 or 100 pcs	B20 or B100

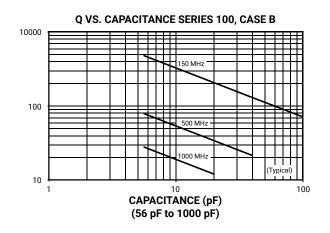

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

RF/Microwave Multilayer Capacitors (MLC)

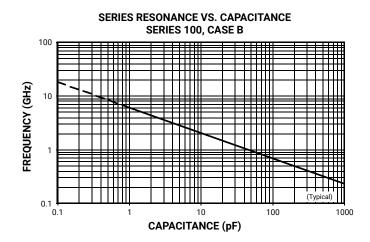

100B Series Porcelain Superchip® Multilayer Capacitors

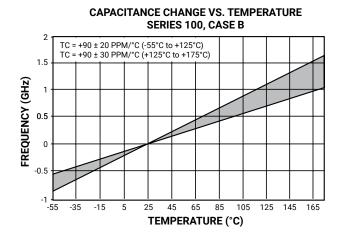



SUGGESTED MOUNTING PAD DIMENSIONS



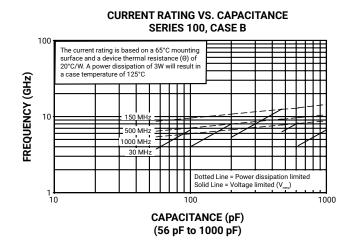
PERFORMANCE DATA




RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors

PERFORMANCE DATA

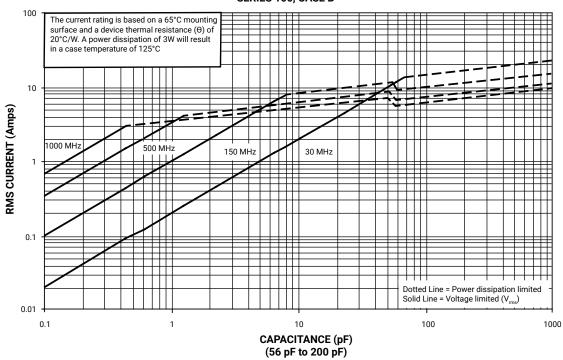


SERIES 100, CASE B The current rating is based on a 65°C mounting surface and a device thermal resistance (θ) of RMS CURRENT (Amps) 20°C/W. A power dissipation of 3W will result in a case temperature of 125°C Solid Line = Voltage limited (V__) 1000

CAPACITANCE (pF)

(0.1 pF to 51 pF)

CURRENT RATING VS. CAPACITANCE

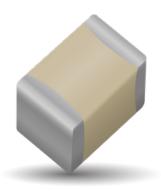


RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 100, CASE B

DESIGN KITS


Kit #	RoHS Compliant	Item #	Description	Cap. Value Range (pF)	Cap. Value (pF) Tol. (pF)	Price
Kit 9		DK0009	100B Porcelain Superchip®,	0.1 to 2.0	10, 12, 15, 18, 20, 22, 24, 27, 30,	6190.00
Kit 9T	ROHS	DK0009T	16 different values, 15 pcs. min. per value	0.1 to 2.0	33, 39, 47, 56, 68, 82, 100±5%	\$180.00
Kit 10		DK0010	100B Porcelain Superchip®,	10 to 27	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470±5%	6100.00
Kit 10T	RoHS	DK0010T	16 different values, 15 pcs. min. per value	10 (0 27	560, 680, 820, 1000±5%	\$180.00

For Online Kit Orders, Catalog & Application Notes, Visit: www.avx.com

RF/Microwave Multilayer Capacitors (MLC)

100C Series Porcelain Superchip® Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ ESL performance for the 100C Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density Porcelain construction provides a rugged, hermetic package.

KYOCERA AVX offers an encapsulation option for applications requiring extended protection against arc-over and corona.

FUNCTIONAL APPLICATIONS

- Bypass
- Impedance Matching
- Coupling
- · DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- VHF/UHF RF Power Amplifiers
- · Plasma Chambers
- Antenna Tuning
- Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A
Moisture Resistance	MIL-STD-202, Method 106
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

FEATURES

- Case C Size (.250" x .250")
- Capacitance Range 1pF to 2700pF
- Extended WVDC up to 3600 VDC
- Low ESR/ESL
- · High Q
- · Low Noise
- · Ultra-Stable Performance
- · High Self-Resonance
- · Established Reliability (QPL)

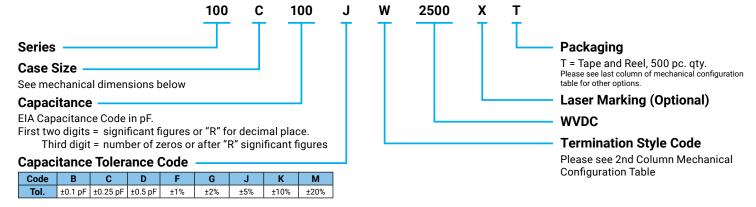
PACKAGING OPTIONS

Tape & Reel Trav (180 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	+90 ±30 PPM/°C (-55°C to +125°C)
Insulation Resistance (IR)	1 pF to 2700 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC. Max. test voltage is 500 VDC.
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater.
Operating Temperature Range	From -55°C to +125°C (No derating of working voltage)

RF/Microwave Multilayer Capacitors (MLC)


100C Series Porcelain Superchip® Multilayer Capacitors

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC
CODE	(pF)	TOL.	STD.	EXT.	CODE	(pF)	I IOL.	STD.	EXT.	CODE	(pF)	I IOL.	STD.	EXT.	CODE	(pF)	TOL.	STD.	EXT.
1R0	1.0				5R1	5.1				390	39				301	300			
1R1	1.1			ш	5R6	5.6			ш	430	43]		8	331	330			
1R2	1.2			VOLTAGE	6R2	6.2			VOLTAGE	470	47]		VOLTAGE	361	360		1500	2000
1R3	1.3			1	6R8	6.8	B, C, D		77	510	51]		8	391	390		1300	2000
1R4	1.4				7R5	7.5				560	56]			431	430			
1R5	1.5			EXTENDED	8R2	8.2			EXTENDED	620	62]		3600	471	470			
1R6	1.6				9R1	9.1			EN EN	680	68]			511	510			Ä
1R7	1.7			×	100	10			×	750	75]		EXTENDED	561	560			VOLTAGE
1R8	1.8			ш ш	110	11			ш	820	82]		E. K.	621	620			170
1R9	1.9				120	12				910	91]		5	681	680			>
2R0	2.0	B, C, D	2500	3600	130	13	1	2500	3600	101	100	F, G, J, K, M	2500	ш ш	751	750	F, G, J, K, M	1000	1500
2R1	2.1				150	15]			111	110] IX, IVI		ļų.	821	820	IX, IVI	1000	1500
2R2	2.2			Lu	160	16	1		ш	121	120	1		AG	911	910			6
2R4	2.4			A G	180	18	F, G, J,		4 G	131	130]		VOLTAGE	102	1000			Į Ž
2R7	2.7			VOLTAGE	200	20	K, M		VOLTAGE	151	150]		>	112	1100			EXTENDED
3R0	3.0				220	22]			161	160]		2000	122	1200			E
3R3	3.3			Ö	240	24	1		<u> </u>	181	180	1		3000	152	1500		500	800
3R6	3.6				270	27	1			201	200]		l B	182	1800		500	800
3R9	3.9			EXTENDED	300	30	1		EXTENDED	221	220]		EXTENDED	222	2200			
4R3	4.3			Щ	330	33	1		Щ	241	240]		19	242	2400		300	500
4R7	4.7				360	36				271	270			Ä	272	2700			

VRMS = 0.707 x WVDC

HOW TO ORDER

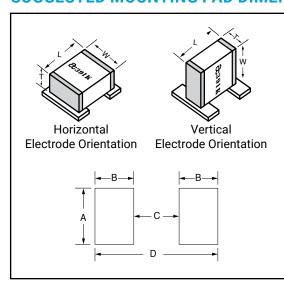
The above part number refers to a 100 C Series (case size C) 10 pF capacitor, J tolerance (±5%), 2500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and 500 pc T&R packaging.

[•] SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100C Series Porcelain Superchip® Multilayer Capacitors

MECHANICAL CONFIGURATIONS

ATC SERIES	ATC	CASE SIZE	OUTLINES		DIMENSIONS	3		AD AND TERMINATION NSIONS AND MATERIALS	Pkg.	DI O I
& CASE SIZE	TERM. CODE	& TYPE	W/T IS A TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	Туре	Pkg Code
100C	W	C Solder Plate	Y→ ←	.230+.020010 (5.84+0.51-0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	Р	C Pellet	Y→ ← 	.230+.025010 (5.84+0.64-0.25)			.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	Т	C Solderable Nickel Barrier	Y→ ← ↓ W W T ←	.230+.020010 (5.84+0.51-0.25				RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	MS	C Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.145(3.68) max. for capacitance values		High Purity Silver Leads L L Silver Leads L L Silver Leads	Tray, 24 or 60 pcs	J24 or J60
100C	AR	C Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.250 ±.015 (6.35 ±0.38)	≤680pF .165(4.19) max. for capacitance values		$\begin{array}{lll} W_{\text{L}}^{\text{T}} = & .240 \pm .005 \ (6.10 \pm .127 \\ T_{\text{L}} = & .004 \pm .001 \ (.102 \pm .025) \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array}$	Tray, 24 or 60 pcs	J24 or J60
100C	AW	C Axial Wire	→ L	.245 ±.025 (6.22 ±0.64)		>680pF	N/A	Silver-plated Copper Leads L _L = 2.25 (57.15) min. Dia. = .032 ±.002 (0.81 ±0.05	Box, 21 pcs	B21
100C	VA	C Vertical Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Silver Leads $L_{L} = .500 (12.7) \text{ min.}$ $W_{L} = ** \text{ See below}$ $TL = .004 \pm .001 (.102 \pm .025)$	Box, 24 pcs	B24
100C	RW	C Radial Wire	→ L ← → W ←					Silver-plated Copper Leads $L_L = 1.0 (25.4) \text{ min.}$ Dia. = .032 ±.002 (0.81 ±0.05)	Tray, 16 pcs	J16


RF/Microwave Multilayer Capacitors (MLC) 100C Series Porcelain Superchip® Multilayer Capacitors

NON-MAGNETIC MECHANICAL CONFIGURATIONS

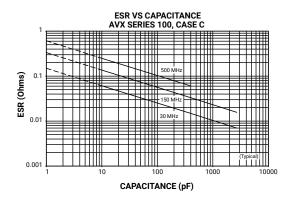
ATC SERIES	ATC TERM.	CASE SIZE	OUTLINES W/T IS A		DIMENSIONS	S		AD AND TERMINATION NSIONS AND MATERIALS	Pkg.	Pkg Code
& CASE SIZE	CODE	& TYPE	TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	Туре	1 kg code
100C	WN	C Non-Mag Solder Plate	Y→ ← ↓ 	.230+.025010 (5.84+0.64-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	PN	C Non-Mag Pellet	Y→ ←	.230+.035010 (5.84+0.89-0.25)		.145(3.68) max. for capacitance values		Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	TN	C Non-Mag Solderable Nickel Barrier	Y→ ←	.230+.025010 (5.84+0.64-0.25)	.250 ±.015 (6.35 ±0.38)	≤680pF .165(4.19) max. for capacitance values	.040 (1.02) max.	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
100C	MN -	C Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.245 ±.025 (6.22 ±0.64)		>680pF		$\begin{array}{c} \text{High Purity Silver Leads} \\ L_{\scriptscriptstyle L} = .500 \ (12.7) \ \text{min.} \\ W_{\scriptscriptstyle L} = .240 \pm .005 \ (6.10 \pm .127) \\ T_{\scriptscriptstyle L} = .004 \pm .001 \ (.102 \pm .025) \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array}$	Tray, 24 or 60 pcs	J24 or J60

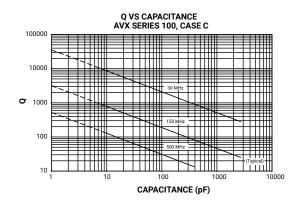
SUGGESTED MOUNTING PAD DIMENSIONS

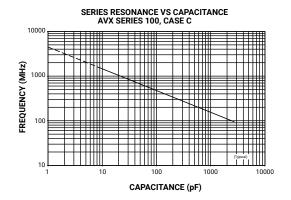
Case C Vertical Mount

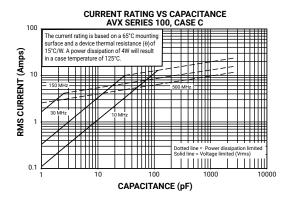
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.
< 680 pF	Normal	.150	.050	.200	.300
< oou pr	High Density	.130	.030	.200	.260
> 600 pE	Normal	.185	.050	.200	.300
> 000 hr	Normal High Density	.165	.030	.200	.260

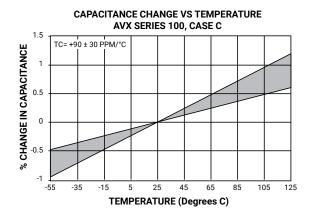
Horizontal Mount


All	Normal	.280	.050	.200	.300
Values	High Density	260	.030	.200	.260


RF/Microwave Multilayer Capacitors (MLC)


100C Series Porcelain Superchip® Multilayer Capacitors




PERFORMANCE DATA

RF/Microwave Multilayer Capacitors (MLC)

100E Series Porcelain High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 100 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density porcelain construction provides a rugged, hermetic package. KYOCERA AVX offers an encapsulation option for applications requiring extended protection agains arc-over and corona.

FUNCTIONAL APPLICATIONS

- Bypass Impedance Matching
- Coupling · DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters
- · Antenna Tuning

- · Plasma Chambers
- Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A					
Moisture Resistance	Mil-STD-202, Method 106					
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours					
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC					
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations					
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.					

FEATURES

- Case E Size (.380" x .380")
- Capacitance Range 1pF to 5100pF
- Extended WVDC up to 7200 VDC
- Low ESR/ESL
- · High Q
- · High RF Power
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · Available with Encapsulation Option*
- * For leaded styles only

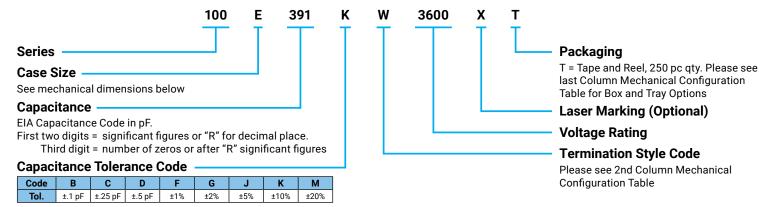
PACKAGING OPTIONS

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	90 ± 30 PPM/°C
Capacitance Range	1 pF to 5100 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 5100 pF) @ 1 KHz.
Insulation Resistance (IR)	1 pF to 5100 pF 10⁵ Megohms min. @ 25°C at 500 VDC 10⁴ Megohms min. @ 125°C at 500 VDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

100E Series Porcelain High RF Power Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	-	ted /DC	Cap.	Cap.	Tol.	Rated	WVDC	CAP.	CAP. (pF)	TOL.	RATED	WVDC
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(pr)		STD.	EXT.
1R0	1.0				5R6	5.6				470	47				391	390		3600	
1R1	1.1			ш	6R2	6.2			ш	510	51			TAGE	431	430			
1R2	1.2			AG	6R8	6.8	В, С,		AG	560	56			Ϋ́	471	470			
1R3	1.3			77	7R5	7.5	D		77	620	62				511	510			
1R4	1.4) ×	8R2	8.2			>	680	68			7200	561	560		2500	
1R5	1.5			DEL	9R1	9.1			DEL	750	75			9	621	620			
1R6	1.6			EXTENDED VOLTAGE	100	10			EXTENDED VOLTAGE	820	82			EXTENDED	681	680			
1R7	1.7			X	110	11			X	910	91			Œ	751	750			
1R8	1.8			F	120	12			-	101	100			Û	821	820			
1R8	1.9				130	13				111	110	E C		EXT.	911	910	E C		
2R0	2.0	B, C,	3600	7200	150	15		3600	7200	121	120	F, G, J, K,	3600	LX1.	102	1000	F, G, J, K,		N/A
2R1	2.1	D	3000	7200	160	16		0000	7200	131	130	M M	0000	5000	112	1100	σ, τι, Μ	1000	14/7
2R2	2.2				180	18	F C			151	150			0000	122	1200		1000	
2R3	2.4			jų.	200	20	F, G, J, K,		Щ	161	160			VOLT.	152	1500			
2R4	2.7			746	220	22	M		AG	181	180			7027.	182	1800			
3R0	3.0			170	240	24			170	201	200				222	2200			
3R0	3.3			× ×	270	27			>	221	220				272	2700			
3R0	3.6			DEI	300	30			DEI	241	240				302	3000			
3R0	3.9			EN	330	33			EN	271	270			N/A	332	3300		500	
4R3	4.3			EXTENDED VOLTAGE	360	36			EXTENDED VOLTAGE	301	300				392	3900			
4R7	4.7			F	390	39			4	331	330				472	4700			
5R1	5.1				430	43				361	360				512	5100			

VRMS = 0.707 X WVDC

HOW TO ORDER

The above part number refers to a 100 E Series (case size E) 390 pF capacitor, K tolerance (±10%), 3600 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

[•] SPECIAL VALUES, TOLERANCES, MATCHING, AND CAPACITOR ASSEMBLIES ARE AVAILABLE. • KYOCERA AVX CUSTOM POWER CAPACITOR ASSEMBLY CATALOG, LISTS ASSEMBLY OPTIONS. • DIFFERENT WORKING VOLTAGES ARE AVAILABLE • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100E Series Porcelain High RF Power Multilayer Capacitors

MECHANICAL CONFIGURATION

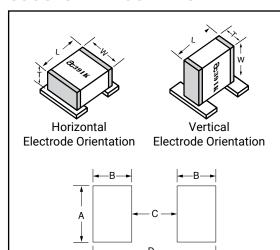
Series	l erm. Case Size ,		Outline		Dimensions ches (mm)			Lead and Termination imensions and Material		
& Case Size	Code	& Type	W/T is a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type & Qty	Pkg Code
100E	w	E Solder Plate	Y→ ← ↓ <u>w</u> → L ← ↑→ T ←	.380+.015010 (9.65+0.38-0.25)			,	Tin/Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	Р	E ₩ Pellet	Y→ ← ↓ <u>₩</u>	.380+.040010 (9.65+1.02-0.25)			.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	Т	E Solderable Nickel	Y→ ← ↓ <u>w</u>	.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	MS	E Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380 ±.010 (9.65 ±0.25)	.170 (4.32) max.		High Purity Silver Leads L _L = .750 (19.05) min	Tray, 16 or 32 pcs	J16 J32
100E	AR	E Axial Ribbon	+ t _L + + + + + + + + + + + + + + + + + + +	.380+.035010				W _L = .350 ±.010 (8.89 ±0.25) T _L = .010 ±.005 (0.25 ±0.13) Leads are Attached with High Temperature Solder.	Tray, 16 or 32 pcs	J16 J32
100E	AW	E Non-Mag Axial Wire	→ L ← ↓ w • → T → T ←	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
100E	RW E Non-Mag Radial Wire		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100E Series Porcelain High RF Power Multilayer Capacitors

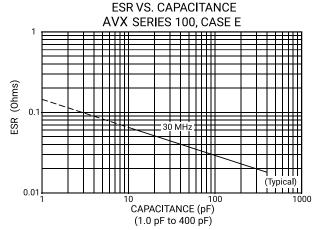
MECHANICAL CONFIGURATION

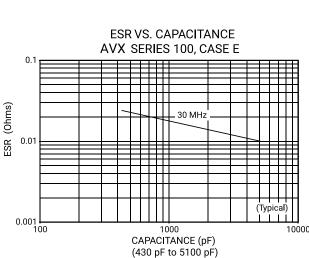
Series & Case	Term.	Case Size	Outline W/T is a Termination		Dimensions thes (mm)			Lead and Termination imensions and Material	Dia Taran Cota	Disc Os de
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type & Qty	Pkg Code
100E	WN	E Non-Mag Solder Plate	$\begin{array}{c c} Y \to \left \left \leftarrow \right & \downarrow \\ \hline & \underline{w} & \\ & \downarrow \\ $.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	PN	E Non-Mag Pellet	Y→ ← ↓ <u>w</u>	.380+.040010 (9.65+1.02-0.25)			.040 (1.02) max.	Non-Magnetic	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	TN	E Non-Mag Solderable Barrier	Y→ ← ↓ w	.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 J96
100E	MN	E Non-Mag Microstrip			.380 ±.010 (9.65 ±0.25)	.170 (4.32) max.	High Purity Silver Leads L _L = .750 (19.05) min	Silver Leads L _L = .750 (19.05) min	Tray, 16 or 32 pcs	J16 J32
100E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010			NI/A	Silver Leads L_L = .750 (19.05) min W_L = .350 ±.010 (8.89 ±0.25) T_L = .010 ±.005 (0.25 ±0.13) Leads are Attached with	Tray, 16 or 32 pcs	J16 J32
100E	BN	E Non-Mag Axial Wire	→ L	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
100E	RN	E Non-Mag Radial Wire	→ L ← → W ←					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

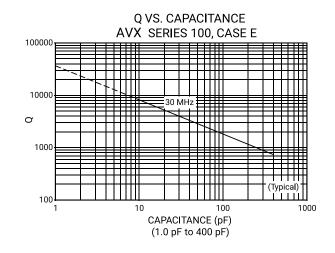

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

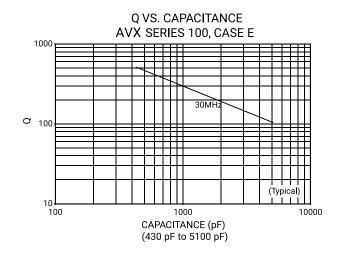
RF/Microwave Multilayer Capacitors (MLC)

100E Series Porcelain High RF Power Multilayer Capacitors

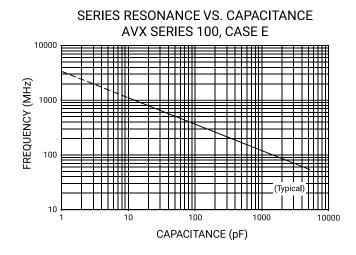

SUGGESTED MOUNTING PAD DIMENSIONS

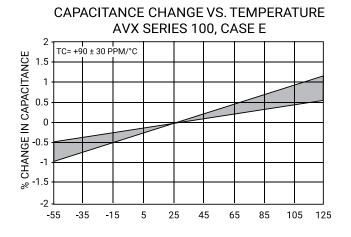



Mount Type	Case E								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.				
Vertical Mount	Normal	.185	.050	.325	.425				
vertical Mount	High Density	.165	.030	.325	.385				
Horizontal Mount	Normal	.405	.050	.325	.425				
HOTIZOTILAT MOUTE	High Density	.385	.030	.325	.385				

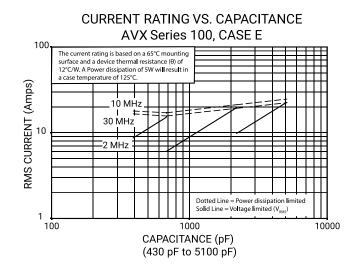

Dimensions are in inches.

PERFORMANCE DATA

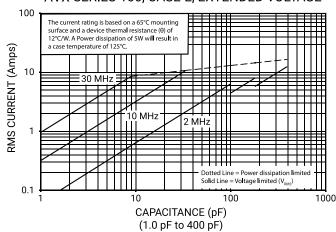



KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100E Series Porcelain High RF Power Multilayer Capacitors



PERFORMANCE DATA



CURRENT RATING VS. CAPACITANCE AVX SERIES 100, CASE E The current rating is based on a 65°C mounting surface and a device thermal resistance (θ) of 12°C/W. A Power dissipation of 5W will result in a case temperature of 125°C RMS CURRENT (Amps) 10 MH = Voltage limited (V_{RMS} 0.1 1000 CAPACITANCE (pF) (1.0 pF to 400 pF)

CURRENT RATING VS. CAPACITANCE AVX SERIES 100, CASE E, EXTENDED VOLTAGE

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 180R Series NPO Porcelain Ultra-Low ESR

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 180R Series RF Capacitors. This is KYOCERA AVX's lowest ESR multilayer capacitor. The high Q, high self-resonance characteristic many RF/ Microwave applications

FUNCTIONAL APPLICATIONS

- Bypass Feedback
- Coupling · Impedance Matching
- · DC Blocking Tuning

CIRCUIT APPLICATIONS

- RF Power Amplifiers
- · Timing Circuits
- Filters
- · Delay Lines
- Oscillators

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% WVDC applied

FEATURES

- Case R Size (.070" x .090")
- Capacitance Range 0.5pF to 100pF
- 500 WVDC
- · Low ESR/ESL
- · High Q
- · Ultra-Stable Performance
- · High Self-Resonance

PACKAGING OPTIONS

ELECTRICAL & MECHANICAL SPECIFICATIONS

Quality Factor (Q)	greater than 10,000 at 1 MHz
Temperature Coefficient of Capacitance (TCC)	0±30 PPM/°C (-55°C to +125°C) 0±60 PPM/°C (+125°C to +175°C)
Insulation Resistance (IR)	0.5 pF to 100 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC 10 ⁵ Megohms min. @ +125°C at rated WVDC 10 ⁴ Megohms min. above +125°C
Working Voltage (WVDC)	500 WVDC
Dielectric Withstanding Voltage (DWV)	Case R: 250% of rated WVDC for 5 secs.
Aging Effects	None
Piezoelectric Effects	None (no capacitance variation with voltage or pressure)
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater
Operating Temperature Range	-55°C to +175°C (No derating of working voltage)
Termination Style	See Mechanical Configuration
Terminal Strength	Termination for chips withstand a pull of 5 lbs. min., 15 lbs, for 5 seconds in direction perpendicular to the termination surface of the capacitor

RF/Microwave Multilayer Capacitors (MLC)

180R Series NPO Porcelain Ultra-Low ESR



CAPACITANCE VALUES

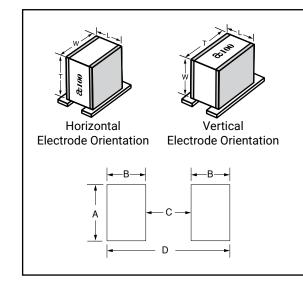
Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC
0R5	0.5			3R0	3.0		200 220 240 C, D 270 300 330 360	200	20	G, J, K,	
0R6	0.6			3R3	3.3			220	22		
0R7	0.7			3R6	3.6			240	24		
0R8	0.8			3R9	3.9	B, C, D		270	27		
0R9	0.9			4R3	4.3			300	30		
1R0	1.0			4R7	4.7			330	33		
1R1	1.1			5R1	5.1			360	36		
1R2	1.2			5R6	5.6			390 39 430 43 470 47 510 51 560 56	39		
1R3	1.3			6R2	6.2	B, C, J, K, M			43		
1R4	1.4	B C D	500	6R8	6.8		500		47		500
1R5	1.5	B, C, D	300	7R5	7.5		300		51	М	300
1R6	1.6			8R2	8.2				56		
1R7	1.7			9R1	9.1			620	62		
1R8	1.8			100	10			680	68		
1R9	1.9			110	11			750	75		
2R0	2.0			120	12			820	82		
2R1	2.1			130	13	G, J, K, M		910	91		
2R2	2.2			150	15			101	100		
2R4	2.4			160	16						
2R7	2.7			180	18						

VRMS = 0.707 X WVDC

HOW TO ORDER

The above part number refers to a 180R Series (case size R) 10 pF capacitor, J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 180R Series NPO Porcelain Ultra-Low ESR

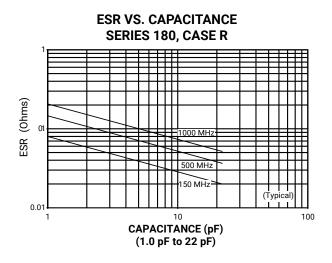


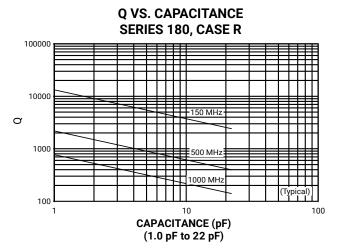
MECHANICAL CONFIGURATION

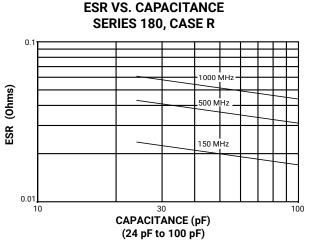
Series & Case	Case Size W/T is a				Body Dimensions inches (mm)		Lead and Termination Dimensions and Material		
Size	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	
180R	w	R Solder Plate	$\begin{array}{c c} Y \to & \downarrow \\ \hline & T \\ \hline & \downarrow \\ & \downarrow \\ $.070 ±.015 (1.78 ±0.38)	.090 ±.010 (2.29 ±0.25)	.115 (2.92) max.	.010+.010005 (0.25+0.25 - 0.13)	Tin/Lead, Solder Plated over Nickel Barrier Termination	
180R	Т	R Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow \\ \hline & T \\ \hline & \bot \end{array}$ $\rightarrow L \leftarrow \rightarrow W \leftarrow$.070 ±.015 (1.78 ±0.38)	.090 ±.010 (2.29 ±0.25)	.115 (2.92) max.	.010+.010005 (0.25+0.25 - 0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	

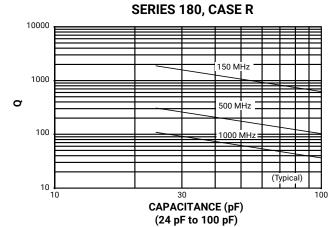
All 180 R Capacitors are available laser marked with ATC's identification, capacitance code and tolerance.

SUGGESTED MOUNTING PAD DIMENSIONS

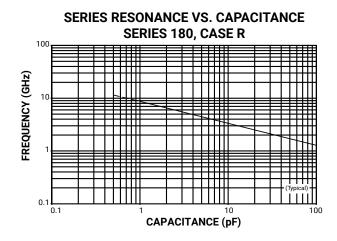


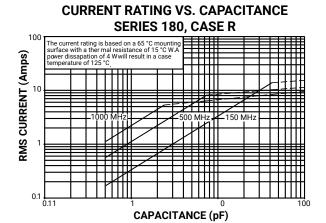

Mount Type	Case R								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.				
Vertical Mount	Normal	.125	.050	.030	.130				
vertical Mount	High Density	.115	.030	.030	.090				
Horizontal Mount	Normal	.110	.050	.030	.130				
Horizontai Wount	High Density	.090	.030	.030	.090				


Dimensions are in inches.



PERFORMANCE DATA





Q VS. CAPACITANCE

PERFORMANCE DATA

CAPACITANCE CHANGE VS. TEMPERATURE SERIES 180, CASE R TCC = 0 ± 30 PPM/°C (-55 °C to +125 °C) TCC = 0 ± 60 PPM/°C (+ 125 °C to +125 °C) % CHANGE IN CAPACITANCE -55 -35 -15 **TEMPERATURE (Degrees C)**

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 200A Series Capacitors. This Series exhibits high volumetric efficiency with superior IR characteristics. Ceramic construction pro-vides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling and DC Blocking. Typical circuit applications: Switching Power Supplies and High Power Broadband Coupling.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	±15% maximum (-55°C to +125°C)
Capacitance Range	510 pF to 0.01 μF
Operating Temperature	-55°C to +125°C*
Dissipaction Factor	2.5% Max @ 1 KHz
Insulation Resistance (IR)	510 pF to 0.01 μF 10 ⁴ Megohms min. @ 25°C at rated WVDC 10 ³ Megohms min. @ 125°C at rated WVDC
Dielectric Absorption	2% Typical
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	3% maximum per decade hour.
Piezoelectric Effects	Negligible
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

FEATURES

- Case A Size (.055" x .055")
- · Lowest ESR/ESL
- Rugged Construction
- · Extended WVDC Available
- Capacitance Range 510 pF to 0.01 μF
- Mid-K
- · High Reliability

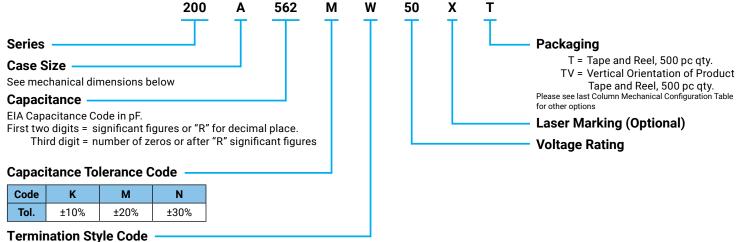
PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

ENVIRONMENTAL CHARACTERISTICS

Themal Shock	Mil-STD-202, Method 107, Condition A				
Moisture Resistance	Mil-STD-202, Method 106				
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours				
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.				
Termination Styles	Available in various surface mount styles. See Mechanical Configurations, page 3				
Terminal Strength	Terminations for chips and Pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211				



CAPACITANCE VALUES

Cap. Code	Con (nE)	Tol.	Rated	WVDC	Can Cada	Con (nE)	Tol.	Rated	WVDC
Cap. Code	Cap. (pF)	101.	STD.	EXT.	Cap. Code	Cap. (pF)	101.	STD.	EXT.
511	510				202	2000			
561	560			GE	222	2200			GE
621	620			VOLTAGE	272	2700			VOLTAGE
681	680			8	332	3300			0
751	750				392	3900			
821	820	K, M, N	50	100	472	4700	K, M, N	50	100
911	910				502	5000			
102	1000			ED	562	5600			ED
122	1200			ENI	682	6800			ENI
152	1500			EXTENDED	822	8200			EXTENDED
182	1800				103	10,000			_

 $vrms = 0.707 \times WVDC$

HOW TO ORDER

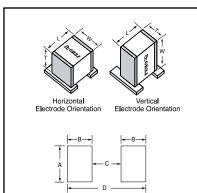
Please see 2nd Column Mechanical Configuration Table

The above part number refers to a 200 A Series (case size A) 5600 pF capacitor, M tolerance (±20%), 50 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), Laser Marking and Tape and Reel 1000 pc qty. Packaging

Special values, tolerances, different WVDC and matching available. Please consult factory.

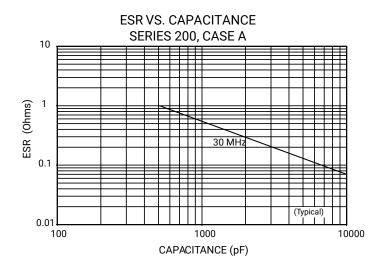
^{*}Extended WVDC offering meets X7R characteristics

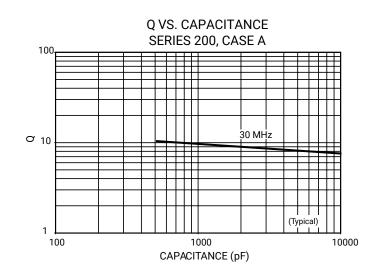
MECHANICAL CONFIGURATION

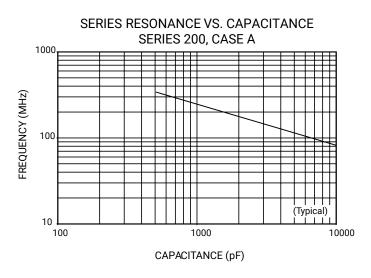

Series	Term.	Case Size	Outline W/T is a		Dimensions ches (mm)			Termination s and Material	Dica Turno 9 Otro	Disa Codo
& Case Size	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type & Qty	Pkg Code
200A	w	A 😭 Solder Plate	$\begin{array}{c c} Y \to \left \begin{array}{c} \downarrow \\ \hline \end{array} \right \begin{array}{c} \downarrow \\ \hline \\ \hline \end{array} \begin{array}{c} \downarrow \\ \hline \\ \hline \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \hline \end{array} \begin{array}{c} \downarrow \\ \hline \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \end{array} \begin{array}{c} \\ \\ $.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	.057		Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100
200A	Р	A 😭 Pellet	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & \underline{w} & \\ \hline \rightarrow & L & \leftarrow^{\dagger} \rightarrow & T & \leftarrow \end{array}$.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)		.010 + .010005	Heavy Tin/ Lead Coated, over Nickel Barrier Termination Tin Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100
200A	Т	A 📦 Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \\ \to & \downarrow & \downarrow \\ \hline \to & \downarrow & \downarrow \\ \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	(1.45) max.	(0.25 + 0.25 - 0.13)		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100
200A	CA	A 😭 Gold Chip	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & W & \\ \hline \rightarrow & L & \leftarrow^{\uparrow} \rightarrow & T & \leftarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Gold Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100

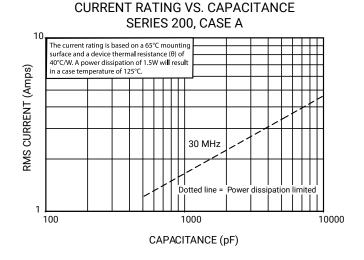
NON-MECHANICAL CONFIGURATION

Series & Case	Term.	Case Size	Outline W/T is a	Body Dimensions inches (mm)				Termination and Material	Pkg Type & Qty	Pkg Code
Size	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	PKg Type & Qty	Pky Code
200A	WN	A Non-Mag Solder Plate	Y→ ← ↓ w → L ← †→ T ←	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin / Lead, Solder Plated over Non- Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100
200A	PN	A 😭 Non-Mag Pellet	Y→ ← ↓ w	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 + .010005 (0.25 + 0.25 - 0.13)	Heavy Tin/Lead Coated, over Non- Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100
200A	TN	A Non-Mag Solderable Nickel Barrier	Y→ ← ↓ <u>w</u> □ □ → L ← ↑ → T ←	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1k or TV C100


SUGGESTED MOUNTING PAD DIMENSIONS




Case A							
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.		
Vertical Mount	Normal	.070	.050	.030	.130		
vertical Mount	High Density	.050	.030	.030	.090		
Horizontal Mount	Normal	.080	.050	.030	.130		
	High Density	.060	.030	.030	.090		


Dimensions are in inches.

PERFORMANCE DATA

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 200 B Series Capacitors. This Series exhibits high volumetric efficiency with superior IR characteristics. Ceramic construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling and DC Blocking.

Typical circuit applications: Switching Power Supplies and High Power Broadband Coupling.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	±15% maximum (-55°C to +125°C)
Capacitance Range	510 pF to 0.01 μF
Operating Temperature	From -55°C to +125°C (No derating of working voltage).
Dissipation Factor	2.5% max. @ 1 KHz
Insulation Resistance (IR)	5000 pF to 0.1 MFd: 10 ⁴ Megohms min. @ +25°C at rated WVDC. 10 ³ Megohms min. @ +125°C at rated WVDC.
Dielectric Absorption	2% Typical
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	Case B: 250% of rated WVDC for 5 secs.
Aging Effects	3% maximum per decade hour.
Piezoelectric Effects	Negligible
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

FEATURES

- Case B Size (.110" x .110")
- · Lowest ESR/ESL
- · Rugged Construction
- · Extended WVDC Available
- Capacitance Range 5000 pF to 0.1 μF
- Mid-K
- · High Reliability

PACKAGING OPTIONS

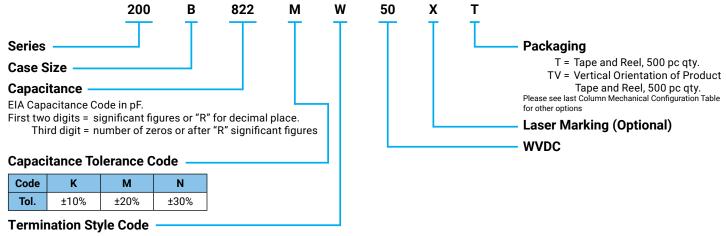
Tape & Reel

Orientation Tape & Reel

(100 pcs)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A.
Moisture Resistance	MIL-STD-202, Method 106.
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Termination Styles	Available in various surface mount styles. See Mechanical Configurations, page 3
Terminal Strength	Terminations for chips and Pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211



CAPACITANCE VALUES

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC
CODE	(pF)	TOL.	STD	EXT.*	CODE	(pF)	TOL.	STD	EXT.*
502	5000			ш	273	27,000			ш
562	5600			VOLTAGE	333	33,000			VOLTAGE
682	6800			[70]	393	39,000			נסק.
822	8200			>	473	47,000			>
103	10,000	K, M, N	50	100	503	50,000	K, M, N	50	100
123	12,000	K, IVI, IN	30	100	563	56,000	r, ivi, iv	30	100
153	15,000			9	683	68,000			Q:
183	18,000			NDE	823	82,000			NDE
203	20,000			EXTENDED	104	100,000			EXTENDED
223	22,000			Û					Û

VRMS = 0.707 x WVDC

HOW TO ORDER

Please see 2nd Column Mechanical Configuration Table

The above part number refers to a 200 B Series (case size B) 8200 pF capacitor, M tolerance (±20%), 50 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), laser marking and KYOCERA AVX Cap-Pac® packaging.

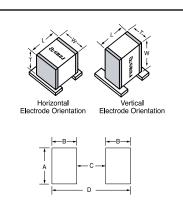
[•] SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE.

PLEASE CONSULT FACTORY.

^{*} Extended WVDC offereing meets X7R characteristics

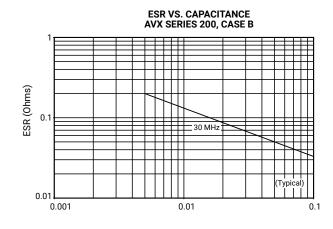
MECHANICAL CONFIGURATION

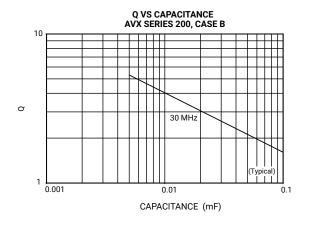
			OUTLINES		DIMENSIONS		LEA	AD AND	TERMINATION	ON				
SERIES & CASE	TERM.	CASE SIZE & TYPE	W/T IS A TERMINATION	IN: LENGTH	CHES (mm) WIDTH	THICKNESS	DIMEN OVERLAP	NSIONS	AND MATER	RIALS	Pkg Type	Pkg Code		
SIZE	CODE	QTIFE	SURFACE	(L)	(W)	(T)	(Y)		MATERIA	LS	Туре			
200B	w	B Solder Plate	Y→ ← ↓ w	.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.			'Lead, Solder P ckel Barrier Ter		T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
200B	Р	B Pellet	$\begin{array}{c c} Y \rightarrow & \downarrow & \\ \hline & w & \\ \hline \rightarrow & L & \leftarrow^{\dagger} \rightarrow & T & \leftarrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	.015 (0.38)		Heavy Tin/Lead Coated, over Nickel Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
200B	Т	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to \parallel \leftarrow & \downarrow & \\ \hline & \underline{w} & \underline{w} \\ \hline \to \mid L \mid \leftarrow \uparrow \to \mid T \mid \leftarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	±.010 (0.25) max.	Nic	RoHS Comp Tin Plated o ckel Barrier Ter	ver	T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
200B	CA	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \\ \hline & \underline{w} & \\ \hline & \to & \downarrow & \downarrow \\ \hline & \downarrow & \downarrow & \\ \hline & \downarrow & $.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		Nic	RoHS Compliant Gold Plated over Nickel Barrier Termina		T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
200B	MS	B Microstrip	↓ → ¹ L ← ↓ → ← ← ← ← ← ← ← ← ←			.120 (3.05) max.		Length (LL)	Width (WL)	Thickness (TL)	Cap Pac, 20 pcs	C20		
200B	AR	B Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.135 ±.015 (3.43 ±0.38)						.250 (6.35)	.093 ±. 005 (2.36 ± 0.13)	.004 ± .001 (.102 ± .025)	Box, 20 or 100 pcs	B20 or B100
200B	RR	B Radial Ribbon	$\begin{array}{c c} & & \downarrow & \rightarrow \mid L_L \mid \leftarrow \\ \hline & & & \\ \hline & \downarrow & & \\ \hline & \downarrow & \\ \hline &$.110 ±.015 (2.79 ±0.38)	.100 (2.54)	N/A	min.		,	Box, 20 or 100 pcs	B20 or B100		
200B	RW	B Radial Wire	→ L L + → W + ←	.145 ±.020	.100 (2.34) max.		.500	#26 /		Box, 20 or 100 pcs	B20 or B100			
200B	AW	B Axial Wire	→ L L ← W → T F	(3.68 ±0.51)				(12.7)	.016 (.406) dia. nominal		Box, 20 or 100 pcs	B20 or B100		

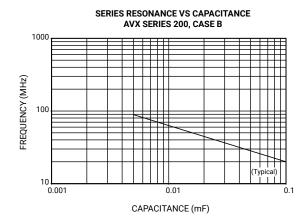

NON-MECHANICAL CONFIGURATION

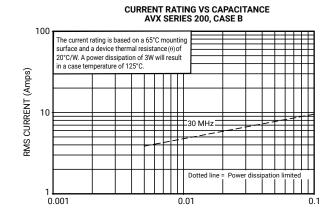
SERIES	TERM.	MIL-PRF-	CASE SIZE	OUTLINES W/T IS A	BODY DIMENSIONS INCHES (mm		LEAD AND TERMINATION DIMENSIONS AND MATERIALS				Pkg Type	Pkg Code							
& CASE SIZE	CODE	55681	& TYPE	TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)		MATERIALS		rkg lype r	Pkg Code						
200B	WN	Meets Rqmts.	B Non-Mag Solder Plate	Y→ - <u>w</u> - 	.110+.025 010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)				'Lead, Solder P agnetic Barrier		T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100						
200B	PN	Meets Rqmts.	B Non-Mag Pellet	Y→	.110+.035 010 (2.79 +0.89 -0.25)			.102 (2.59) max						.015 (0.38) ±.010 (0.25)		Heavy Tin/Lead, Coated over Non-Magnetic Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
200B	TN	Meets Rqmts.	B Non-Mag Solderable Barrier	$\begin{array}{c c} V \to & \downarrow & & \downarrow \\ \hline & & & \downarrow \\ \hline & & & \downarrow \\ \hline & \to & \downarrow & \downarrow \\ \downarrow & & \uparrow & \downarrow \\ \hline & & \uparrow & \downarrow \\ \end{array}$.110+.025 010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		ver	T&R, 1000 or 500 pcs Vertical T&R, 1000 pcs or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100						
		Meets	B	T _L			100 (0.05)		Length (LL)	Width (WL)	Thickness (TL)	Cap Pac,							
200B	MN	Rqmts.	Non-Mag Microstrip	1 → L ← 1 → +				.120 (3.05) max.					20 pcs	C20					
200B	AN	Meets Rqmts.	B Non-Mag Axial Ribbon	1 \(\text{i}_{\text{c}}\)	.135 ±.015 (3.43 ±0.38)									(6.35	.250 (6.35) min.	(6.35) $\begin{vmatrix} .093 \pm .005 \\ (2.36 \pm 0.13) \end{vmatrix}$.004 ± .001 (.102 ± .025)	Box, 20 or 100 pcs	B20 or B100
200B	FN	Meets Rqmts.	B Non-Mag Radial Ribbon	<u> </u>				.100 (2.54) max.	N/A				Box, 20 or 100 pcs	B20 or B100					
200B	RN	Meets Rqmts.	B Non-Mag Axial Wire	→ L ← + + W ←	145 + 000							.500	#26 /	AWG.,	Box, 20 or 100 pcs	B20 or B100			
200B	BN	Meets Rqmts.	B Non-Mag RadialWire		1.145 ±.020 (3.68 ±0.51)				(12.7) min.	7) .016 (.406) dia.		Box, 20 or 100 pcs	B20 or B100						

Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

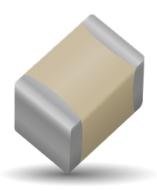

SUGGESTED MOUNTING PAD DIMENSIONS




				Dimensions	are in inches.
	Pad Size	A Min.	B Min.	C Min.	D Min.
All	Normal	.120	.050	.075	.175
Values	High Density	.100	.030	.075	.135


	Horizontal Mount							
	Pad Size	A Min.	B Min.	C Min.	D Min.			
All	Normal	.130	.050	.075	.175			
Values	High Density	.110	.030	.075	.135			

PERFORMANCE DATA



RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC)

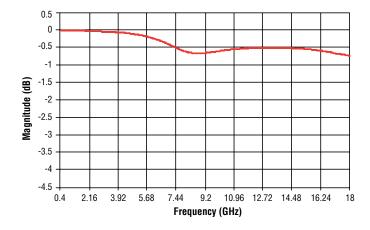
530L Series Broadband Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX's new 530L Series Multilayer Broadband Capacitor provides low insertion loss performance over multiple octaves of frequency spectrum. The 530L capacitor is compatible with high speed automated pick and place SMT manufacturing..

FUNCTIONAL APPLICATIONS

- · DC Blocking
- Coupling
- Bypassing
- Feedback


FEATURES

- EIA 0402 Case Size
- · Operating Frequency: 16 KHz to 18 GHz
- Insertion Loss: 1 dB max.
- Low Loss X7R Dielectric
- RoHS Compliant Terminations
- · Solderable SMT Terminations

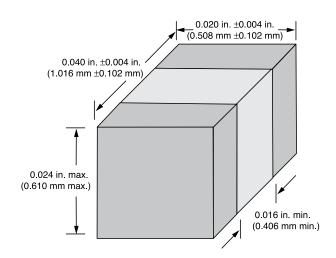

ADVANTAGES

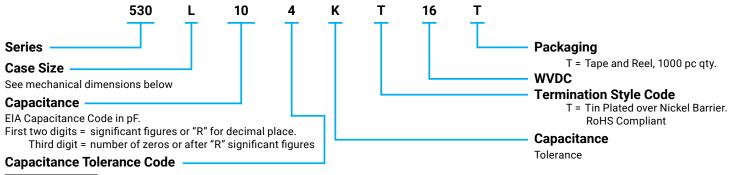
- · Broadband Performance
- · Low Insertion Loss
- Flat Frequency Response
- · Excellent Return Loss through 18 GHz
- · Unit-to-Unit Performance Repeatability
- · Rugged Ceramic Construction

530L Insertion Loss (S21)

530L Return Loss (S11)

RF/Microwave Multilayer Capacitors (MLC)

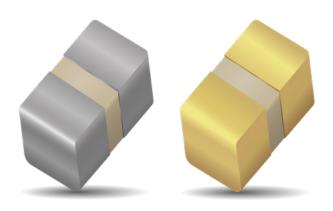

530L Series Broadband Multilayer Capacitors


ELECTRICAL SPECIFICATIONS

Capacitance	100 nF
Rated Voltage	16 WVDC
Dielectric Withstanding Voltage	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +85°C
Temperature Coefficient of Capacitance	±15% (-55°C to +125°C)
Maximum DF	10% @ 1KHz
Insulation Resistance	10^{10} Ω min. @ +25°C @ rated WVDC 10^{9} Ω min. @ +85°C @ rated WVDC

MECHANICAL DIMENSIONS

HOW TO ORDER



Code ±20% Tol.

The above part number refers to a 550 Series (case size U) 100 nF capacitor, M tolerance (±20%), with T termination (Tin Plated over Nickel Barrier), tape and reel packaging, 4000 pc qty.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 550L Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX new 550L Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 16 KHz through 70+ GHz. It exhibits ultra-low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 550L is a one-piece orientation-insensitive 0402 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- Ultra-Broadband performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- · Excellent Return Loss
- Unit-to-Unit Performance Repeatability
- · Rugged Ceramic Construction

TYPICAL CIRCUIT APPLICATIONS

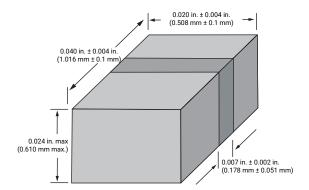
- · Optoelectronics/High Speed Data
- · Transimpedance amplifiers
- Receive and Transmit Optical Sub-Assembly (ROSA/TOSA)
- Synchronous Optical Network (SONET)
- Broadband test equipment
- Broadband Microwave/Millimeter Wave

FEATURES

- 0402 Case Size
- · Capacitance: 100 nF
- Operating Frequency: 16 KHz (-3 dB roll-off) to 70+ GHz*
- Insertion Loss: <0.5 dB typical
- · Orientation-insensitive
- · One Piece Construction
- · Voltage Rating: 16 WVDC
- RoHS Compliant Terminations
- · Gold Termination Available * 25°C, no bias applied

ELECTRICAL SPECIFICATIONS

Capacitance	100 nF
Rated Voltage	16 WVDC from -55°C to +125°C
Dielectric Withstanding Voltage	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +125°C
Temperature Coefficient of Capacitance	±15% (-55°C to +85°C), ±22% (-55°C to +125°C)
Insulation Resistance	10 ⁸ Ω min. @ +25°C @ rated WVDC 10 ⁷ Ω min. @ +125°C @ rated WVDC


PACKAGING OPTIONS

Tape & Reel

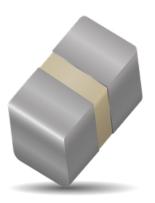
MECHANICAL DIMENSIONS

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 550L Series UBC™ Ultra-Broadband Capacitor

HOW TO ORDER

The above part number refers to a 550 Series (case size L) 100 nF capacitor, V Tolerance (+ 20% -10%), with T termination (Tin Plated over Nickel Barrier), tape and reel packaging.

PERFORMANCE DATA


550L Data Sheet Condition Description

The S-Parameter test was performed on Rogers RO4350B 10-mil thick substrate with a nominal impedance of 50 ohms. the board has a 10-mil gap at the center of a 22-mil wide ½ oz copper microstrip trace

RF/Microwave Multilayer Capacitors (MLC)

550S Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX new 550S Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 16 KHz through 40+ GHz. It exhibits low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 550S is a one-piece orientation-insensitive 0603 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- Ultra-Broadband performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- · Excellent Return Loss
- Unit-to-Unit Performance Repeatability
- · Rugged Ceramic Construction

TYPICAL CIRCUIT APPLICATIONS

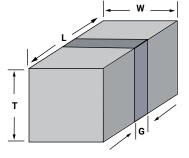
- · Optoelectronics/High Speed Data
- · Transimpedance amplifiers
- Receive & Transmit Optical Sub Assembly (ROSA/TOSA)
- Synchronous Optical Network (SONET)
- Broadband test equipment
- Broadband Microwave/Millimeter Wave

FEATURES

- 0603 Case Size
- · Capacitance: 100 nF
- Operating Frequency: 16 KHz (-3 dB roll-off) to 40+ GHz*
- Insertion Loss: <1 dB typical
- · Orientation Sensitive
- · One Piece Construction
- · Voltage Rating: 50 WVDC
- RoHS Compliant Terminations
- · Gold Termination Available
 - * 25°C, no bias applied

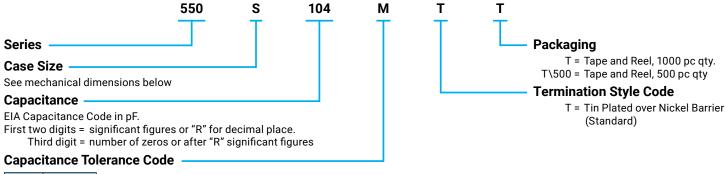
ELECTRICAL SPECIFICATIONS

Capacitance	100 nF
Rated Voltage	50 WVDC
Dielectric Withstanding Voltage	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +125°C
Temperature Coefficient of Capacitance	±15% (-55°C to +125°C)
Insulation Resistance	10^{10} Ω min. @ +25°C @ rated WVDC 10^9 Ω min. @ +125°C @ rated WVDC


PACKAGING OPTIONS

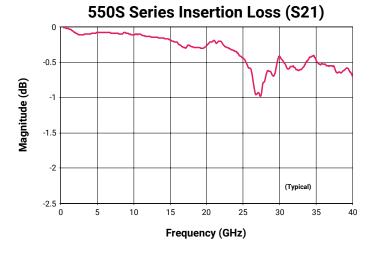
Tape & Reel

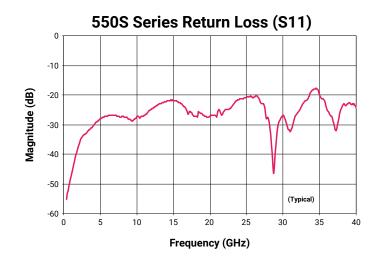
MECHANICAL DIMENSIONS


L = Length	0.062" +0.002" -0.006" (1.57mm +0.051mm -0.152mm)
W = Width	0.032" +0.006" -0.002" (0.81mm +0.152mm -0.051mm)
T = Thickness	0.035" +0.003" -0.005" (0.89mm +0.076mm -0.127mm)
G = Gap	0.007" ±0.002 (0.178mm ±0.051)

RF/Microwave Multilayer Capacitors (MLC)

550S Series UBC™ Ultra-Broadband Capacitor

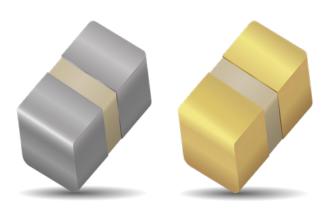




Code	M
Tol.	±20%

The above part number refers to a 550 Series (case size U) 100 nF capacitor, M tolerance (±20%), with T termination (Tin Plated over Nickel Barrier), tape and reel packaging, 4000 pc qty.

PERFORMANCE DATA



550S DATA SHEET TEST CONDITION DESCRIPTION

KYOCERA AVX testing to 40 GHz performed on 13.3-mil-thick Rogers RO4350 microstrip board, with the device under test subtending a 36 mil gap in a 30-mil-wide center trace (nominal 50-ohm characteristic impedance).

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 550Z Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX new 550Z Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 160 KHz through 70+ GHz. It exhibits ultra-low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 550Z is a one-piece orientation-insensitive 0201 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- Ultra-Broadband performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- · Excellent Return Loss
- Unit-to-Unit Performance Repeatability
- · Rugged Ceramic Construction

TYPICAL CIRCUIT APPLICATIONS

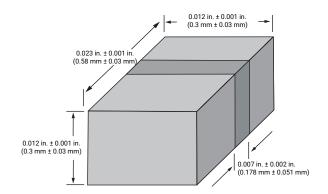
- · Optoelectronics/High Speed Data
- · Transimpedance amplifiers
- Receive & Transmit Optical Sub Assembly (ROSA/TOSA)
- Synchronous Optical Network (SONET)
- Broadband test equipment
- · Broadband Microwave/Millimeter Wave

FEATURES

- 0201 Case Size
- · Capacitance: 100 nF
- Operating Frequency: 160 KHz (-3 dB roll-off) to 70+ GHz*
- Insertion Loss: <0.4 dB typical
- · Orientation-insensitive
- · One Piece Construction
- Voltage Rating: 10 WVDC**
- RoHS Compliant Terminations
- **Gold Termination Available**
- * 25°C, no bias applied
- ** Operating temperature dependent

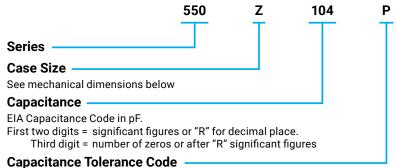
ELECTRICAL SPECIFICATIONS

Capacitance	100 nF min.	
Rated Voltage	6.3 WVDC from -55°C to +125°C 10 WVDC from -55°C to +85°C	
Dielectric Withstanding Voltage	250% of rated WVDC for 5 secs.	
Operating Temperature Range	-55°C to +125°C	
Temperature Coefficient of Capacitance	±22% (-55°C to +125°C) ±15% (-55°C to +85°C)	
Insulation Resistance	10 ⁸ Ω min. @ +25°C @ rated WVDC 10 ⁷ Ω min. @ +125°C @ rated WVDC	


PACKAGING OPTIONS

Tape & Reel

MECHANICAL DIMENSIONS

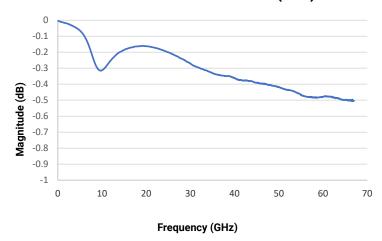


RF/Microwave Multilayer Capacitors (MLC)

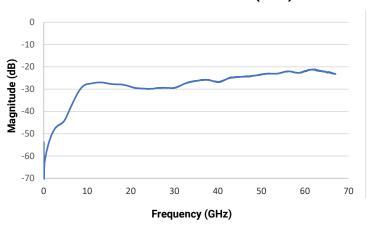
550Z Series UBC™ Ultra-Broadband Capacitor

HOW TO ORDER

(Standard)


CA = Gold Plated over Nickel Barrier

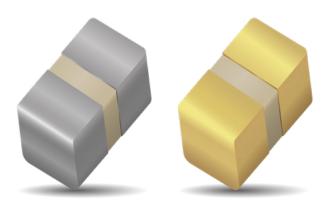
Code	Р
Tol.	+100%, -0%


The above part number refers to a 550 Series (case size z) 10 nF capacitor, P tolerance, with T termination (Tin Plated over Nickel Barrier), tape and reel packaging.

PERFORMANCE DATA

550Z Series Insertion Loss (S21)

550Z Series Return Loss (S11)



550Z Data Sheet Test Condition Description

All testing performed on 10-mil-thick Rogers RO3006 microstrip board, with the device under test subtending a 10 mil gap in a 13.4-mil-wide center trace (nominal 50-ohm characteristic impedance).

RF/Microwave Multilayer Capacitors (MLC) 550Z Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX new 550Z Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 160 KHz through 70+ GHz. It exhibits ultra-low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 550Z is a one-piece orientation-insensitive 0201 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- · Ultra-Broadband performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- Excellent Return Loss
- Unit-to-Unit Performance Repeatability
- · Rugged Ceramic Construction

TYPICAL CIRCUIT APPLICATIONS

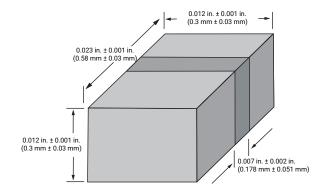
- · Optoelectronics/High Speed Data
- Transimpedance amplifiers
- · Receive & Transmit Optical Sub Assembly (ROSA/TOSA)
- Synchronous Optical Network (SONET)
- · Broadband test equipment
- Broadband Microwave/Millimeter Wave

FEATURES

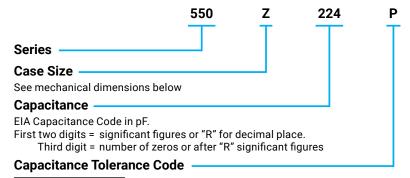
- · 0201 Case Size
- · Capacitance: 220 nF
- Operating Frequency: 160 KHz (-3 dB roll-off) to 70+ GHz*
- Insertion Loss: <0.4 dB typical
- · Orientation-insensitive
- · One Piece Construction
- Voltage Rating: 10 WVDC**
- · RoHS Compliant Terminations
- **Gold Termination Available**
 - * 25°C, no bias applied
 - ** Operating temperature dependent

ELECTRICAL SPECIFICATIONS

Capacitance	220 nF min.
Rated Voltage	6.3 WVDC from -55°C to +125°C 10 WVDC from -55°C to +85°C
Dielectric Withstanding Voltage	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +125°C
Temperature Coefficient of Capacitance	±22% (-55°C to +125°C) ±15% (-55°C to +85°C)
Insulation Resistance	10 ⁸ Ω min. @ +25°C @ rated WVDC 10 ⁷ Ω min. @ +125°C @ rated WVDC


PACKAGING OPTIONS

MECHANICAL DIMENSIONS

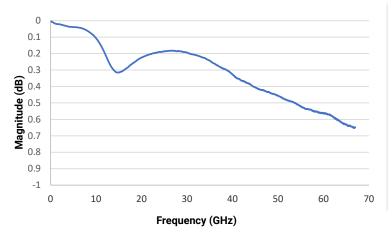


RF/Microwave Multilayer Capacitors (MLC)

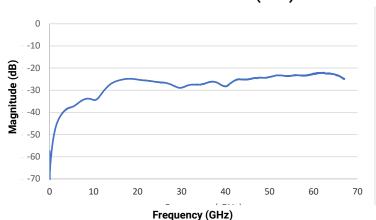
550Z Series UBC™ Ultra-Broadband Capacitor

HOW TO ORDER

(Standard)


CA = Gold Plated over Nickel Barrier

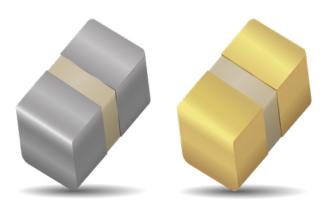
Code	Р
Tol.	+100%, -0%


The above part number refers to a 550 Series (case size z) 10 nF capacitor, P tolerance, with T termination (Tin Plated over Nickel Barrier), tape and reel packaging.

PERFORMANCE DATA

550Z Series Insertion Loss (S21)

550Z Series Return Loss (S11)



550Z Data Sheet Test Condition Description

All testing performed on 10-mil-thick Rogers RO3006 microstrip board, with the device under test subtending a 10 mil gap in a 13.4-mil-wide center trace (nominal 50-ohm characteristic impedance).

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 560Z Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX's new 560Z Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 16 KHz through 40+ GHz. It exhibits ultra-low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 560Z is a one-piece orientation-insensitive 0201 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- · Ultra-Broadband Performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- · Excellent Return Loss
- Unit-to-Unit Performance Repeatability
- **Rugged Ceramic Construction**
 - * 25°C, no bias applied
 - ** Operating Temperture dependent

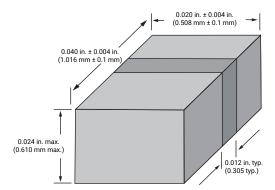
TYPICAL CIRCUIT APPLICATIONS

- · Optoelectronics/High Speed Data
- Transimpedance Amplifiers
- · (ROSA/TOSA)†
- (SONET)++
- Broadband Test Equipment
- Broadband Microwave/Millimeter Wave
- † Receive and Transmit Optical Sub-Assembly
- †† Synchronous Optical Network

FEATURES

- EIA 0201 Case Size
- · Capacitance: 224 nF
- · Operating Frequency: 16 KHz (-3 dB roll-off) to 40+ GHz*
- Insertion Loss: < 0.6 dB typical
- · Orientation Insensitive
- One Piece Construction
- Voltage Rating: 16 WVDC**
- RoHS Compliant Terminations
- · Gold Terminations Available

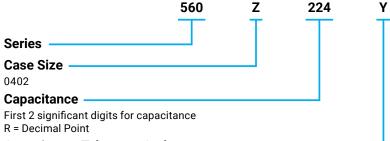
ELECTRICAL SPECIFICATIONS


Capacitance	100 nF min.
Rated Voltage	10 WVDC from -55°C to +85°C 6.3 WVDC from -55°C to +125°C
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +125°C
Temperature Coefficient of Capacitance (TCC)	±15% (-55°C to +85°C) ±22% (>85°C to +125°C)
Insulation Resistance	10^{10} Ω min. @ +25°C @ rated WVDC 10^9 Ω min. @ +125°C @ rated WVDC

PACKAGING OPTIONS

Tape & Reel

MECHANICAL DIMENSIONS



RF/Microwave Multilayer Capacitors (MLC)

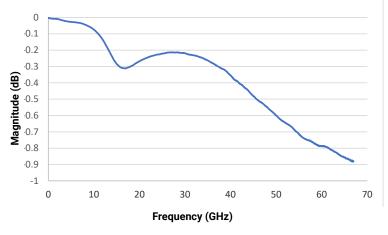
560Z Series UBC™ Ultra-Broadband Capacitor

HOW TO ORDER

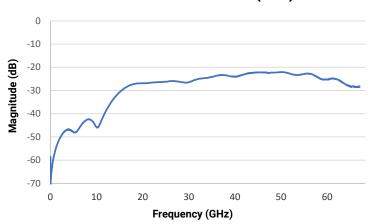
(Standard)

CA = Gold Plated over Nickel Barrier

Capacitance Tolerance Code


Code	Υ
Tol.	+25%, -20%

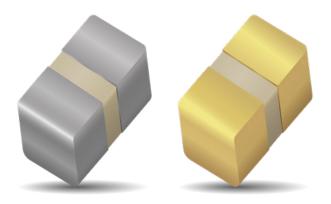
^{*500, 1000, 4000} pieces on 7" reel


The above part number refers to a 560 Series (case size L) 100 nF capacitor, Y tolerance (+25%, -20%), with T termination (Tin Plated over Nickel Barrier), tape and reel packaging.

PERFORMANCE DATA

560Z Series Insertion Loss (S21)

560Z Series Return Loss (S11)


560Z Data Sheet Test Condition Description

All testing performed on 10-mil-thick Rogers RO4350 microstrip board, with the device under test subtending a 24 mil gap in a 22-mil-wide center trace (nominal 50-ohm characteristic impedance).

RF/Microwave Multilayer Capacitors (MLC)

560Z Series UBC™ Ultra-Broadband Capacitor

GENERAL DESCRIPTION

KYOCERA AVX's new 560Z Ultra-Broadband Capacitor is manufactured with highest quality materials to provide reliable and repeatable Ultra-Broadband performance from 16 KHz through 40+ GHz. It exhibits ultra-low insertion loss, flat frequency response and excellent return loss, and is ideal for D.C. Blocking, Coupling, Bypassing and Feedback applications requiring Ultra-Broadband performance.

The 560Z is a one-piece orientation-insensitive 0201 SMT package, fully compatible with high speed automated pickand-place manufacturing. It is designed to meet the most stringent requirements of Ultra-Broadband applications.

ADVANTAGES

- · Ultra-Broadband Performance
- · Ultra-Low Insertion Loss
- · Flat Frequency Response
- · Excellent Return Loss
- · Unit-to-Unit Performance Repeatability
- Rugged Ceramic Construction
- * 25°C, no bias applied
- ** Operating Temperture dependent

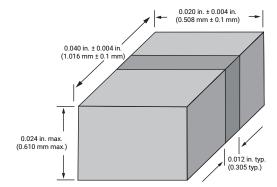
TYPICAL CIRCUIT APPLICATIONS

- · Optoelectronics/High Speed Data
- · Transimpedance Amplifiers
- · (ROSA/TOSA)†
- · (SONET)++
- Broadband Test Equipment
- Broadband Microwave/Millimeter Wave
- † Receive and Transmit Optical Sub-Assembly
- †† Synchronous Optical Network

FEATURES

- · EIA 0201 Case Size
- · Capacitance: 100 nF
- · Operating Frequency:
 - 16 KHz (-3 dB roll-off) to 40+ GHz*
- Insertion Loss: < 0.6 dB typical
- · Orientation Insensitive
- · One Piece Construction
- Voltage Rating: 16 WVDC**
- · RoHS Compliant Terminations
- · Gold Terminations Available

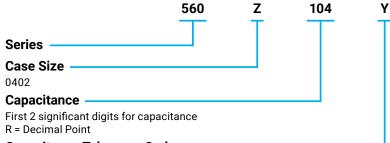
ELECTRICAL SPECIFICATIONS


Capacitance	100 nF min.
Rated Voltage	10 WVDC from -55°C to +85°C 6.3 WVDC from -55°C to +125°C
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 secs.
Operating Temperature Range	-55°C to +125°C
Temperature Coefficient of Capacitance (TCC)	±15% (-55°C to +85°C) ±22% (>85°C to +125°C)
Insulation Resistance	10^{10} Ω min. @ +25°C @ rated WVDC 10^{9} Ω min. @ +125°C @ rated WVDC

PACKAGING OPTIONS

Tape & Reel

MECHANICAL DIMENSIONS



RF/Microwave Multilayer Capacitors (MLC)

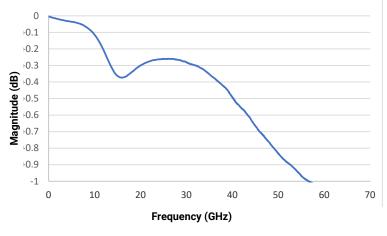
560Z Series UBC™ Ultra-Broadband Capacitor

HOW TO ORDER

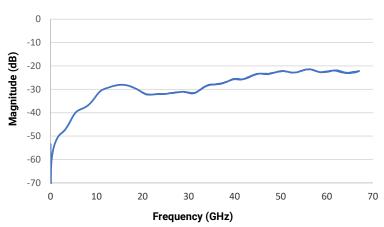
T = Tin Plated over Nickel Barrier (Standard)

CA = Gold Plated over Nickel Barrier

Capacitance Tolerance Code


Code	Υ
Tol.	+25%, -20%

^{*500, 1000, 4000} pieces on 7" reel


The above part number refers to a 560 Series (case size L) 100 nF capacitor, Y tolerance (+25%, -20%), with T termination (Tin Plated over Nickel Barrier), tape and reel packaging.

PERFORMANCE DATA

560Z Series Insertion Loss (S21)

560Z Series Return Loss (S11)



560Z Data Sheet Test Condition Description

All testing performed on 10-mil-thick Rogers RO4350 microstrip board, with the device under test subtending a 24 mil gap in a 22-mil-wide center trace (nominal 50-ohm characteristic impedance).

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600L Ultra-Low ESR NPO Capacitors

APPLICATIONS

- · Cellular Base Stations
- Broadband Wireless Services
- Satellite Communications
- **Devices**
- WiFi (802.11)
- · Subscriber-based Wireless
- · Public Safety Radio

CIRCUIT APPLICATIONS

- Filter Networks
- High Q Frequency Sources
- Matching Networks
- · Tuning, Coupling, Bypass and DC Blocking

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C
Capacitance Range	0.1 pF to 27 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 2,000 at 1 MHz
Insulation Resistance (IR)	10 ⁵ Megohms min. @ 25°C at rated WVDC
	10⁴ Megohms min. @ 125°C at rated WVDC
Working Voltage (WVDC)	200 V
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None

FEATURES

- · Lowest ESR in Class
- · Highest Working Voltage in Class 200 V
- · Capacitance Range 0.1 pF to 27 pF
- · High Q
- · High Self-Resonance

600 SERIES OVERVIEW

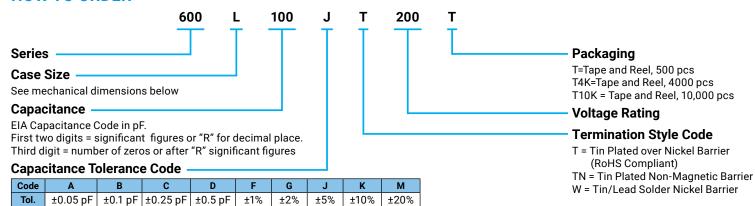
Series	Case Size	EIA Case Size
600	L	0402
600	S	0603
600	F	0805

PACKAGING OPTIONS

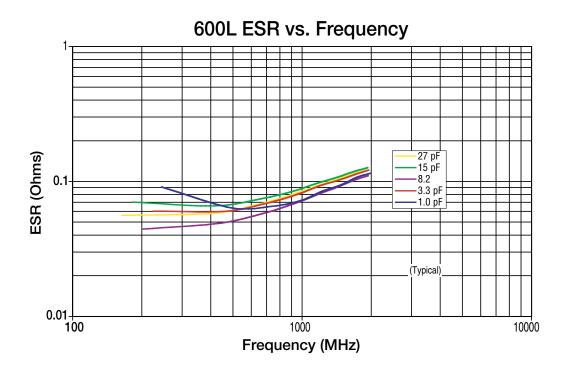
Tape & Reel

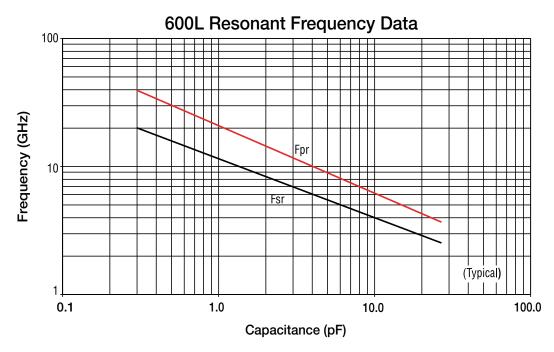
ENVIRONMENTAL CHARACTERISTICS

Themal Shock	5 Cycles, -55°C to 125°C	
Moisture Resistance	Mil-STD-202, Method 106	
Life Test	2000 hours at 125°C at 2X	
Solderability	Solder Coverage > 90% of end termination	
Terminal Strength	2 lbs. typ., 1 lb. min.	
Military Approval	DSCC Drawing Number 05003	


RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600L Ultra-Low ESR NPO Capacitors

CAPACITANCE VALUES

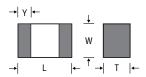

Value (pF)	Cap Code	Tolerances	Value (pF)	Cap Code	Tolerances	Value (pF)	Cap Code	Tolerances
0.1	0R1	A, B	1.6	1R6	A, B, C, D	6.2	6R2	A, B, C, D
0.2	0R2	A, B	1.8	1R8	A, B, C, D	6.8	6R8	B, C, J, K
0.3	0R3	A, B, C	2.0	2R0	A, B, C, D	7.5	7R5	B, C, J, K
0.4	0R4	A, B, C	2.2	2R2	A, B, C, D	8.2	8R2	B, C, J, K
0.5	0R5	A, B, C	2.4	2R4	A, B, C, D	9.1	9R1	B, C, J, K
0.6	0R6	A, B, C	2.7	2R7	A, B, C, D	10	100	F, G, J, K, M
0.7	0R7	A, B, C	3.0	3R0	A, B, C, D	11	110	F, G, J, K, M
0.8	0R8	A, B, C	3.3	3R3	A, B, C, D	12	120	F, G, J, K, M
0.9	0R9	A, B, C	3.6	3R6	A, B, C, D	15	150	F, G, J, K, M
1.0	1R0	A, B, C, D	3.9	3R9	A, B. C. D	18	180	F, G, J, K, M
1.1	1R1	A, B, C, D	4.3	4R3	A, B, C, D	20	200	F, G, J, K, M
1.2	1R2	A, B, C, D	4.7	4R7	A, B, C, D	22	220	F, G, J, K, M
1.3	1R3	A, B, C, D	5.1	5R1	A, B, C, D	24	240	F, G, J, K, M
1.5	1R5	A, B, C, D	5.6	5R6	A, B, C, D	27	270	F, G, J, K, M


HOW TO ORDER

^{*10,000} pieces on 7" reel or 4000 pieces on 7" reel Consult KYOCERA AVX for other options. The above part number refers to a 600L Series (case size L) 11 pF capacitor, J tolerance (±5%), 200 WVDC, with T termination (Tin Plated over Nickel Barrier, RoHS Compliant), Tape and Reel packaging.

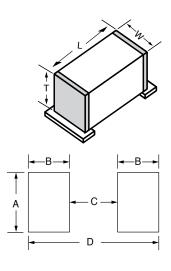
ATC 600L Series Data Sheet Test Condition Description

Capacitors mounted in series microstrip configuration on 10-mil thick Rogers RO4350® softboard, 22-mils wide 1/2 oz. Cu traces.


FSR = lowest frequency at which S11 response, referenced at capacitor edge, crosses real axis on Smith Chart.

FPR = lowest frequency at which there is a notch in S21 magnitude response.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600L Ultra-Low ESR NPO Capacitors


OUTLINE DIMENSIONS

	.004 (1.02 ± 0.1) .004 (.51 ± 0.1)
--	---------------------------------------

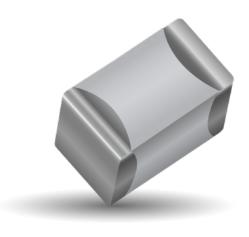
inches (mm)

SUGGESTED MOUNTING PAD DIMENSIONS

Case Size L, S, and F

Case Size	A Min.	B Min.	C Min.	D Min.	
0402 (1005)	.0275	.0354	.0157	.0866	
	(0.70)	(0.90)	(0.40)	(2.20)	
0603 (1608)	.0393	.0433	.0236	.110	
	(1.00)	(1.10)	(0.60)	(2.80)	
0805 (2012)	.0590	.0512	.0236	.1259	
	(1.50)	(1.30)	(0.60)	(3.20)	

inches (mm)


DESIGN KITS

Kit #	RoHS Compliant	Item #	Description	Cap. Value Range (pF)	Cap. Value (pF)	Tol. (pF)	Price
Kit 36T	ROHS	DK0036T	600L Series Ultra-low ESR, High Q Microwave Capacitors 16 different values, 15 pcs. min. per value	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5		\$100.00
Kit 37T	ROHS	DK0037T	600L Series Ultra-low ESR, High Q Microwave Capacitors 16 different values, 15 pcs. min. per value	0.1 to 10	1.0, 1.2, 1.5, 1.8, 2.0. 2.2, 2.4, 2.7, 3.0, 3.3	±0.25	\$100.00
Kit 38T	RoHS	DK0038T	600L Series Ultra-low ESR, High Q Microwave Capacitors 8 different values, 15 pcs. min. per value	10 to 27	10, 12, 15, 18, 20, 22, 24, 27	±5%	\$100.00

For Online Kit Orders, Catalog & Application Notes, Visit: www.avx.com

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600F Ultra-Low ESR, High Q, NPO Capacitors

APPLICATIONS

- · Cellular Base Stations
- **Broadband Wireless** Services
- Satellite Communications
- · Subscriber-based Wireless **Devices**

- WiFi (802.11)
- · Public Safety Radio

CIRCUIT

- Filter Networks
- High Q Frequency Sources

APPLICATIONS

- Matching Networks
- · Tuning, Coupling, Bypass and DC Blocking

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C	
Capacitance Range	0.1 pF to 240 pF	
Operating Temperature	-55°C to +125°C*	
Quality Factor	Greater than 2,000 @ 1 MHz	
Insulation	10 ⁵ Megohms min. @ 25°C at rated WVDC	
Resistance (IR)	10 ⁴ Megohms min. @ 125°C at rated WVDC	
Working Voltage (WVDC)	200 V	
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds	
Aging Effects	None	
Piezoelectric Effects	None	

FEATURES

- · Lowest ESR in Class
- Highest Working Voltage in Class 250 V
- Standard EIA Size: 0805
- · Laser Marking (Optional)
- · High Self-Resonance Frequencies

600 SERIES OVERVIEW

Series	Case Size	EIA Case Size
600	L	0402
600	S	0603
600	F	0805

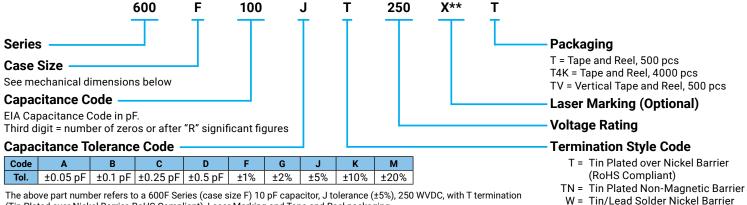
PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

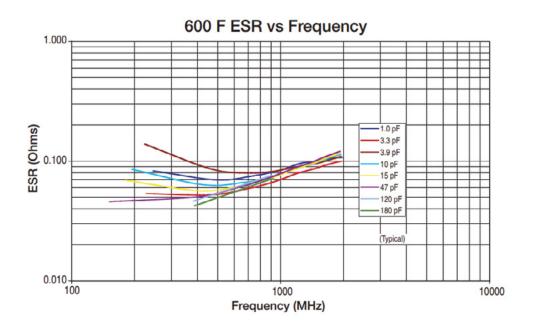
ENVIRONMENTAL CHARACTERISTICS

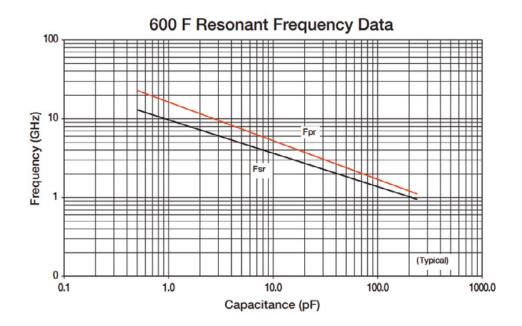
Themal Shock	5 Cycles, -55°C to 125°C	
Moisture Resistance	Mil-STD-202, Method 106	
Life Test	2000 hours at 125°C at 2X WVDC	
Solderability	Solder Coverage > 90% of end termination	
Terminal Strength	4 lbs. typ., 2 lb. min.	
Military Approval	DSCC Drawing Number 05001	


RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600F Ultra-Low ESR, High Q, NPO Capacitors

CAPACITANCE VALUES

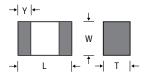
Value (pF)	Cap Code	Marking	Tolerances	Value (pF)	Cap Code	Marking	Tolerances	Value (pF)	Cap Code	Marking	Tolerances
0.1	0R1	A9	A, B	3.3	3R3	N0	A, B, C, D	30	300	M1	F, G, J, K, M
0.2	0R2	H9	A, B	3.6	3R6	P0	A, B, C, D	33	330	N1	F, G, J, K, M
0.3	0R3	M9	A, B, C	3.9	3R9	Q0	A, B, C, D	36	360	P1	F, G, J, K, M
0.4	0R4	d9	A, B, C	4.3	4R3	R0	A, B, C, D	39	390	Q1	F, G, J, K, M
0.5	0R5	f9	A, B, C	4.7	4R7	S0	A, B, C, D	43	430	R1	F, G, J, K, M
0.6	0R6	m9	A, B, C	5.1	5R1	T0	A, B, C, D	47	470	S1	F, G, J, K, M
0.7	0R7	n9	A, B, C	5.6	5R6	U0	A, B, C, D	51	510	T1	F, G, J, K, M
0.8	0R8	t9	A, B, C	6.2	6R2	V0	A, B, C, D	56	560	U1	F, G, J, K, M
0.9	0R9	y9	A, B, C	6.8	6R8	W0	B, C, J, K	62	620	V1	F, G, J, K, M
1.0	1R0	A0	A, B, C, D	7.5	7R5	X0	B, C, J, K	68	680	W1	F, G, J, K, M
1.1	1R1	B0	A, B, C, D	8.2	8R2	Y0	B, C, J, K	75	750	X1	F, G, J, K, M
1.2	1R2	C0	A, B, C, D	9.1	9R1	Z0	B, C, J, K	82	820	Y1	F, G, J, K, M
1.3	1R3	D0	A, B, C, D	10	100	A1	F, G, J, K, M	91	910	Z1	F, G, J, K, M
1.5	1R5	E0	A, B, C, D	11	110	B1	F, G, J, K, M	100	101	A2	F, G, J, K, M
1.6	1R6	F0	A, B, C, D	12	120	C1	F, G, J, K, M	110	111	B2	F, G, J, K, M
1.8	1R8	G0	A, B, C, D	15	150	E1	F, G, J, K, M	120	121	C2	F, G, J, K, M
2.0	2R0	H0	A, B, C, D	18	180	G1	F, G, J, K, M	150	151	E2	F, G, J, K, M
2.2	2R2	J0	A, B, C, D	20	200	H1	F, G, J, K, M	180	181	G2	F, G, J, K, M
2.4	2R4	K0	A, B, C, D	22	220	J1	F, G, J, K, M	200	201	H2	F, G, J, K, M
2.7	2R7	L0	A, B, C, D	24	240	K1	F, G, J, K, M	220	221	J2	F, G, J, K, M
3.0	3R0	М0	A, B, C, D	27	270	L1	F, G, J, K, M	240	241	K2	F, G, J, K, M


HOW TO ORDER



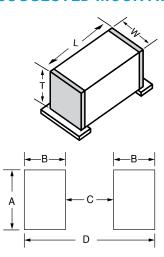
(Tin Plated over Nickel Barrier, RoHS Compliant), Laser Marking and Tape and Reel packaging.

^{**}Laser Marking is optional


600F Series Data Sheet Condition Description

Capacitors horizontally mounted on 23.3 -mil thick Rogers R0435® softboard 52-mils wide 1/2 oz. Cu traces FSR = lowest frequency at which S11 response, referenced at capacitor edge, crosses real axis on Smith Chart. **FPR** = lowest frequency at which there is a notch in S21 magnitude response.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600F Ultra-Low ESR, High Q, NPO Capacitors


OUTLINE DIMENSIONS

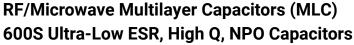
L (0805)	L: .079 ± .008 (2.01 ± 0.20)	T: .051 max (1.30 max)
	L: .079 ± .008 (2.01 ± 0.20) W: .049 ± .008 (1.24 ± 0.20)	Y: .020 ± 0.01 (0.51 ± 0.25)

inches (mm)

SUGGESTED MOUNTING PAD DIMENSIONS

Case Size L, S, and F

Case Size	A Min.	B Min.	C Min.	D Min.
0402 (1005)	.0275	.0354	.0157	.0866
	(0.70)	(0.90)	(0.40)	(2.20)
0603 (1608)	.0393	.0433	.0236	.110
	(1.00)	(1.10)	(0.60)	(2.80)
0805 (2012)	.0590	.0512	.0236	.1259
	(1.50)	(1.30)	(0.60)	(3.20)


inches (mm)

DESIGN KITS

Kit #	RoHS Compliant	Item #	Description	Cap. Value Range (pF)	Cap. Value (pF)	Tol. (pF)	Price	
Kit 32T	ROHS	DK0032T	600F Series Ultra-low ESR, High Q Microwave Capacitors 16 different values,	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9, 1.0, 1.1, 1.2, 1.5	±0.1%	\$100.00	
	COMPLEASE		15 pcs. min. per value		1.6, 1.8, 2.0	±0.25%		
			600F Series Ultra-low ESR,		1.0, 1.2, 1.5, 1.8, 2.0. 2.2, 2.4, 2.7, 3.0, 3.3	±0.1%		
Kit 33T	Kit 33T DK00	DK0033T	High Q Microwave Capacitors 16 different values,	0.1 to 10	3.9, 4.7, 5.6, 6.8, 8.2	±0.25%	\$100.00	
			15 pcs. min. per value		10	±5%		
Kit 34T	ROHS COMPLIANT	DK0034T	600F Series Ultra-low ESR, High Q Microwave Capacitors 16 different values, 15 pcs. min. per value	10 to 27	10, 12, 15, 18, 20, 22, 24, 27	±5%	\$100.00	
Kit 35T	ROHS	DK0035T	600F Series Ultra-low ESR, High Q Microwave Capacitors 7 different values, 15 pcs. min. per value	100 to 240	100, 120, 150, 180, 200, 220, 240	±5	\$55.00	

For Online Kit Orders, Catalog & Application Notes, Visit: www.avx.com

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC)

APPLICATIONS

- · Cellular Base Stations
- **Broadband Wireless** Services
- Satellite Communications
- Wireless Devices
- WiFi (802.11)
- · Subscriber-based
- · Public Safety Radio

CIRCUIT APPLICATIONS

- Filter Networks
- High Q Frequency Sources
- Matching Networks
- · Tuning, Coupling, Bypass and DC Blocking

ELECTRICAL SPECIFICATIONS

Capacitance	0.1 to 100 pF
Tolerances	See Cap Value Chart
Working Voltage (WVDC)	250 V
Quality Factor (Q)	> 2000 @ 1 MHz
Operating Temperature Range	-55°C to +125°C (no derating of working voltage)
Temperature Coefficient of Capacitance (TCC)	0 ± 30 ppm/°C, -55°C to +125° 10^5 M Ω min. at +25°C at rated WVDC 10^4 M Ω min. at +125°C at rated WVDC
Dielectric Withstanding Voltage (DWV)	2.5 x WVDC for 5 seconds
Aging	None
Piezo Effects	None

FEATURES

- · Lowest ESR in Class
- Highest Working Voltage in Class 250 V
- Standard EIA Size: 0603
- · Laser Marking (Optional)
- · High Self-Resonance Frequencies

600 SERIES OVERVIEW

Series	Case Size	EIA Case Size
600	L	0402
600	S	0603
600	F	0805

PACKAGING OPTIONS

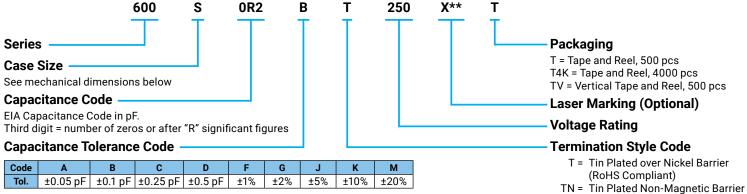
Tape & Reel

Orientation

Tape & Reel

ENVIRONMENTAL CHARACTERISTICS

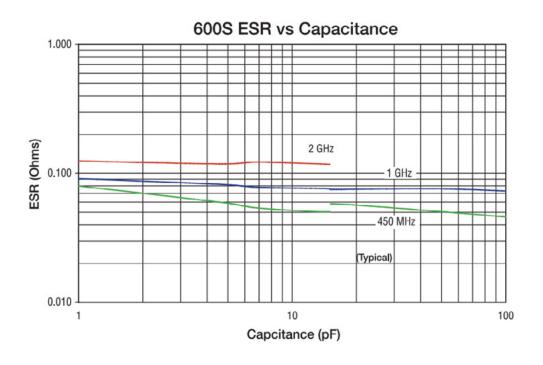
Themal Shock	5 Cycles, -55°C to 125°C	
Moisture Resistance	Mil-STD-202, Method 106	
Life Test	2000 hours at 125°C at 2X WVDC	
Solderability	Solder Coverage > 90% of end termination	
Terminal Strength	4 lbs. typ., 2 lb. min.	
Military Approval	DSCC Drawing Number 05002	

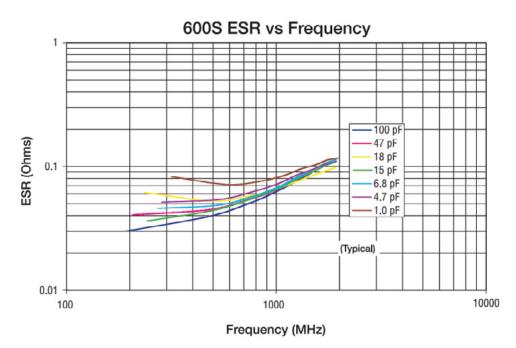

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 600S Ultra-Low ESR, High Q, NPO Capacitors

CAPACITANCE VALUES

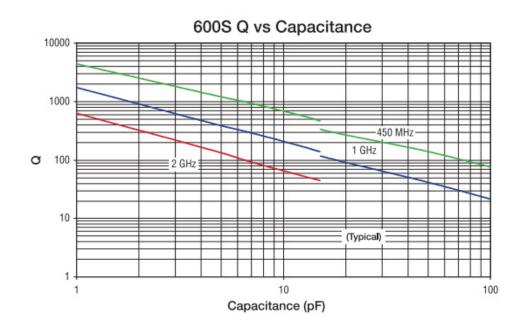
Value (pF)	Cap Code	Marking	Tolerances	Value (pF)	Cap Code	Marking	Tolerances	Value (pF)	Cap Code	Marking	Tolerances
0.1	0R1	A9	A, B	2.7	2R7	L0	A, B, C, D	20	200	H1	F, G, J, K, M
0.2	0R2	H9	A, B	3.0	3R0	M0	A, B, C, D	22	220	J1	F, G, J, K, M
0.3	0R3	M9	A, B, C	3.3	3R3	N0	A, B, C, D	24	240	K1	F, G, J, K, M
0.4	0R4	d9	A, B, C	3.6	3R6	P0	A, B, C, D	27	270	L1	F, G, J, K, M
0.5	0R5	f9	A, B, C	3.9	3R9	Q0	A, B, C, D	30	300	M1	F, G, J, K, M
0.6	0R6	m9	A, B, C	4.3	4R3	R0	A, B, C, D	33	330	N1	F, G, J, K, M
0.7	0R7	n9	A, B, C	4.7	4R7	S0	A, B, C, D	36	360	P1	F, G, J, K, M
0.8	0R8	t9	A, B, C	5.1	5R1	T0	A, B, C, D	39	390	Q1	F, G, J, K, M
0.9	0R9	у9	A, B, C	5.6	5R6	U0	A, B, C, D	43	430	R1	F, G, J, K, M
1.0	1R0	A0	A, B, C, D	6.2	6R2	V0	A, B, C, D	47	470	S1	F, G, J, K, M
1.1	1R1	В0	A, B, C, D	6.8	6R8	W0	B, C, J, K	51	510	T1	F, G, J, K, M
1.2	1R2	C0	A, B, C, D	7.5	7R5	X0	B, C, J, K	56	560	U1	F, G, J, K, M
1.3	1R3	D0	A, B, C, D	8.2	8R2	Y0	B, C, J, K	62	620	V1	F, G, J, K, M
1.5	1R5	E0	A, B, C, D	9.1	9R1	Z0	B, C, J, K	68	680	W1	F, G, J, K, M
1.6	1R6	F0	A, B, C, D	10	100	A1	F, G, J, K, M	75	750	X1	F, G, J, K, M
1.8	1R8	G0	A, B, C, D	11	110	B1	F, G, J, K, M	82	820	Y1	F, G, J, K, M
2.0	2R0	H0	A, B, C, D	12	120	C1	F, G, J, K, M	91	910	Z1	F, G, J, K, M
2.2	2R2	J0	A, B, C, D	15	150	E1	F, G, J, K, M	100	101	A2	F, G, J, K, M
2.4	2R4	K0	A, B, C, D	18	180	G1	F, G, J, K, M				

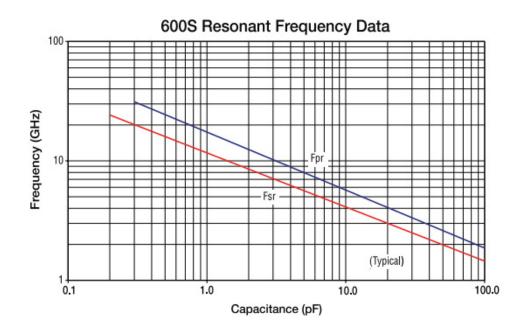
HOW TO ORDER



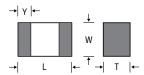

The above part number refers to a 600F Series (case size F) 10 pF capacitor, J tolerance (±5%), 250 WVDC, with T termination (Tin Plated over Nickel Barrier, RoHS Compliant), Laser Marking and Tape and Reel packaging.

^{**}Laser Marking is optional


W = Tin/Lead Solder Nickel Barrier

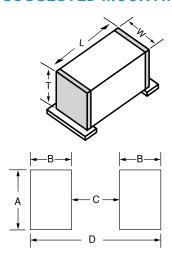


600F Series Data Sheet Condition Description


Capacitors horizontally mounted on 13.3 -mil thick Rogers R0435® softboard 29-mils wide 1/2 oz. Cu traces FSR = lowest frequency at which S11 response, referenced at capacitor edge, crosses real axis on Smith Chart. FPR = lowest frequency at which there is a notch in S21 magnitude response.

RF/Microwave Multilayer Capacitors (MLC)

600S Ultra-Low ESR, High Q, NPO Capacitors


OUTLINE DIMENSIONS

S (0603)	L: .063 ± .006 (1.60 ± 0.15)	T: .035 max (0.89 max)
5 (0003)	W: .032 ± .006 (.81 ± 0.15)	Y: .014 ± .006 (0.36 ± 0.15)

inches (mm)

SUGGESTED MOUNTING PAD DIMENSIONS

Case Size L, S, and F

Case Size	A Min.	B Min.	C Min.	D Min.		
0402 (1005)	.0275	.0354	.0157	.0866		
	(0.70)	(0.90)	(0.40)	(2.20)		
0603 (1608)	.0393	.0433	.0236	.110		
	(1.00)	(1.10)	(0.60)	(2.80)		
0805 (2012)	.0590	.0512	.0236	.1259		
	(1.50)	(1.30)	(0.60)	(3.20)		

inches (mm)

DESIGN KITS

Kit #	RoHS Compliant	Item #	Description	Cap. Value Range (pF)	Cap. Value (pF)	Tol. (pF)	Price
Kit 25T	RoHS	DK0025T	600S Series Ultra-low ESR, High Q Microwave Capacitors 16 different values,	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9, 1.0, 1.1, 1.2, 1.5	±0.1%	\$100.00
COMPLIANT		15 pcs. min. per value		1.6, 1.8, 2.0	±0.25%		
			600S Series Ultra-low ESR,		1.0, 1.2, 1.5, 1.8, 2.0. 2.2, 2.4, 2.7, 3.0, 3.3	±0.1%	
Kit 26T	Kit 26T	DK0026T	 High Q Microwave Capacitors 16 different values, 15 pcs. min. per value 	0.1 to 10	3.9, 4.7, 5.6, 6.8, 8.2	±0.25%	\$100.00
					10	±5%	
Kit 27T	ROHS	DK0027T	600S Series Ultra-low ESR, High Q Microwave Capacitors 16 different values, 15 pcs. min. per value	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47 56, 68, 82, 100	±5%	\$100.00

For Online Kit Orders, Catalog & Application Notes, Visit: www.avx.com

RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

FEATURES

- Case A Size (.055" x .055")
- · Low ESR / ESL
- High Q
- · Low Noise
- · Capacitance Range 0.1 pF to 1000 pF
- · Extended WVDC up to 250 VDC
- · Zero TCC
- · High Self-Resonance
- · Established Reliability (QPL)

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 700 A Series RF/Microwave Capacitors. The superior high self-resonance and zero TCC characteristic of this Series provide excellent performance over a broad range of RF and microwave applications requiring minimum drift. High density porcelain and ceramic constructions provide a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning and DC Blocking.

Typical circuit applications: Filters, Oscillators and Timing

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

(100 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C
Capacitance Range	0.1 pF to 1000 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 10,000 (0.1 pF to 100 pF) @ 1 MHz. Greater than 2000 (110 pF to 1000 pF) @ 1 MHz.
Insulation Resistance (IR)	0.1 pF to 470 pF 10 ⁶ Megohms min. @ 25°C at rated WVDC 10 ⁵ Megohms min. @ 125°C at rated WVDC 510 pF to 1000 pF 10 ⁵ Megohms min. @ 25°C at rated WVDC 10 ⁴ Megohms min. @ 125°C at rated WVDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

ENVIRONMENTAL CHARACTERISTICS

Themal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

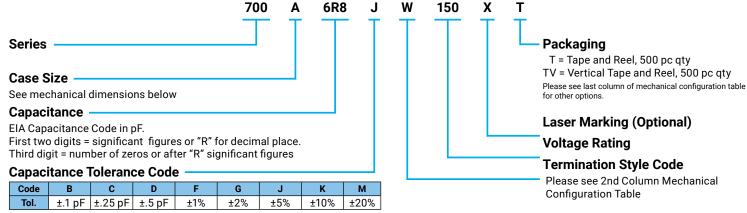
RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra ¹ WV	ted /DC	Cap.	Cap.	Tol.	Ra [·] WV	ted 'DC	Cap.	Cap.	Tol.	Rat WV	
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.
0R1	0.1	В			2R4	2.4			_	200	20			1	151	150			
0R2	0.2	Ь		ED	2R7	2.7			ED	220	22			GE	161	160			
0R3	0.3	В, С		VOLTAGE	3R0	3.0			EXTENDED VOLTAGE	240	24			VOLTAGE	181	180			
0R4	0.4	ь, с		LTA	3R3	3.3			Į,	270	27			ΛΟ	201	200			
0R5	0.5			707	3R6	3.6	РС		0	300	30				221	220			
0R6	0.6				3R9	3.9	B, C, D		Q	330	33			250	241	240			
0R7	0.7			EXTENDED	4R3	4.3			ND N	360	36			230	271	270			
0R8	8.0			TEI	4R7	4.7			151	390	39			a	301	300		150	
0R9	0.9			EX	5R1	5.1			EX	430	43			EXTENDED	331	330		100	
1R0	1.0				5R6	5.6				470	47	F, G,		EN	361	360	F, G,		
1R1	1.1		150	250	6R2	6.2		150	250	510	51	J, K,	150	LX3	391	390	J, K,		N/A
1R2	1.2				6R8	6.8	В, С,		===	560	56	M			431	430	M		, , .
1R3	1.3	В, С,			7R5	7.5	J, K,			620	62			Τ.	471	470			
1R4	1.4	D		3E	8R2	8.2	M		拐	680	68			VOLT	511	510			
1R5	1.5			TA(9R1	9.1			Į Ą	750	75				561	560			
1R6	1.6			VOLTAGE	100	10			VOLTAGE	820	82			200	621	620			
1R7	1.7				110	11			0	910	91			EXT.	681	680			
1R8	1.8			DE	120	12	F, G,		DE	101	100			E	751	750			
1R9	1.9			EN	130	13	J, K,		Ë	111	110				821	820		50	
2R0	2.0			EXTENDED	150	15	М		EXTENDED	121	120			N/A	911	910			
2R1	2.1			7	160	16				131	130				102	1000			
2R2	2.2				180	18													

vrms = 0.707 x WVDC


Special values, tolerances, higher WVDC and matching available. Please consult factory.

note: extended wvdc does not apply to cdr products.

Capacitance values in bold type indicate porcelain dielectric. All other capacitance values indicate ceramic dielectric.

All 700 A Capacitors are available laser marked with KYOCERA AVX identification, capacitance code and tolerance.

HOW TO ORDER

The above part number refers to a 700A Series (case size A) 6.8 pF capacitor, J tolerance (+/-5%), 150 WVDC, with W termination, (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel Packaging.

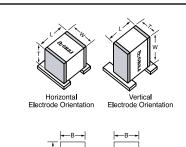
RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

MECHANICAL CONFIGURATION

Series &	Term.	MIL-PRF-55681	Case Size	Outline ES W/T is a		Dimensions thes (mm)			Lead and Terminal Dimensions and Ma		
Case Size	Code	WIL-PRF-33061	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Pkg Code
700A	w	CDR12BP	A Solder Plate	$\begin{array}{c c} Y \to & \downarrow & & \downarrow \\ \hline & & & w & & \downarrow \\ \to & L & \downarrow & \uparrow \to \uparrow & \uparrow & \downarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700A	Р	CDR12BP	A 😭 Pellet	Y→ ← ↓	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057	.010+.010005	Heavy Tin/ Lead Coated, over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700A	Т	N/A	A Solderable Nickel Barrier	Y→ ← ↓	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	(1.45) max.	(0.25+0.25 -0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700A	CA	CDR11BP	A Gold Chip	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100

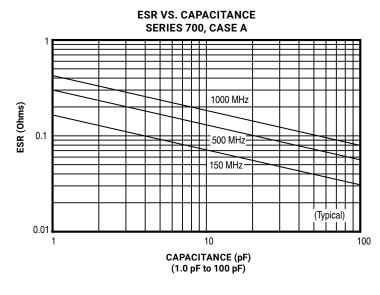
NON-MAGNETIC CONFIGURATION

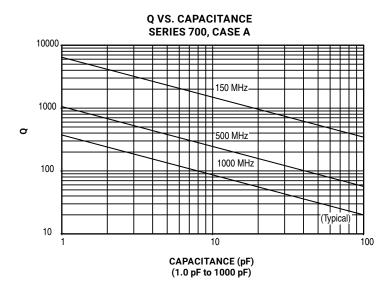
Series &	Term.	MIL-PRF-55681	Case Size	Non-Magnetic		Dimensions ches (mm)		Lead and Termination Dimensions and Material					
Case Size	Code	WIL-FRF-33001	& Type	Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Pkg Code		
700A	WN	Meets Requirements	A Non-Mag Solder Plate	$\begin{array}{c c} Y \to & \downarrow & & \downarrow \\ \hline & & w & & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \end{array}$.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
700A	PN	Meets Requirements	A ON Non-Mag Pellet	$\begin{array}{c c} Y \to \left\ \leftarrow & \downarrow \\ \hline & \overline{w} & \overline{m} \\ \to & L & \leftarrow \uparrow \to \mid T \mid \leftarrow \end{array}$.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010+.010005 (0.25+0.25 -0.13)	Heavy Tin/ Lead Coated, over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
700A	TN	Meets Requirements	A Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to & \downarrow & & \downarrow \\ \hline & & \overline{\underline{\underline{\underline{W}}}} & & \overline{\underline{\underline{\underline{W}}}} \\ \to & \downarrow & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		

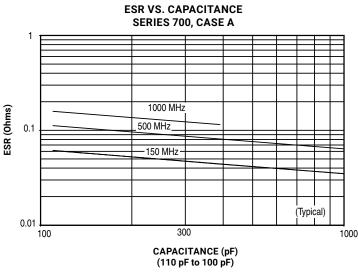

^{*}Capacitors with values greater than 100 pF contain a trace magnetic element that may exhibit weak magnetic properties.

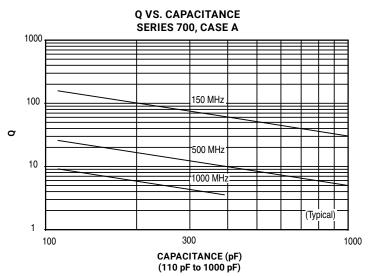
RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

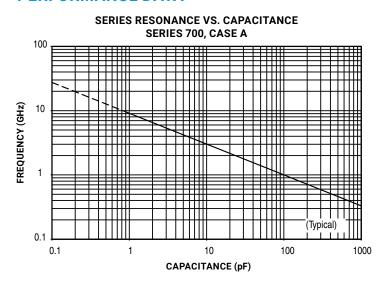

SUGGESTED MOUNTING PAD DIMENSIONS

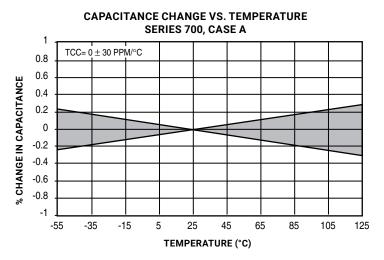



	Case A												
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.								
Vertical Mount	Normal	.070	.050	.030	.130								
vertical Mount	High Density	.050	.030	.030	.090								
Horizontal Mount	Normal	.080	.050	.030	.130								
HOHZOHILAH MIOUHI	High Density	.060	.030	.030	.090								

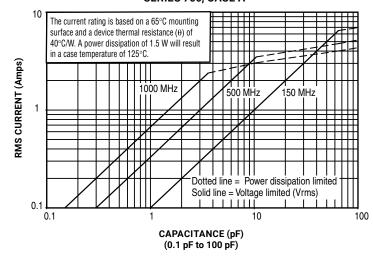

Dimensions are in inches.

PERFORMANCE DATA

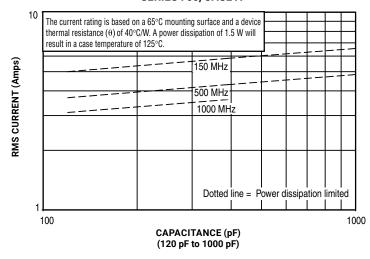

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

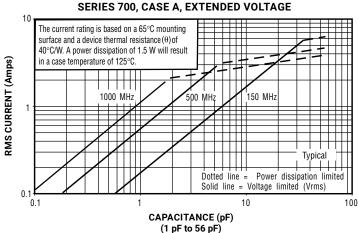

RF/Microwave Multilayer Capacitors (MLC)

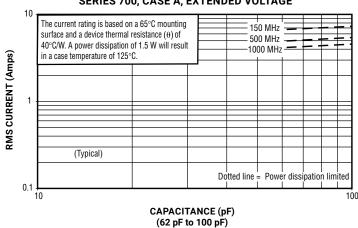
700A Series NP0 Porcelain and Ceramic Multilayer Capacitors



PERFORMANCE DATA




CURRENT RATING VS. CAPACITANCE SERIES 700, CASE A

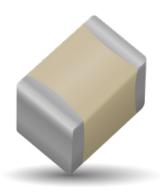

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE A

CURRENT RATING VS. CAPACITANCE

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE A, EXTENDED VOLTAGE

KYDCER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors


SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 4	-	DK0004	700A Porcelain and Ceramic	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 ±0.1	\$158.40
Kit 4T	ROHS	DK0004T	16 different values, 15 pc. min. per value	0.1 to 2.0	1.5, 1.8, 2.0 ±0.25	\$158.40
Kit 5	-	DK0005	700A Porcelain and Ceramic 16 different values, 15 pc.	1.0 to 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3,	\$158.40
Kit 5T	ROHS	DK0005T	min. per value	1.0 to 10	10	\$136.40
Kit 6	-	DK0006	700A Porcelain and Ceramic 16 different values, 15 pc.	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39,	\$158.40
Kit 6T	ROHS	DK0006T	min. per value	10 10 100	47, 56, 68, 82, 100 ± 5%	\$130.40
Kit 7	-	DK0007	700A Porcelain and Ceramic	100 to 1000	100, 120, 150, 180, 200, 220, 240, 270 300, 330, 390, 470	\$158.40
Kit 7T	ROHS	DK0007T	16 different values, 15 pc. min. per value	100 to 1000	560, 680, 820, 1000 ±10	\$138.40

RF/Microwave Multilayer Capacitors (MLC)

700B Series NPO Porcelain and Ceramic Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, is announcing new improved ESR/ESL performance for the 700B Series RF/ Microwave Capacitors. The superior high self-resonance and zero TCC characteristic of this Series provide excellent performance over a broad range of RF and microwave applications requiring minimum drift, including RF power. Porcelain and ceramic construction provide a rugged, hermetic package.

FUNCTIONAL APPLICATIONS

- Bypass Impedance Matching
- Coupling · DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- Timing Power Amplifiers
- · RF Power Amplifiers

- Filters
- Oscillators

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

AVX 700B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

FEATURES

- Case B Size (.110" x .110")
- · Capacitance Range 0.1 pF to 5100 pF
- · Extended WVDC up to 1500 VDC
- · Low ESR/ESL
- · High Q
- · Low Noise
- · Ultra-Stable Performance
- · High Self-Resonance
- · Established Reliability (QPL)

PACKAGING OPTIONS

Orientation Tape & Reel

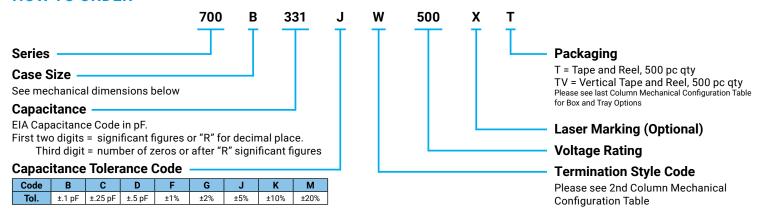
(100 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Capacitance Range	0.1 pF to 5100 pF
Operating Temperature	0.1 to 200 pF: from -55°C to +175°C 220 to 5100 pF: from -55°C to +125°C
Quality Factor	Greater than 10,000 (1 pF to 200 pF) @ 1 MHz. Greater than 2000 (220 pF to 1000 pF) @ 1 MHz. Greater than 2000 (1100 pF to 5100 pF) @ 1 KHz.
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC. 10 ⁵ Megohms min. @ +125°C at rated WVDC. 510 pF to 5100 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

700B Series NPO Porcelain and Ceramic Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Сар.	Cap.	Tol.		ted /DC	Сар.	Cap.	Tol.	Rated	WVDC	CAP.	CAP.	TOL.	RATED	WVDC
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(pF)		STD.	EXT.
0R1	0.1	В			3R3	3.3				330	33			VOLT	331	330			
0R2	0.2	ь			3R6	3.6				360	36			8	361	360			
0R3	0.3	B, C		щ	3R9	3.9			Ų.	390	39			1500	391	390		200	
0R4	0.4	Б, С		746	4R3	4.3	B, C,		AG	430	43			EXT	431	430			
0R5	0.5			170	4R7	4.7	D		170	470	47			Щ	471	470			
0R6	0.6			>	5R1	5.1			^	510	51				511	510			
0R7	0.7			DE	5R6	5.6			DE	560	56		500		561	560			
0R8	8.0			EXTENDED VOLTAGE	6R2	6.2			EXTENDED VOLTAGE	620	62				621	620			
0R9	0.9			<u> </u>	6R8	6.8	В, С,		K	680	68			Ж	681	680		150	
1R0	1.0				7R5	7.5	J, K,			750	75			VOLTAGE	751	750			
1R1	1.1				8R2	8.2	М			820	82			.70,	821	820			
1R2	1.2		500	4.500	9R1	9.1			4500	910	91	F, G, J,		_	911	910	F, G, J,		
1R3	1.3		500	1500	100	10		500	1500	101	100	K, M		1000	102	1000	K, M		N/A
1R4	1.4	В, С,			110	11				111	110			EXTENDED	112	1100			
1R5	1.5	D			120	12				121	120			EN	122	1200			
1R6 1R7	1.6 1.7			GE	130 150	13 15			GE	131 151	130 150		300	X	152 182	1500 1800			
1R8	1.7			Į.	160	16			T.	161	160		300	Щ	222	2200			
1R9	1.9			EXTENDED VOLTAGE	180	18	F, G, J, K, M		EXTENDED VOLTAGE	181	180				272	2700		50	
2R0	2.0			ED	200	20	1,,,,,,		ED	201	200				302	3000		30	
2R1	2.1			ND	220	22			N	221	220				332	3300			
2R2	2.2			TE	240	24			TE	241	240				392	3900			
2R4	2.4			Ä	270	27			Ě	271	270		200	N/A	472	4700			
2R7	2.7				300	30				301	300				512	5100			
3R0	3.0					-				551	550				012	0.00			
					ENT W//D												_		

SPECIAL VALUES, TOLERANCES, DIFFERENT WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY. Capacitance values in bold type indicate porcelain dielectric. All other capacitance values indicate ceramic dielectric.

HOW TO ORDER

The above part number refers to a 700B Series (case size B) 330 pF capacitor, J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700B Series NPO Porcelain and Ceramic Multilayer Capacitors

MECHANICAL CONFIGURATION

Series	Term.	MIL-PRF-	Case Size	Outline W/T is a		Dimensions thes (mm)				and Termination			Pkg		
& Case Size	Code	55681	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Materials	s	Pkg Type	Code		
700B	W	CDR14BP	B Solder Plate	Y→ ← ↓	110+.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.					Tin/Lead, Solder Plated over Nickel Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700B	Р	CDR14BP	B Pellet	$\begin{array}{c c} & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \underline{\qquad} \\ & \downarrow \\ $	110+.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	.015 (0.38) ±.010	Heavy Tin/Lead Coated, over Nickel Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
700B	Т	N/A	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \hline & \downarrow \\ \to & L & \uparrow \to & T & \downarrow \\ \end{array}$	110+.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	(0.25)	Nic	Tin Plated o	RoHS Compliant Tin Plated over cel Barrier Termination		T1K or T TV1K or TV C100		
700B	CA	CDR13BP	B Gold Chip	$\begin{array}{c c} Y \rightarrow & \downarrow & \\ \hline & w & \\ \hline \rightarrow & L & \leftarrow^{\uparrow} \rightarrow & T & \leftarrow \end{array}$	110+.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		Nic	RoHS Compliant Gold Plated over Nickel Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100		
700B	MS	CDR21BP	B Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs	C20		
700B	AR	CDR22BP	B Axial Ribbon		.135 ±.015 (3.43 ±0.38)				.250 (6.35) min.	.093 ±. 005 (2.36 ± 0.13)	.004 ± .001 (.102 ± .025)	Box, 20 or 100 pcs	B20 or B100		
700B	RR	CDR24BP	B Radial Ribbon	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A				Box, 20 or 100 pcs	B20 or B100		
700B	RW	CDR23BP	B Radial Wire	→ \(\bu_{\text{L}} \rightarrow \\ \rightarrow \frac{1}{7} \rightarrow \\ \rightarrow \bu_{\text{L}} \rightarrow \\ \rightarrow \\ \rightarrow \bu_{\text{L}} \rightarrow \\ \rightarrow \\ \rightarrow \bu_{\text{L}} \rightarrow \\ \rightarrow \\\ \rightarrow \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.145 ±.020		max.		.500 (12.7)	#26 /	AWG.,	Box, 20 or 100 pcs	B20 or B100		
700B	AW	CDR25BP	B Axial Wire	→ L L ← → W ←	(3.68 ±0.51)								B20 or B100		

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

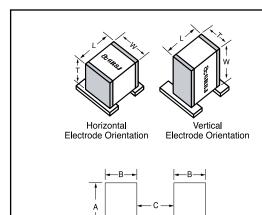
RF/Microwave Multilayer Capacitors (MLC)

700B Series NPO Porcelain and Ceramic Multilayer Capacitors

MECHANICAL CONFIGURATION

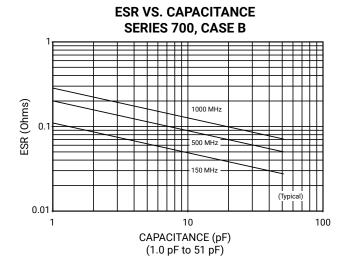
Series	Term.	MIL-PRF-	Case Size	Outline W/T is a		dy Dimension nches (mm)	S	D		d Terminat ns and Ma		DI T	Pkg
& Case Size	Code	55681	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Materia	ls	Pkg Type	Code
700B	WN	Meets Requirements	B Non-Mag Solder Plate	Y→ ← ↓ <u>w</u>	.110 +.020 010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)				in / Lead, Solder Plated over Non-Magnetic Barrier Termination eavy Tin / Lead, Coated over Non-Magnetic Barrier Termination RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700B	PN	Meets Requirements	B Non-Mag Pellet	$\begin{array}{c c} Y \to \left\ \leftarrow & \downarrow \\ \hline & w \\ \hline & \downarrow \\ &$.110 +.035 010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)				T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700B	TN	Meets Requirements	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \rightarrow \left\ \leftarrow & \downarrow \\ \hline & \overline{w} & \overline{\cdots} \\ \rightarrow \left L \right \leftarrow \uparrow \rightarrow \left T \right \leftarrow \end{array}$.110 +.020 010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)						T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
700B	MN	Meets Requirements	B Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.		Length (L _i)	Width (W₁)	Thickness (T _.)	Cap Pac, 20 pcs	C20
700B	AN	Meets Requirements	B Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid \iota_{L} \mid \leftarrow & \downarrow \uparrow \mid \leftarrow \\ \hline \psi_{L} & & \downarrow \downarrow \downarrow \downarrow \leftarrow & \psi & \downarrow \uparrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & \hline \uparrow \downarrow \mid \uparrow \mid . \end{array}$.135 ±.015 (3.43 ±0.38)				.250 (6.35) (6.35) min.	.093 ± .005 (2.36 ± 0.13	.004 ± . 001 (.102 ± .025)	Box, 20 or 100 pcs	B20 or B100
700B	FN	Meets Requirements	B Non-Mag Radial Ribbon	$\begin{array}{c c} & \overset{\downarrow}{\underbrace{\hspace{0.2cm}}} & \overset{\overset{\downarrow}{\underbrace{\hspace{0.2cm}}} & \overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset$.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A			,	Box, 20 or 100 pcs	B20 or B100
700B	RN	Meets Requirements	B Non-Mag Axial Wire	→ L ← → W ←	.145 ±.020		max.		.500 (12.7) min.	#26 AWG.,		Box, 20 or 100 pcs	B20 or B100
700B	BN	Meets Requirements	B Non-Mag RadialWire	→ L + → ▼ → T + T + →	(3.68 ±0.51)				.016 (.016 (.406) dia. nominal		B20 or B100

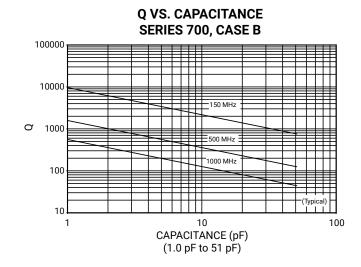
^{*}Capacitors with values greater than 200 pF contain a trace magnetic element that may exhibit weak magnetic properties.

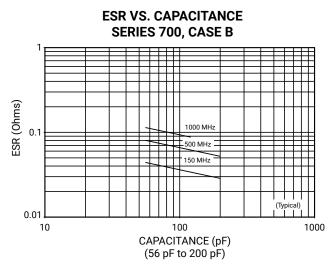

** Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ri bon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory; All leads are high purity silver attached with high temperature solder and RoHS compliant.

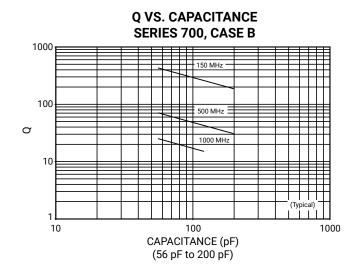
RF/Microwave Multilayer Capacitors (MLC)

700B Series NPO Porcelain and Ceramic Multilayer Capacitors

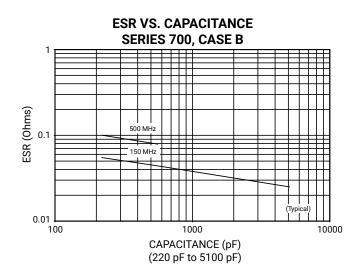

SUGGESTED MOUNTING PAD DIMENSIONS

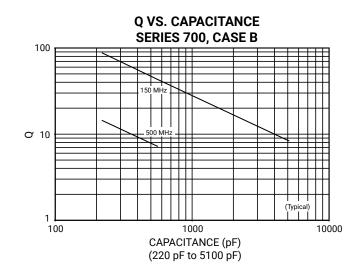



Case B Vertical Mount												
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.							
0.1 pE	Normal	.065	.050	.075	.175							
0.1 pF	High Density	.045	.030	.075	.135							
0.2 pF	Normal	.090	.050	.075	.175							
υ.2 με	High Density	.070	.030	.075	.135							
0.3 to 510 pF	Normal	.110	.050	.075	.175							
0.5 to 5 to pr	High Density	.090	.030	.075	.135							
> 510 pF	Normal	.120	.050	.075	.175							
> 310 pr	High Density	.100	.030	.075	.135							

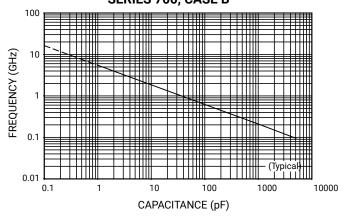

Horizontal Mount							
All Values	Normal	.130	.050	.075	.175		
All values	High Density	.110	.030	.075	.135		

PERFORMANCE DATA

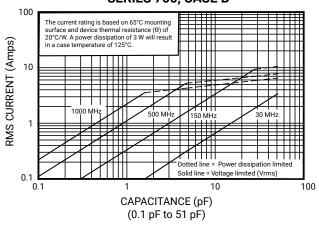

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

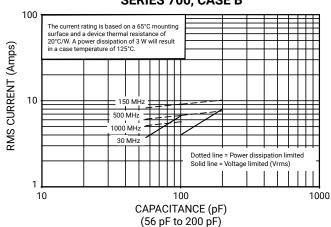

RF/Microwave Multilayer Capacitors (MLC)

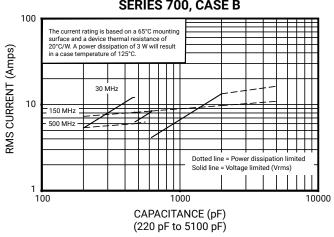
700B Series NPO Porcelain and Ceramic Multilayer Capacitors



PERFORMANCE DATA



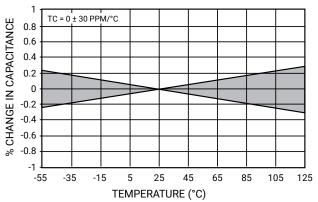

SERIES RESONANCE VS. CAPACITANCE SERIES 700, CASE B


CURRENT RATING VS. CAPACITANCE SERIES 700, CASE B

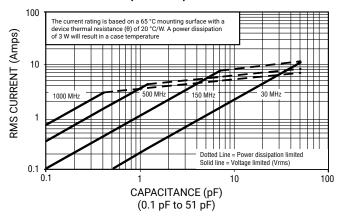
CURRENT RATING VS. CAPACITANCE SERIES 700, CASE B

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE B

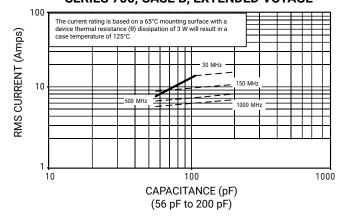
KYDCER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


RF/Microwave Multilayer Capacitors (MLC)

700B Series NPO Porcelain and Ceramic Multilayer Capacitors



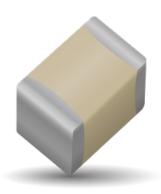
PERFORMANCE DATA


CURRENT CHANGE VS. TEMPERATURE SERIES 700, CASE B

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE B, EXTENDED VOTAGE

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE B, EXTENDED VOTAGE

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700B Series NPO Porcelain and Ceramic Multilayer Capacitors


SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 11	-	DK0011	700B Porcelain and Ceramic	1.0 += 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3 ±0.1	\$165.00
Kit 11T	ROHS	DK0011T	16 different values, 15 pcs. min. per value	1.0 to 10	3.9, 4.7, 5.6, 6.8, 8.2 3.9, 4.7, 5.6, 6.8, 8.2	\$105.00
Kit 12	-	DK0012	700B Porcelain and Ceramic	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30,	\$165.00
Kit 12T	RoHS	DK0012T	16 different values, 15 pcs. min. per value	10 10 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	\$105.00
Kit 13	-	DK0013	700B Porcelain and Ceramic 16 different values,	100 to 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470 ± 5%	\$165.00
Kit 13T	RoHS	DK0013T	15 pcs. min. per value	100 to 1000	560, 680, 820, 1000 ±10%	\$105.00

RF/Microwave Multilayer Capacitors (MLC)

700C Series NPO Porcelain and Ceramic Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 700C Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density porcelain construction provides a rugged, hermetic package.

KYOCERA AVX offers an encapsulation option for applications requiring extended protection against arc-over and corona

FUNCTIONAL APPLICATIONS

Bypass

· Impedance Matching

Coupling

· DC Blocking

Tuning

CIRCUIT APPLICATIONS

- VHF/UHF RF Power Amplifiers
 Plasma Chambers
- Antenna Tuning *For leaded styles only
- Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A			
Moisture Resistance	MIL-STD-202, Method 106			
Low Voltage Humidity MIL-STD-202, Method 103, Condition A, with 1. Volts DC applied while subjected to an environ of 85°C with 85% relative humidity for 240 hou min.				
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.			
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations			
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.			

FEATURES

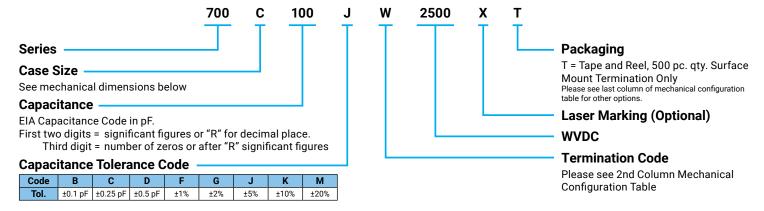
- Case C Size (.250" x .250")
- · High Q
- · Low ESR/ESL
- High RF Power
- Available with Encapsulation Options*
- Capacitance Range 1 pF to 2700 pF
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · High Reliability

PACKAGING OPTIONS

ELECTRICAL SPECIFICATIONS

Quality Factor (Q)	Greater than 10,000 (1.0 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 2700 pF) @ 1 KHz.
Temperature Coefficient of Capacitance (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Insulation Resistance (IR)	1 pF to 2700 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC. Max. test voltage is 500 VDC.
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater
Operating Temperature Range	From -55°C to +125°C (No derating of working voltage)

RF/Microwave Multilayer Capacitors (MLC)



CAPACITANCE VALUES

CAP. CODE	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC
1R0	1.0			5R1	5.1			390	39			301	300		
1R1	1.1			5R6	5.6			430	43			331	330		
1R2	1.2			6R2	6.2			470	47			361	360		1500
1R3	1.3			6R8	6.8	B, C, D		510	51			391	390		1300
1R4	1.4			7R5	7.5			560	56			431	430		
1R5	1.5			8R2	8.2			620	62			471	470		
1R6	1.6			9R1	9.1			680	68			511	510		
1R7	1.7			100	10			750	75			561	560		
1R8	1.8			110	11			820	82			621	620		
1R9	1.9			120	12			910	91	F C 1		681	680	F C 1	
2R0	2.0	B, C, D	2500	130	13		2500	101	100	F, G, J K, M	2500	751	750	F, G, J K, M	1000
2R1	2.1			150	15			111	110] 17, 171		821	820	14, 141	1000
2R2	2.2			160	16			121	120			911	910		
2R4	2.4			180	18	F, G, J		131	130			102	1000		
2R7	2.7			200	20	K, M		151	150			112	1100		
3R0	3.0			220	22			161	160			122	1200		
3R3	3.3			240	24			181	180			152	1500		500
3R6	3.6			270	27			201	200			182	1800		500
3R9	3.9			300	30			221	220			222	2200		
4R3	4.3			330	33			241	240			242	2400		300
4R7	4.7			360	36			271	270			272	2700		

HOW TO ORDER

The above part number refers to a 700C Series (case size C) 10 pF capacitor, J tolerance (±5%), 2500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and 500 pc T&R packaging.

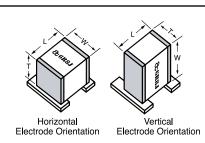
RF/Microwave Multilayer Capacitors (MLC)

700C Series NPO Porcelain and Ceramic Multilayer Capacitors

MECHANICAL CONFIGURATIONS

SERIES		CASE SIZE	OUTLINES		Y DIMENSION NCHES (mm)	s		LEAD AND TERMINATED IMENSIONS AND MAT		
& CASE SIZE	TERM. CODE	& TYPE	W/T IS A TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	Pkg Type	Pkg Code
700C	w	C Solder Plate	Y→ ←	.230+.020010 (5.84+0.51-0.25)				Tin /Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
700C	Р	C Pellet	Y→ ← ↓ W	.230+.025010 (5.84+0.64-0.25)		.145 (3.68) max. for	.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
700C	Т	C Solderable Nickel Barrier	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & W & \downarrow \\ \hline \rightarrow & L & \uparrow \rightarrow & \uparrow & \uparrow \leftarrow \end{array}$.230+.020010 (5.84+0.51-0.25)	.250 ±.015 (6.35 ±0.38)	capacitance values ≤ 680 pF; .165 (4.19) max. for capacitance		RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
700C	MS	C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.245 ±.025		values > 680 pF.	N/A	High Purity Silver Leads LL = .500 (12.7) min. WL = .240 ±.005	Tray, 24 or 60 pcs	J24 or J60
700C	AR	C Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6.22 ±0.64)			N/A	(6.10 ±.127) TL = .004 ±.001 (.102 ±.025) Leads are Attached with High Temperature Solder.	Tray, 24 or 60 pcs	J24 or J60

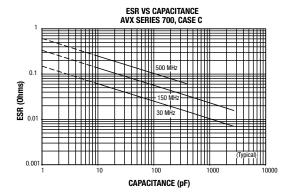
NON-MAGNETIC MECHANICAL CONFIGURATION

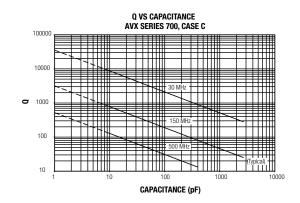

			IECHANICAL CO		Y DIMENSIONS	3		LEAD AND TERMIN	IATION			
SERIES	TERM.	CASE SIZE	OUTLINES W/T IS A		ICHES (mm)	·		DIMENSIONS AND MA	ATERIALS			
& CASE SIZE	CODE	& TYPE	TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	Pkg Type	Pkg Code		
700C	WN	C Solder Plate	Y→ ← ↓ <u>W</u> → L ← ↑ → T ←	.230+.020010 (5.84+0.51-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180		
700C	PN	C Pellet	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & W & \downarrow \\ \hline \rightarrow & L & \leftarrow^{\uparrow} \rightarrow & \uparrow & \leftarrow \end{array}$.230+.025010 (5.84+0.64-0.25)		.145 (3.68) max. for capacitance	.040 (1.02) max.	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180		
700C	TN	Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & & \downarrow \\ \hline & \hline & \hline & W & & \\ \hline & \to & L & \uparrow \to & \uparrow & \uparrow & \downarrow \end{array}$.230+.020010 (5.84+0.51-0.25)	.250 ±.015 (6.35 ±0.38)	values ≤ 680 pF; .165 (4.19) max. for capacitance values		RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180		
700C	MN	C Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.245 ±.025	245 + 025	245 + 025	>	> 680 pF.		High Purity Silver Leads L _L = .500 (12.7) min. W _L = .240 ±.005	Tray, 24 or 60 pcs	J24 or J60
700C	AN	C Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6.22 ±0.64)			N/A	(6.10 ±.127) T _L = .004 ±.001 (.102 ±.025) Leads are Attached with High Temperature Solder.	Tray, 24 or 60 pcs	J24 or J60		

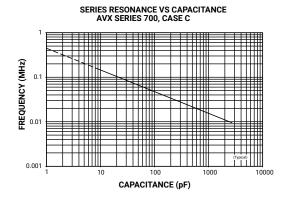
RF/Microwave Multilayer Capacitors (MLC)

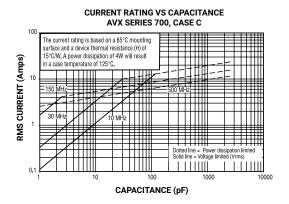
700C Series NPO Porcelain and Ceramic Multilayer Capacitors

SUGGESTED MOUNTING PAD DIMENSIONS

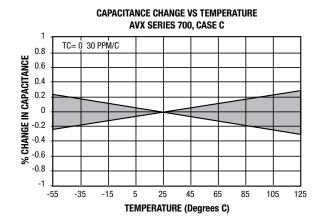



	Case C Vertical Mount								
Cap Value	Pad Size A Min. B Min. C Min. D Min.								
< 680 pF	Normal	.150	.050	.200	.300				
< 000 pr	High Density	.130	.030	.200	.260				
> 680 pF	Normal	.185	.050	.200	.300				
	High Density	.165	.030	.200	.260				


	← -B- →		← -B →
1			
Â		- C	
	-	_ D	-


Horizontal Mount							
All Values	Normal	.280	.050	.200	.300		
All values	High Density	.260	.030	.200	.260		

PERFORMANCE DATA



RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700C Series NPO Porcelain and Ceramic Multilayer Capacitors

PERFORMANCE DATA

RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 700 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications with NPO performance. High density porcelain construction provides a rugged, hermetic package.

KYOCERA AVX offers an encapsulation option for applications requiring extended protection against arc-over and corona.

FUNCTIONAL APPLICATIONS

- Bypass
- · Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters
- · Antenna Tuning
- · Plasma Chambers
- Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

FEATURES

- Case E Size (.380" x .380")
- Capacitance Range 1pF to 2200pF
- · Extended WVDC up to 7200 VDC
- Low ESR/ESL
- · High Q
- · High RF Power
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · Available with Encapsulation Option*
- * For leaded styles only

PACKAGING OPTIONS

Tape & Reel

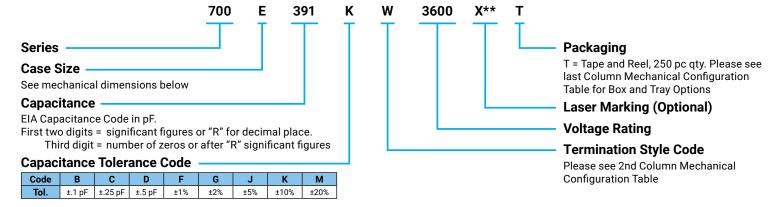
Trav (96 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Capacitance Range	1 pF to 2200 pF
Operating Temperature	-55°C to +125°C (No derating of working voltage).
Quality Factor	Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 2200 pF) @ 1 KHz.
Insulation Resistance (IR)	1 pF to 2200 pF 10⁵ Megohms min. @ 25°C at 500 VDC 10⁴ Megohms min. @ 125°C at 500 VDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	_	ted /DC	Cap.	Cap.	Tol.	Rated	WVDC	CAP.	CAP. (pF)	TOL.	RATED	WVDC	
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(pr)		STD.	EXT.	
1R0	1.0				5R1	5.1				390	39			ш	271	270				
1R1	1.1			ш	5R6	5.6			ш	430	4			VOTAGE	301	300				
1R2	1.2			AG	6R2	6.2	D 0		AG	470	47			70,	331	330		3600		
1R3	1.3			77	6R8	6.8	B, C,		7	510	51			>	361	360				
1R4	1.4			×	7R5	7.5			>	560	56			7200	391	390				
1R5	1.5			EXTENDED VOLTAGE	8R2	8.2			EXTENDED VOLTAGE	620	62				431	430				
1R6	1.6			EN	9R1	9.1			EN	680	68			9	471	470				
1R7	1.7			X	100	10		3600	X	750	75			EXTENDED	511	510				
1R8	1.8			4	110	11			H	820	82			<u> </u>	561	560		2500		
1R9	1.9	В, С,			120	12				910	91	F, G,		ũ	621	620	F, G,			
2R0	2.0	В, С, D	3600	7200	130	13			3600	3600	7200	101	100	J, K,	3600		681	680	J, K,	
2R1	2.1			7200	150	15			/200	111	110	М		EXT.	751	750	М			
2R2	2.2				160	16	F C			121	120			Ü	821	820				
2R4	2.4			GE	180	18	F, G, J, K,		GE	131	130			5000	911	910				
2R7	2.7			ΙŽ	200	20	M M		Ę	151	150				102	1000				
3R0	3.0			70	220	22			0 0	161	160			VOLT.	112	1100				
3R3	3.3			ED	240	24			8	181	180			_ >	122	1200		1000		
3R6	3.6			EXTENDED VOLTAGE	270	27			EXTENDED VOLTAGE	201	200				152	1500				
3R9	3.9			TE	300	30			JE	221	220			N/A	182	1800				
4R3	4.3			Ä	330	33			Ĕ	241	240			14/74	222	2200				
4R7	4.7				360	36														

VRMS = 0.707 X WVDC
• SPECIAL VALUES, TOLERANCES, MATCHING, AND CAPACITOR ASSEMBLIES ARE AVAILABLE. • KYOCERA AVX'S CUSTOM POWER CAPACITOR ASSEMBLY CATALOG, LISTS **ASSEMBLY**

HOW TO ORDER

The above part number refers to a 700 E Series (case size E) 390 pF capacitor, K tolerance (±10%), 3600 WVDC, with W termination (Tin /Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel Packaging.

OPTIONS. • DIFFERENT WORKING VOLTAGES ARE AVAILABLE • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

RF/Microwave Multilayer Capacitors (MLC)

MECHANICAL CONFIGURATION

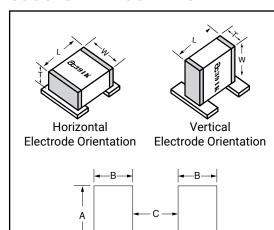
Series & Case	Term. Case Size W/T is		Outline W/T is a Termination		Dimensions thes (mm)			ead and Termination nensions and Material	- Pkg Type	Pkg
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Ркд Гуре	Code
700E	w	E Solder Plate	$\begin{array}{c c} Y \rightarrow & \longleftarrow & \longleftarrow & \longleftarrow \\ \hline & W & & \longrightarrow \\ \rightarrow & \vdash LT & \longleftarrow & \uparrow & \rightarrow \\ \end{array}$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	Р	E Pellet	Y→ ←	.380+.040010 (9.65+1.02-0.25)	5)		.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	Т	E Solderable Nickel Barrier	Y→ ←	.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	MS	E Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380 ±.010 (9.65 ±0.25)	170 (4.32) max.		$\begin{array}{c} \text{High Purity} \\ \text{Silver Leads} \\ \text{L}_{\text{L}} = .750 \ (19.05) \ \text{min} \\ \text{W}_{\text{L}} = .350 \pm .010 \ (8.89 \pm 0.25) \\ \text{T}_{\text{L}} = .010 \pm .005 \ (0.25 \pm 0.13) \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array}$	Tray, 16 or 32 pcs	J16 J32
700E	AR	E Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010					Tray, 16 or 32 pcs	J16 J32
700E	AW	E Axial Wire	→ LT ← W • ←	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
700E	RW	E Radial Wire	→ Lt ← ↓ w t→ Lt ←					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700E Series NPO Porcelain High RF Power Multilayer Capacitors

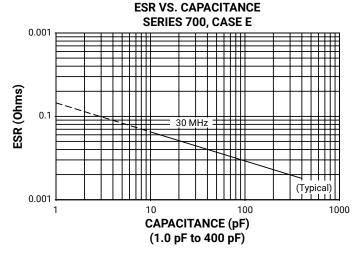
MECHANICAL CONFIGURATION

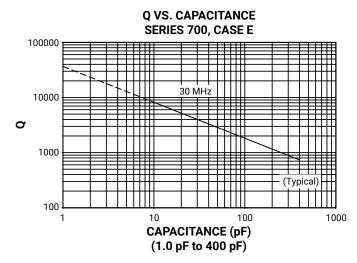
Series	Term.	Case Size	Outline	Outline inches (mm) Dimension		ead and Termination nensions and Material	Diam Tama	Pkg		
& Case Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Code
700E	WN	E Non-Mag Solder Plate	$\begin{array}{c c} & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & \downarrow \\ & \underline{\qquad} \\$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	PN	E Non-Mag Pellet	$\begin{array}{c c} Y \to \parallel \leftarrow & \downarrow \\ & \downarrow \\ \hline \underline{w} & \downarrow \\ \to \mid L \mid \leftarrow \uparrow \to \mid T \mid \leftarrow \end{array}$.380+.040010 (9.65+1.02-0.25)			.040 (1.02) max.	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	TN	E Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \parallel \leftarrow & \downarrow \\ & \downarrow \\ \hline \downarrow & \downarrow \\ \to \mid L \mid \leftarrow \uparrow \to \mid T \mid \leftarrow \end{array}$.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
700E	MN	E Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380 ±.010 (9.65 ±0.25)	.170 (4.32) max.		$High \ Purity \\ Silver \ Leads \\ L_{_L} = .750 \ (19.05) \ min \\ W_{_L} = .350 \pm .010 \ (8.89 \pm 0.25) \\ T_{_L} = .010 \pm .005 \ (0.25 \pm 0.13) \\ Leads \ are \ Attached \ with \\ High \ Temperature \ Solder.$	Tray, 16 or 32 pcs	J16 J32
700E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010					Tray, 16 or 32 pcs	J16 J32
700E	BN	E Non-Mag Axial Wire	→ L	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
700E	RN	E Non-Mag Radial Wire	→ L ← → W ←					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

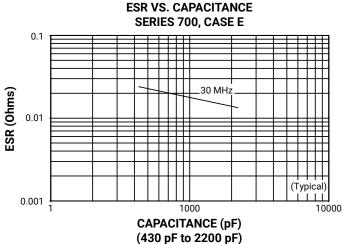

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

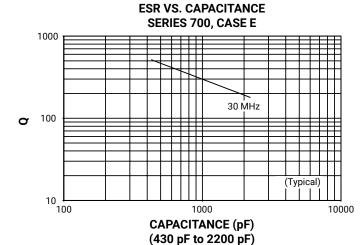
RF/Microwave Multilayer Capacitors (MLC)

700E Series NPO Porcelain High RF Power Multilayer Capacitors

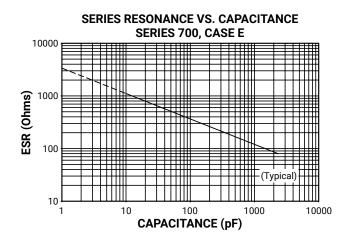

SUGGESTED MOUNTING PAD DIMENSIONS

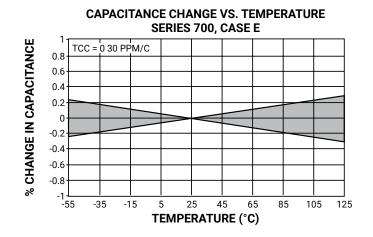



Mount Type	Case E									
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.					
Vertical Mount	Normal	.185	.050	.325	.425					
vertical Mount	High Density	.165	.030	.325	.385					
Horizontal Mount	Normal	.405	.050	.325	.425					
HOTIZOTILAT MOUTE	High Density	.383	.030	.325	.385					

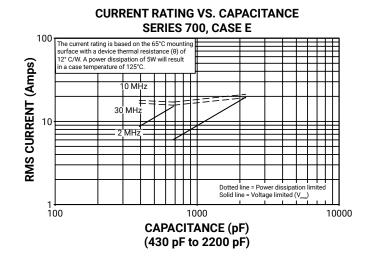

Dimensions are in inches.

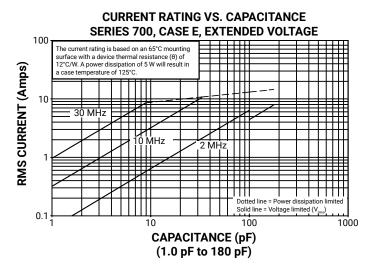
PERFORMANCE DATA




KYDCER3 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700E Series NPO Porcelain High RF Power Multilayer Capacitors




PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 700, CASE E 100 The current rating is based on an 65°C mounting surface with a device thermal resistance (θ) of 12°C/W. A power dissipation of 5 W will result in a case temperature of 125°C. RMS CURRENT (Amps) 2 MHz 10 MHz Dotted line = Power dissipation limited Solid line = Voltage limited (V **CAPACITANCE (pF)** (1.0 pF to 400 pF)

RF/Microwave Multilayer Capacitors (MLC)

800A Series NP0 Porcelain, High RF Power Ultra-Low ESR

FEATURES

- Case A Size (.055" x .055")
- · Low ESR / ESL
- High Q
- · Low Noise
- · Capacitance Range 0.1 pF to 100 pF
- Rated WVDC up to 250 VDC
- · Zero TCC
- · High Self-Resonance
- · Established Reliability (QPL)

GENERAL DESCRIPTION

KYOCERA AVX 800 A Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of highly conductive metal electrode systems, optimized case geometries, and proprietary dielectrics, yields the lowest ESR. KYOCERA AVX new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultralow ESR and superior thermal performance insure that the 800 A Series products are your best choice for high RF power applications from UHF through microwave frequencies. Typical applications: UHF and Microwave Communications Systems, Wireless Communications, Public Safety Radio, Telecom, WiMAX, and Satellite Systems.

Typical circuit applications: High RF Power Filter Networks, Combiners, Couplers, Matching Networks, Output Coupling, Antenna Coupling, and DC Blocking and Bypassing.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C
Capacitance Range	0.1 pF to 1000 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 2,000 @ 1 MHz.
Insulation Resistance (IR)	0.1 pF to 470 pF 10 ⁵ Megohms min. @ 25°C at rated WVDC 10 ⁵ Megohms min. @ 125°C at rated WVDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

ENVIRONMENTAL CHARACTERISTICS

Themal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

RF/Microwave Multilayer Capacitors (MLC)

800A Series NP0 Porcelain, High RF Power Ultra-Low ESR

CAPACITANCE VALUES

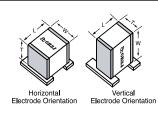
Cap.	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC
0R1	0.1	В		2R2	2.2			160	16		
0R2	0.2	В		2R4	2.4			180	18		
0R3	0.3	РС		2R7	2.7			200	20		
0R4	0.4	B, C		3R0	3.0			220	22		
0R5	0.5			3R3	3.3			240	24		
0R6	0.6			3R6	3.6	B, C,		270	27		
0R7	0.7			3R9	3.9	D		300	30		
0R8	0.8			4R3	4.3		250	330	33	F, G, J, K, M	250
0R9	0.9			4R7	4.7			360	36		
1R0	1.0			5R1	5.1			390	39		
1R1	1.1		250	5R6	5.6			430	43		
1R2	1.2	ВС		6R2	6.2			470	47		
1R3	1.3	B, C, D		6R8	6.8	Б.О		510	51		
1R4	1.4			7R5	7.5	B, C, J, K,		560	56		
1R5	1.5			8R2	8.2), K,		620	62		
1R6	1.6			9R1	9.1			680	68		
1R7	1.7			100	10			750	75		
1R8	1.8			110	11	F, G,		820	82		
1R9	1.9			120	12	J, K,		910	91		
2R0	2.0			130	13	M		101	100		
2R1	2.1			150	15						

HOW TO ORDER 800 100 T 250 X T **Series Packaging** T = Tape and Reel, 500 pc qty TV = Vertical Orientation of Product Tape Case Size and Reel, 500 pc qty See mechanical dimensions below For tray and box options, leave last position blank. Please see last column mechanical configuration table for Capacitance package quantities EIA Capacitance Code in pF. First two digits = significant figures or "R" for decimal place. **Laser Marking (Optional)** Third digit = number of zeros or after "R" significant figures **Voltage Rating Capacitance Tolerance Code Termination Style Code** С Code D G М ±10% Please see 2nd Column Mechanical Tol. ±.1 pF | ±.25 pF | ±.5 pF | ±1% ±2% ±5% ±20% Configuration Table The above part number refers to a 800A Series (case size A) 10 pF capacitor, J tolerance (±5%), 250 WVDC, with T termination (Tin Plated over Nickel Barrier Termination), Laser Marking and Tape and Reel 4000 pc qty. Packaging

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800A Series NP0 Porcelain, High RF Power Ultra-Low ESR

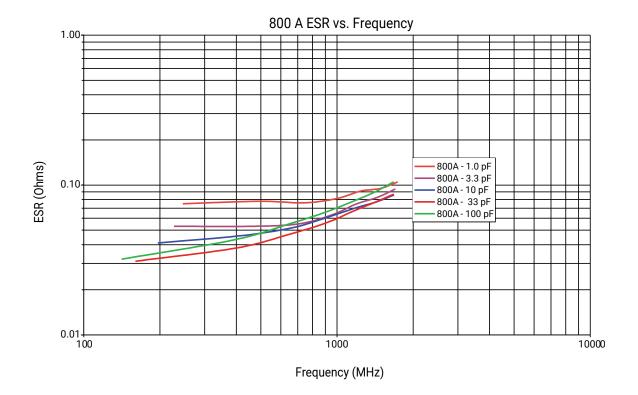
MECHANICAL CONFIGURATION

	Term.	Case Size	Outline ES W/T	Body Dimensions inches (mm)				Termination and Material	Pkg Type & Qty	Pkg Code
	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	rkg Type & Qty	1 kg couc
800A	Т	A Solderable Nickel Barrier	Y→ ← ↓ <u>w</u> → L ← [†] → T ←	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	.057	.010+.010005	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 4000 or 500 pcs Vertical T&R, 4000 or 500 pcs	T4K or T TV4K or TV
800A	W	A 🕞 Solder Plate	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	(1.45) max.	(0.25+0.25 -0.13)	Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 4000 or 500 pcs Vertical T&R, 4000 or 500 pcs	T4K or T TV4K or TV

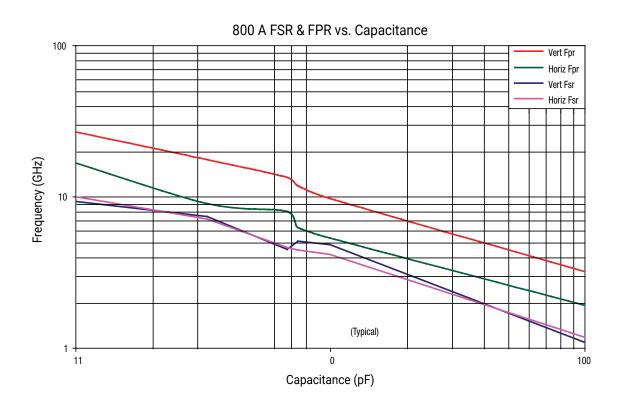

NON-MAGNETIC CONFIGURATION

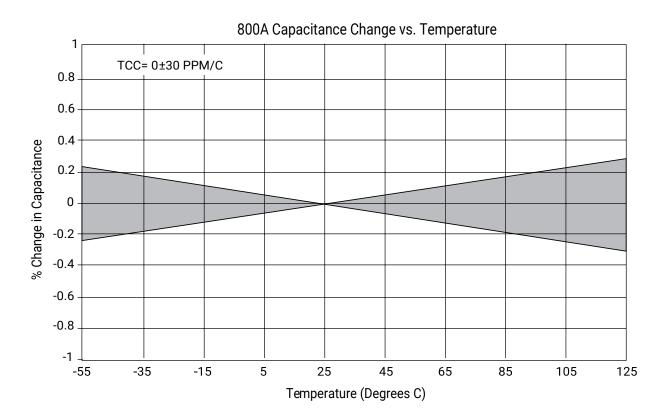
Series &	Term.	Case Size & Type	Non-Magnetic		Dimensions ches (mm)			Termination and Material	Pkg Type & Qty	Pka Codo
Case Size	Code		Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	rky Type & Qty	rky Code
800A	TN	A Non-Mag Solderable Barrier	Y→ ← ↓ <u> </u>	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010+.010005 (0.25+0.25 -0.13)	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 4000 or 500 pcs Vertical T&R, 4000 or 500 pcs	T4K or T TV4K or TV

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800A Series NP0 Porcelain, High RF Power Ultra-Low ESR



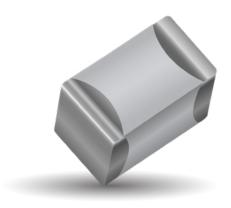
SUGGESTED MOUNTING PAD DIMENSIONS




Case A					
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.
Vertical Mount	Normal	.070	.050	.030	.130
vertical Mount	High Density	.050	.030	.030	.090
Horizontal Mount	Normal	.080	.050	.030	.130
Horizontai Mount	High Density	.060	.030	.030	.090
				. .	

Dimensions are in inches.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800A Series NP0 Porcelain, High RF Power Ultra-Low ESR


SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 80T	ROHS COMPLIANT	DK0080T	800A NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 ±0.1 ±0.1 1.6, 1.8, 2.0 ±0.25	\$135.00
Kit 81T	ROHS	DK0081T	800A NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value	1.0 to 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3	\$135.00
Kit 82T	ROHS	DK0082T	800A NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	\$135.00

RF/Microwave Multilayer Capacitors (MLC)

800B Series NP0 Porcelain, High RF Power Ultra-Low ESR

GENERAL DESCRIPTION

KYOCERA AVX's 800B Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of highly conductive metal electrode systems, optimized case geometries, and proprietary dielectrics, yields the lowest ESR. KYOCERA AVX's new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultralow ESR and superior thermal performance insure that the 800B Series products are your best choice for high RF power applications from VHF through microwave frequencies.

TYPICAL APPLICATIONS

- Avionics
- Public Safety Radio
- Wireless Communications
- VHF / UHF / HDTV **Broadcast Transmitters**
- Telecom
- WiMAX
- · Microwave Communication Systems and Satellite Systems

TYPICAL CIRCUIT APPLICATIONS

- High RF Power Filter Networks
 Output Coupling
- Matching Networks
- Couplers Combiners

- · Antenna Coupling
- · DC Blocking
- Bypassing

ENVIRONMENTAL TEST

The word Cheek	MIL CTD 202 Method 107 Condition A
Thermal Shock	MIL-STD-202, Method 107, Condition A
Moisture Resistance	MIL-STD-202, Method 106
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C 200% WVDC applied

FEATURES

- Case B Size (.110" x .110")
- · Rugged, reliable NPO dielectric
- · Case optimized for highest self resonant frequency
- · Capacitance Range 0.1 pF to 1000 pF
- · Lowest ESR
- · Capable of highest RF Power
- · RoHS Compliant/Lead-Free

PACKAGING OPTIONS

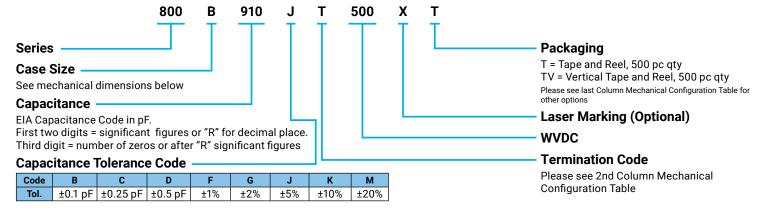
Orientation Tape & Reel

ENVIRONMENTAL CHARACTERISTICS

Quality Factor (Q)	> 2000 @ 1 MHz
Temperature Coefficient of Capacitance (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Insulation Resistance (IR)	0.1 pF to 1000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC 10 ⁴ Megohms min. @ +125°C at rated WVDC
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	Case B: 250% of rated WVDC for 5 secs
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater
Operating Temperature Range	From -55°C to +125°C (No derating of working voltage)
Termination Styles	See Mechanical Configurations
Terminal Strength	Terminations for chips withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

RF/Microwave Multilayer Capacitors (MLC)

800B Series NP0 Porcelain, High RF Power Ultra-Low ESR



CAPACITANCE VALUES

Cap.	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC
0R1	0.1	В		2R4	2.4			200	20			151	150		
0R2	0.2			2R7	2.7			220	22			161	160		300
0R3	0.3	B, C		3R0	3.0			240	24			181	180		300
0R4	0.4	В, С		3R3	3.3			270	27			201	200		
0R5	0.5			3R6	3.6	В О		300	30			221	220		
0R6	0.6			3R9	3.9	B, C, D		330	33			241	240		
0R7	0.7			4R3	4.3			360	36			271	270		
0R8	0.8			4R7	4.7			390	39			301	300		
0R9	0.9			5R1	5.1			430	43		500	331	330		200
1R0	1.0			5R6	5.6			470	47		300	361	360		
1R1	1.1		500	6R2	6.2		500	510	51	F, G,		391	390	F, G,	
1R2	1.2		300	6R8	6.8	D 0	300	560	56	J, K, M		431	430	J, K, M	
1R3	1.3	В, С,		7R5	7.5	B, C,		620	62	'*'		471	470		
1R4	1.4	D		8R2	8.2	J, K, M		680	68			511	510		
1R5	1.5			9R1	9.1	141		750	75			561	560		100
1R6	1.6			100	10			820	82			621	620		
1R7	1.7			110	11			910	91			681	680		
1R8	1.8			120	12	F, G,		101	100			751	750		
1R9	1.9			130	13	J, K,		111	110			821	820		50
2R0	2.0			150	15	М		121	120		300	911	910		30
2R1	2.1			160	16			131	130		300	102	1000		
2R2	2.2			180	18										

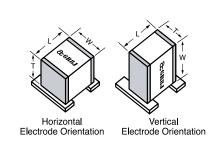
VRMS = 0.707 X WVDC

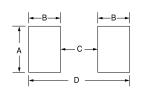
HOW TO ORDER

The above part number refers to a 800 B Series (case size B) 91 pF capacitor, J tolerance (±5%), 500 WVDC, with T termination (Tin Plated over Nickel Barrier Termination, RoHS Compliant), laser marking and tape and reel packaging.

[•] SPECIAL VALUES, TOLERANCES AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800B Series NP0 Porcelain, High RF Power Ultra-Low ESR


MECHANICAL CONFIGURATION


Series & Case	Term.	Case Size	Outline ES W/T is a Termination	Body Dimensions inches (mm)			Lead and Termination Dimensions and Material		Pkg Type	Pkg Code
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	& Qty	
800B	Т	B Solderable Nickel Barrier	Y→ ← ↓ <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>	.110+.020010 (2.79+0.51-0.25)	.110 ±.015 (2.79 ±0.38)	.070 (1.78)	.015 (0.38)	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs	T1K or T TV1K or TV
800B	W	B Solder Plate	Y→ ← ↓ <u>w</u> → L ← [†] → T ←	.110+.020010 (2.79+0.51-0.25)	.110 ±.015 (2.79 ±0.38)	max.	±.010 (0.25)	Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs	T1K or T TV1K or TV

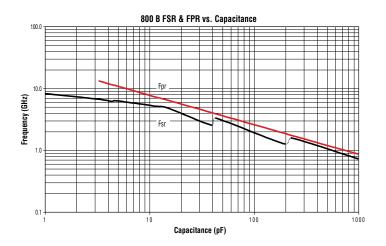
NON-MAGNETIC CONFIGURATION

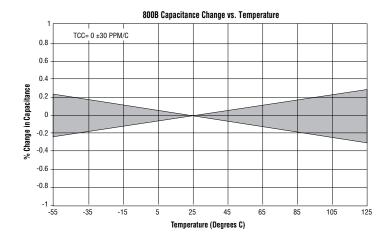
Series & Case Size	Term. Code	Case Size & Type	Non-Magnetic Configuration		dy Dimensions nches (mm)			Termination and Material	Pkg Type & Qty	Pkg Code
Size	Code	α rype	Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	α Qιγ	
800B	TN	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow & \\ \hline & & & & \\ \rightarrow \mid L \mid \leftarrow \uparrow \rightarrow \mid T \mid \leftarrow \end{array}$.110+.020010 (2.79+0.51-0.25)	.110 ±.015 (2.79 ±0.38)	.070 (1.78) max.	.015 (0.38) ±.010 (0.25)	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs	T1K or T TV1K or TV

SUGGESTED MOUNTING PAD DIMENSIONS

Case B Vertical Mount					
Cap Value .43	Pad Size	A Min.	B Min.	C Min.	D Min.
All Values	Normal	.090 (2.29)	.050 (1.27)	.075 (1.91)	.175 (4.45)
All values	High Density	.070 (1.78)	.030 (.762)	.075 (1.91)	.135 (3.43)

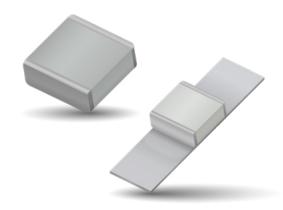
inches (mm)


Case B Horizontal Mount					
Cap Value .43	Pad Size	A Min.	B Min.	C Min.	D Min.
All Values	Normal	.130 (3.30)	.050 (1.27)	.050 (1.27)	.175 (4.45)
	High Density	.110 (2.79)	.030 (.762)	.075 (1.91)	.135 (3.43)


inches (mm)

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800B Series NP0 Porcelain, High RF Power Ultra-Low ESR

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800B Series NP0 Porcelain, High RF Power Ultra-Low ESR


SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF)	Tol.	Price
Kit 83T	ROHS	DK0083T	800B NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value	1.0 to 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3	±0.25	\$165.00
Kit 84T	Rohs	DK0084T	800B NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value		10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100 ±	±0.1	\$165.00
Kit 85T	RoHS	DK0085T	800B NPO Ceramic High RF Power MLCs 16 different values, 15 pcs. min. per value	100 to 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470		\$165.00

RF/Microwave Multilayer Capacitors (MLC)

800C Series NP0 Porcelain, High RF Power Ultra-Low ESR

GENERAL DESCRIPTION

KYOCERA AVX's 800 C Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of highly conductive metal electrode systems, optimized case geometries, and proprietary dielectrics, yields the lowest ESR. KYOCERA AVX's new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultralow ESR and superior thermal performance ensure that the 800C Series products are your best choice for high RF power applications from VHF through microwave frequencies.

TYPICAL APPLICATIONS

Bypass

- DC Blocking
- Coupling
- Impedance Matching

Tuning

TYPICAL CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Plasma Chambers

Transmitters

- · Medical (MRI coils)
- · Antenna Tuning

ENVIRONMENTAL TEST

Thermal Shock	MIL-STD-202, Method 107, Condition A.
Moisture Resistance	MIL-STD-202, Method 106.
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

FEATURES

- High Q
- Low ESR/ESL
- High RF Power
- 3600 WVDC
- · Capacitance Range: 2.2 pF to 3000 pF
- Case C Size (.250" x .250") Ultra-Stable Performance
 - High RF Current/Voltage
 - · High Reliability
 - · RoHS Compliant, Pb free

PACKAGING OPTIONS

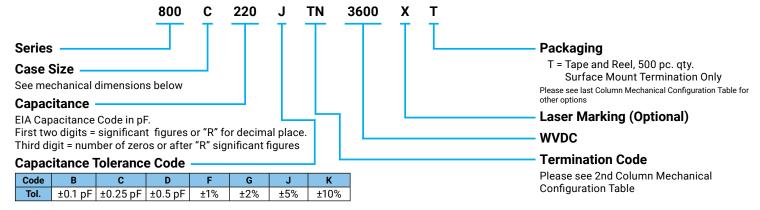
Tape & Reel

Tray (180 pcs)

ENVIRONMENTAL CHARACTERISTICS

Quality Factor (Q)	Greater than 5,000 (2.2 pF to 1000 pF) @ 1 MHz. Greater than 5,000 (1100 pF to 3000 pF) @ 1 KHz.
Temperature Coefficient of Capacitance (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Insulation Resistance (IR)	2.2 pF to 3000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC. Max. test voltage is 500 VDC.
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated above 500 volts DC and ≤1250 volts DC for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater.
Operating Temperature Range	From -55°C to +125°C (No derating of working voltage).
Termination Styles	See Mechanical Configurations
Terminal Strength	Terminations for chips withstand a pull of 10 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

RF/Microwave Multilayer Capacitors (MLC)


800C Series NP0 Porcelain, High RF Power Ultra-Low ESR

CAPACITANCE VALUES

CAP CODE	CAP (pF)	TOL.	RATED WVDC	CAP CODE	CAP (pF)	TOL.	RATED WVDC	CAP CODE	CAP (pF)	TOL.	RATED WVDC	
2R2	2.2			240	24			241	240			
2R4	2.4]		270	27			271	270			
2R7	2.7			300	30			301	300			
3R0	3.0			330	33			331	330			
3R3	3.3]		360	36]	3600	361	360			
3R6	3.6			390	39			391	390			
3R9	3.9]		430	43			431	430			
4R3	4.3	B C D		470	47			471	470		1000	
4R7	4.7	B, C, D		510	51			511	510			
5R1	5.1]		560	56			561	560			
5R6	5.6			620	62			621	620	F, G, J, K		
6R2	6.2			680	68			681	680			
6R8	6.8		3600	750	75	F, G, J, K		751	750			
7R5	7.5			820	82			821	820			
8R2	8.2				910	91			911	910		
9R1	9.1			101	100			102	1000	1		
100	10			111	110		2500	112	1100			
110	11			121	120		2300	122	1200			
120	12			131	130			152	1500		600	
130	13			151	150			182	1800			
150	15	F, G, J. K		161	160			222	2200			
160	16]		181	180			242	2400			
180	18]		201	200]		272	2700			
200	20			221	220			302	3000		500	
220	22											

HOW TO ORDER

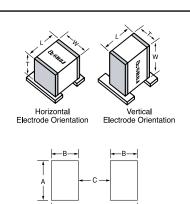
The above part number refers to a 800 C Series (case size C) 22 pF capacitor, J tolerance (±5%),3600 WVDC, with TN termination (RoHS Compliant, Tin Plated over Non-Magnetic Barrier Termination), laser marking and T&R packaging

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800C Series NP0 Porcelain, High RF Power Ultra-Low ESR

MECHANICAL CONFIGURATIONS

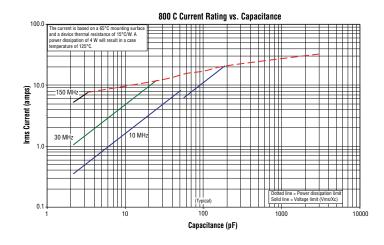
Series	Term.	Case Size	Outlines W/T Is A		Body Dimensions Inches (mm)			Lead And Termination Dimensions And Materials			
& Case Size	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Pkg Code	
800C	Т	C Solderable Barrier	Y→ ←	230+.025010 (5.84+0.64-0.25)				RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180	
800C	MS	C		245 ±.025 (6.22 ±0.64)	250 ±.015 (6.35 ±0.38)	.200 (5.08) max.	.040 (1.02) max.	$\begin{aligned} & \text{High Purity Silver Leads} \\ & \text{$L_{\scriptscriptstyle L} = .500 \ (12.7) \ min.} \\ & \text{$W_{\scriptscriptstyle L} = .240 \pm .005 \ (6.10 \pm .127)$} \\ & \text{$T_{\scriptscriptstyle L} = .004 \pm .001 \ (.102 \pm .025)$} \\ & \text{Leads are Attached with} \\ & \text{$High Temperature} \\ & \text{Solder} \end{aligned}$	Tray, 24 or 60 pcs	J24 or J60	
800C	AR	C Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_L \mid \leftarrow & \downarrow \stackrel{T_L}{\rightarrow} \mid \leftarrow \\ \hline w_L & & & w & \downarrow \\ \uparrow & \rightarrow \mid L \mid \leftarrow & & t_{-\mid T \mid +} \end{array}$					Silver Leads $L_{L} = .500 (12.7) \text{ min.}$ $W_{L} = ** \text{ See below}$ $T_{L} = .004 \pm .001 (.102 \pm .025)$	Tray, 24 or 60 pcs	J24 or J60	

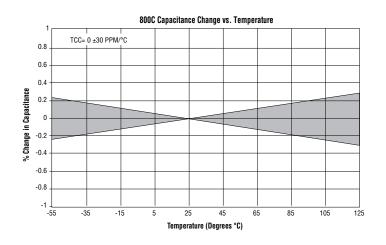
Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant. ** W_L = .110 (2.79) for capacitance values \leq 680 pF; W_L = .130 (3.30) for capacitance values > 680 pF

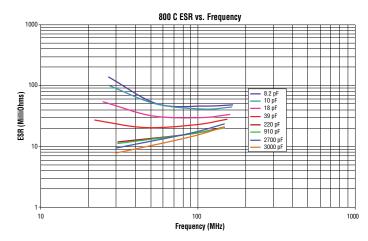

NON-MAGNETIC MECHANICAL CONFIGURATIONS

Series	Term.	Case Size	Outlines W/T is a		Dimensions ches (mm)		Lead and Termination Dimensions and Materials			
& Case SIZE	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Pkg Code
800C	TN	C Non-Mag Solderable Barrier.	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & W \\ \rightarrow & L & \leftarrow \uparrow \rightarrow \uparrow \uparrow \downarrow \leftarrow \end{array}$	230+.025010 (5.84+0.64-0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 or 500 pcs Tray, 36 or 180 pcs	T250 or T J36 or J180
800C	MN	C Non-Mag Microstrip245		±.025 (6.22 ±0.64)	50 ±.015 (6.35 ±0.38)	.200 (5.08) max.	3) (1.02)	$\begin{aligned} & \text{High Purity Silver Leads} \\ & \text{$L_{\scriptscriptstyle L} = .500 \ (12.7) \ min.} \\ & \text{$W_{\scriptscriptstyle L} = .240 \pm .005 \ (6.10 \pm .127)$} \\ & \text{$T_{\scriptscriptstyle L} = .004 \pm .001 \ (.102 \pm .025)$} \\ & \text{Leads are Attached with} \\ & \text{$High Temperature} \\ & \text{Solder} \end{aligned}$	Tray, 24 or 60 pcs	J24 or J60
800C	AN	C Non-Mag Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	245 ±.025 (6.22 ±0.64)				Silver Leads L _L = .500 (12.7) min. W _L = ** See below T _L = .004 ±.001 (.102 ±.025)	Tray, 24 or 60 pcs	J24 or J60

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800C Series NP0 Porcelain, High RF Power Ultra-Low ESR


SUGGESTED MOUNTING PAD DIMENSIONS




Case C Vertical Mount									
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.				
All Values	Normal	.200	.050	.200	.300				
All values	High Density	.180	.030	.200	.260				

Case C Horizontal Mount									
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.				
All Values	Normal	.280	.050	.200	.300				
All Values	High Density	.260	.030	.200	.260				

Dimensions are in inches.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800E Series NPO Ceramic High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX's 800 E Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of highly conductive metal electrode systems, optimized case geometries, and proprietary dielectrics, yields the lowest ESR. KYOCERA AVX's new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultralow ESR and superior thermal performance ensure that the 800 E Series products are your best choice for high RF power applications from VHF through microwave frequencies.

FUNCTIONAL APPLICATIONS

- Bypass
- Impedance Matching
- Coupling
- · DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters

- · Plasma Chambers
- Medical (MRI coils)
- Antenna Tuning

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A					
Moisture Resistance	Mil-STD-202, Method 106					
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours					
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC					
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations					
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.					

FEATURES

- Case E Size (.380" x .380")
- · Capacitance Range 3.3 pF to 5100 pF
- Ultra Low ESR
- High 0
- · High RF Power
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · High Reliability

PACKAGING OPTIONS

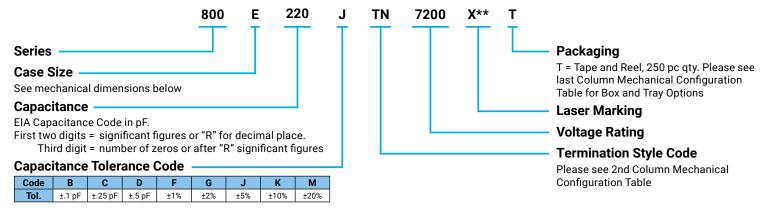
	_
k Reel	Tray
	(96 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Capacitance Range	3.3 pF to 5100 pF
Operating Temperature	-55°C to +125°C
Quality Factor	Greater than 5,000 (3.3 pF to 1000 pF) @ 1 MHz. Greater than 5,000 (1100 pF to 5,100 pF) @ 1 KHz.
Insulation Resistance (IR)	Max Test Voltage is 500 VDC 10 ⁵ Megohms min. @ 25°C at 500 VDC 10 ⁴ Megohms min. @ 125°C at 500 VDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	120% of WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

800E Series NPO Ceramic High RF Power Multilayer Capacitors



CAPACITANCE VALUES

Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. Code	Tol.	Rated WVDC
3R3	3.3			360	36			391	390		
3R6	3.6			390	39			431	430		
3R9	3.9			430	43			471	470		3600
4R3	4.3			470	47			511	510		
4R7	4.7			510	51			561	560		
5R1	5.1	D C D		560	56		7200	621	620		
5R6	5.6	B, C, D		620	62		/200	681	680		
6R2	6.2			680	68			751	750		
6R8	6.8			750	75			821	820		
7R5	7.5			820	82			911	910		
8R2	8.2			910	91	F, G, J, K		102	1000	F, G, J, K	
9R1	9.1			101	100			112	1100		2500
100	10		7200	111	110			122	1200		2300
110	11		/200	121	120			132	1300	F, G, J, K	
120	12			131	130			152	1500		
130	13			151	150			162	1600		
150	15			161	160			182	1800		
160	16			181	180			202	2000		
180	18	EC IV		201	200		3600	222	2200		
200	20	F, G, J, K		221	220		3600	242	2400		
220	22			241	240			272	2700		
240	24			271	270			302	3000		2000
270	27			301	300			332	3300		
300	30			331	330			392	3900		
330	33			361	360			472	4700		
								512	5100		

VRMS = 0.707 X WVDC

HOW TO ORDER

^{**}Optional

The above part number refers to a 800 E Series (case size E) 22 pF capacitor, J tolerance (±5%), 7200 WVDC, with TN termination (Tin Plated over Non-Magnetic Barrier Termination), laser marking and Tape and Reel Packaging Add "D' instead of "X" for double-sided marking.

[·] SPECIAL VALUES, TOLERANCES AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800E Series NPO Ceramic High RF Power Multilayer Capacitors

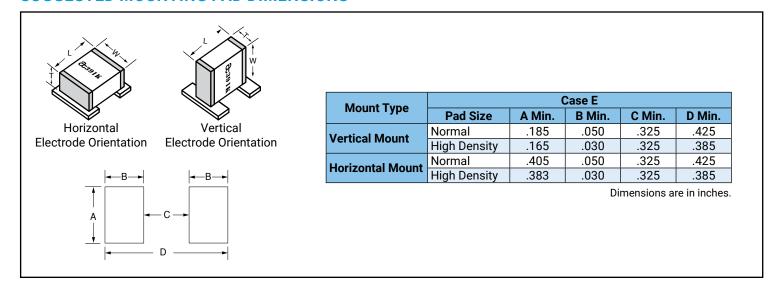
MECHANICAL CONFIGURATION

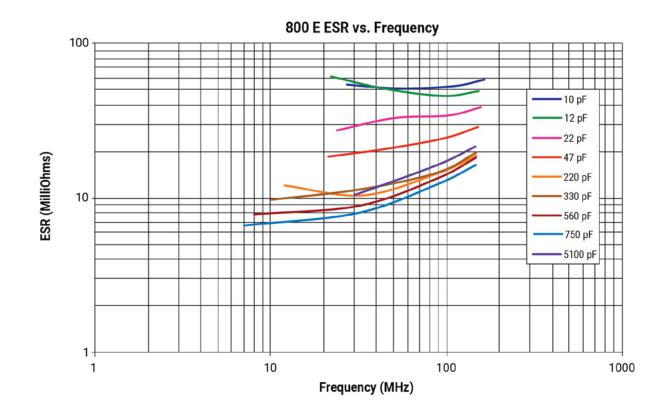
Series & Case	Term.	Case Size	Outline W/T is a Termination		ody Dimensions inches (mm)			Lead and Termination imensions and Material	Dkg Type	Pkg Code
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type	Pkg Code
800E	Т	E Solderable Nickle Barrier	Y→ ← ↓ w	.380+.015010 (9.65+0.38-0.25)			.040 (1.02) max.	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 or J96
800E	MS	E Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.015010	.190 (4.83)		High Purity Silver Leads L _L = .750 (19.05) min	Tray, 16 or 32 pcs	J16 or J32
800E	AR	E Axial Ribbon		.380+.035010 (9.65+0.89-0.25)	(9.65+0.38 -0.25)	(4.63) max.	N/A	$\begin{aligned} & W_{L} = .350 \pm .010 \ (8.89 \pm 0.25) \\ & T_{L} = .010 \pm .005 \ (0.25 \pm 0.13) \\ & Leads \ are \ Attached \ with \\ & High \ Temperature \ Solder. \end{aligned}$	Tray, 16 or 32 pcs	J16 or J32
800E	AW	E Axial Wire	→ LL ← ↓ w •					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

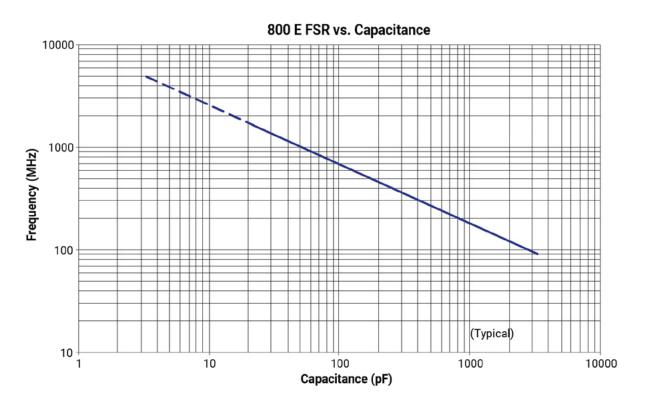
NON MECHANICAL CONFIGURATION

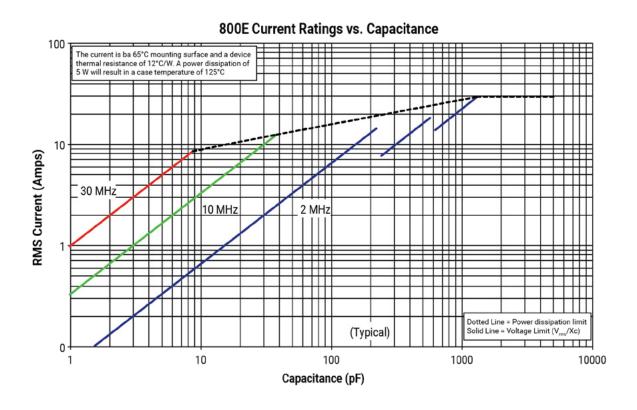
Series & Case	Term.	Case Size	Outline W/T is a Termination		Dimensions ches (mm)			Lead and Termination imensions and Material	- Pkg Type	Pkg Code
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Рку гуре	
800E	TN	E Non-Mag Solderable Barrier	Y→ ← ↓ W	.380+.015010 (9.65+0.38-0.25)			.040 (1.02) max.	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 24 or 96 pcs	T J24 or J96
800E	MN	E Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380 ±.010	170 (4.32)	N/A	High Purity Silver Leads $L_L = .750 (19.05) \text{ min}$	Tray, 16 or 32 pcs	J16 or J32
800E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.380+.035010 (9.65+0.89-0.25)	(9.65 ±0.25)	max.		$W_L = .350 \pm .010 (8.89 \pm 0.25)$ $T_L = .010 \pm .005 (0.25 \pm 0.13)$ Leads are Attached with High Temperature Solder.	Tray, 16 or 32 pcs	J16 or J32
800E	BN	E Non-Mag Axial Wire	→ LL ← ↓ w •					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20


Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

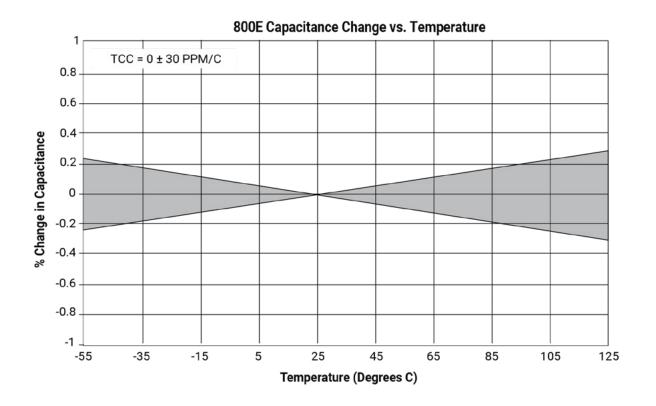

RF/Microwave Multilayer Capacitors (MLC)

800E Series NPO Ceramic High RF Power Multilayer Capacitors


SUGGESTED MOUNTING PAD DIMENSIONS



RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800E Series NPO Ceramic High RF Power Multilayer Capacitors



RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800E Series NPO Ceramic High RF Power Multilayer Capacitors

RF/Microwave Multilayer Capacitors (MLC)

800H Series NPO Ceramic High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX's 800 H Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of highly conductive metal electrode systems, optimized case geometries, and proprietary dielectrics, yields the lowest ESR. KYOCERA AVX's new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultra-low ESR and superior thermal performance ensure that the 800 H Series products are your best choice for high RF power and High CV applications.

FUNCTIONAL APPLICATIONS

- Bypass
- Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters
- · Plasma Chambers
- Induction Charging Systems
- Antenna Tuning
- Medical (MRI coils)
- Inductive Heating

ENVIRONMENTAL CHARACTERISTICS

	,
Thermal Shock	MIL-STD-202, Method 107, Condition A
Moisture Resistance	MIL-STD-202, Method 106
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C at rated voltage.
Termination Styles	See Mechanical Configurations
Terminal Strength	Terminations for chips withstand a pull of 12 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

FEATURES

- Case H Size (.720" x .740")
- · Capacitance Range 100 pF to 20,000 pF
- Ultra Low ESR
- High 0
- · High RF Power
- · Ultra-Stable Performance
- · High RF Current/Voltage
- · High Reliability

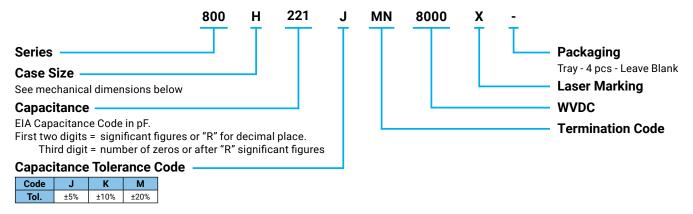
PACKAGING OPTIONS

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ±30 PPM/°C (-55°C to +125°C)
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater
Operating Temperature	From -55°C to +125°C
Quality Factor	Greater than 5000 (100 pF to 1000 pF) @ 1 MHz. Greater than 5000 (1100 pF to 20,000 pF) @ 1 KHz.
Insulation Resistance (IR)	Max Test Voltage is 500 VDC 10 ⁵ Megohms min. @ 25°C at 500 VDC 10 ⁴ Megohms min. @ 125°C at 500 VDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	120% of WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

800H Series NPO Ceramic High RF Power Multilayer Capacitors



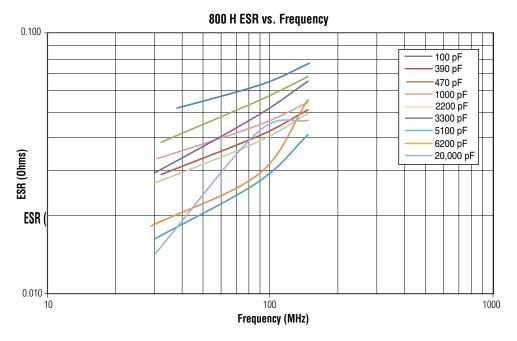
CAPACITANCE VALUES

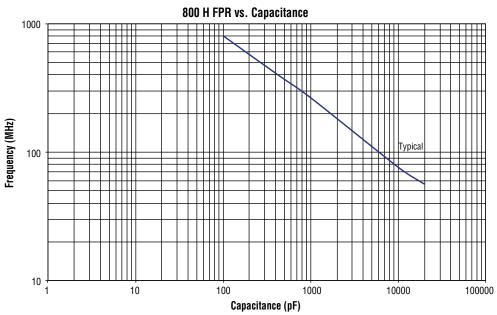
CAP.	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED WVDC
101	100			561	560			332	3300		
111	110			621	620			392	3900		
121	120			681	680			472	4700		
131	130			751	750			512	5100		
151	150		8000	821	820		5000	562	5600		
161	160			911	910			622	6200		
181	180			102	1000			682	6800		
201	200			112	1100	G, J, K		752	7500		3000
221	220	G, J, K		122	1200			822	8200	G, J, K	
241	240			132	1300			912	9100		
271	270			152	1500			103	10000		
301	300			162	1600			113	11000		
331	330			182	1800		3000	123	12000		
361	360		5000	202	2000			133	13000		
391	390			222	2200			153	15000		2000
431	430			242	2400			163	16000		
471	470			272	2700			183	18000		
511	510			302	3000			203	20000		

SPECIAL VALUES, TOLERANCES AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.

HOW TO ORDER

The above part number refers to a 800 H Series (case size H) 220 pF capacitor, J tolerance (±5%), 8000 WVDC, with MN Non-Magnetic termination (Microstrip Termination), laser marking and Matrix Tray packaging.

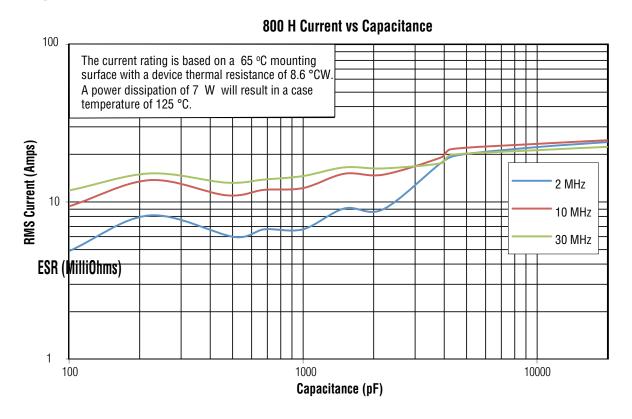

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800H Series NPO Ceramic High RF Power Multilayer Capacitors

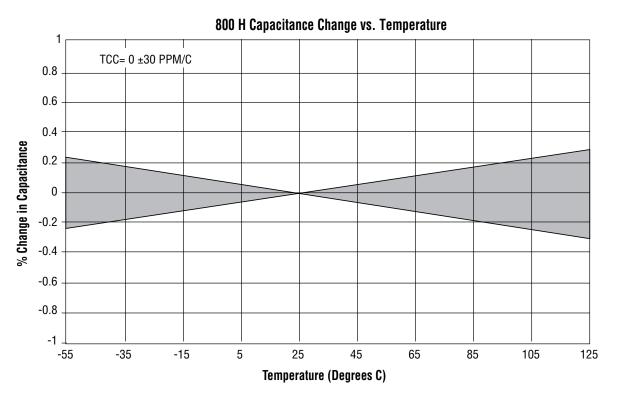


NON MECHANICAL CONFIGURATION

Series & Case	Term.	Case Size	Outline W/T is a Termination		ly Dimensions nches (mm)	Lead and Termination Dimensions and Material		
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials
800H	MN	H Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.735+.060010 (18.67+1.524254)	.750+.020010 (19.05+.508254)	.220 (5.59) max.	N/A	High Purity Silver Leads $L_{L} = .750 \ (19.05) \ min.$ $W_{L} = .660 \pm .010 \ (16.764 \pm .254)$ $T_{L} = .010 \pm .001 \ (.254 \pm .025)$ Leads are Attached with High Temperature Solder

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.





RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800H Series NPO Ceramic High RF Power Multilayer Capacitors

RF/Microwave Multilayer Capacitors (MLC)

800R Series NPO Ceramic Ultra-Low ESR Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX's 800 R Series offers superb performance in demanding high RF power applications requiring consistent and reliable operation. The combination of optimized case geometry, highly conductive electrode formulations and proprietary dielectrics, yields the lowest ESR and superior heat transfer. KYOCERA AVX's new NPO low loss rugged dielectrics are designed to provide superior heat transfer in high RF power applications. Ultra-low ESR and superior thermal performance ensure that the 800 R Series products are your best choice for high RF power applications from UHF through microwave frequencies.

TYPICAL APPLICATIONS

- Homeland Security/Public Safety Radio (APCO-25)
- WiMAX/LTE*
- Satellite Systems
- Microwave Communications
- · Digital HD FM **Transmitters**
- **Avionics**
- · Digital HDTV Transmitters
- · Medical Electronics

TYPICAL CIRCUIT APPLICATIONS

- · High RF Power Filter Networks
- Matching Networks
- **Output Coupling**
- · DC Blocking

- Combiners
- Couplers
- · Antenna Coupling
- Bypassing

ENVIRONMENTAL TEST

Thermal Shock	MIL-STD-202, Method 107, Condition A.
Moisture Resistance	MIL-STD-202, Method 106.
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C 200% WVDC applied

FEATURES

- Case R Size (.070" x .090")
- Optimized for highest self resonant frequency
- Capacitance Range 1 pF to 100 pF
- · Capable of highest RF Power
- · Rugged, reliable NPO dielectric · RoHS Compliant / Lead-Free
 - · Optimized for lowest ESR and superior heat transfer

PACKAGING OPTIONS

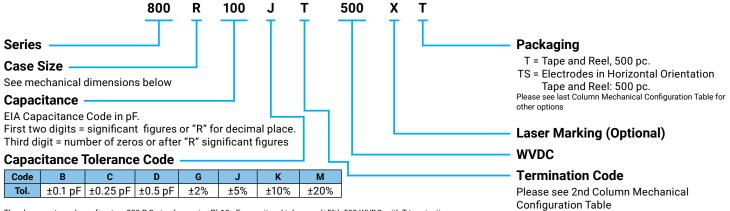
Tape & Reel

ENVIRONMENTAL CHARACTERISTICS

Quality Factor (Q)	> 2,000 @ 1 MHz				
Temperature Coefficient of Capacitance (TCC)	0 ±30 PPM/°C (-55°C to +125°C)				
Insulation Resistance (IR)	1 pF to 100 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC 10 ⁴ Megohms min. @ +125°C at rated WVDC				
Working Voltage (WVDC)	500 WVDC				
Dielectric Withstanding Voltage (DWV)	Case R: 250% of rated WVDC for 5 secs				
Aging Effects	None				
Piezoelectric Effects	None				
Capacitance Drift	±(0.02% or 0.02 pF), whichever is greater				
Operating Temperature Range	From -55°C to +125°C				
Termination Styles	RoHS Compliant and Solder Plate See Mechanical Configurations				
Terminal Strength	Terminations for chips withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, Method 211.				

RF/Microwave Multilayer Capacitors (MLC)

800R Series NPO Ceramic Ultra-Low ESR Multilayer Capacitors


CAPACITANCE VALUES

Cap. Code	Cap.(pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC	Cap. Code	Cap. (pF)	Tol.	Rated WVDC
1R0	1.0			3R9	3.9			220	22		
1R1	1.1			4R3	4.3			240	24		
1R2	1.2			4R7	4.7			270	27		
1R3	1.3			5R1	5.1	B, C, D		300	30		
1R4	1.4			5R6	5.6			330	33		
1R5	1.5			6R2	6.2			360	36		
1R6	1.6			6R8	6.8			390	39		
1R7	1.7			7R5	7.5	B, C, J,		430	43		
1R8	1.8	D C D	500	8R2	8.2	K, M	K, M 500	470	47	G, J	500
1R9	1.9	B, C, D	500	9R1	9.1		500	510	51	K, M	500
2R0	2.0			100	10			560	56		
2R1	2.1			110	11			620	62		
2R2	2.2			120	12			680	68		
2R4	2.4			130	13	G, J		750	75		
2R7	2.7			150	15	K, M		820	82		
3R0	3.0			160	16			910	91		
3R3	3.3			180	18			101	100		
3R6	3.6			200	20						

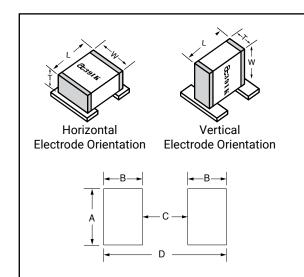
VRMS = 0.707 X WVDC

SPECIAL VALUES, TOLERANCES AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.

HOW TO ORDER

The above part number refers to a 800 R Series (case size R) 10 pF capacitor, J tolerance (±5%), 500 WVDC, with T termination (Tin Plated over Nickel Barrier, RoHS Compliant), laser marked, and tape and reel packaging.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 800R Series NPO Ceramic Ultra-Low ESR Multilayer Capacitors

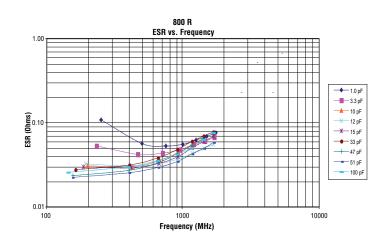

MECHANICAL CONFIGURATION

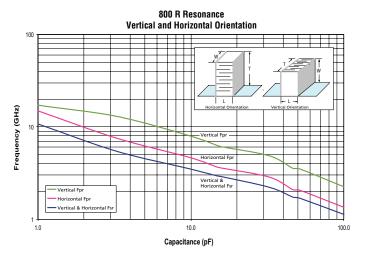
Series & Case	Term. Code	Case Size	Outline ES W/T is a Termination		dy Dimensions inches (mm)		Lead and Termination Dimensions and Material		Pkg Type	Pkg Code
Size	Code	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	& Qty	
800R	Т	R Solderable Nickel Barrier	Y→ ←	.070 ±.015 (1.78±0.38)	.090 ±.010 (2.29±0.25)	.115 (2.92) max.	.010+.010005 (0.25+0.25 - 0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Horizontal T&R, 1000 or 500 pcs	T1K or T TS1K or TS
800R	W	R Solder Plate	Y→ ←	.070 ±.015 (1.78±0.38)	.090 ±.010 (2.29±0.25)	.115 (2.92) max.	.010+.010005 (0.25+0.25 - 0.13)	Tin/ Lead, Solder Plated over Nickel Barrier Termination	T&R, 1000 or 500 pcs Horizontal T&R, 1000 or 500 pcs	T1K or T TS1K or TS

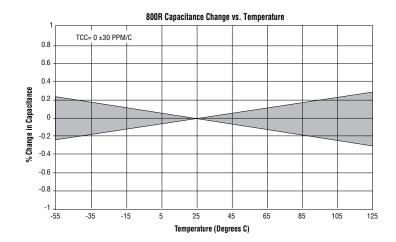
NON-MAGNETIC CONFIGURATION

Series &	Term.	Case Size	Non-Magnetic				Lead and T Dimensions	Pkg Type	Pkg	
Case Size	Code	& Type	Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	& Qty	Code
800R	TN	R Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \leftarrow & \downarrow \\ & \boxed{T} & \\ \to \bot \leftarrow^{\uparrow} \to W \leftarrow \end{array}$.070 ±.015 (1.78±0.38)	.090 ±.010 (2.29±0.25)	.115 (2.92) max.	.010+.010005 (0.25+0.25 - 0.13)	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 1000 or 500 pcs Horizontal T&R, 1000 or 500 pcs	T1K or T TS1K or TS

SUGGESTED MOUNTING PAD DIMENSIONS


Mount Type	Case R								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.				
Vertical Mount	Normal	.125	.050	.030	.130				
vertical Mount	High Density	.115	.030	.030	.090				
Horizontal Mount	Normal	.110	.050	.030	.130				
Horizontal Mount	High Density	.090	.030	.030	.090				


Dimensions are in inches.


RF/Microwave Multilayer Capacitors (MLC)

800R Series NPO Ceramic Ultra-Low ESR Multilayer Capacitors

RF/Microwave Multilayer Capacitors (MLC)

900C Series X7R Ceramic RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 900 C Series RF Capacitors. This Series exhibits superior volumetric efficiency, providing high levels of capacitance for HF/ RF power applications. Ceramic construction provides a rugged, hermetic package.

KYOCERA AVX offers an encapsulation option for applications requiring extended protection against arc-over and corona.

FEATURES

- Case C Size (.250" x .250")
- · Low ESR / ESL
- Rugged Construction
- · Encapsulation Option Available *
- · Capacitance Range $0.01\mu F$ to $1 \mu F$
- Mid-K
- · High Reliability

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

Special **Packaging Available**

Cap-Pak® (100 pcs)

FUNCTIONAL APPLICATIONS

- Bypass DC Blocking
- Coupling

TYPICAL CIRCUIT APPLICATIONS

- · HF/RF Power Amplifiers
- · Medical Electronics.
- High Frequency Switch Mode **Power Supplies**
- *For leaded styles only.

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A.
Moisture Resistance	MIL-STD-202, Method 106.
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

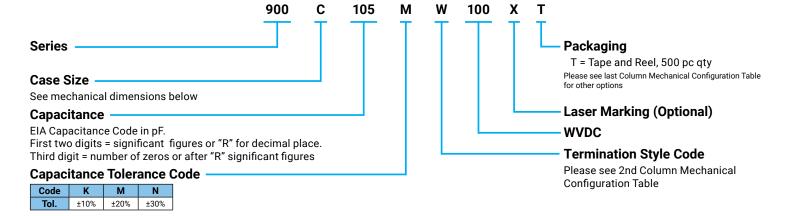
ELECTRICAL SPECIFICATIONS

Dissipation Factor (DF)	2.5% max. at 1 KHz
Temperature Coefficient of Capacitance (Tcc)	Less than ±15% (-55°C to +125°C)
Insulation Resistance (IR)	0.01 MFd to 1 MFd 1000 megohms min. @ +25°C at rated WVDC. 100 megohms min. @ +125°C at rated WVDC.
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	Case C: 250% of rated WVDC for 5 secs.
Aging Effects	3% maximum per decade hour
Piezoelectric Effects	Negligible
Dielectric Absorption	2% typical
Operating Temperature Range	-55°C to +125°C (No derating of working voltage)
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termina-tion surface of the capacitor. Test per MIL-STD-202, method 211.

RF/Microwave Multilayer Capacitors (MLC)

900C Series X7R Ceramic RF Power Multilayer Capacitors

CAPACITANCE VALUES


Cap. Code	Cap. (Mfd)	Tol.	Rated Wvdc
103	.010		300
153	.015		300
223	.022		300
333	.033		250
473	.047		250
683	.068		250
104	.10	K, M, N	200
154	.15	, IVI, IN	200
224	.22		200
334	.33		150
474	.47		150
684	.68		150
824	.82		100
105	1.0		100

Code	Code K		N	
Tol.	±10%	±20%	±30%	

VRMS = 0.707 X WVDC

- SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE.
- ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

HOW TO ORDER

The above part number refers to a 900 C Series (case size C) 1.0 MFd capacitor, M tolerance (±20%), 100 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Matrix Tray packaging.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 900C Series X7R Ceramic RF Power Multilayer Capacitors

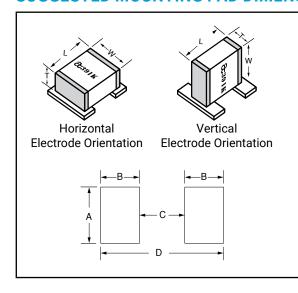
MECHANICAL CONFIGURATIONS

Series		Case Size	Outlines	Е	Body Dimension Inches (Mm)	s	D	Lead And Termination imensions And Materials	Pkg Type	Pkg		
& Case Size	Term. Code	& Type	W/T Is A Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	& Qty	Code		
900C	w	C Solder Plate	Y→ ← ↓ W	.230+.020 010 (5.84 +0.51 -0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	T250 T & R 500 Cap PaK 36	T250 T C36		
900C	Р	C Pellet	Y→ ←	.230+.025 010 (5.84 +0.64 -0.25)			.040 (1.02) max.	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T250 T&R 500 Cap PaK 36	T250 T C36		
900C	Т	Solderable Nickel Barrier	Y→ ← ↓ W ← ↑ ↑ ← ← ↑ ↑	.230 +.020 010 (5.84 +0.51 -0.25						RoHS Compliant Tin Plated over Nickel Barrier Termination	T250 T & R 250 Cap PaK 36	T250 T C36
900C	MS	C Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		250 + 015	.145 (3.68) max. for capacitance values < 0.82 MFd;		High Purity Silver Leads LL = .500 (12.7) min. WL = .240 ±.005 (6.10 ±.127)	Cap Pak			
900C	AR	C Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.250 ±.015 (6.35 ±0.38)			TL = .004 ±.001 (.102 ±.025) Leads are Attached with High Temperature Solder.	24	C24		
900C	AW	C Axial Wire	→ LL	.245 ±.025 (6.22 ±0.64)	.245 ±.025 (6.22 ±0.64)	.245 ±.025 (6.22 ±0.64)			N/A	Silver-plated Copper Leads LL = 1.0 (25.4) min. Dia. = .032 ±.002 (0.81 ±0.05	Cap Pak 24	C24
900C	VA	C Veritical Axial Ribbon						Silver Leads LL = .500 (12.7) min. WL = * See below TL = .004 ±.001 (.102 ±.025)	Cap Pak 24	C24		
900C	RW	C Radial Wire	→ L ← → W ←					Silver-plated Copper Leads LL = 1.0 (25.4) min. Dia. = .032 ±.002 (0.81 ±0.05)	Cap Pak 24	C24		

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant. ** WL = .110 (2.79) for capacitance values < 0.82 MFd.; WL = .130 (3.30) for capacitance values \geq 0.82 MFd.

RF/Microwave Multilayer Capacitors (MLC)

900C Series X7R Ceramic RF Power Multilayer Capacitors

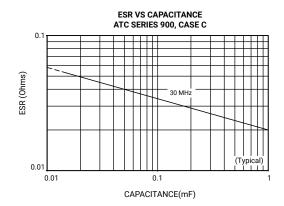


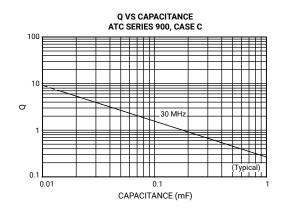
NON-MAGNETIC MECHANICAL CONFIGURATIONS

Series & Case	Term. Code	Case Size	Outlines W/T Is A	Body Dimensions Inches (Mm)		Lead And Termination Dimensions And Materials		Pkg Type & Qty	Pkg Code	
Size	Code & Type Termination Surface		Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	α ψιγ	Code
900C	WN	C Non-Mag Solder Plate	$\begin{array}{c c} Y \rightarrow & \longleftarrow & \longleftarrow & \longleftarrow \\ \hline & W & & \longrightarrow \\ \rightarrow & L & \longleftarrow & \uparrow & \rightarrow \\ \end{array}$.230 +.025010 (5.84 + 0.64-0.25)	.250 ±.015	.145 (3.68) max. < 0.82 MFd	.040 (1.02)	Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T & R 500 Cap PaK 36	T C36
900C	TN	C Non-Mag Solderable Barrier	Y→ ←	.230 +.025010 (5.84 + 0.64-0.25)	(6.35 ±0.38)	.165 (4.19) max. ≥0.82 MFd	màx. ´	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T & R 500 Cap PaK 36	T C36

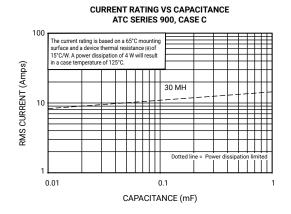
Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS

SUGGESTED MOUNTING PAD DIMENSIONS

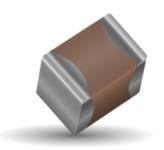

Case C Vertical Mount									
Cap Value Pad Size A Min. B Min. C Min.									
< .82 μF	Normal	.150	.050	.200	.300				
< .ο∠ μΓ	High Density	.130	.030	.200	.260				
≥ .82 µF	Normal	.185	.050	.200	.300				
	High Density	.165	.030	.200	.260				


Horizontal Mount									
All Values	Normal	.150	.050	.200	.300				
All Values	High Density	.130	.030	.200	.260				

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 900C Series X7R Ceramic RF Power Multilayer Capacitors



PERFORMANCE DATA


SERIES RESONANCE VS CAPACITANCE ATC SERIES 900, CASE C 100 FREQUENCY (MHz) 0.01 CAPACITANCE (mF)

RF/Microwave Multilayer Capacitors (MLC)

920C Series X7R Ceramic RF Power Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX's 920C Series MLC capacitors offer superior quality at a competitive price. This MLC Series is manufactured for KYOCERA AVX in accordance with KYOCERA AVX's high quality standards. Ceramic construction provides a rugged and reliable hermetic package. Available termination styles include a standard solder plate over a nickel barrier for most applications and palladium silver for non-magnetic applications commonly used in medical electronics.

FEATURES

- Case C Size (.250" x .250")
- · Low ESR / ESL
- Rugged Construction
- · Encapsulation with **Encapsulation Option***
- · Capacitance Range $0.01\mu F$ to $1 \mu F$
- Mid-K
- · High Reliability

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

Special **Packaging Available**

Cap-Pak® (100 pcs)

FUNCTIONAL APPLICATIONS

- Bypass
- DC Blocking
- Coupling

CIRCUIT APPLICATIONS

- · HF Amplifiers
- Switch Mode Power Supplies
- · High Frequency SMPS Filters
- *For leaded styles only.

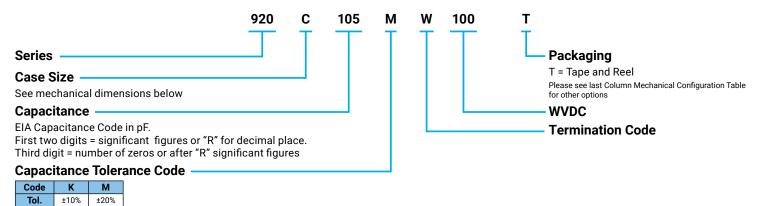
ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A.
Moisture Resistance	MIL-STD-202, Method 106.
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208

ELECTRICAL SPECIFICATIONS

Dissipation Factor (DF)	2.5% max. at 1 KHz
Temperature Coefficient of Capacitance (Tcc)	Less than ±15% (-55°C to +125°C)
Insulation Resistance (IR)	0.01 MFd to 1 MFd 1000 megohms min. @ +25°C at rated WVDC. 100 megohms min. @ +125°C at rated WVDC.
Working Voltage (WVDC)	See Capacitance Values Table
Dielectric Withstanding Voltage (DWV)	Case C: 250% of rated WVDC for 5 secs.
Aging Effects	3% maximum per decade hour
Piezoelectric Effects	Negligible
Dielectric Absorption	2% typical
Operating Temperature Range	-55°C to +125°C (No derating of working voltage)
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 10 lbs. min., 15lbs. typical, for 5 seconds in direction perpendicular to the termina-tion surface of the capacitor. Test per MIL-STD-202, method 211.

RF/Microwave Multilayer Capacitors (MLC)


920C Series X7R Ceramic RF Power Multilayer Capacitors

CAPACITANCE VALUES

Cap. Code	Cap. (Mfd)	Tol.	Rated Wvdc	Cap. Code	Cap. (Mfd)	Tol.	Rated Wvdc	
103	.010			224	.22		200	
153	.015		300	334	.33			
223	.022			474	.47		150	
333	.033	1/ 1/4	250	684	.68	IZ NA		
473	.047	K, M		824	82	K, M	100	
683	.068			105	1.0		100	
104	.10		200	_	_			
154	.15		200	-	-		_	

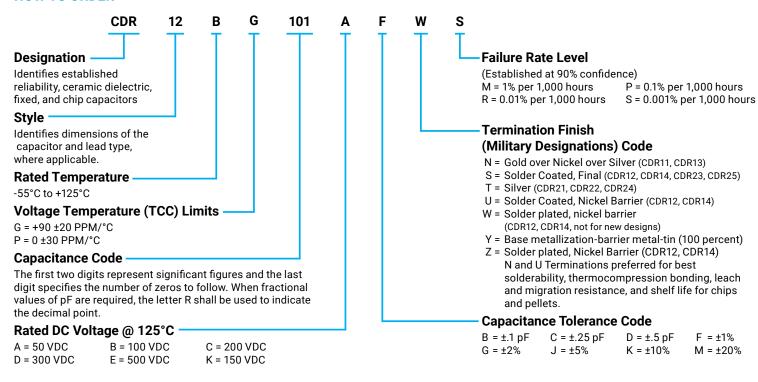
HOW TO ORDER

The above part number refers to a 920 C Series (case size C) 1.0 MFd capacitor, M tolerance (±20%), 100 WVDC, with W termination (solder plate) and Tape and Reel Packaging.

MECHANICAL CONFIGURATIONS

S	Series& Term. Case Size		Outlines W/T Is A		Body Dimensions Inches (mm)			Lead And Termination Dimensions and Materials	Pkg Type	Pkg	
Ca	ase Size	Code	& Type	Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	& Qty	Code
	920C	W	C Solder Plate	Y→ ←	0.22+.020010 (5.58+0.51 -0.25)	.250 ±.015 (6.35 ±0.38)	.157 (3.98) max.	.040 (1.02) max.	SOLDER PLATE Nickel barrier, solder plated. Rugged high performance termination for lower cost, high volume applications	T & R 500 Cap PaK 36	T C36
	920C	Т	C Solderable Nickel Barrier	Y→ ←	0.22+.020010 (5.58+0.51 -0.25)	.250 ±.01 (6.35 ±0.25)	.157 (3.98) max.		RoHS Compliant Tin Plated over Nickel Barrier Termination	T & R 500 Cap PaK 36	T C36

NON-MAGNETIC MECHANICAL CONFIGURATIONS


Series & Case	Term. Code	W/IIeA			Body Dimensions Inches (mm)			Lead And Termination Dimensions and Materials		Pkg Code
Size	Coue	αιγρε	Termination Surface	Length (L)	Length (L) Width (W) Thickness (T)		Overlap (Y) Materials		& Qty	Code
920C	CN	C Non-Mag Chip	Y→ ←	0.22+.020010 (5.58+0.51 -0.25)	.250 ±.01 (6.35 ±0.25)	.157 (3.98) max	.045 (1.14) max.	NON-MAGNETIC PALLADIUM SILVER TERMINATIONS	T & R 500 Cap PaK 36	T C36
920C	TN	C Non-Mag Solderable Nickel Barrier	$\begin{array}{c c} Y \rightarrow \leftarrow & \downarrow & \\ \hline & w & \\ \hline \rightarrow & L & \leftarrow \uparrow \rightarrow T \leftarrow \end{array}$	0.22+.020010 (5.58+0.51 -0.25)	.250 ±.01 (6.35 ±0.25)	.157 (3.98) max	.045 (1.14) max.	RoHS Compliant Tin Plated over Non-Magnetic L T Barrier Termination	T & R 500 Cap PaK 36	T C36

RF/Microwave Multilayer Capacitors (MLC)

HOW TO ORDER

TABLE I - STYLES CDR11 AND CDR12 CAPACITOR CHARACTERISTICS

Type Designation *	Capacitance Range (pF)	Capacitance Tolerance Available	Rated Temp. & Voltage-Temp Limits	Rated DC Voltage
CDR1-B-0R1KB to CDR1-B-0R2B	0.1 pF to 0.2 pF	В		
CDR1-B-0R3K to CDR1-B-0R4	0.3 pF to 0.4 pF	B, C	Characteristic BG	
CDR1-B-0R5K to CDR1-B-2R2**	0.5 pF to 2.2 pF	B, C, D	(+90 ±20 PPM/°C)	A = 50
CDR1-B-2R4K to CDR1-B-6R2***	2.4 pF to 6.2 pF	B, C, D	and Characteristic BP	K = 150
CDR1-B-6R8K to CDR1-B-9R1***	6.8 pF to 9.1 pF	B, C, J, K, M	(0 ±30 PPM/°C)	
CDR1-B-100K to CDR1-B-101K***	10 pF to 100 pF	F, G, J, K, M		
CDR1-BP111K to CDR1-BP621***	110 pF to 620 pF	F, G, J, K, M	BP	A = 50
CDR1-BP681A to CDR1-BP102***	680 pF to 1000 pF	F, G, J, K, M	Dr	B = 100

TABLE II - STYLES CDR13 AND CDR14 CAPACITOR CHARACTERISTICS

Type Designation *	Capacitance Range (pF)	Capacitance Tolerance Available	Rated Temp. & Voltage-Temp Limits	Rated DC Voltage
CDR1-B-0R1EB to CDR1-B-0R2B	0.1 pF to 0.2 pF	В		
CDR1-B-0R3E to CDR1-B-0R4	0.3 pF to 0.4 pF	B, C		
CDR1-B-0R5E to CDR1-B-2R2**	0.5 pF to 2.2 pF	B, C, D		C = 200
CDR1-B-2R4E to CDR1-B-6R2***	2.4 pF to 6.2 pF	B, C, D	"Characteristic BG	E = 500
CDR1-B-6R8E to CDR1-B-9R1***	6.8 pF to 9.1 pF	B, C, J, K, M (+90 ±20 PPM/°C)		
CDR1-B-100E to CDR1-B-101***	10 pF to 100 pF		and Characteristic BP	
CDR1-B-111D to CDR1-B-201***	110 pF to 200 pF		(0 ±30 PPM/°C)"	C = 200 D = 300
CDR1-B-221C to CDR1-B-471C***	220 pF to 470 pF	TO LKM		C = 200
CDR1-B-511B to CDR1-B-621***	510 pF to 620 pF	F, G, J, K, M		A = 50 B = 100
CDR1-B-681A to CDR1-B-102A***	1-B-681A to CDR1-B-102A*** 680 pF to 1000 pF			A = 50
CDR1-BP112A to CDR1-BP512A***	1100 pF to 5100 pF		BP	A - 30

^{*} Complete type designation will include additional symbols to indicate style, voltage-temperature limits, capacitance tolerance (where applicable), termination finish, and failure rate level.

^{***} Intermediate values in each category are given by the RETMA 5% Table.

^{**} Intermediate values in this category are in 0.1 pF steps.

RF/Microwave Multilayer Capacitors (MLC)

CDR Series - MIL-PRF-55681/4/5 (RF/Microwave Chips)

TABLE III - STYLES CDR21-CDR25 CAPACITOR CHARACTERISTICS

Type Designation *	Capacitance Range (pF)	Capacitance Tolerance Available	Rated Temp. & Voltage-Temp Limits	Rated DC Voltage	
CDR2-B-0R1EB to CDR2-B-0R2EB	0.1 pF to 0.2 pF	В			
CDR2-B-0R3E to CDR2-B-0R4E	0.3 pF to 0.4 pF	B, C			
CDR2-B0R5E to CDR2-B-2R2E**	0.5 pF to 2.2 pF	B, C, D		500 = E	
CDR2-B-2R4E to CDR2-B-6R2E***	2.4 pF to 6.2 pF	B, C, D	Characteristic BG		
CDR2-B-6R8E to CDR2-B-9R1E***	6.8 pF to 9.1 pF	B, C, J, K, M	(+90 ±20 PPM/°C)		
CDR21-B-100E to CDR2-B-101E***	10 pF to 100 pF		and Characteristic BP		
CDR2-B-111D to CDR2-B-201D***	110 pF to 200 pF		(0 ±30 PPM/°C)	300 = D	
CDR2-B-221C to CDR2-B-471C***	220 pF to 470 pF	F C L K M		200 = C	
CDR2-B-511B to CDR2-B-621B***	510 pF to 620 pF	F, G, J, K, M		100 = B	
CDR2-B-681A to CDR2-B-102A***	680 pF to 1000 pF			50 = A	
CDR2-BP112A to CDR2-BP512A***	1100 pF to 5100 pF		BP	50 = A	

^{*} Complete type designation will include additional symbols to indicate style, voltage-temperature limits, capacitance tolerance (where applicable), termination finish (T for styles CDR21, CDR22 and CDR24, and S for styles CDR23 and CDR25), and failure rate level. Please note: Leaded devices CDR 21 through CDR 25 are available to the R Failure Rate Level only.

TABLE I - STYLES CDR11 AND CDR12 CAPACITOR CHARACTERISTICS

MIL-PRF-55681	Case	Type	Outlines	Body Dimensions			Lead & Termination			
Styles	Size	Туре	Outlines	Length	Width	Thickness	Dime	nsions & Mat	erials	
CDR 11	A ₩	Chip CA	<u></u>	(1.4 ± 0.38) $(0.51/1.45)$ N = Gold Over ATC's UNI-		,	N = Gold Over Nickel Over Silver N is			
CDR 13	B ₩	Chip CA				II-TERM®				
CDE 12	A ₩	Pellet P	_	.055 ±.025 (1.4 ±0.63)	.055 ±.015 (1.4 ±0.38)	.020/.057 (0.51/1.45)	S = Solder Coated, Final U = Solder Coated, Nickel Barrier U ATC's BARRIER//CAP®			
CDR 14	B ₩	Pellet P		.110 +.035020 (2.79 +0.89 -0.51)	.110 ±.020 (2.79 ±0.51)	.030/.102 (0.76/2.59)				
CDR 12	A ₩	Solder Plate W	□ <u>w</u> ■	.055 : (1.4 ±		.020/.057 (0.51/1.45)				
CDR 14	B ₩	Solder Plate W	→ L + → T + W/T is a Termination Surface	.110 ±.020 (2.79 ±0.51)		.030/.102 (0.76/2.59)	W = Nickel Barrier, Solder Plate.			
CDR 21	B	Microstrip	↓ → L ← ↓ → ←			.060/.100 (1.52/2.54)	Termination T = Silver			
ODICZI		MS	↑ → ← ↑ ←	.135 ±.015 (3.43 ±0.38)			Length	Width	Thickness	
CDR 22	B	Axial Ribbon	<u>w.</u>				min.			
CDR 24	B	AR Radial Ribbon RR	$\begin{array}{c c} \uparrow & \downarrow & \downarrow & \hline \uparrow & \uparrow & \uparrow & \uparrow \\ \hline & \downarrow & & \hline \downarrow & & \hline \uparrow & \downarrow & \uparrow \\ \hline & \downarrow & & & \hline \downarrow & & \hline \downarrow & & \hline \downarrow & \\ \hline & \downarrow & & & & \hline \downarrow & & & \hline \downarrow & \\ \hline \downarrow & & & & & \hline \downarrow & & & \\ \hline \downarrow & & & & & \hline \downarrow & & & \\ \hline \downarrow & & & & & & \hline \downarrow & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & \\ \hline \downarrow & & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & \\ \downarrow & & \\ \hline \downarrow & \\ \hline \downarrow$.250 (6.35)	.093±.005 (2.36±0.13)	.004±.001 (0.10±0.03)	
CDR 23	В	Radial Wire	→ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±				Terminations S = Solder Coated			
ODIT 20		RW	→ L ← w ←			min.				
CDR 25	В	Axial Wire AW	→ L	· - T +-			.50 (12.7)	.016 (.375) dia. nom.		

All dimensions are in inches, except those in parentheses which are in millimeters.

All leads and ribbon are silver and are attached with high temperature solder.

^{**} Intermediate values in this category are in 0.1 pF steps.

^{***} Intermediate values in each category are given by the RETMA 5% Table as follows: 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

RF/Microwave Multilayer Capacitors (MLC)

CDR Series - MIL-PRF-55681/4/5 (RF/Microwave Chips)

Style	Equiv. KYOCERA AVX Part No. Characteristics			
	BG	BP		
CDR11	100A	700A		
CDR12	100A	700A		
CDR13	100B	700B		
CDR14	100B	700B		

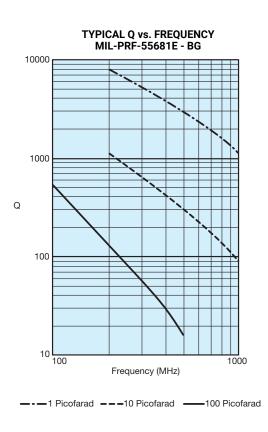
Style	Equiv. KYOCERA AVX Part No. Characteristics			
	BG	BP		
CDR21	100B MS	700B MS		
CDR22	100B AR	700B AR		
CDR23	100B RW	700B RW		
CDR24	100B RR	700B RR		
CDR25	100B AW	700B AW		

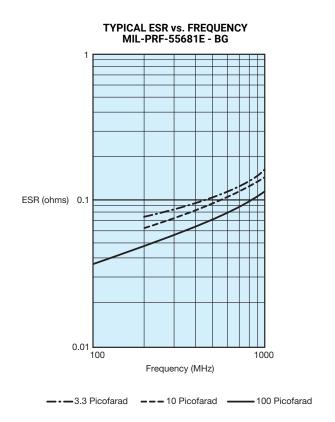
PACKAGING

Standard Packaging Quantity CDR11-12 = 100 pcs per waffle pack CDR13-14 = 100 pcs per waffle pack

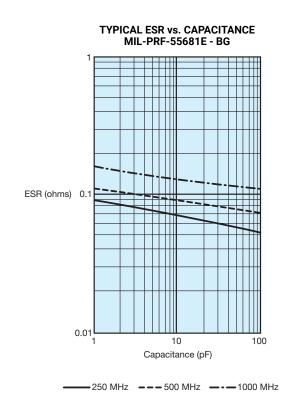
TAPE & REEL

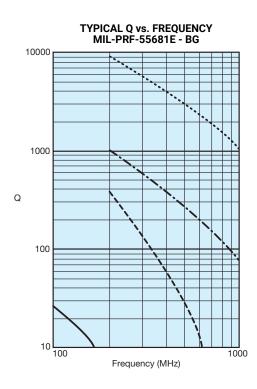
All tape and reel specifications are in compliance with EIA RS481(equivalent to IEC 286 part 3). Sizes CDR11/12 through 13/14.

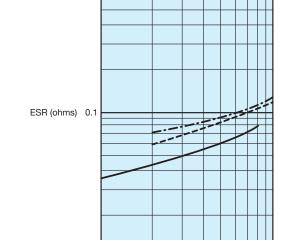

8mm carrier


⁻⁷" reel: ≤0.040" thickness = 100, 300, 500, 1000, 2000* pcs ≤0.075" thickness = 100, 300, 500, 1000, 2000* pcs

^{*} QTY 2000 only applies to CDR11-12






TYPICAL Q vs. CAPACITANCE MIL-PRF-55681E - BG 10000 1000 Q 100 10 Capacitance (pF) --- 250 MHz --- 500 MHz --- 1000 MHz

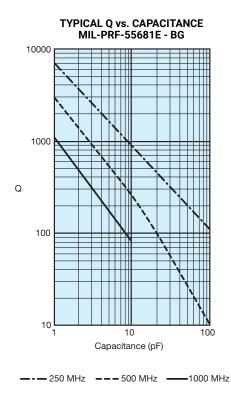
Performance Curves

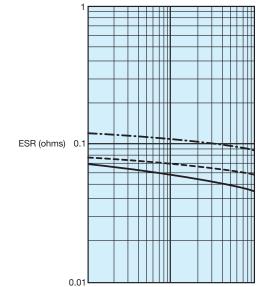
0.01

100

TYPICAL ESR vs. FREQUENCY

MIL-PRF-55681E - BG


---- 1 Picofarad --- 10 Picofarad --- 47 Picofarad --- 330 Picofarad

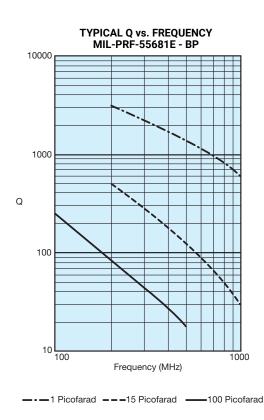


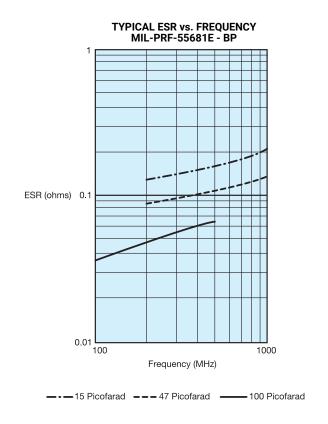
TYPICAL ESR vs. CAPACITANCE MIL-PRF-55681E - BG

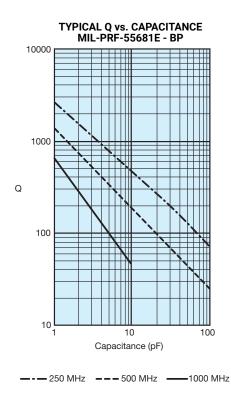
Frequency (MHz)

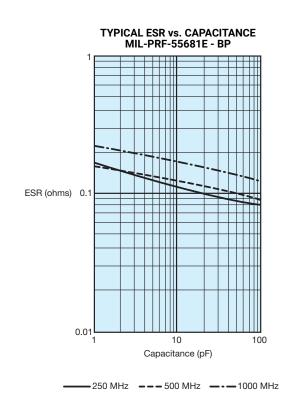
1000

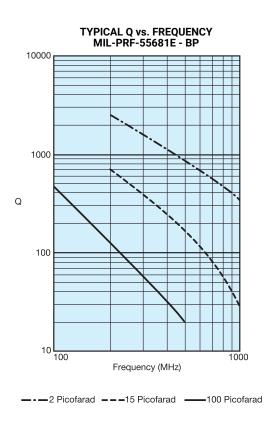
-250 MHz --- 500 MHz --- 1000 MHz

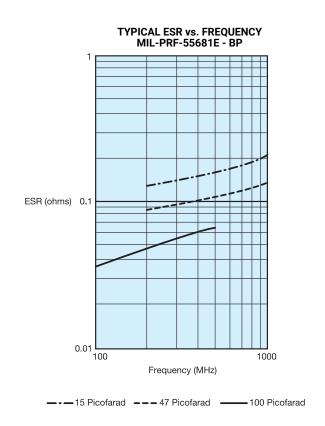

10

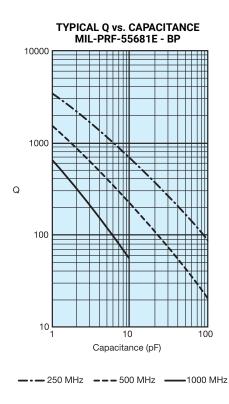

Capacitance (pF)

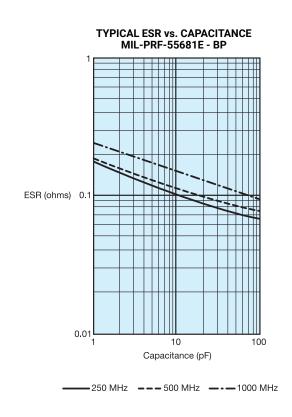

100

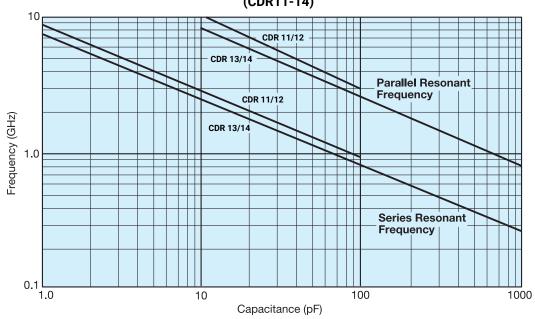









Performance Curves

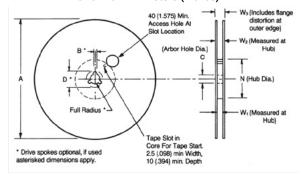


TYPICAL RESONANT FREQUENCY vs. CAPACITANCE (CDR11-14)

RF/Microwave Multilayer Capacitors (MLC)

Automatic Insertion Packaging

TAPE & REEL:


All tape and reel specifications are in compliance with EIA RS481 (equivalent to IEC 286 part 3).

Sizes SQCA through SQCB, CDR11/12 through 13/14.

-8mm carrier

-7" reel: ≤0.040" thickness = 2000 pcs ≤0.075" thickness = 2000 pcs

REEL DIMENSIONS: millimeters (inches)

EMBOSSED CARRIER CONFIGURATION

8 & 12 MM TAPE ONLY

CONSTANT DIMENSIONS

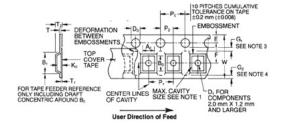
Tape Size	D _o	E	P _o	P ₂	T Max.	T ₁	G ₁	G ₂
8mm and 12mm	8.4 ^{+0.10} _{-0.0} (.059 ^{+.004} _{-0.0})	1.75 ± 0.10 (.069 ± .004)	4.0 ± 0.10 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	0.600 (.024)	0.10 (.004) Max.	0.75 (.030) Min. See Note 3	0.75 (.030) Min. See Note 4

-13" reel: ≤ 0.075 " thickness = 10,000 pcs "U" Series - 402/0603/0805/1210 Size Chips

-8mm carrier

-7" reel: 0402 = 10,000 pcs

0603 & 0805 ≤0.40" thickness = 4000 pcs 0805 . 0.040" thickness & 1210 = 2000 pcs

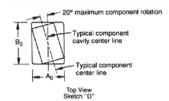

-13" reel: ≤0.075" thickness = 10,000 pcs

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W ₃
8mm	330 (12.992)	1.5 (.059)	13.0±0.20 (.512±.008)	20.2 (.795)	50 (1.969)	8.4 ^{+1.0} (.331 ^{+.060})	14.4 (.567)	7.9 Min. (.311) 10.9 Max. (.429)
12mm	330 (12.992)	1.5 (.059)	13.0±0.20 (.512±.008)	20.2 (.795)	50 (1.969)	12.4 ^{+2.0} _{-0.0} (.488 ^{+.076} _{-0.0})	18.4 (.724)	11.9 Min. (.469) 15.4 Max. (.607)

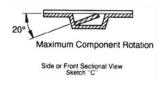
Metric dimensions will govern

English measurements rounded and for reference only

(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.



VARIABLE DIMENSIONS


Tape Size	B ₁ Max. See Note 6	D ₁ Min. See Note 5	F	P ₁	R Min. See Note 2	T ₂	w	$A_0B_0K_0$
8mm	4.55 (.179)	1.0 (.039)	3.5 ± 0.05 (.138 ± .002)	4.0 ± 0.10 (.157 ± .004)	25 (.984)	2.5 Max (.098)	$ \begin{array}{c} 8.0 \substack{+0.3 \\ -0.0 \\ -0.004} \\ (.315 \substack{+.012 \\004}) \end{array} $	See Note 1
12mm	8.2 (.323)	1.5 (.059)	5.5 ± 0.05 (.217 ± .002)	4.0 ± 0.10 (.157 ± .004)	30 (1.181)	6.5 Max (.256)	12.0 ± .30 (.472 ± .012)	See Note 1

NOTES:

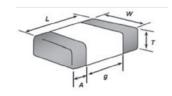
- 1. A₀, B₀, and K₀ are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the end of the terminals or body of the component to the sides and depth of the cavity (A_0 , B_0 , and K_0) must be within 0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches C & D)
- 2. Tape with components shall pass around radius "R" without damage. The minimum trailer length (Note 2 Fig. 3) may require additional length to provide R min. for 12mm embossed tape for reels with hub diameters approaching N min. (Table 4).
- 3. G_1 dimension is the flat area from the edge of the sprocket hole to either the outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less.

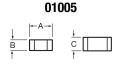
- 4. G₂ dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less.
- 5. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 6. B₁ dimension is a reference dimension for tape feeder clearance only.

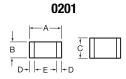
KYDCER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

RF/Microwave C0G (NP0) Capacitors

Ultra Low ESR "CU" Series, C0G (NP0) Capacitors (RoHS)


GENERAL INFORMATION


"CU" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Sizes available are EIA chip sizes 01005 and 0201.



DIMENSIONS:

ELECTRICAL CHARACTERISTICS

Capacitance Value Range:

Size 01005 0.2 to 24pF Size 0201 0.2 to 24pF

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ $25^{\circ}C$ and rated WVDC $10^{\scriptscriptstyle 11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage

16V, 25V (0.2pF-10pF), 16V (10pF-24pF) 01005 -

0201 -25 WVDC

mm (inches)

Size	L	W	T	g	A
	(Length)	(Width)	(Max. Thickness)	(min.)	(Termination Min./Max.)
0402	0.40±0.02	0.20±0.02	0.22	0.13	0.70/0.14
(01005)	(0.016±0.0008)	0.008±0.0008)	(0.009)	(0.005)	(0.003/0.006)
0603	0.60±0.03	0.30±0.03	0.33	0.15	0.10/0.20
(0201)	(0.024±0.001)	(0.012±0.001)	(0.013)	(0.006)	(0.004/0.008)

HOW TO ORDER

Y = 16V

Capacitance EIA Capacitance Code in pF.

100

First two digits = significant figures or "R" for decimal place. Third digit = number of zeros or after "R" significant figures.

Capacitance Tolerance Code $A = \pm 0.05pF$

Code A = NotApplicable

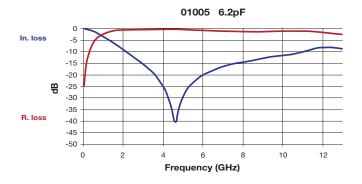
Termination T = Plated Ni and Sn

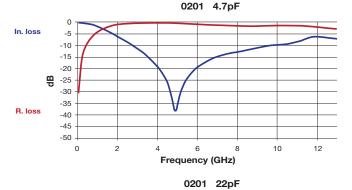
2

Packaging Code 2 = 7" Reel 4 = 13" Reel U = 7" Reel 4mm TR (01005)

A = Standard

RF/Microwave C0G (NP0) Capacitors


Ultra Low ESR "CU" Series, C0G (NP0) Capacitors (RoHS)


CAPACITANCE RANGE

Con (nE)	Available	Tolerance
Cap (pF)	01005	0201
0.5	B,C,D	B,C,D
0.75		
1.0		
1.2		
1.5		
1.8		
2.2		
2.7		
3.3		
3.9		
4.7		B,C,D
5.6		C,D
6.2		C,D
6.8		Ď
8.2	▼	D
10.0	G,J,K	J <u>,</u> K
12.0		
15.0		
18.0		
22.0	<u> </u>	1
24.0	V	_ ▼ _

ULTRA LOW ESR, "CU" SERIESO

	F (GHz)	IL	R. loss
F1	0.31	-0.40	-9.68
F2	1.28	-5.03	-1.44
F3	2.408	-11.58	-0.27
F4	4.635	-40.55	-0.39
F5	4.897	-31.82	-0.47

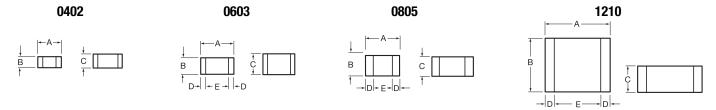
	F (GHz)	IL	R. loss
F1	0.31	-0.13	-12.90
F2	1.28	-2.89	-2.84
F3	2.408	-8.09	-0.60
F4	4.635	-29.45	-0.37
F5	4.897	-38.55	-0.45

In. loss	10							
	-10							
쁑	-20	\rightarrow						
D. Inne	-30		ackslash					
R. loss	-40		V					
	-50							
	0	2	4	1 6	6 6	3 1	0 1	12
				Frequenc	y (GHz)			

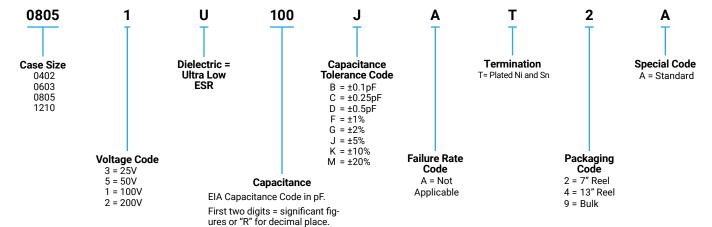
	F (GHz)	IL	R. loss
F1	0.31	-2.90	-2.85
F2	1.28	-15.26	-0.10
F3	2.408	-45.65	-0.10
F4	4.635	-14.90	-0.87
F5	4.897	-12.89	-1.08

Downloaded from Arrow.com.

RF/Microwave C0G (NP0) Capacitors


Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS)

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25° C and rated WVDC $10^{\scriptscriptstyle 11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 50, 25 WVDC 0603 200, 100, 50 WVDC 0805 200, 100 WVDC 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 300 0603 - See Performance Curve, page 300 0805 - See Performance Curve, page 300 1210 - See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

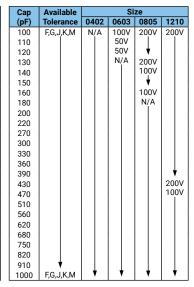
LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT

RoHS

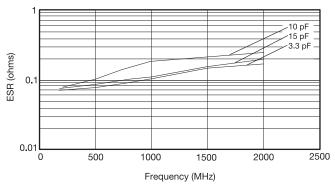
COMPLIANT

RF/Microwave Capacitors RF/Microwave COG (NP0) Capacitors Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS)

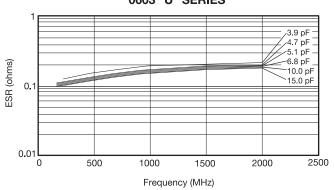


CAPACITANCE RANGE

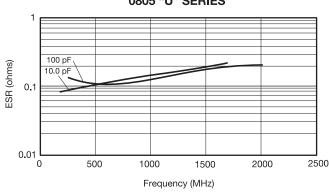
Cap	Available		Si	ze	
(pF)	Tolerance	0402	0603	0805	1210
0.2	B,C	50V	N/A	N/A	N/A
0.3					
0.4	♦				
0.5	B,C				
0.6	B,C,D				
0.7					
0.8	▼				
0.9	B,C,D	♦	♦	♦	♦

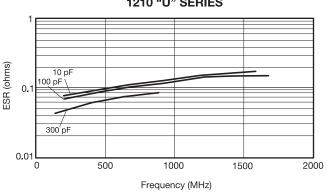

Сар	Available		Si	ze	
(pF)	Tolerance	0402	0603	0805	1210
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	↓				
5.6	, v				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M				

Cap	Available				
(pF)	Tolerance	0402	0603	0805	1210
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			♦		
18			200V		
20			100V		
22					
24					
27		*			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82				! ↓	
91	▼	_ ₹	▼	- ▼	_ ▼

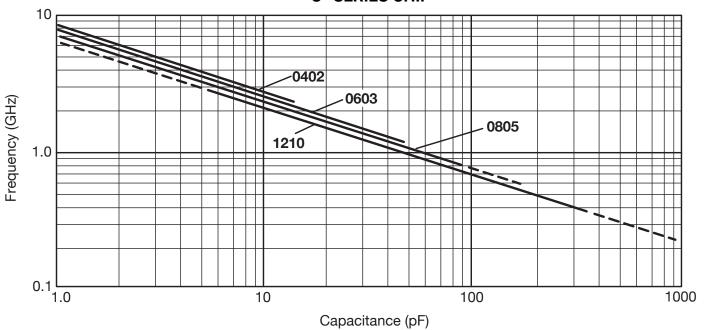


ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

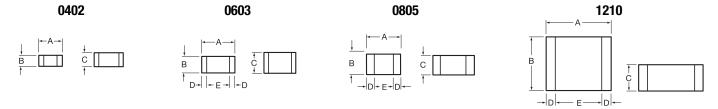
TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES


TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

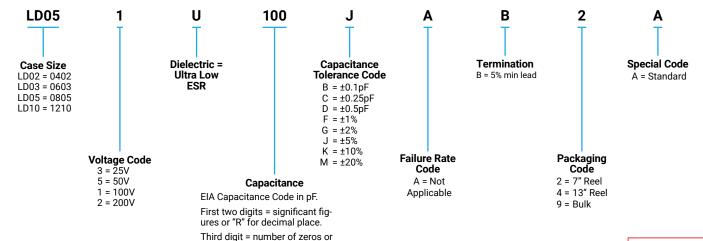
ESR Measured on the Boonton 34A

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

RF/Microwave C0G (NP0) Capacitors


Ultra Low ESR "U" Series, COG (NPO) Capacitors (Sn/Pb)

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	Α	В	С	D	Е
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

after "R" significant figures.

Not RoHS Compliant

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz

Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Size 0805 - 1.6 pF to 160 pF @ 1 MHz

Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25° C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 50, 25 WVDC 0603 - 200, 100, 50 WVDC 0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306

0603 - See Performance Curve, page 306

0805 - See Performance Curve, page 306

1210 - See Performance Curve, page 306

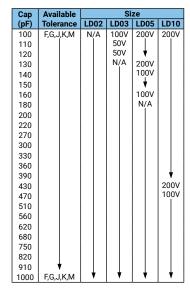
Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

Meets or exceeds the requirements of MIL-C-55681

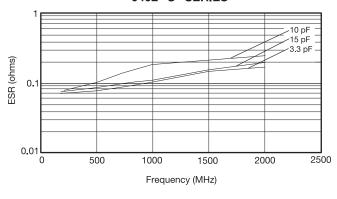
RF/Microwave COG (NP0) Capacitors

Ultra Low ESR "U" Series, C0G (NP0) Capacitors (Sn/Pb)

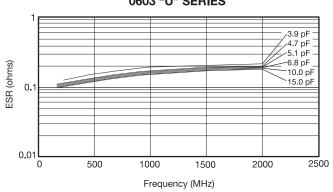


CAPACITANCE RANGE

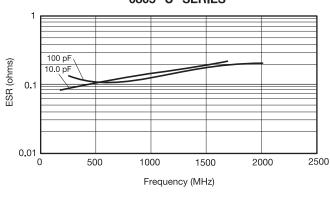
Cap	Available	Size			
(pF)	Tolerance	LD02	LD03	LD05	LD10
0.2	B,C	50V	N/A	N/A	N/A
0.3					
0.4	♦				
0.5	B,C				
0.6	B,Ç,D				
0.7					
0.8	▼				
0.9	B,C,D	♦	♦	♦	♦

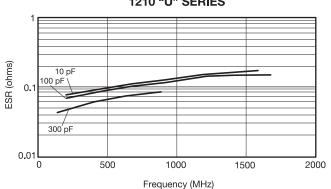

Cap	Available	Size			
(pF)	Tolerance	LD02	LD03	LD05	LD10
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1					
5.6	▼				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M		_ •	▼	_ •

Сар	Available	Size			
(pF)	Tolerance	LD02	LD03	LD05	LD10
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			♦		
18			200V		
20			100V		
22					
24					
27		♦			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82					
91	▼	▼	▼	▼	🔻

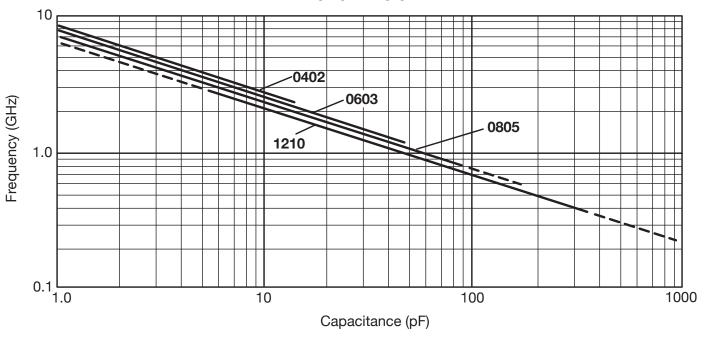


ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES


TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

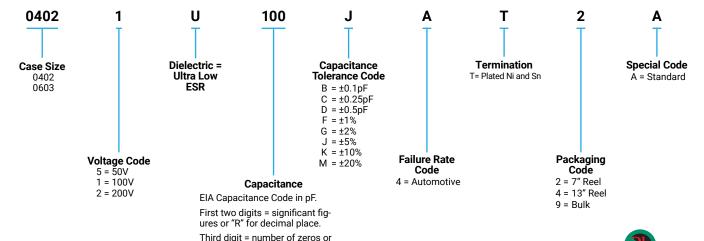
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

RF/Microwave C0G (NP0) Capacitors Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS) Automotive, AEC Q200 Qualified

GENERAL INFORMATION

Automotive "U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

DIMENSIONS: inches (millimeters)


inches (mm)

LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT

Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ $25^{\circ}C$ and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

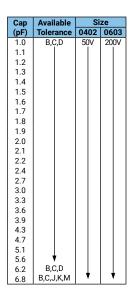
after "R" significant figures.

Equivalent Series Resistance Typical (ESR):

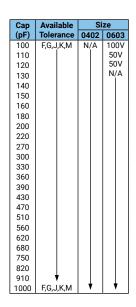
0402 See Performance Curve, page 303 0603 See Performance Curve, page 303

Automotive Specifications

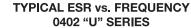
Meets or exceeds the requirements of AEC Q200

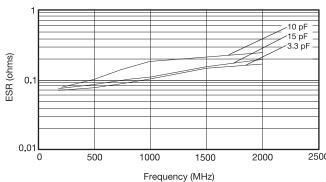

120216

RF/Microwave C0G (NP0) Capacitors Ultra Low ESR "U" Series, COG (NP0) Capacitors (RoHS) Automotive, AEC Q200 Qualified

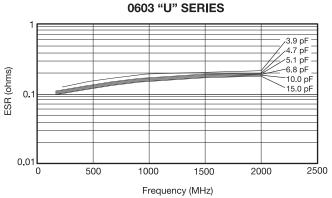


CAPACITANCE RANGE

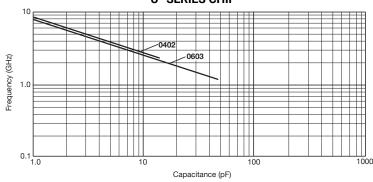

ı	Cap	Available	Si	ze
۱	(pF)	Tolerance	0402	0603
Γ	0.2	B,C	50V	N/A
١	0.3			
١	0.4	♦		
ı	0.5	B,C		
ĺ	0.6	B,Ç,D		
ĺ	0.7			
١	0.8	▼		
L	0.9	B,C,D	_ ♦	🗡



Сар	Available	Si	ze
(pF)	Tolerance	0402	0603
7.5	B,C,J,K,M	50V	200V
8.2	♦		
9.1	B,C,J,K,M		
10	F,G,J,K,M		
11			
12			
13			
15			🛊
18			200V
20			100V
22			
24			
27		♦	
30		50V	
33		N/A	
36			
39			
43			
47			
51			
56			
68			
75			
82			
91	▼		_ 🔻 _



ULTRA LOW ESR, "U" SERIES



TYPICAL ESR vs. FREQUENCY

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

RF/Microwave "U" Series Designer Kits

0402

Kit 5000 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance		
0.5		4.7			
1.0		5.6	B (± 0.1pF)		
1.5		6.8	B (± 0.1pi)		
1.8	B (±0.1pF)	8.2			
2.2	в (±0.1рг)	10.0			
2.4		12.0	J (±5%)		
3.0		15.0	J (±3%)		
3.6					

^{***25} each of 15 values

0603

Kit 4000 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance		
1.0		6.8			
1.2		7.5	B (±0.1pF)		
1.5		8.2			
1.8		10.0			
2.0		12.0			
2.4	B (±0.1pF)	15.0			
2.7	в (±0.1pr)	18.0			
3.0		22.0	J (±5%)		
3.3		27.0			
3.9		33.0			
4.7		39.0			
5.6		47.0			

^{***25} each of 24 values

0805

Kit 3000 UZ				
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance	
1.0		15.0		
1.5		18.0		
2.2		22.0		
2.4		24.0		
2.7	B (±0.1pF)	27.0		
3.0		33.0		
3.3	Б (±0.1pr)	36.0	J (±5%)	
3.9		39.0	J (±5%)	
4.7		47.0		
5.6		56.0		
7.5		68.0		
8.2		82.0		
10.0	1/45%)	100.0		
12.0	J (±5 %)	130.0		

^{***25} each of 30 values

1210

Kit 3500 UZ				
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance	
2.2		36.0		
2.7		39.0		
4.7		47.0		
5.1	B (±0.1pF)	51.0		
6.8		56.0		
8.2		68.0		
9.1		82.0		
10.0		100.0	J (±5%)	
13.0		120.0		
15.0		130.0		
18.0	1/+ 5 %)	240.0		
20.0	J (± 5 %)	300.0		
24.0		390.0		
27.0		470.0		
30.0		680.0		

^{***25} each of 30 values

FOLLOW US: O F in D

VISIT US AT WWW.KYOCERA-AVX.COM ▶

North America Tel: +1 864-967-2150

Europe Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Central America Tel: +55 11-46881960 **Japan** Tel: +81 740-321250