

- Hybrid Protection
- Overtemperature Protection
- Overvoltage Protection
- Overcurrent Protection

This catalog is intended to present application, product, and technical data to assist the user in selecting circuit protection products, including PolySwitch Polymeric Positive Temperature Coefficient (PPTC) resettable devices, Reflowable Thermal Protection (RTP) devices, Metal Hybrid PPTC (MHP) devices, PolyZen devices, 2Pro devices, Electrostatic Discharge (ESD) protection devices, chip fuses and Gas Discharge Tubes (GDTs).

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. Group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for an incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

TE reserves the right to change or update, without notice, any information contained in this catalog; to change, without notice, the design, construction, materials, processing, or specification of any products; and to discontinue or limit production or distribution of any products. This publication supersedes and replaces all information previously supplied.

Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support systems or devices where the failure of the product in the application might be reasonably expected to cause the failure or malfunction of the system or device or to affect its safety or effectiveness. Further, TE does not authorize the use of its products in applications involving permanent surgical implants into the body.

2Pro, microSMD, miniSMD, nanoSMD, PolySwitch, PolyZen, TE Connectivity, TE, TE connectivity (Logo), and EVERY CONNECTION COUNTS are trademarks.

All other trademarks are trademarks of their respective owners.

© 2015 TE Connectivity Ltd. family of companies. All rights reserved.

TABLE OF CONTENTS

1	Overview	Overcurrent Circuit Protection
	• TE Connectivity Circuit Protection Products 2	10 Surface-mount Fuses
3	Application Summaries • Appliances 4 • Automotive 5 • Batteries 9 • Communications 10 • Industrial 14 • Lighting 15 • Consumer Devices Ports 16 • Consumer Devices Peripherals 18 • Consumer Devices Subsystems 19 • Consumer Devices Displays 22 Application Solution Guide 23	 Fundamentals
		11 PolySwitch Resettable Devices
Н	brid Protection	• Fundamentals
5	PolyZen Devices	 Product Selection Guide
O	vertemperature Protection	Line-Voltage-Rated Devices
7	MHP-TAM Devices	 Automotive Devices
O	vervoltage Circuit Protection	
8	ESD Protection Devices PESD Protection Devices	

TE CIRCUIT PROTECTION

TE Connectivity Ltd. (NYSE: TEL) is a \$12 billion global technology leader. Our connectivity and sensor solutions are essential in today's increasingly connected world. We collaborate with engineers to transform their concepts into creations - redefining what's possible using intelligent, efficient and highperforming TE products and solutions proven in harsh environments. Our 75,000 people, including 7,300 design engineers, partner with customers in over 150 countries across a wide range of industries.

We believe EVERY CONNECTION COUNTS - www.TE.com.

TE Connectivity's business unit, TE Circuit Protection, began almost 40 years ago as part of Raychem Corporation. From the first, we defined ourselves as industry pioneers in the field of PPTC (polymeric positive temperature coefficient) technology with our PolySwitch product line. Having had patents granted for the use of a PPTC device as a variable resistor in circuit protection applications in the early 1980s, we have continued to expand the PolySwitch family to include wider voltage, current and temperature ranges in a variety of form factors.

Today our circuit protection devices help to make your world safer and your electronics more reliable. Our products can be found in your cellphone, tablet, car, home appliances, LED lighting fixtures and a myriad of other everyday applications.

Overcurrent Protection

- **PolySwitch devices** PolySwitch PPTC devices provide resettable circuit protection. Device types include: Automotive, Radial-leaded, Strap Battery and Surface-mount Devices (SMDs)
- Single-use fuses These devices are for applications that need to disable the circuit rather than isolate it. The family comprises: Fast-acting Chip, High-current Rated and Slow-blow Chip fuses

Overvoltage Protection

• Gas discharge tubes (GDTs) — Low-capacitance GDT devices help protect applications such as telecom and appliances damage from potentially harmful surge events

ESD (Electrostatic Discharge) Protection

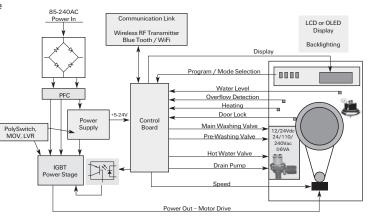
- **Polymer ESD (PESD) devices** Help provide protection for today's highest-speed interface applications (USB, HDMI, DisplayPort, etc.).
- ChipSESD devices Bi-directional, silicon-based devices in 0201 and 0402 sizes are easier to install and re-work than traditional semiconductor-packaged ESD devices

Hybrid Protection

- **PolyZen devices** Each PolyZen device integrates a precision Zener diode and a PolySwitch PPTC device. Devices are offered in "LS", "YC" and "YM" options to help protect a broad range of applications requiring overcurrent/overvoltage protection
- **2Pro devices** Combining an MOV and PPTC in a single device helps provide space-efficient protection against overvoltage/overcurrent events. The 2Pro AC device family provides AC-line protection and can offer better space and reliability benefits than discrete solutions

Thermal Protection

- Metal Hybrid PPTC (MHP) devices Combining the best attributes of a PPTC and bimetal breaker in one device
 helps protect lithium battery applications.
- Reflowable Thermal Protection (RTP) devices The surface-mount-packaged RTP device helps manufacturers dramatically speed assembly time and reduce board space, while helping protect against potential damage from thermal runaway in automotive and industrial designs

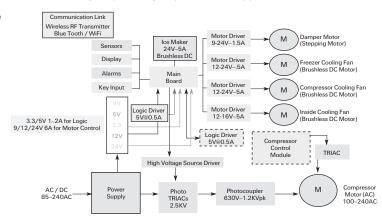

To date, billions of TE Circuit Protection devices are being used to help protect a wide range of electronic products in computer, battery and portable electronics, consumer, automotive, industrial, home appliance, HVAC, and telecommunications applications. Our products help manufacturers meet strict regulatory standards while diminishing warranty returns.

TE Circuit Protection offers a dedicated engineering sales force along with worldwide manufacturing and design centers. Our history in circuit protection, combined with local engineering support, enables us to think globally - and act locally - to meet our customers' needs.

Washing Machines

A number of circuit protection devices can be used to help provide overtemperature, overcurrent and overvoltage protection for the small electric motors, LED displays and control electronics found in home appliances.

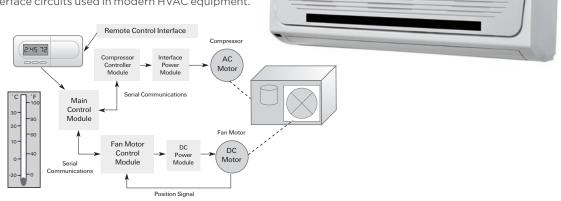
- PolvSwitch Line-voltage radial-leaded devices
- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- ESD devices
- Surface-mount fuses
- GDTs



Refrigerators / Freezers

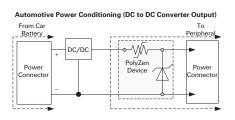
Our circuit protection devices help protect the small electric motors and fans, controllers, touchpads, displays and interface circuitry required by sophisticated appliances.

- · PolySwitch Line-voltage radial-leaded devices
- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- ESD devices
- · Surface-mount fuses



Air Conditioning Units

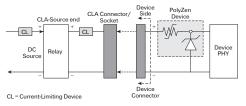
Resettable PolySwitch devices, ESD devices and chip fuses help provide coordinated overcurrent and overvoltage protection for the small electric motors, fans, displays and interface circuits used in modern HVAC equipment.


- · PolySwitch Line-voltage radial-leaded devices
- PolvSwitch Radial-leaded devices
- PolvSwitch Surface-mount devices
- ESD devices
- Surface-mount fuses

Automotive Electronics

PolyZen devices help protect automotive electronics and peripherals and/or portable electronics that can be charged in the vehicle from damage caused by inductive voltage spikes, voltage transients and reverse polarity. Providing coordinated overcurrent, overvoltage and reverse polarity protection, the PolySwitch device protects like a Zener diode but is capable of withstanding the high-power fault conditions that can occur in automotive applications.

PolyZen devices


DC Cigarette Lighters and Power Plug Adapters

Charger circuits for mobile phones, iPods, after-market hands-free devices, or other rechargeable battery operated equipment, use connectors to plug into automobile cigarette lighter or power outlets. These assemblies must operate over a wide range of temperatures, charging conditions and in harsh automotive environments.

Typically, overcurrent protection, such as a PolySwitch polymer positive temperature coefficient (PPTC) device, and overvoltage protection are coordinated at the input to the charger to help meet the stringent electrical requirement. A single PolyZen device or PolyZen-AS device

can be used to help protect against damage caused by overcurrent, overvoltage, or reverse polarity faults.

- · PolySwitch automotive devices
- · Surface-mount fuses
- PolyZen devices

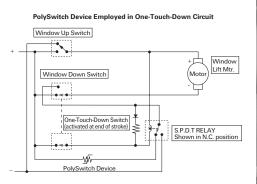
Liquid Crystal Display Backlight Heaters

There are an increasing number of displays -- such as navigation systems, instrumentation displays, video and TV screens -- being designed into automobiles. A temperature-sensing PolySwitch PPTC current-limiting device can be employed to help prevent thermal runaway due to a failure in the control circuitry. In most cases, the circuit will be powered off on a regular basis (i.e., when the ignition is turned off) and a resettable PolySwitch device may be desired. In other cases, a single-use RTP (Reflowable Thermal Protector) device or single-use fuse may be perferred.

- · PolySwitch automotive devices
- Surface-mount fuses
- HCRTP devices

Driver-Side Door Console

The switch console on the driver-side door allows the driver to control multiple functions, including power windows, side mirrors and power door locks. Small Surface-mount PolySwitch devices help protect low current membrane switches and PCB traces against damage caused by overheating in the event of an overcurrent or short circuit condition. A variety of designs include PolySwitch devices that help protect PCB traces leading to high-current power window motors, as well as low-current delicate carbon membrane microswitches, transistors in LED backlighting circuits and small traces of the side mirror control circuits.


- · PolySwitch automotive devices
- Surface-mount fuses

One-Touch-Down Circuits for Power Windows and Power Sunroofs

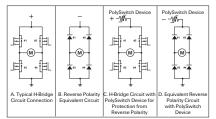
Lower cost one-touch-down circuits can employ a PolySwitch PPTC device to function both as a sense component and a switch component. This functionality allows a PolySwitch device to replace a number of other devices, such as the sense resistor, comparator, driver and control circuitry used in traditional power window and sunroof circuits. As a result, designers can help to achieve net cost savings through reduced component count and reduction in wire size.

· PolySwitch automotive devices

Printed Circuit Board Traces

The width of the copper traces must be reduced to provide more space for the tighterpacked and smaller printed circuit boards. These "Black Box" control modules handle a large number of high-powered accessories such as power windows, power seat adjusters, remotely controlled door locks, and radio & GPS antennae. PolySwitch resettable devices can be used to help protect these delicate printed circuit board traces against damage caused by overcurrent conditions.

- PolySwitch automotive devices
- · Surface-mount fuses
- HCRTP devices



H-Bridge Circuits

Automotive FET switched H-bridges must be protected from reverse polarity power sources. This may occur when jumper cables are connected to the wrong polarity of a dead or excessively discharged battery or when a new battery is installed backwards. Without protection, excessive heating can lead to failures in electronic modules or inadvertent

activation of vehicle loads such as solenoids and motors, which can lead to unsafe conditions.

- PolySwitch automotive devices
- HCRTP devices

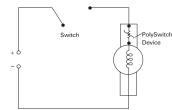
Automotive Control Application and Multimedia Busses

Connecting lifestyles from the home to the vehicle has become a reality in the automotive industry. MOST, Flexray, IEEE1394 and other networks now co-exist with CAN and LIN. Their main goal is to facilitate equipment interfacing and information sharing for embedded equipment, while also enabling after-market electronic equipment such as Portable Navigation (PNDs), smart phones, DVD players, etc. In a hot-pluggable automotive environment, where the consumer is connecting and disconnecting peripherals on a powered port, the potential for short-circuit damage is clearly present. PolySwitch devices and ESD protection devices can be used to help protect the connected equipment.

- PolySwitch automotive devices
- · Surface-mount fuses
- ESD devices

Navigation and Infotainment Systems

Infotainment and navigation systems are packed with electronics and connectivity elements. Circuit protection devices help protect a wide variety of functions such as powered antennae, CAN-bus, touch screen, USB ports, HDMI ports, RF tuners, I/O lines, HDD, etc. Overcurrent and overvoltage protection devices help prevent system breakdown and enhance design safety.


- PolvSwitch automotive devices
- ESD devices
- · Surface-mount fuses
- PolyZen devices

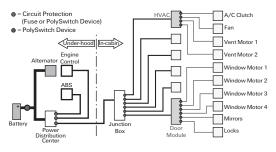
Automotive Actuators and Medium-Size DC Motors

Automotive electric motors can overheat and cause damage to internal temperature sensitive components. To help protect these components, custom and semi-custom PolySwitch devices can be designed to meet specific customer thermal protection needs. Installing a PolySwitch device in close proximity to the motor or solenoid offers the added benefit by

limiting current due to excessive heat. In particularly highcurrent motor applications, such as engine cooling fans, HVAC fans, electric power steering motors and ABS pump motors, the higher currents or continuous duty cycles may be more appropriately supported by the use of an RTP (Reflowable Thermal Protection) device.

- · PolySwitch automotive devices
- HCRTP devices

• Surface-mount fuses

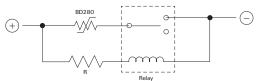


Automobile Harnesses

The wiring harness architectures of light and heavy vehicles have undergone considerable change due to increased electrical and electronic content. PolySwitch PPTC resettable circuit protection devices, which do not require driver accessibility, can be embedded in distributed

electronic control modules and power controlling switches throughout the vehicle. This approach of creating separate circuits helps to enable fault isolation as well as the downsizing of wire gauges and PCB traces.

- PolySwitch automotive devices
- · Surface-mount fuses



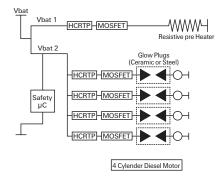
Automobile Relays

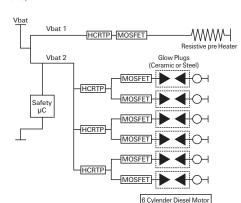
Relay contacts can pit during high current interrupt events. A PolySwitch PPTC device helps reduce current prior to contact switching events. This circuit design becomes a tuned system that uses the normally open contacts and works in coordination with relay inertia. During an overload condition, the relay energizes and latches in the off state. Once the power is cycled and/or the load is removed, the relay de-energizes and the circuit immediately resets and is able to deliver full power. The use of a PolySwitch device in this circuit can help achieve vehicle power outlet protection, but it can also be used to help protect isolated trailer lighting circuits.

· PolySwitch devices

Glow Plua ECU

To address the growing need to increase reliability and safety in extremely harsh automotive environments, the HCRTP device is specifically suited to high-current automotive applications such as glow plug electronic control units (ECUs). The robust HCRTP device (model: RTP200HR010SA) can withstand hold currents of up to 90A at room temperature (23°C) and 45A at 140°C.


In addition to helping automotive designers comply with stringent AECQ automotive standards, including the AECQ vibration test, the surface-mountable HCRTP device enables cost-effective and simple installation, while also optimizing thermal coupling with the printed circuit board.

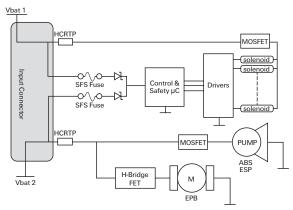

Based on the functional safety concept provided by a major OEM, multiple uses for the HCRTP device is possible. For example, in a six-cylinder glow plug ECU application, an HCRTP device can prevent damage from thermal runaway in case of a resistive short on the PCB. Depending on current requirements and the glow plug technology, different arrangements are possible;

such as placing one HCRTP device per one FET line or placing two HCRT devices per pair of power FETs.

Furthermore, ceramic glow plugs in particular are distinguished by a long-duration cool down and aggressive inrush currents. Compared to competitive approaches, the ultra-low resistance of the HCRTP device offers benefits in terms of time life and reliability.

HCRTP devices

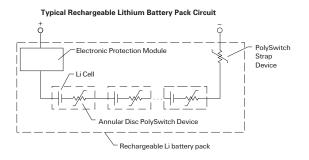
Electrical Brake Systems ABS & EPS


A popular trend in automotive applications is for state-of-the-art ABS modules to integrate an electronic stability control or program (ESC/ESP) as well as an electrical parking brake (EPB) system on the same board. For such high-current applications, some OEMs require a functional safety automotive standard, the ASIL D. To help meet this standard, a secondary, non-active and irreversible thermal fuse can be placed as close as possible to the input connector to avoid thermal propagation outside the vehicle when power FETs, capacitors or other power components fail due to thermal runaway.

As an alternative to typical protection approaches, an HCRTP thermal protection device can be installed near the input connector in two places on the board. Electrical brake systems have two separate power lines that can achieve thermal protection using HCRTP device, one for valves/solenoids and the other for the oil pump motor. This design helps mitigate damage from a power FET failing due to a resistive short - a fault condition that produces severe temperatures through I²R heating in which the device's resistance rises too high. In each instance, the HCRTP acts as a "one-shot" protect solution that complies with the AECQ vibration test and other automotive standards that mandate the use of thermal protection

For safety reasons, redundant power supplies are required to feed the control IC. Some OEMs mandate the use of an overcurrent protection device in case the dual rectifier diode experiences a short-circuit event. In this case, a slow-blow chip fuse can be used to provide space-saving protection.

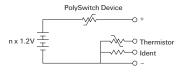
- HCRTP devices
- · Surface-mount fuses



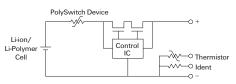
Lithium Cells and Battery Packs

External shorts, runaway charging conditions, or abusive charging can cause considerable damage to primary and secondary lithium (Li) cells. PolySwitch disc and strap circuit protection devices can help protect rechargeable lithium batteries used in notebook computers and cellular phones, as well as other portable electronic applications.

- PolvSwitch strap devices
- · PolySwitch disc devices

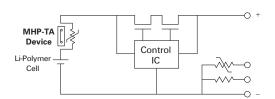


Rechargeable Battery Packs


Due to external shorts, runaway charging conditions, or abusive charging, considerable damage can be sustained in both battery cells and pack surroundings. The most common applications for PolySwitch devices are for helping to protect lithium-ion (Li-ion) battery packs used in cellular phones, digital cameras and laptop/notebook computers, or for helping to protect nickel-cadmium (NiCd) and nickel-metal-hydride (NiMH) battery packs used in other portable electronic applications.

· PolySwitch strap devices

Single Cell Li-ion/Li-Polymer Battery Pack Circuit Diagram

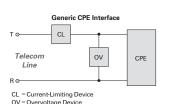


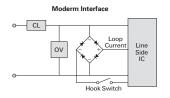
Rechargeable Lithium Polymer Cells

Tablets, ultra-thin notebook PCs and other small portable electronics use high-capacity lithium polymer and prismatic cells that require overtemperature protection to help prevent the cells from overheating. The combination of thin form factors, high cell capacities and high battery discharge rates typical of these applications create a unique set of circuit protection requirements, which are low thermal cut-off temperatures (<90°C), high hold current ratings (>6A) and compact size.

The MHP-TA series of MHP (Metal Hybrid PPTC) devices addresses these design concerns by offering two levels of current carrying capacity (6A or 15A hold current at 25°C) as well as an ultra-thin package (L:5.8mm x W: 3.85mm x H: 1.15mm).

MHP devices

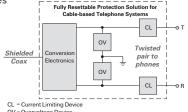


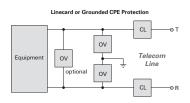


Customer Premise Equipment

To protect subscribers against damage caused by faults entering from outside wiring, customer premise equipment (CPE) is designed with power cross and lightning protection components. The following are recommended circuit protection solutions based on regional requirements.

- · PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- · PolySwitch telecom devices
- · Surface-mount fuses
- GDTs
- 2Pro devices

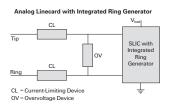




Short-haul/Intrabuilding Protection Requirements

Communications equipment that is not directly connected to the PSTN is subjected to lower level hazards. Here are a few circuit protection recommendations for LAN, WLL, VoIP and other intrabuilding applications.

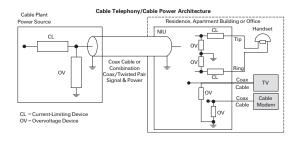
- · PolySwitch telecom devices
- · Surface-mount fuses
- GDTs



Analog Linecards

Central office linecards are subject to transient overcurrent and overvoltage faults, which may be generated from nearby power cross, power induction and lightning events. Circuit protection recommendations based on regional agency specifications are provided below.

- PolySwitch telecom devices
- · Surface-mount fuses
- GDTs

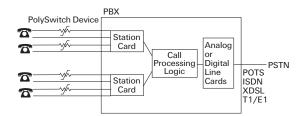



Cable Telephony/Cable Power Passing Taps

TE CONNECTIVITY /// CIRCUIT PROTECTION PRODUCT CATALOG

Cable telephony electronics that are powered via twisted pair or coaxial cable are susceptible to power faults passed through the cable plant. The circuit protection solutions listed below can help decrease the risk of these faults in power passing taps.

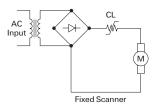
- · PolySwitch telecom devices
- · Surface-mount fuses
- GDTs

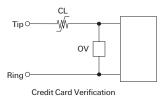


PBX and Key Telephone Systems

Below are circuit protection device recommendations to help protect PBX and key telephone systems against damage caused by power faults and short circuits.

- · PolySwitch telecom devices
- · Surface-mount fuses
- GDTs

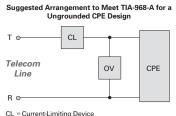


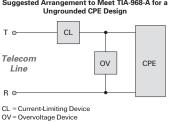

POS Equipment

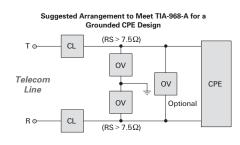
Equipment connected to telephone lines can be subject to power cross, induction, and lightning surge hazards. We recommend the devices below to help protect scanner motors and ditherers against damage caused by jams and stalls.

- PolvSwitch Radial-leaded devices
- PolvSwitch Surface-mount devices
- · PolySwitch telecom devices
- · Surface-mount fuses
- 2Pro devices

CL = Current-Limiting Device OV = Overvoltage Device

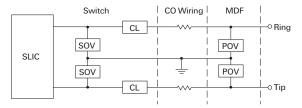





UL60950 and TIA-968-A (formerly FCC part 68) Requirements

The UL60950 and TIA-968-A cover standards electrical hazards from which customer premise equipment (CPE) in North America must be protected. Below are resettable circuit protection recommendations.

- PolySwitch telecom devices
- 2Pro devices
- · Surface-mount fuses
- GDTs



GR-1089: Public Switched Telephone Network Equipment

GR-1089 describes the electrical hazards which public switched telephone network (PSTN) equipment in North America should be protected against. The figure below shows several recommended resettable circuit protection solutions for a simplified model of the central office end of a subscriber loop system.

- · PolySwitch telecom devices
- · Surface-mount fuses
- GDTs

Simplified Model of Central Office End of Subscriber Loop

CL = Current-Limiting Device

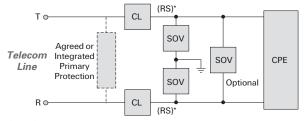
= Central Office CO

MDF = Main Distribution Frame

POV = Primary Overvoltage Protection Device

SLIC = Subscriber Line Interface Card

SOV = Secondary Overvoltage Protection Device



GR-1089-CORE, Issue 5: Public Switched Telephone Network Equipment

According to the GR-1089-CORE, Issue 5 standard, to help prevent damage to telecom equipment, circuits connected to outside lines generally need protection from lightning and power fault events. The equipment must be able to withstand the surges that the primary protector lets through. For this reason, secondary, and even tertiary, protection is included to help limit the potential damage of the surge let through. To be effective, the secondary protection must coordinate with the primary protection.

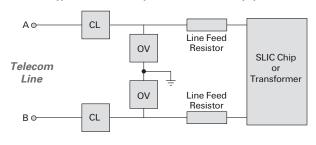
TE Circuit Protection offers a broad line of overcurrent and overvoltage devices that can help Public Switched Telephone Networks equipment conserve valuable board space and meet emerging safety performance standards.

- PolySwitch telecom devices
- · Surface-mount fuses
- GDTs

= Current-Limiting Device

SOV = Secondary Overvoltage Device

* RS is equal to the total coordinating resistance of the application



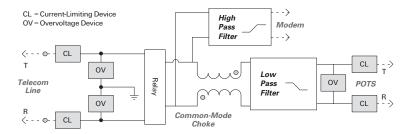
ITU-T Recommendations

The ITU-T standard lists several recommendations for central office (K.20), customer premise (K.21) and access network (K.45) equipment. Below is an overview of our device recommendations, including resettable circuit protection solutions.

- PolvSwitch telecom devices
- · Surface-mount fuses
- GDTs

Typical Protection System for Network Equipment

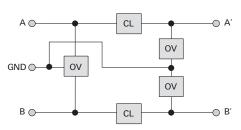
CL = Current-Limiting Device

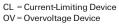

OV = Overvoltage Device

DSL Equipment

DSL equipment, such as splitters, must be protected against damage caused by both external and intrabuilding faults. Recommendations for resettable protection solutions are provided here, based on regional requirements.

- · PolySwitch telecom devices
- Surface-mount fuses
- GDTs

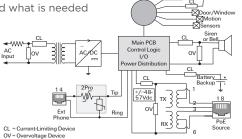




Main Distribution Frame (MDF) Modules

Telecom systems, such as MDF modules, typically have multi-stage circuit protection. Primary protection is used closest to the "outside world" where the highest surge withstand capability is typically needed. Secondary protection is needed to help protect against damage caused by hazardous power cross and lightning faults until the primary protection component activates. The following devices are recommended for helping to protect these systems.

- · PolySwitch telecom devices
- Surface-mount fuses
- GDTs

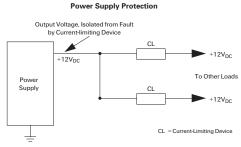


Security and Fire Alarm Systems

Security and fire alarm systems have a need for circuit protection, due to fault conditions experienced by these applications as well as safety requirements. Possible faults include short circuits in the sensor lines or overheating of the battery.

The devices below are recommended for helping to protect these systems. When choosing protection devices, it is also important to consider the different currents and what is needed to meet the requirements of UL864.

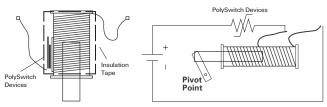
- · PolySwitch Radial-leaded devices
- · PolySwitch telecom devices
- GDTs
- ESD devices
- 2Pro devices

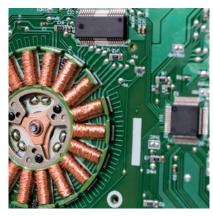


Test and Measurement Equipment

Power supplies, communication ports, test probes, and battery packs are all vulnerable to overcurrent faults and and electrostatic discharge (ESD). Incorrect termination of outputs may lead to system damage.

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- PolySwitch telecom devices
- FSD devices
- · Surface-mount fuses
- PolyZen devices

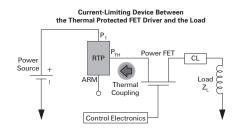




Solenoids

Solenoids are used in various PC and peripheral applications such as printer feed trays and CD/CD-RW/DVD tray mechanisms. A PolySwitch device can be used to help protect the coil assembly of the solenoid when a sensor fails or if the armature fails to retract, thus causing the coil temperature to increase and burn out the coil wire.

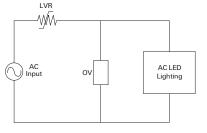
- PolySwitch Radial-leaded devices
- PolvSwitch Surface-mount devices
- Surface-mount fuses



Electromagnetic Loads

Electromagnetic loads can be susceptible to many problems. Incorrect use of solenoids, valves and motors can potentially lead to device failure and circuit damage. The devices below are recommended as circuit protection solutions for these applications.

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- · Surface-mount fuses
- HCRTP devices

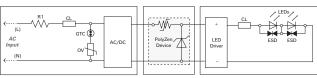


Protection for AC LEDs

Lighting fixtures powered by AC power can be put at risk from high voltage or power transients due to lightning strikes, load switching transients and their associated surge currents. We recommend the following circuit protection

devices to help protect AC LEDs.

- PolySwitch Line-voltage-rated
- PolvSwitch Surface-mount devices
- · 2Pro devices



Protection for DC Solid State Lighting (SSL)/LED Lighting

LED driver integrated circuits (ICs) used in many LED applications require a protected DC input to provide a regulated-current output to the LED. Listed below are devices that help protect these lighting applications.

A PolySwitch device placed in series with the LED driver IC and combined with a parallel voltage-limiting device, such as a Zener or transient suppression diode, can help provide effective protection against damage caused by faulty DC input voltages. A PolyZen device with an integrated PolySwitch PPTC device and Zener diode help provide both protection capabilities in one package.

- PolyZen devices
- PolySwitch Radial-leaded devices
- GDTs
- · Surface-mount fuses
- ESD devices

CFL Electronic Ballasts

There are two types of ballasts in compact fluorescent lamps (CFLs): electronic ballasts and magnetic ballasts. The electronic ballasts help prevent the fluorescent light from flickering when turning on. The electronic ballasts are more delicate and can be at risk from highvoltage or power transients due to lightning strikes, load switching transients and their associated surge currents.

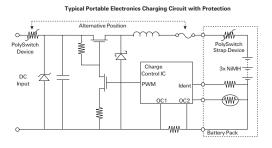
A PolySwitch device helps provide effective protection for the electronic components inside the ballast against damage caused by faulty transients. TE Circuit Protection's 2Pro device and surface-mount fuses also help to provide effective protection in CFL ballasts.

- 2Pro devices
- Surface-mount fuses

Street Lighting Electronic Ballasts

Lighting ballasts for street lighting can be at risk from high-voltage or power transients due to lightning strikes, load switching transients and their associated surge currents.

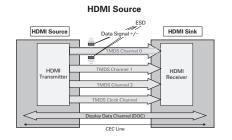
A PolySwitch device in series with the LED driver IC, and combined with a parallel voltage limiting device such as metal oxide varistors, can help provide effective protection against damage caused by faulty transients. Our recommended devices for street lighting also include the following:


- · PolySwitch Telecom devices
- Telecom fuses
- GDTs

Portable Electronics Input Ports

The use of an incorrect or faulty adapter/charger can irreparably damage unprotected portable electronics equipment. Typical applications include cell phones, digital cameras, and tablets. The devices listed below are recommended for these applications.

- PolvSwitch Surface-mount devices
- Surface-mount fuses
- PolvZen devices

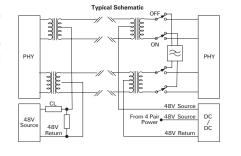

HDMI: LCD & Plasma Displays, HDTVs, Set-top Boxes, DVD Players

High definition multimedia interface (HDMI) applications, such as LCD displays, plasma displays, high-definition television set-top boxes and DVD players, are susceptible to electrostatic discharge (ESD devices). To help protect the high-speed TMDS lines against

damage caused by our ESD or SESD protection devices can be used twoper-line in HDMI designs.

- PolySwitch Surface-mount devices
- ESD devices
- Surface-mount fuses
- PolyZen devices

Note: HDMI 1.3 reference layout, whitepaper and testing results available upon request

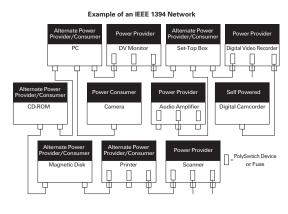


IEEE 802.3 Ethernet LAN (Powered Ethernet)

The auxiliary unit interface (AUI) consists of signal circuits, power and ground. Per the IEEE 802.3 standard, the Voltage Plus circuit is capable of operating at 12-15VDC for currents up to 500mA. In addition, per section 7.5.2.5, the source shall provide protection for this circuit

against damage caused by an overload condition. Powering IP devices such IP phones over the Ethernet cable introduces the potential for a short circuit and/or FET failure, causing service interruption. Devices recommended for circuit protection are:

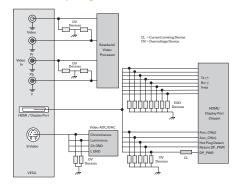
- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses



IEEE 1394: FireWire, i.Link

The IEEE 1394's complex power architecture provides up to 1.5A at voltages of 8-33V. PolySwitch devices help provide short-circuit protection in this high-power, hotplugging environment.

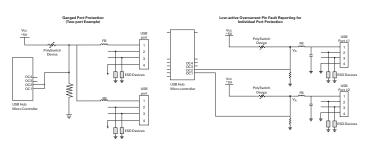
- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses



Video Ports: VESA, DDC, DVI, HDMI, DisplayPort

PolySwitch devices help protect video ports on PCI video cards and motherboard video ports from faults on the 5V interface line in Display Data Channel (DDC) circuits. These ports are designed for Energy Star compliance. TE Circuit Protection devices suitable for these applications include:

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses
- PolyZen devices
- ESD devices



Universal Serial Bus (USB)

PolySwitch devices help provide short-circuit protection in this hot-plugging environment for USB hosts, self-powered and bus-powered hubs. Recommended circuit protection devices

- PolvSwitch Radial-leaded devices
- PolvSwitch Surface-mount devices
- Surface-mount fuses
- PolyZen devices
- ESD devices

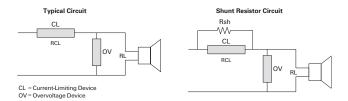
Audio Input/Output Ports

ESD protection devices can help protect analog audio ports from electrostatic discharge (ESD) during installation, or any time the user disconnects the source from the receiver. Additionally, our PolySwitch surface-mount devices and surface-mount fuses can be used.

- ESD devices
- Surface-mount PolySwitch devices
- · Surface-mount fuses

Power Input

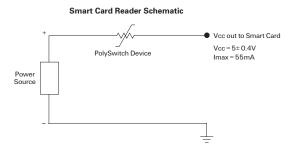
PolySwitch devices help protect against overcurrent and overtemperature fault conditions by limiting the flow of current in the DC input power port circuit. Surface-mount fuses and PolyZen devices are also recommended for this application.


- Surface-mount fuses
- PolyZen devices
- · Surface-mount PolySwitch devices

Loudspeakers

High-powered amplifiers used with low-powered speakers may overdrive the speaker coils with excessive power during sustained high volumes. Low-powered amplifiers may be overdriven so that clipping occurs. This causes an upward frequency shift of power that can overload the tweeters. Digital recordings, with their ability to reproduce high-frequency material, place extra strain on tweeters. TE Circuit Protection devices, including PolySwitch devices, can help the design engineer solve these problems.

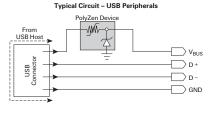
- PolvSwitch Radial-leaded devices
- Surface-mount fuses
- PolyZen devices

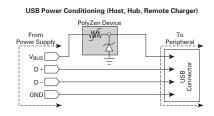


Smart Card Readers

Smart cards are powered from the readers' Vcc output. Defective cards or foreign objects placed into the reader can cause a short circuit and permanently damage the reader. The PolySwitch device can be used for circuit protection in smart card reader designs.

• PolySwitch Surface-mount devices

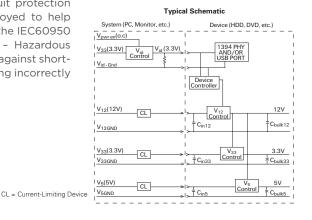




USB Peripherals

PolyZen devices can help protect against damage caused by overvoltage on USB peripherals and devices on the 5V computer bus. The component helps protect sensitive follow-on electrics — such as flash memory and other 6V capable silicon — from inductive voltage spikes, incorrect power supplies, dirty power and other voltage transients. The RoHScompliant device offers massive power-handling in a 4mm package. PolyZen devices and ESD protection devices are also suitable for this application.

- PolySwitch Surface-mount devices
- PolyZen devices
- ESD devices

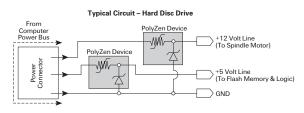


Backplane and Redundant Array of Inexpensive Disks (RAID)

Power backplane applications allow for field-serviceable and field-replaceable cards and drives to maximize the "up-time" of products. During card or drive replacements, the power

on the backplane is live. The circuit protection devices listed below can be employed to help minimize safety risks, comply with the IEC60950 safety requirement (clause 1.2.8.7 - Hazardous Energy Levels), and to help protect against shortcircuit damage caused by cards being incorrectly

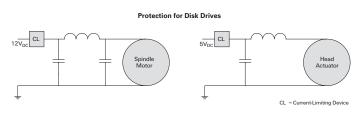
- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses



Hard Disk Drives (HDDs)

Integrated PolyZen devices can help protect devices on the 5V and 12V computer bus from overvoltage events and inductive voltage spikes resulting from a rapid change in current. The PolyZen device incorporates a stable Zener diode for precise voltage clamping and a resistively non-linear, polymer positive temperature coefficient (PPTC) layer that responds to either diode heating or overcurrent events by transitioning from a low to a high resistance state. This unique device helps manufacturers meet safety requirements and reduce warranty costs. In addition to the PolyZen device, the following circuit protection products are recommended for HDDs.

- PolySwitch Surface-mount devices
- PolyZen devices
- Surface-mount fuses
- ESD devices



5V/12V Power Lines

The connection of a 12V line from the power supply instead of a 5V line can cause a highcurrent inrush that can damage the other components in the circuit. Reverse polarity can cause damage to the tantalum capacitors, causing the capacitor to fail in a short-circuit mode. Applications suitable for the circuit protection devices listed below include hard disk drives, CD-ROM, CD-RW, DVD and other storage devices.

- · PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- · Surface-mount fuses
- PolyZen devices

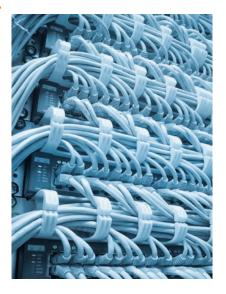
Voltage Regulation Modules (VRMs)

Voltage regulation modules (VRMs) are used to supply power to central processing units. Due to load-change transients, processors can draw up to 13A. Also, during normal operation the current demand can change by as much as 7A as processor activity levels change. These highcurrent immediate demands can cause components to fail. The following Circuit Protection can help prevent the VRM from damaging the processor in the event of a VRM failure.

- PolySwitch Radial-leaded devices
- PolvSwitch Surface-mount devices
- Surface-mount fuses

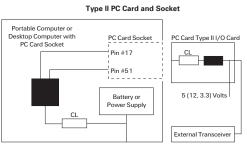
Device Bays

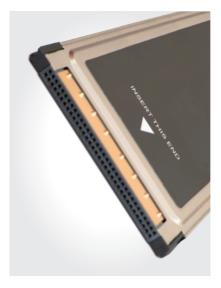
The specifications for hot-swappable bays used in high-availability applications, such as servers and industrial computers, typically recommend overcurrent protection. An externally accessible port such as IEEE1394 or USB may also be used. The devices below are recommended for hot-swappable bay designs.


- · PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses

Fibre Channel

A fault, such as a short circuit, that occurs during testing or hot-swapping a peripheral component interconnect (PCI) card can cause significant damage. Incorrect insertion of the gigabit interface converter (GBIC) or a foreign object placed into the connector can also cause permanent damage to the system. Protection on the PCI bus input is typically used as well as a secondary protector for the GBIC I/O. We recommend the following TE Circuit Protection devices for this application.


- PolvSwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- · Surface-mount fuses


PC Cards and Sockets

Short circuits from external sources are the primary hazards for PC cards. The devices below can help protect against large current inrushes that can damage the PC card or the PC card bus.

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- · Surface-mount fuses
- ESD devices
- PolyZen devices

Motherboard Components

Since power-sensitive computer electronics such as flash memory can be exposed to voltages well in excess of the bus voltage, they require protection. Voltage spikes can result from a hot disconnect of a peripheral, an internal system shutdown or other internal power fluctuation. The integrated PolyZen device protects like a Zener diode while being capable of withstanding the high-power fault conditions that can occur in computer electronics. A coordinated protection scheme using the devices below is recommended as a solution in this application.

- PolySwitch Surface-mount devices
- Surface-mount fuses
- ESD devices

Antennas

When used in antenna applications, PolySwitch devices can help limit the flow of dangerously high currents during fault conditions. As resettable polymer positive temperature coefficient (PPTC) devices, PolySwitch devices can reset back to normal operating mode once the fault condition is removed.

• PolySwitch Surface-mount devices

LCD Monitors

Power for LCD monitors is supplied from the 5V and 12V buses. The LCD controller itself and the surrounding controller logic are powered from the 5V bus. The LCD inverter and the electronics on the board are powered from the 12V bus. Misconnections and mishandling of the monitors during assembly or while in use can cause large overloads and short circuits in the system, damaging expensive components. For this reason, the following TE Circuit Protection devices are recommended for LCD monitor applications.

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses
- ESD devices

Displays

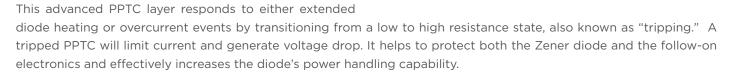
PolySwitch resettable devices can be thermally linked to the LCD glass. They can protect the power module if the control circuitry fails to turn off the element and help prevent thermal runaway. The following devices are suitable for use in display applications:

- PolySwitch Radial-leaded devices
- PolySwitch Surface-mount devices
- Surface-mount fuses
- ESD devices

					′		Ov Circui	/ercu it Pro				,	/	Overvol Circuit	: / Ove	ertempe Protectio	rature /	Hybrid Protection
		/0 _d	Facility Day	0603 74.	2410 Very	120 Very 120	0603 1/2 0	Pur Acting Purity Purit		Slo.	PESS C	Chipes	Gas A.	MHP.T.	High-Current	2Pro Devices	Polyza	T) Delvíces
	Buttons											•						
10	Compressors	•																
CES	Displays	•	•	•	•	•	•	•		•		•						
₹ E	Motors	•						•		•								
APPLIANCES	Power supplies	•	•	•	•	•	•	•					•				•	
4	Transformers	•			•			•										
	TRIACs	•			•													
	ABS systems	•	•		•	•		•		•				•	•			
	Glow Plug ECU							•		•					•			
	Diesel Motor Preheater							•		•					•			
	Antennae	•									•	•						
VE VE	Cigarette lighter accessories		•	•		•	•	•	•	•							•	
AUTOMOTIVE	Connectors	•																
5 5	Displays	•	•		•	•	•	•		•	•	•						
AU	Electronic control units	•	•	•	•	•	•	•	•	•		•		•	•			
	HVAC and climate control	•							•					•	•		•	
	Infotainment and navigation systems	•	•	•	•	•	•	•	•	•	•	•			•		•	
	Motors	•							•					•				
	Wire harness	•							•									
BATTERIES	Li-ion	•	•					•	٠	•	•	•		•	•			
Ë	Ni-Cd	•	•					•		•		•		•				
BAT	Ni-MH	•	•					•		•		•		•				
	Antennae										•	•						
	Audio Input / Output	•	•	•	•	•	•	•		•	•	•						
	Batteries	•						•	•	•					•			
BUSINESS AND RETAIL EQUIPMENT	Buttons	•																
ZES!	Displays	•	•	•	•	•	•	•	•	•	•	•						
USIN	Motherboard components	•	•	•	•	•	•	•	•	•					•			
BI RET,	Ports	•	•	•	•	•	•	•		•	•	•						
	HDDS	•	•	•	•	•	•	•	•	•	•	•					•	
	Power Input	•	•	•	•	•	•	•	•	•					•		•	

					,		Ov Circu		rrent			/	/	Overvo Circuit rotectic	: / Ov	ertempe Protecti		Hybrid Protectio
		/ d	Facility Dew	OGOS TR.	2410 Very	1206 V	0502-4Cting 0603-4Cting	Pur Acting		SIGNETIFE	PESON AREA	Chips:	Gas A.	MHP.T.	High-Current	2Prop. Devices	Polyz	Sen Devices
	Antennae										•	•	•					
	Audio Input / Output	•									•	•	•				•	
	Batteries	•			•				•	•					•			
	Buttons	•	•	•			•			•		•						
	Displays	•	•	•		•	•			•		•						
SNS	Fans	•	•	•			•			•								
ATIC	HDDs	•	•	•						•		•					•	
COMMUNICATIONS	HPNA	•	•	•		•	•			•		•	•					
JΜL	Low-speed test ports	•	•	•			•	•		•		•	•					
SO	MoCA	•	•	•		•	•			•		•						
	Motherboard components	•	•	•	•	•	•			•					•			
	Networking over powerline	•	•	•	•	•	•			•		•	•			•		
	Ports	•	•	•	•		•			•		•						
	Power input	•	•	•	•	•	•	•		•			•			•	•	
	Power over Ethernet	•	•	•		•		•		•	•	•	•					
AR	Batteries	•	•		•			•	•	•	•	•			•			
SOL	Charge controllers	•	•	•	•	•	•	•	•	•	•	•	•		•			
N Q	Combiner boxes	•			•			•	•	•			•					
. Y	Inverters	•			•			•	•	•	•	•	•		•			
ENERGY AND SOLAR	Junction boxes				•				•		•	•						
ШZ	Disconnect Boxes	•			•			•	•	•	•	•	•					
	Audio Input / Output	•											•				•	
늘	Batteries	•	•		•			•		•	•	•		•				
Σ	Buttons										•	•						
TAIN	Displays	•	•	•	•	•	•		•	•	•	•						
HOME ENTERTAINMENT	HDDS	•	•	•		•	•	•	•	•	٠	•					•	
ШZ	Motors	•	•	•		•	•	•	•	•								
DΜE	PCB components	•		•		•									•			
Ĭ	Ports	•		•		•					•	•	•					
	Power Input	•	•	•	•	•	•	•	•	•			•		•	•	•	

					,		O _\ Circu		rrent tecti			,	/	Overvol Circuit	: / Ove	ertempe Protecti		Hybrid Protectio
		No d	Fac. Delich Delich	John Costing Cost	2410 Very	256 Very 1206 Ve	0603 /c/mg	Set Acting Pull		SIQ.	PESD.	Chipes	Gas p.	MHP.T.	High-Current	2Pro Devices	Polyzz	Seh Delvices
	Buttons	•										•	•					
	Compressors	•							•					•				
4	Displays	•	•	•	•	•	•	•		•		•						
INDUSTRIAL	Electromagnetic loads	•						•		•								
SNO	Motors	•						•		•								
Z	Power Input	•	•	•	•	•	•	•		•			•		•	•	•	
	Transformers	•			•				•						•			
	UPS Backup	•			•				•				•		•			
	CFL electronic ballasts	•			•											•		
	LED ballasts			•	•	•	•								•			
40	LED controllers	•		•	•	•	•		•	•					•		•	
LIGHTING	LED drivers	•		•	•	•	•		•	•							•	
F	PN junction								•						•			
_	Power input	•			•	•	•		•	•							•	
	Power supplies				•		•		•	•					•	•	•	
	TRIACs								•									
	Antennae											•						
	Audio Input / Output	•		•		•	•			•		•					•	
EVICES	Batteries	•								•					•			
DEVI	Buttons	•					•			•		•						
	Displays				•		•			•		•						
MOBILE	LEDs				•		•			•								
2	Ports	•		•	•	•	•			•		•						
	Power Input	•			•		•			•							•	
	Antennae											•						4
ERS	Audio Input / Output	•			•		•	•		•		•						
PUT	Batteries				•				•	•		•			•			
<u>Σ</u> 0	Buttons	•										•						
PERSONAL COMPUTERS	Displays	•		•			•					•						
NO NO	Motherboard components	•		•	•		•		•			•			•			
ERS	Ports	•		•								•						
т.	Power Input			•			•		•								•	


POLYZEN DEVICES

Polymer Protected Zener Diode

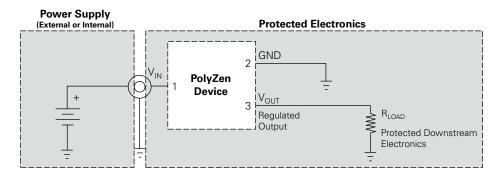
PolyZen devices are polymer-enhanced, precision Zener diodes. They offer resettable protection against multi-Watt fault events without the need for multi-Watt heat sinks.

The Zener diode used for voltage clamping a PolyZen device was selected due to its relatively flat voltage vs. current response. This helps improve output voltage clamping, even when input voltage is high and diode currents are large.

An advanced feature of the PolyZen device is that the Zener diode is thermally coupled to a resistively non-linear, PPTC (polymer positive temperature coefficient) layer. This PPTC layer is fully integrated into the device and is electrically in series between V_{IN} and the diode clamped V_{OUT} .

The polymer-enhanced Zener diode helps protect sensitive portable electronics from damage caused by inductive voltage spikes, voltage transients, incorrect power supplies and reverse bias. These devices are particularly suitable for portable electronics and other low-power DC devices.

- Stable Zener diode helps shield downstream electronics from overvoltage and reverse bias
- Trip events shut out overvoltage and reverse bias sources
- Analog nature of trip events helps minimize damage from upstream inductive spikes
- Minimal power dissipation requirements
- Single component placement

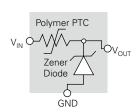

FEATURES

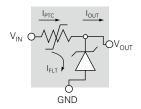
- Overvoltage transient suppression
- Stable V_Z vs. fault current
- Time delayed, overvoltage trip
- · Time delayed, reverse bias trip

- DC power port protection in portable electronics
- DC power port protection for systems using barrel jacks for power input
- Internal overvoltage and transient suppression
- DC output voltage regulation
- Tablet PCs and portable electronics
- · Multi-Watt power handling capability
- Integrated device construction
- · RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)

Figure PZ1 — Typical Application Block Diagram

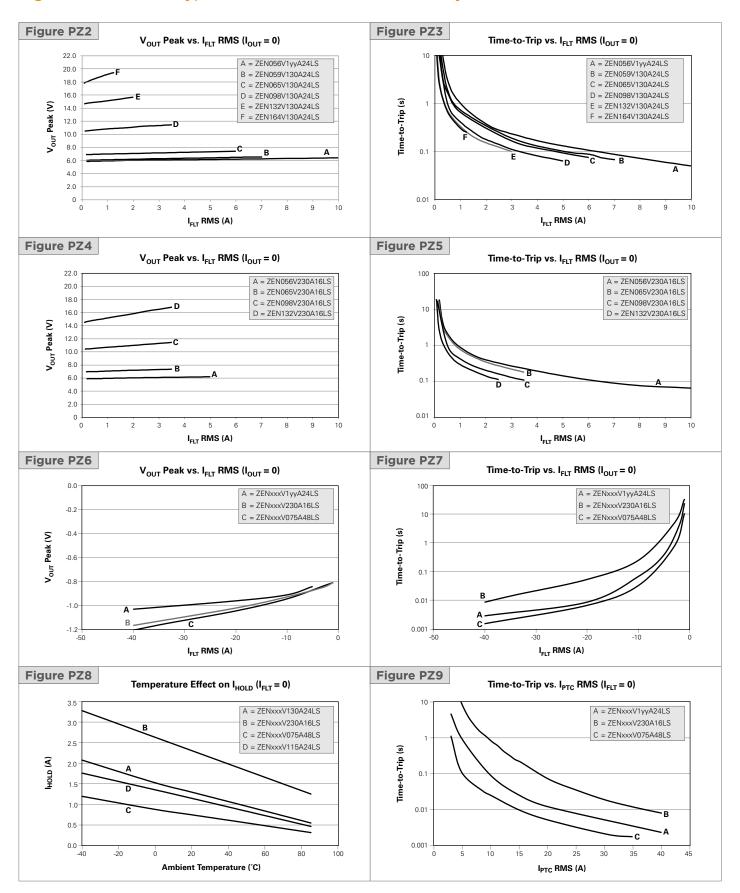
Table PZ1 — Electrical Characteristics

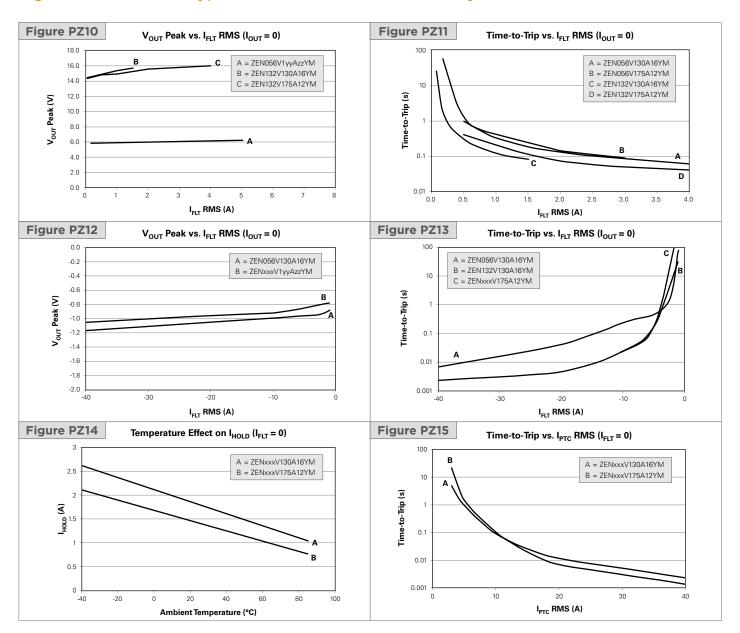

(Performance ratings @ 25°C unless otherwise specified)


		$V_{z}(V)$						V _{INT}	MAX	I _{FLT}	MAX
					I _{HOLD}				Test		Test
				I_{Zt}	@ 20°C	R_{Typ}	R_{1MAX}	V_{INTMAX}	Current	I _{FLT MAX}	Voltage
Part Number	Min	Тур	Max	(A)	(A)	(Ω)	(Ω)	(V)	(A)	(A)	(V)
ZEN056V130A24LS	5.45	5.60	5.75	0.10	1.30	0.12	0.16	24	3	+10/-40	+24/-16
ZEN059V130A24LS†	5.80	5.90	6.00	0.10	1.30	0.12	0.15	24	3	+6/-40	+24/-16
ZEN065V130A24LS	6.35	6.50	6.65	0.10	1.30	0.12	0.16	24	3	+6/-40	+24/-16
ZEN098V130A24LS	9.60	9.80	10.00	0.10	1.30	0.12	0.16	24	3	+3.5/-40	+24/-16
ZEN132V130A24LS	13.20	13.40	13.60	0.10	1.30	0.12	0.16	24	3	+2/-40	+24/-16
ZEN164V130A24LS	16.10	16.40	16.60	0.10	1.30	0.12	0.16	24	3	+1.25/-40	+24/-16
ZEN056V230A16LS	5.45	5.60	5.75	0.10	2.30	0.04	0.06	16	5	+5/-40	+16/-12
ZEN065V230A16LS	6.35	6.50	6.65	0.10	2.30	0.04	0.06	16	5	+3.5/-40	+16/-12
ZEN098V230A16LS	9.60	9.80	10.00	0.10	2.30	0.04	0.06	16	5	+3.5/-40	+16/-12
ZEN132V230A16LS	13.20	13.40	13.60	0.10	2.30	0.04	0.06	16	5	+2/-40	+20/-12
ZEN056V075A48LS	5.45	5.60	5.75	0.10	0.75	0.28	0.45	48	3	+10/-40	+48/-16
ZEN132V075A48LS	13.20	13.40	13.60	0.10	0.75	0.28	0.45	48	3	+2/-40	+48/-16
ZEN056V115A24LS	5.45	5.60	5.75	0.10	1.15	0.15	0.18	24	3	+10/-40	+24/-16
ZEN056V130A16YM	5.35	5.60	5.85	0.10	1.30	0.110	0.160	14	3	+3/-40	+16/-12
ZEN056V175A12YM	5.35	5.60	5.85	0.10	1.75	0.050	0.095	12	4	+3/-40	+12/-12
ZEN132V130A16YM	13.20	13.40	13.80	0.10	1.30	0.110	0.160	14	3	+1/-40	+20/-12
ZEN132V175A12YM	13.20	13.40	13.80	0.10	1.75	0.050	0.095	12	4	+1/-40	+20/-12
ZEN056V130A24YC	5.35	5.60	5.85	0.10	1.30	0.110	0.170	24	3	+4/-40	+24/-16
ZEN056V230A16YC	5.35	5.60	5.85	0.10	2.30	0.040	0.070	16	5	+3/-40	+16/-12
ZEN056V260A16YC	5.35	5.60	5.85	0.10	2.60	0.040	0.055	16	5	+3/-40	+16/-12
ZEN132V130A24YC	13.20	13.40	13.80	0.10	1.30	0.110	0.170	24	3	+1/-40	+24/-16
ZEN132V230A16YC	13.20	13.40	13.80	0.10	2.30	0.040	0.070	16	5	+1/-40	+20/-12
ZEN132V260A16YC	13.20	13.40	13.80	0.10	2.60	0.040	0.055	16	5	+1/-40	+20/-12

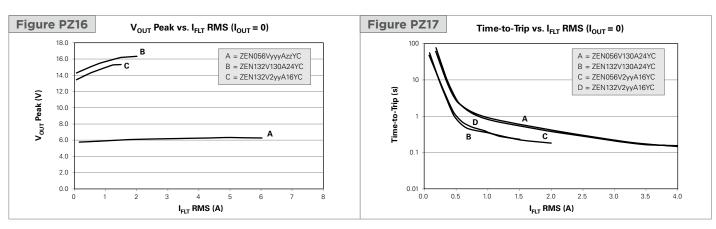
LS module height is 1.7mm typical. YM module height is 1.2mm typical. YC module height is 1.3mm typical. † Typical operating current is $500\mu A$ @ 5.0V which meets USB suspend mode requirement.

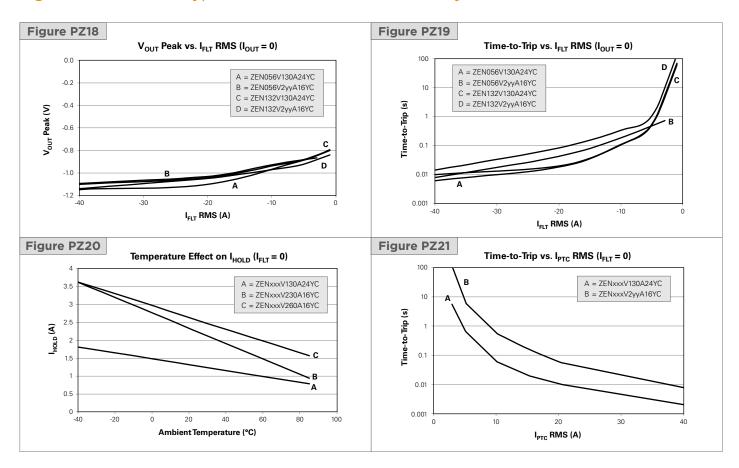
Table PZ2 — Definition of Terms


Vz	Zener clamping voltage measured at current I_{ZT} and 20°C.
I _{ZT}	Test current at which V _Z is measured.
I _{HOLD}	Maximum steady state current I_{PTC} that will not generate a trip event at the specified temperature. Ratings assume $I_{FLT} = 0A$.
R _{Typ}	Typical resistance between V _{IN} and V _{OUT} pins when the device is at room temperature.
R _{1MAX}	The maximum resistance between V_{IN} and V_{OUT} pins, at room temperature, one hour after first trip or after reflow soldering.
I _{FLT}	Current flowing through the Zener diode.
I _{FLT MAX}	Maximum RMS fault current the Zener diode component of the device can withstand and remain resettable; testing is conducted at rated voltage with no load connected to V _{OUT} .
V _{INT MAX}	The voltage $(V_{IN} - V_{OUT}$ "post trip") at which typical qualification devices (98% devices, 95% confidence) survived at least 100 trip cycles and 24 hours trip endurance when "tripped" at the specified voltage and current (I_{PTC}) .
I _{PTC}	Current flowing through the PPTC portion of the circuit.
I _{OUT}	Current flowing out the V _{OUT} pin of the device.
Trip Event	A condition where the PPTC transitions to a high resistance state, thereby limiting I _{PTC} , and significantly increasing the voltage drop between V _{III} and V _{CUT} .

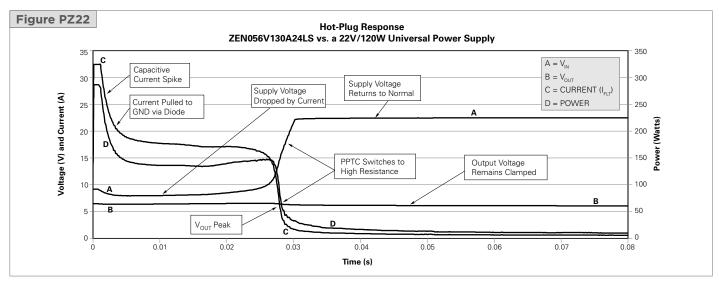


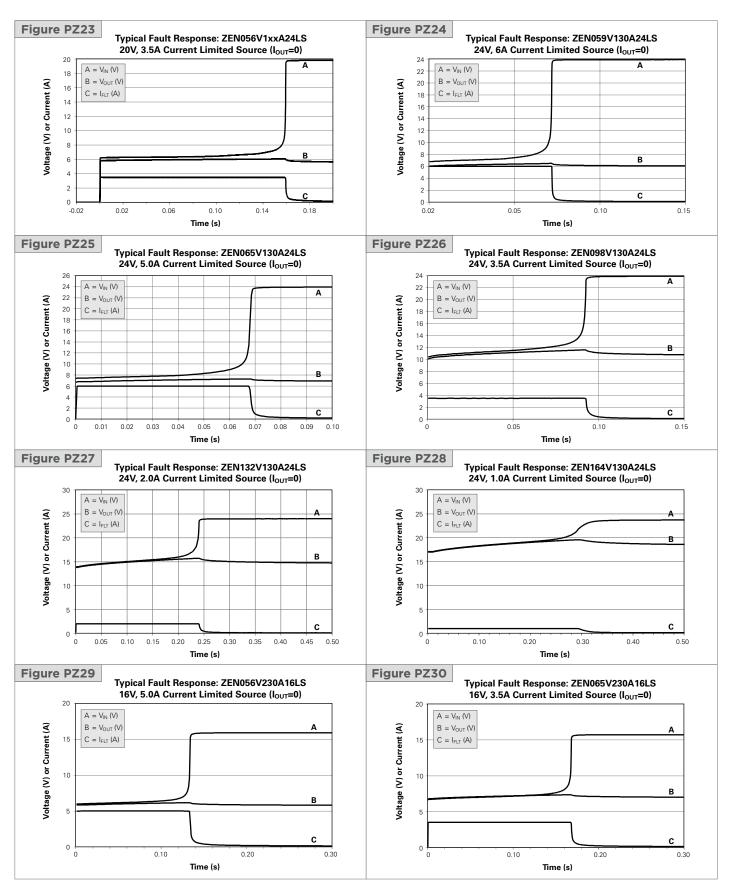
NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW


Figures PZ2-PZ9 — Typical Performance Curves for PolyZen Devices - LS Series

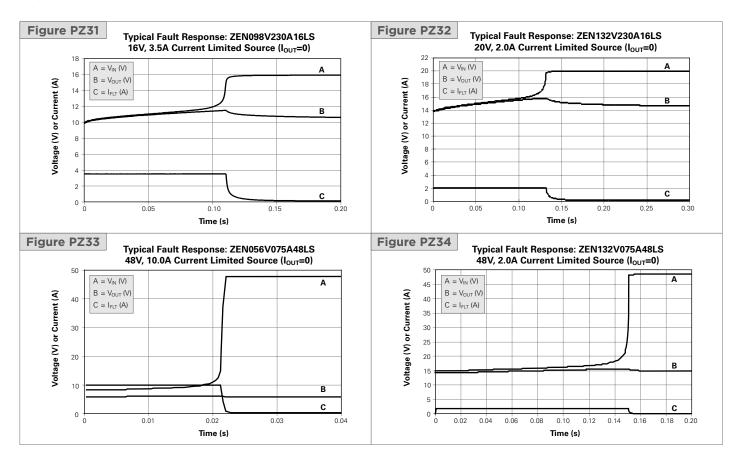

Figures PZ10-PZ15 — Typical Performance Curves for PolyZen Devices - YM Series

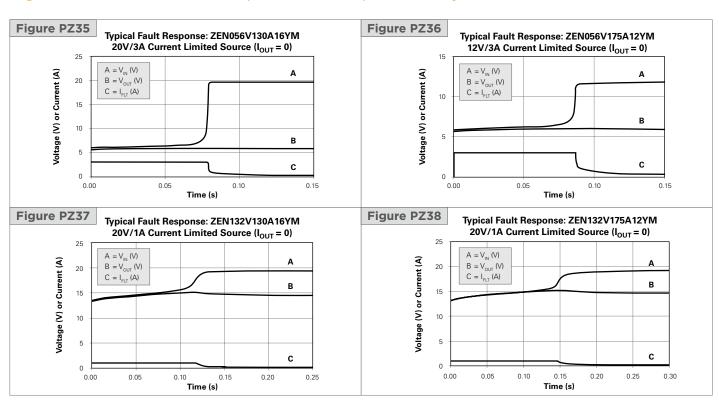
Figures PZ16-PZ21 — Typical Performance Curves for PolyZen Devices - YC Series

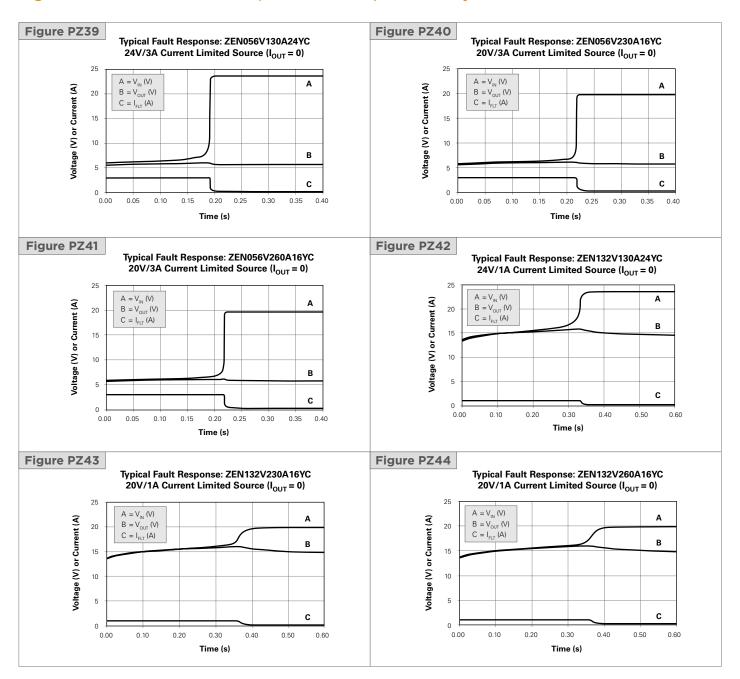

Figures PZ16-PZ21 — Typical Performance Curves for PolyZen Devices - YC Series (Cont'd)


Table PZ3 — General Characteristics for PolyZen Devices

Operating temperature range	-40° to +85°C		
Storage temperature	-40° to +85°C		
ESD withstand	15kV	Human body model	
Diode capacitance	4200pF	Typical @ 1MHz, 1V RMS	
Construction	RoHS compliant		

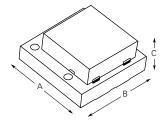

Figures PZ22-PZ34 — Basic Operation Examples for PolyZen Devices - LS Series


Figures PZ22-PZ34 — Basic Operation Examples for PolyZen Devices - LS Series (Cont'd)


Figures PZ22-PZ34 — Basic Operation Examples for PolyZen Devices - LS Series (Cont'd)

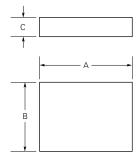
Figures PZ35-PZ38 — Basic Operation Examples for PolyZen Devices - YM Series

Figures PZ39-PZ44 — Basic Operation Examples for PolyZen Devices - YC Series


Table PZ4 - Packaging and Marking Information for PolyZen Devices

Part Number	Bag Quantity	Tape & Reel Quantity	Standard Package
ZENxxxVyyyAzzLS	_	3,000	15,000
ZENxxxVyyyAzzYM	_	3,000	30,000
ZENxxxVyyyAzzYC	_	4,000	20,000

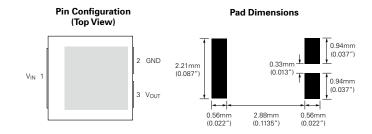
Table PZ5 — Dimensions in Millimeters and (Inches)


ZENxxxVyyyAzzLS Devices

	A		E	В		С	
	Min	Max	Min	Max	Min	Max	
mm	3.85	4.15	3.85	4.15	1.40	2.00	
in	(0.152)	(0.163)	(0.152)	(0.163)	(0.055)	(0.081)	

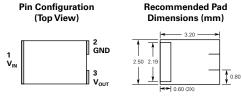
ZENxxxVyyyAzzYM Devices

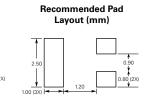
	A	Α		В		С	
	Min	Max	Min	Max	Min	Max	
mm	3.00	3.40	2.30	2.70	1.10	1.30	
in	(0.118)	(0.134)	(0.091)	(0.106)	(0.043)	(0.051)	


ZENxxxVyyyAzzYC Devices

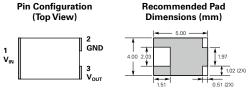
	А		E	В		С	
	Min	Max	Min	Max	Min	Max	
mm	4.80	5.20	3.80	4.20	1.20	1.40	
in	(0.190)	(0.206)	(0.150)	(0.166)	(0.047)	(0.055)	

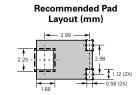
Table PZ6 — Pad Layout and Configuration Information


ZENxxxVyyyAzzLS Devices


Pin Number	Pin Name	Pin Function		
1	V_{IN}	V _{IN} = Protected input to Zener diode		
2	GND	GND = Ground		
3	V _{OUT}	V _{OUT} = Zener regulated voltage output		

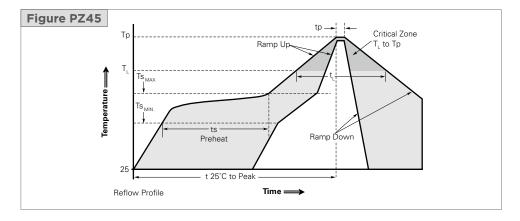
ZENxxxVyyyAzzYM Devices


Pin Number	Pin Name	Pin Function		
1	V_{IN}	V _{IN}	= Protected input to Zener diode	
2	GND	GND	= Ground	
3	V _{OUT}	V _{OUT} = Zener regulated voltage outpu		



ZENxxxVyyyAzzYC Devices

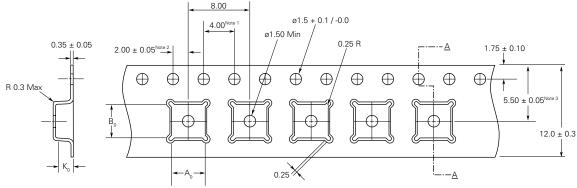
Pin Number	Pin Name	Pin Function		
1	V_{IN}	V_{IN}	= Protected input to Zener diode	
2	GND	GND	= Ground	
3	V _{OUT}	V _{OUT}	= Zener regulated voltage output	



Solder Reflow and Rework Recommendation

Classification Reflow Profiles

	ZENxxxVyyyAzzLS Devices	
	ZENxxxVyyyAzzYM Devices	ZENxxxVyyyAzzYC Devices
Profile Feature	Pb-Free Assembly	Pb-Free Assembly
Average Ramp Up Rate (Ts _{MAX} to Tp) Preheat	3°C/ s Max	3°C/ s Max
Temperature Min (Ts _{MIN})	150°C	150°C
Temperature Max (Ts _{MAX})	200°C	200°C
• Time (ts Preheat)	60-180 s	60-180 s
Time Maintained Above:		
• Temperature (T _L)	217°C	217°C
• Time (t _L)	60-150 s	60-150 s
Peak/Classification Temperature (Tp) Time within 5°C of Actual Peak Temperature	260°C	250°C
Time (tp)	20-40 s	20-40 s
Average Ramp Down Rate (Tp to T _L)	6°C/ s Max	3°C/ s Max
Time 25°C to Peak Temperature	8 Minutes Max	8 Minutes Max


Note: All temperatures refer to top side of the package, measured on the package body surface.

Tape and Reel Specifications for PolyZen Devices in Millimeters

Figure PZ46 — EIA Referenced Taped Component Dimensions for ZENxxxVyyyAzzLS Devices in Millimeters (mm)

Description	ZENxxxVyyyAzzLS Devices	
A ₀	4.35	
B ₀	4.35	
K ₀	2.30	

- **Notes:** 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
 - 2. Camber in compliance with EIA 481
 - 3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Figure PZ47 — Reel Dimensions for ZENxxxVyyyAzzLS Devices in Millimeters (mm)

Description	Dimension (mm)
A_{Max}	330
N_{Min}	102
W_1	8.4
W ₂	11.1

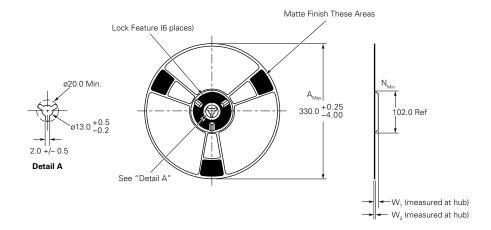


Figure PZ48 — EIA Referenced Taped Component Dimensions for ZENxxxVyyyAzzYM Devices in Millimeters (mm)

SYMBOL	A ₀	B ₀	K ₀	P ₀	P ₁	P ₂	B _{1Max}
SPEC	2.90±0.10	3.55±0.10	1.27±0.10	4.00±0.10	4.00±0.10	2.00±0.05	4.35
SYMBOL	Т	E1	F	D_0	D ₁	W	D_{1Max}
SPEC	0.25±0.02	1.75±0.10	3.50±0.05	1.55±0.05	1.00±0.10	8.00±0.30	1.0

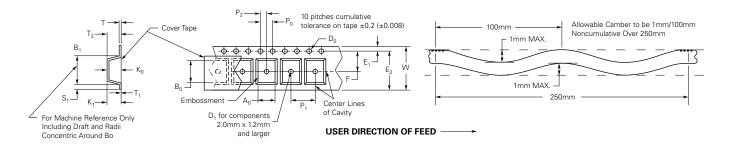
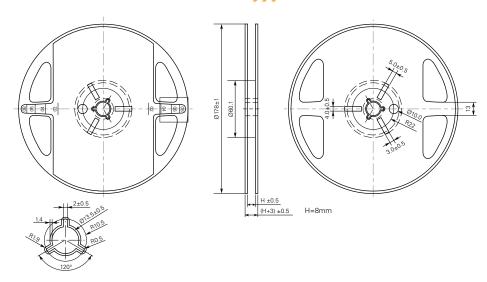



Figure PZ49 — Reel Dimensions for ZENxxxVyyyAzzYM Devices in Millimeters (mm)

Figure PZ50 — EIA Referenced Taped Component Dimensions for ZENxxxVyyyAzzYC Devices in Millimeters (mm)

Item	Dimension	Tolerance
W	12.00	±0.10
Р	8.00	±0.10
Е	1.75	±0.10
F	5.50	±0.10
P ₂	2.00	±0.10
D	1.50	+0.10 -0.00
D_1	1.50	±0.10
P ₀	4.00	±0.10
10P ₀	40.00	±0.20
A ₀	4.20	±0.10
B ₀	5.25	±0.10
K ₀	1.40	±0.10
t	0.24	±0.05

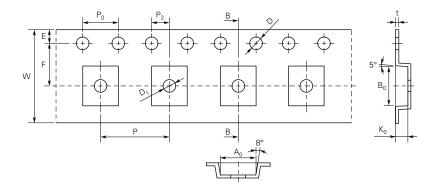
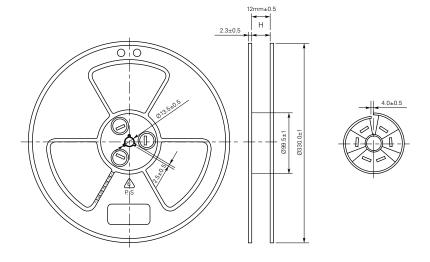
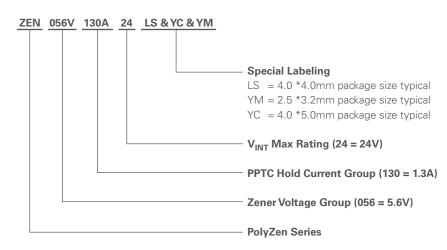
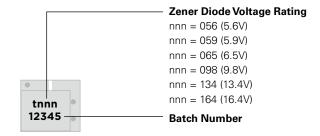
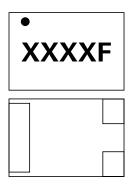




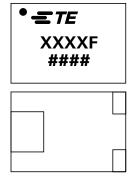
Figure PZ51 — Reel Dimensions for ZENxxxVyyyAzzYC Devices in Millimeters (mm)


Part Numbering System

4 PolyZen Devices Polymer Protected Zener Diode


Part Marking System

ZENxxxVyyyAzzLS Devices

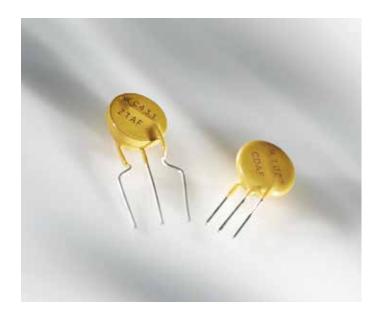

ZENxxxVyyyAzzYM Devices

Markings	V_Z	Hold Current	Special Code	Part Description
0513F	5.6V	1.3A	F	ZEN056V130A16YM
0517F	5.6V	1.75A	F	ZEN056V175A12YM
1313F	13.2V	1.3A	F	ZEN132V130A16YM
1317F	13.2V	1.75A	F	ZEN132V175A12YM

ZENxxxVyyyAzzYC Devices

Markings	V _Z	Hold Current	Special Code	Part Description
0513F	5.6V	1.3A	F	ZEN056V130A24YC
052XF	5.6V	2.3A	F	ZEN056V230A16YC
052XF	5.6V	2.6A	F	ZEN056V230A16YC
1313F	13.2V	1.3A	F	ZEN132V130A24YC
132XF	13.2V	2.3A	F	ZEN132V230A16YC
132XF	13.2V	2.6A	F	ZEN132V230A16YC
####		Last 4 digits of	f batch number	

PolyZen Devices Polymer Protected Zener Diode


Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserve the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

2PRO DEVICES

The 2Pro product is an integrated overcurrent/ over-voltage protection device. The RoHS-compliant component incorporates PolySwitch PPTC (Polymeric Positive Temperature Coefficient) technology and MOV (Metal Oxide Varistor) technology in a single device to help reduce board space requirements and component count.

Damage to telephony communications equipment can be caused by various sources including lightning, electrostatic discharge (ESD), power contact and induction with AC lines. The 2Pro TM2P-10271 devices help provide current limiting during overcurrent events and voltage clamping during overvoltage events. After a fault condition is removed and power is cycled, 2Pro devices will reset so that the equipment remains operational.

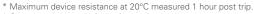
The 2Pro device helps address the need for resettable circuit protection devices for use in cost-sensitive PSTN (Public Switched Telephone Network) and VoIP (Voice over Internet Protocol) telephony equipment. The widespread use of VoIP gateways in homes and enterprise environments as the primary means of voice delivery requires the utmost safety and reliability in equipment. 2Pro circuit protection devices help manufacturers comply with global safety standards, including UL 60950, TIA-968-A, IEC 60950 and ITU-T K.20/K.21. The UL 497A listed protector also helps provide ESD protection.

BENEFITS

- Single device helps reduce component count and footprint
- Helps reduce warranty returns
- Helps equipment comply with surge tests per: TIA-968-A, IEC 60950, ITU-T K.20/K.21
- Helps simplify UL 60950 testing
- Helps equipment comply with UL 60950

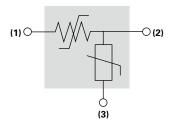
FEATURES

- RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Single overcurrent, overvoltage and ESD protection device
- Resettable overcurrent protection
- UL 497A listed protector (#E258475)


APPLICATIONS

- Cordless telephones
- · VoIP gateways
- Fax machines
- Data modems
- Set-top boxes
- Security systems
- MDF modules
- Analog and ISDN linecards

Table 2P1 — Electrical Characteristics


Overcurrent (terminals 1 – 2) — Performance ratings @ 20°C								
	luara	$\begin{array}{ccc} & & & & & \\ \textbf{Resistance}^{\dagger} \\ \textbf{I}_{\text{HOLD}} & \textbf{I}_{\text{TRIP}} & (\Omega) \end{array}$					e-to- (s) [†]	
Part Number	(A)	(A)	R _{MIN}	_ ` _	R _{1 MAX*}	Тур	Max	
TM2P-10271	0.15	0.30	6.50	14.00	16.00	0.90	3.00	(@1A)
LVM2P-015R10431	0.15	0.30	6.50	14.00	16.00	0.90	3.00	(@1A)
LVM2P-035R14431	0.35	0.75	1.40	2.20	2.80	0.50	2.00	(@3A)
LVM2P-075R14431	0.75	1.50	0.37	0.80	1.00	0.90	1.20	(@7A)

Overvoltage (Terminals 2 – 3)									
		r Voltage ? 1mA	DC Resistance @ 100V	Maximum Clamping	Rated Wattage				
Part Number	DC (V)	Tolerance	(MΩ)	(V)	(W)				
TM2P-10271	260	+14% -7%	>10	455 (@25A)	0.25				
LVM2P-015R10431	430	+10% -10%	>10	710 (@ 25A)	0.25				
LVM2P-035R14431	430	+10% -10%	>10	710 (@ 50A)	0.60				
LVM2P-075R14431	430	+10% -10%	>10	710 (@ 50A)	1.00				

[†] Corresponds to operation below varistor voltages.

Electrical Schematic

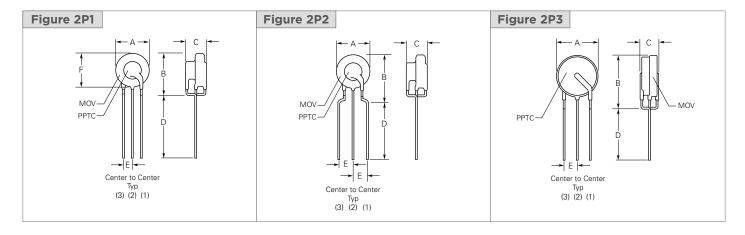


Table 2P2 — Dimensions in Millimeters and (Inches*)

Part		Α		В		С)	Е		F	F:
Number	Min	Max	Min	Max	Min	Max	Min	Max	Nom	Min	Max	Figure
TM2P-10271												
mm	_	12.0	_	15.0	_	6.6	6.0	_	2.5	_	12.0	2P1
in*	_	(0.47)	_	(0.59)	_	(0.26)	(0.24)	_	(0.10)	_	(0.47)	
LVM2P-015R10431												
mm	_	12.0	_	17.0	_	7.4	8.5	11.5	5.1			2P2
in*	_	(0.47)	_	(0.67)	_	(0.29)	(0.34)	(0.45)	(0.20)			
LVM2P-035R14431												
mm	_	16.0	_	21.0	_	7.4	3.0	5.0	5.1			2P2
in*	_	(0.63)	_	(0.83)	_	(0.29)	(0.12)	(0.20)	(0.20)			
LVM2P-075R14431												
mm	_	16.0	_	21.0	_	7.4	3.0	5.0	2.5			2P3
in*	_	(0.63)	_	(0.83)	_	(0.29)	(0.12)	(0.20)	(0.10)			

^{*} The dimensions in inches are rounded approximations.

Figures 2P1-2P3 — Dimension Figures

Figure 2P4 — Typical Time-to-Trip at 25°C

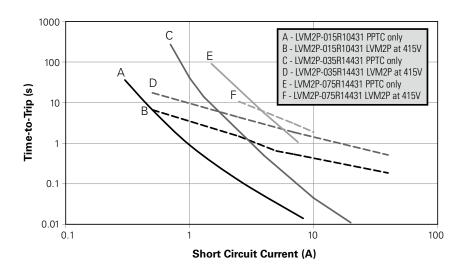


Table 2P3 — Physical Characteristics and Environmental Specifications

Physical Characteristic	cs						
Lead Material	Tin-plated Copper, 0.33mm² (22AWG), 0.64mm (0.025in)						
Flammability	IEC 695-2-2 Needle Flame Test for 20s						
Soldering Characteristics	ANSI Approved IPC/EIA/JEDEC J-STD-002, Category 3						
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Method1A, Condition B, can withstand 10 Seconds at 260°C ± 5°C						
Environmental Specifi	Environmental Specifications						
Test	Conditions						
Passive Aging	60°C, 1000 Hours / 85°C, 1000 Hours						
Humidity Aging	85°C, 85% RH, 500 Hours						
Active Aging	60°C, 90% RH, 60VDC Bias,1000 Hours						
Thermal Shock	125°C, -55°C (10 Times)						
Solvent Resistance	MIL-STD-202, Method 215K						

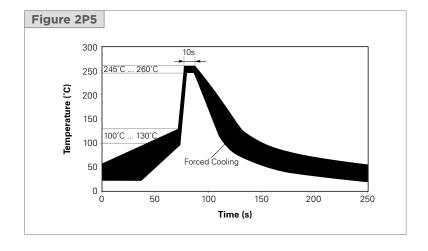
Note: Storage conditions: 40°C max, 70% RH max, devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Table 2P4 — Packaging and Marking Information

Part Number	Bag Quantity	Tape and Reel Quantity	Standard Package	Part Marking	Agency Recognition
TM2P-10271	250	_	3,000	1027 & Batch #	UL 497A/File No. E258475
TM2P-10271-2	_	1,000	5,000	1027 & Batch #	UL 497A/File No. E258475
LVM2P-015R10431	250	_	3,000	C431 & Batch #	MOV UL 1449/File No. E332226
					PPTC UL 1434/File No. E74889
LVM2P-035R14431	250	_	3,000	A431 & Batch #	
LVM2P-075R14431	250	_	3,000	B431 & Batch #	

Table 2P5 — Ordering Information

Bulk	250	pieces/bag
	3,000	pieces/box
Tape & Reel	1,000	pieces/reel
	5,000	pieces/box

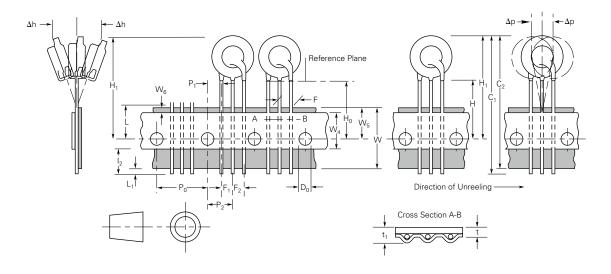

Wave Soldering and Rework Recommendations

Recommended Wave Soldering for Radial-leaded Devices

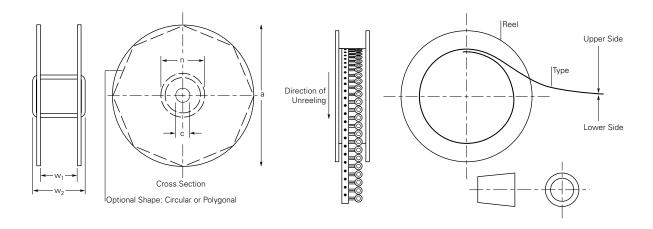
• Soldering temperature profile (Temperature characteristic at component terminal with dual wave soldering)

Rework

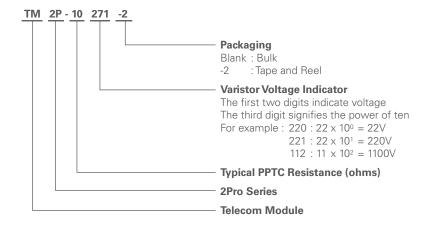
• If a device is removed from the board, it should be discarded and replaced with a new device


Table 2P6 — Tape and Reel Specifications in Millimeters (mm)

2Pro devices are available in tape and reel packaging per EIA 468-B standard. See Figures 2P6 and 2P7 for details.


Description	EIA Mark	IEC Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	W	18	-0.5/ +1.0
Hold Down Tape Width	W_4	W ₀	5	Min
Top Distance Between Tape Edges	W ₆	W ₂	3	Max
Sprocket Hole Position	W ₅	W ₁	9	-0.5/ +0.75
Sprocket Hole Diameter	D ₀	D ₀	4	±0.2
Abcissa to Plane (Kinked Lead)*	H ₀	H ₀	16	-0.5/0.6
Abcissa to Top	H ₁	H ₁	32.2	Max
Overall Width with Lead Protrusion	_	C ₁	43.2	Max
Overall Width Without Lead Protrusion	_	C_2	42.5	Max
Lead Protrusion	L ₁	I ₁	1.0	Max
Protrusion of Cut-out	L	L	11	Max
Protrusion Beyond Hold Down Tape	I_2	l ₂	Not Specified	_
Sprocket Hole Pitch	P_0	P ₀	12.7	±0.3
Pitch Tolerance	_	_	20 Consecutive	±1
Tape Thickness	t	t	0.9	Max
Tape Thickness with Splice*	t ₁	_	2.0	Max
Splice Sprocket Hole Alignment	_	_	0	±0.3
Body Lateral Deviation	Δh	Δ h	0	±0.1
Body Tape Plane Deviation	Δρ	Δρ	0	±1.3
Ordinate to Component Center Lead	P_2	P_2	6.35	±0.7
Lead Spacing*	F ₁ , F ₂	F ₁ , F ₂	2.54	-0.1/+0.4
Reel Width	W ₂	W	56	Max
Reel Diameter	а	d	370	Max
Space Between Flanges	W ₁	_	51.2	Max
Arbor Hole Diameter	С	f	26	±12.0
Core Diameter	n	h	80	Max
Зох	_	_	56/372/372	Max
Consecutive Missing Pieces*	_	_	3 Max	
Empty Places Per Reel*	_	_	Not Specified	_

Note: *Differs from EIA specification.


Figure 2P6 — EIA Referenced Taped Component Dimensions

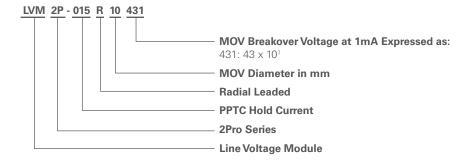
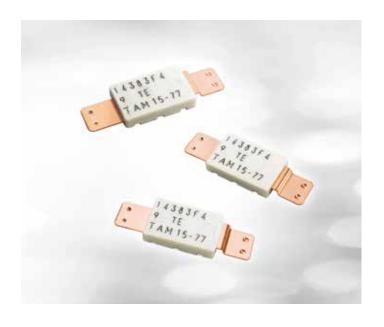


Figure 2P7 — EIA Referenced Reel Dimensions

Part Numbering System

Notice:


Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

MHP-TAM DEVICES:

MHP with Thermal Activation

The rapidly expanding market for ultra-thin portable electronic devices, such as media tablets and ultra-thin PCs, has created demand for very thin, low-profile, lightweight and high-capacity Lithium Polymer (LiP) and prismatic cells.

A new MHP (Metal Hybrid PPTC) device, the MHP-TAM device, offers a $9V_{DC}$ rating and a higher current rating than typical battery strap devices. This helps them meet the battery safety requirements of higher-capacity LiP and prismatic batteries found in the latest tablet and ultra-thin computing products. Hybrid MHP technology connects a bimetal protector in parallel with a PPTC (polymeric positive temperature coefficient) device. The resulting MHP-TAM (Thermal Activation) series helps provide resettable overtemperature protection, while utilizing the PPTC device to act as a heater and to help keep the bimetal latched until the fault is removed.

BENEFITS

- Capable of handling the higher voltages and battery discharge rates found in high-capacity LiP and prismatic cell applications
- Helps provide resettable overtemperature protection in high-capacity LiP and prismatic cell applications

FEATURES

- 9V_{DC} rating
- Two levels of current carrying capacity:
 - Low current (nominal 6A hold current @25°C)
 - High current (nominal 15A hold current @25°C)
- Multiple activation temperature ratings (72°C, 77°C, 82°C, 85°C, 90°C)
- Compact size (L: 5.8mm x W: 3.85mm x H: 1.15mm) allows for ultra-thin battery pack designs

APPLICATIONS

Battery cell protection for high-capacity Lithium Polymer and prismatic cells used in:

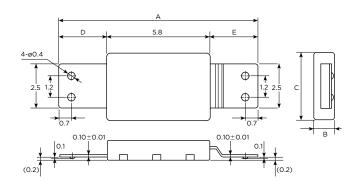
- Notebook PCs
- Ultra-book
- Tablets
- Smart phones

Table M1 — Electrical Characteristics for MHP-TAM15 Series

	Rating [°C]	Operation Reset Temperature Temperature [°C] [°C]		Rating Temperature Temperature [mohms				ting Temperature Temperature		hms]
Model Number	Nominal	Min	Max	Min	△T	Тур	Max			
MHP-TAM15-9-72	72	67	77	≥40	≥7	2.5	5			
MHP-TAM15-9-77	77	72	82	≥40	≥10	2.5	5			
MHP-TAM15-9-82	82	77	87	≥40	≥10	2.5	5			
MHP-TAM15-9-85	85	80	90	≥40	≥10	2.5	5			
MHP-TAM15-9-90	90	85	95	≥40	≥10	2.5	5			

Maximum breaking current $5V_{DC}$ / 80A (100 cycles) Contact Rating 9V_{DC} / 25A (6000 cycles)

Table M2 — Electrical Characteristics for MHP-TAM6 Series


	Rating [°C]	Tempo	ration erature PC]	Reset Temperature [°C]		[mo	Resistance hms] 5°C
Model Number	Nominal	Min	Max	Min	△T	Тур	Max
MHP-TAM6-9-72	72	67	77	≥40	≥7	10	15
MHP-TAM6-9-77	77	72	82	≥40	≥10	10	15
MHP-TAM6-9-82	82	77	87	≥40	≥10	10	15
MHP-TAM6-9-85	85	80	90	≥40	≥10	10	15

Maximum breaking current $5V_{DC}$ / 40A (100 cycles) Contact Rating $9V_{DC}$ / 12A (6000 cycles)

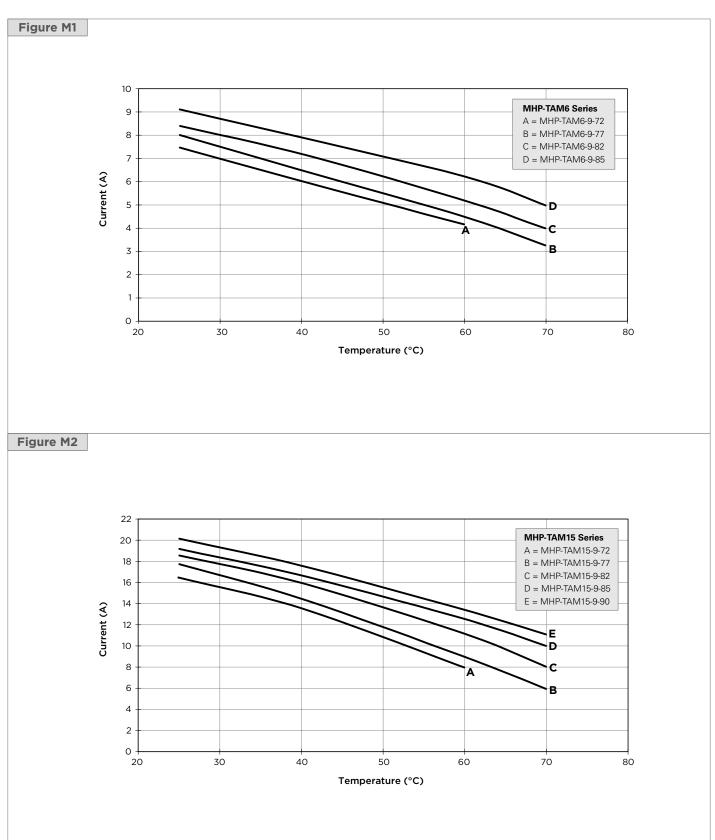

 Δ T is the minimum temperature differential between the actual operation temperature of the device and the reset temperature

Table M3 — Dimensions in Millimeters and Mechanical Characteristics

	-	4	В	В С			D		E	
	Min	Max	Max	Min	Max	Min	Max	Min	Max	
mm:	10.9	11.4	1.15	3.75	3.85	2.6	2.8	2.6	2.8	

Figures M1-M2 — Hold Current vs. Temperature Curves (Typical)

6 MHP-TAM Devices: MHP with Thermal Activation

Physical Characteristics

Terminals Copper Alloy

Molding Plastic LCP (Liquid Crystal Polymer)

RoHS and Halogen-Free Compliance

RoHS Compliant

Halogen Free per IEC 61249-2-21

Storage Conditions

Device must be stored in the original, unopened bag.

Suggested storage temperature (except for packaging material)

Temperature: -10°C - 40°C Humidity: 75%RH (max)

The following environments should be avoided for storage:

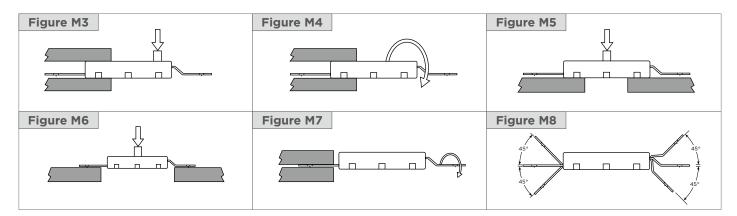
Areas with salt air or with corrosive gas, such as Cl₂, H₂S, NH₃, SO₂ and NO_x.

Areas exposed to direct sunlight.

Areas outside of the suggested storage temperature range, as indicated above.

Precautions for Handling

The device is composed of plastic parts, please do not clamp or dent the housing with a tool as this might cause a resistance increase and product damage.


When welding product terminals or mounting the breaker on a battery (cell), please be careful not to apply excessive bending, twisting or force on the product and terminals. The excessive stress might cause a resistance increase or product damage.

Please refer to following cautions:

- 1. Do not apply more than 10N bend force to product. (Fig. M3)
- 2. Do not apply more than 1.5cN/m twist torque to the product. (Fig. M4)
- 3. Do not apply more than 20N deflection force to product. (Fig. M5)
- 4. Do not apply more than 2N force to the terminals. (Fig. M6)
- 5. Do not apply more than 0.6cN/m twisting torque to the terminals. (Fig. M7)

TE CONNECTIVITY /// CIRCUIT PROTECTION PRODUCT CATALOG

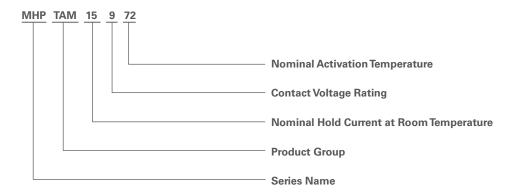
6. Do not bend the terminal base more than 45° when the product is mounted in a fixed position. (Fig. M8)

Product terminals can be welded using direct welding and series welding methods. In either case, please use a suitable jig so that the device will not be subjected to the stress conditions listed above.

Pull strength and detach strength of the terminal welds are per user requirements. However, if the welding is controlled by resistance, the measurement should be made as close as possible to the weld point by a "4-point clip method" using milliohm meter to ensure accuracy.

Avoid putting stress on the device, as listed above, when a jig, fitting or additional welding process is used. Please reconfirm the resistance value whenever a new process is added.

6 MHP-TAM Devices: MHP with Thermal Activation


Table M4 — Packaging and Marking Information

Part Number	Bag Quantity	T & R Quantity	Standard Package	Part Marketing	Agency Recognition
MHP-TAM 15 Series					
MHP-TAM15-9-72	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-24160-UL
MHP-TAM15-9-77	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-24160-UL
MHP-TAM15-9-82	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-24160-UL
MHP-TAM15-9-85	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-24160-UL
MHP-TAM15-9-90	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-24160-UL
MHP-TAM 6 Series					
MHP-TAM6-9-72	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-23966-M1-UL
MHP-TAM6-9-77	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-23966-M1-UL
MHP-TAM6-9-82	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-23966-M1-UL
MHP-TAM6-9-85	1,000	_	20,000	Lot ID#, Control# & Co. Logo, Product #	UL & cUL File No. E349829; CB File No. US-23966-M1-UL

Table M5 — Ordering Information

Bag	1,000	pieces
Box	20.000	pieces

Part Numbering System

Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserve the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

Special Recommendations:

- 1. The power supply voltage must be less than the rated voltage of the device. Operation above the voltage rating may result in device damage, smoking
- 2. Designs must be selected in such a manner that the device hold current is higher than the normal current value in the circuit and that the device trip current is lower than the abnormal current value. Selecting device hold current and trip current values that are too low for the application may interrupt the circuit under normal usage conditions.
- 3. This product should not be used in an application where the maximum interrupt current can be exceeded in a short circuit condition.
- 4. The devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- 5. The devices may not perform as specified if mechanical pressure is added while the device is in the tripped state or exposed to temperature conditions lower than -30°C or over 100°C.

HIGH-CURRENT RTP DEVICES

Reflowable Thermal Protection

For High-Power Automotive Electronics Design

The Reflowable Thermal Protection (RTP) device is a low-resistance, robust surface mountable thermal protector. The High-Current RTP (HCRTP) is specifically geared to automotive applications where it can help designers comply with AECQ standards. The HCRTP has a set open temperature and can be installed using reliable, lead (Pb)-free, Surface Mount Device (SMD) assembly and reflow process. The device's high-current capability of 90A at 23°C helps provide protection against thermal runaway when power FETs and other components fail in applications such as ABS modules, glow plugs and engine cooling fans.

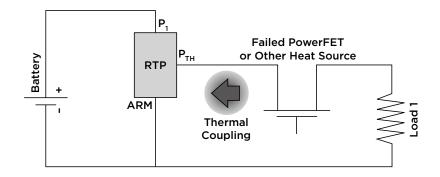
The HCRTP device can withstand demanding environmental, life and reliability requirements – such as shock, vibration, temperature cycling and humidity exposure – of high-power, high-current automotive applications. In the field, the HCRTP device opens if its

internal junction exceeds the device's specified open temperature of 210°C. Temperature increases can have multiple sources, one of which is component failure of power FETs, capacitors, resistors, triacs, etc. The HCRTP device's open temperature is selected so that the device does not open within normal component operating windows, but does open in the case of a thermal runaway event, and before the melt temperature of typical lead-free solders.

To simplify installation, improve reliability and optimize thermal coupling with the PCB, the HCRTP device is surface mountable, which means no special SMD installation is required. After installation, the HCRTP device utilizes a one-time electronic arming process to become thermally sensitive. Before the arming procedure, the device can go through installation temperatures of up to 260°C without opening. After arming, the device will open when the critical junction exceeds the open temperature. Arming typically occurs at end of line testing after reflow.

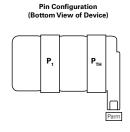
BENEFITS

- Helps prevent failed components from causing damage in case of a thermal event
- Allows the use of standard surface-mount production methods so that no special assembly costs are required
- · Low power dissipation and voltage drop
- Supports DC electronic circuits
- Suitable for high-power, high-current automotive applications
- Enables green design


FEATURES

- Opens at temperature (210°C) below the critical thermal threshold
- Prior to activation, withstands Pb-free solder reflow process with peak temperatures up to 260°C without opening

APPLICATIONS


- Helps provide protection against thermal runaway for power FETs and other components if failure occurs in applications such as automotive ABS modules, glow plugs and engine cooling fans, etc.
- Other DC thermal protection

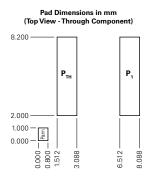
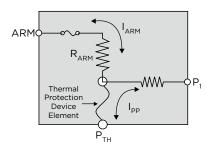

Figure HP1 — Typical Application Block Diagram

Figure HP2 — Pin Configuration & Description Pad Layout Recommendations


Pin Number	Pin Name	Pin Function
1	P ₁	Power I/O pin (Main power current path)
2	P _{TH}	Thermally sensitive power I/O pin - Intended to share protected component heat sink
3	ARM	Electronic arming pin

Definition of Terms / Device Block Diagram

Term	Definition
Junction	The internal interface which must achieve the "Open Temperature" for the RTP device to open thermally after arming. This interface (thermal element) is located directly above the P_{TH} pad.
Open Temp	The device will open when the junction temperature achieves this value.
I _{ARM} and R _{ARM}	Current and resistance levels measured between the ARM pin and either the P_1 or P_{TH} pin. (These values are only relevant during pre-arming.)
R _{pp} and I _{pp}	Current and resistance levels measured between the P_1 and P_{TH} pins.

Method of Operation - Electronic Arming

The RTP device is a unique thermal protector. It can be reflowed at temperatures up to 260°C without opening, yet in operation it will open at temperatures well below 260°C. To achieve this functionality, the RTP device uses an electronic arming mechanism.

Electronic arming must be done after reflow, and can be done during final test.

The device is armed by sending a specified arming current through the ARM pin of the device. Arming is a time- and current-dependent event. Arming times vs. current are provided in the "Arming Characteristics" section of this overview. Current can flow in either direction through the ARM pin.

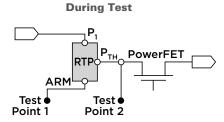
Prior to arming, R_{ARM} should have typical resistance as specified in the "Arming Characteristics" section. Once armed, the ARM pin will be electrically open relative to the P_1 or P_{TH} pins.

Arming has been successful once R_{ARM} exceeds the post-arming minimum resistance specified in the "Arming Characteristics" section. RTP devices must be armed individually and cannot be armed simultaneously in series.

Once "armed," the RTP device will permanently open when the device junction achieves its specified opening temperature.

Although multiple options exist, below is one simple arming option.

TE CONNECTIVITY /// CIRCUIT PROTECTION PRODUCT CATALOG


Sample Arming Options

ARM pin connected between two test points

In this case, pin P_1 is left "floating," and arming can occur during test, at a user defined time, by connecting to the Test Points and applying sufficient current (I_{ARM}) between Test Point 1 and Test Point 2 until the device is armed.

Current Flow

 $P_{TH} \longleftrightarrow ARM = Arming$

Table HP1 — Absolute Max Ratings

Absolute Max Ratings		Max	Units
Max DC Open Voltage ¹	_	16	V_{DC}
Max DC Interrupt Current ¹	@ 16 V _{DC}	500	А
ESD Rating (Human Body Model)	_	25	KV
Max Reflow Temperature (Pre-Arming)	_	260	°C
Operating Temperature Limits, Junction (P _{TH}) and Storage Temperature	_	-55	°C
	_	+150	°C

⁽¹⁾ Performance capability at these conditions can be influenced by board design. Performance should be verified in the user's system.

Table HP2 — Performance Characteristics

Resistance and Open Characteristics P ₁ to P _{TH}		Min	Тур	Max	Units
R_{PP} (Resistance from P_1 to P_{TH})	@ 23+/-3°C	_	100	150	μΩ
	@ 150+/-3°C	_	150	260	mΩ
Operating Voltage	_	_	16	-	V_{DC}
Open Temperature, Post-Arming	$I_{PP} = 0$	202	210	218	°C
Installation Dependent Operating Current, Post-Arming (2)	@ 23+/-3°C	90	_	_	А
	@ 140+/-3°C	45	_	_	А
Moisture Sensitivity Level Rating (3)	_	_	1	_	_

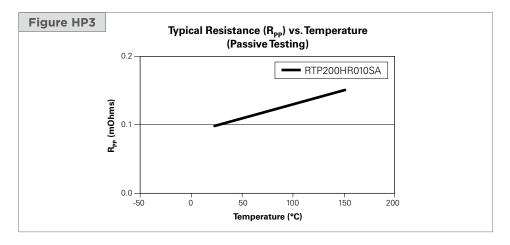
Table HP3 — Arming Characteristics

Arming Characteristics ARM		Min	Тур	Max	Units
Arming Type	_		Electronically Arme	:d	_
R_{ARM} (Resistance from ARM to P_1 or P_{TH})	Pre-Arming	_	500	_	mΩ
	Post-Arming	10	_	_	ΚΩ
Arming Current (I _{ARM}) (4)	@ 23+/-3°C	2	_	5	А
Arming Time (@ 23+/-3°C) (4)	@ 2A	_	0.020	_	Sec
	@ 5A	_	0.005	_	Sec

⁽²⁾ Results obtained on 44.4 mm x 57.2 mm x 1.6 mm of 2-sided FR4 board T4350 with 4.0 oz copper trace.

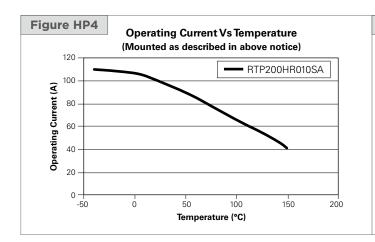
RTP Device pad connection of:

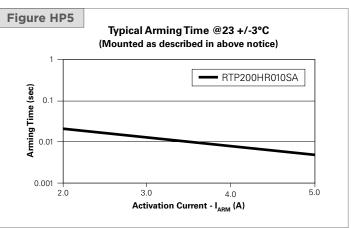
^{- 283} sq. mm 4.0 oz copper heat spreader connected to P_1 pad.

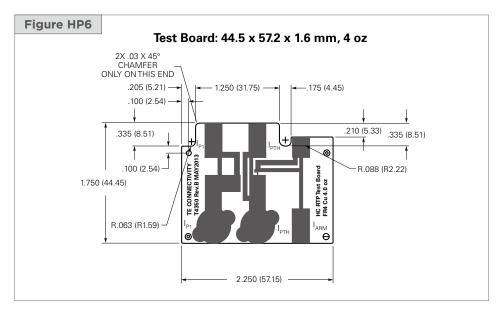

^{- 237} sq. mm 4.0 oz copper heat spreader connected to P_{TH} pad.

⁽See RTP device test board drawing). Results will vary based on user's configuration and should be validated by the user in the end system.

⁽³⁾ Operating current is measured on the RTP test boards at the specified temperature. It is a highly installation dependent value.

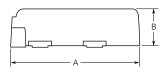

⁽⁴⁾ As per JEDEC J-STD-020C.


Figures HP3-HP6 — Typical Electrical Performance Characteristics



INSTALLATION DEPENDENT PERFORMANCE CHARACTERISTICS

Note: Results were obtained on $44.5 \times 57.2 \times 1.6$ (mm) of 2-sided FR4 board T4350 with 4.0 oz Copper trace, RTP device pad connection of 283 sq.mm 4.0 oz copper heat spreader to P_1 pad and 237 sq.mm 4.0 oz copper heat spreader to P_{TH} pad. Results will vary based on user's configuration and should be validated by the user in the end system.



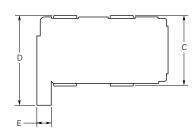


Figure HP7 — Mechanical Dimensions

	A		А		Е	3	С	;	_	D		E	
	Min	Max											
mm	11.60	12.0	6.0	6.35	5.25	5.5	5.25	5.5	5.25	5.5			
inch	(0.46)	(0.47)	(0.24)	(0.25)	(0.21)	(0.22)	(0.21)	(0.22)	(0.21)	(0.22)			

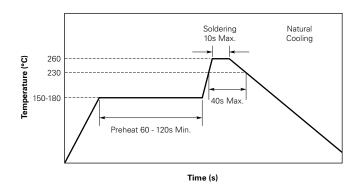
Important Installation Instructions:								
Note 1 RTP200HR010SA devices are to be board-mounted using only solder pastes referenced in Engineering Report: Q402								
Note 2	RTP200HR010SA devices are not compatible with conformal coating.							
	If selective coatings are used, avoid covering the RTP200HR010SA device							

Material Construction

RoHS Compliant

Directive 2002/95/EC Compliant **ELV Compliant**

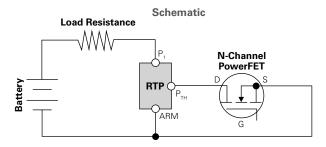
Directive 2000/53/EC Compliant


Halogen Free*

Recommended Reflow Profile

Classification Reflow Profiles

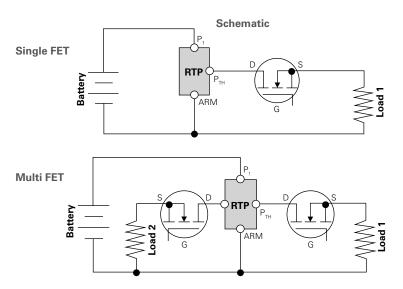
Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{MAX} to Tp)	3°C/ Second Max
Preheat	
• Temperature Min (Ts _{MIN})	150°C
• Temperature Max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-180 Seconds
Time Maintained Above:	
• Temperature (T _L)	217°C
• Time (t _L)	60-150 Seconds
Peak/Classification Temperature (Tp)	260°C
Time within 5°C of Actual Peak Temperature	
Time (tp)	20-40 Seconds
Ramp-Down Rate	6°C/ Second Max
Time 25°C to Peak Temperature	8 Minutes Max


^{*} Halogen Free refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm.

Alternate & Multi-FET Schematic Implementations

Low Side, N-Channel Single FET Protection

Solution Considerations


- Low side N-Channel FET architectures allow only one FET to be installed per RTP device.
- Note: Load may limit "arming" current.

High Side, N-Channel FET Protection

Solution Considerations

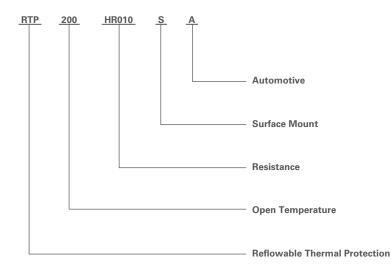
- High Side FET designs allow multiple FETs to be installed with 1 RTP device while all sharing the same copper mounting pad (heat sink).
- In a multi-FET configuration, care must be taken to assure that the proper thermal response can be achieved with each FET.

Note: The degree of thermal connectivity between the heat source and the RTP device is highly dependent on board layouts, PCB material, heat sink structures, and relative placement and design of co-located components. It is the responsibility of the user to verify that the RTP device provides sufficient protection in the user's specific final device implementation

Environmental Specifications

RTP200HR010SA	
Test	Conditions
Passive thermal aging	150°C, 1000 hours
Active thermal aging	150°C, 5A bias, 408hr
Passive humidity aging	85°C, 85% RH, 1000 hours
Active humidity aging	85°C, 85% RH, 1000 hours
Storage humidity	Per IPC/JEDEC J-STD020A level 1 (MSL1)
Thermal shock	150°C, -55°C (500 times)

Qualification Testing


The Qualification Testing plan for this series of RTP devices is built upon AEC automotive grade testing for ICs (AEC-Q100), discrete semiconductors (AEC-Q101) and passive components (AEC-Q200), with the intent to demonstrate survivability to the most stringent of the relevant requirements.*

Contact TE Circuit Protection for updated qualification status and detailed procedures.

*A specific list of tests and conditions is available upon request.

Part Numbering System

Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

60

PESD PROTECTION DEVICES

TE's Polymer ESD (PESD) line of devices helps protect I/O ports on HDMI 1.3, portable video players, LCD and plasma TVs, USB 2.0, digital visual interface (DVI) and antenna switches. PESD devices shunt electrostatic discharge away from sensitive circuitry in HDTV equipment, printers, laptops, cellular phones and other portable devices.

PESD devices offer many advantages over traditional protection devices, such as multi layer varistors (MLVs), which may degrade or distort the signal in high data rate circuits. Compared to miniature gas discharge tubes (GDTs), PESD devices provide a more compact form factor and an economical solution for the shrinking profiles of today's compact information appliances.

Available in a range of form factors, our PESD protection devices provide low capacitance and meet transmission line pulse (TLP) testing, as well as IEC61000-4-2 testing.

BENEFITS

- ESD protection for high frequency application (HDMI 1.3)
- Smaller form factor for board space savings
- Helps protect sensitive electronic circuits against damage caused by electrostatic discharge (ESD) events
- Assists equipment to pass IEC 61000-4-2, level 4 testing

FEATURES

- RoHS compliant
- · Lead free
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- 0.25 pF (typ) capacitance
- · Low-leakage current
- · Low-clamping voltage
- Fast response time (< 1ns)
- Capable of withstanding numerous ESD strikes
- Compatible with standard reflow installation procedures
- Thick film technology
- Bi-directional protection

APPLICATIONS

- HDMI 1.3 interfaces
- LCD & plasma TVs
- · Cellular phones
- Antennas
- Portable video players
- Portable devices (PDA, DSC, Bluetooth)
- Printer ports
- Satellite radios
- USB 2.0 and IEEE 1394 interfaces
- DVI
- GPS systems

Table E1 — Electrical Characteristics

	Continuous Max Operating Voltage	Typ Trigger Voltage*	Typ Clamping Voltage [†]	Typ Capacitance @1 MHz, 1V _{RMS}	Typ Leakage Current	Max Leakage Current @ Max V _{DC}
Symbol	V _{DC}	V _{T(TLP)}	V _{C(TLP)}	C _P	I _{L(TYP)}	I _{L(MAX)}
Unit	V	V	V	pF	μΑ	μΑ
PESD0402-140	14	250	40	0.25	< 0.01	10.0
PESD0402-240	24	250	40	0.25	< 0.01	10.0
PESD0603-240	24	215	45	0.25	< 0.01	10.0
PESD1206Q-240	24	250	45	0.25	< 0.01	10.0

Notes: *TLP test method at 1kV.
† Measured 30ns after pulse initiation.
Typical capacitance value is at 0V and max operating voltage bias.

Figure E1 — Capacitance vs. Frequency

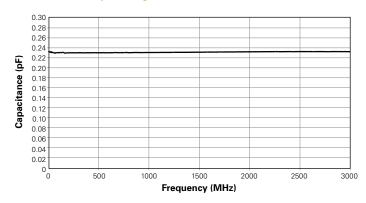


Figure E2 — Eye Diagram Performance at 3.4 GHz

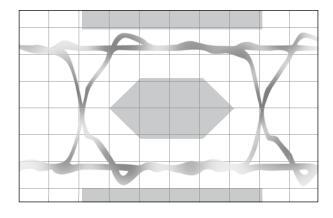
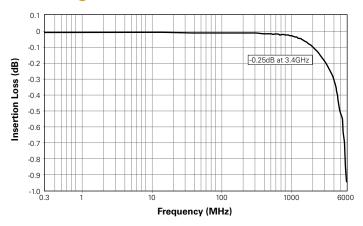
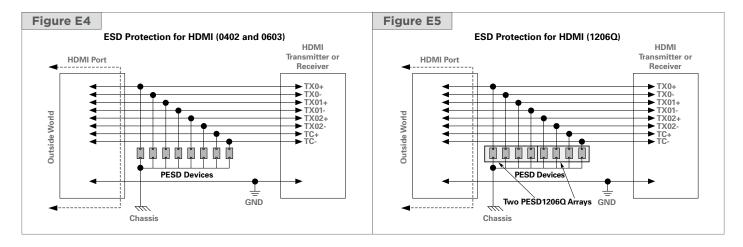




Figure E3 — Insertion Loss Diagram

Figures E4-E5 — PESD Device Protection for HDMI (PESD devices provide electrostatic discharge protection)

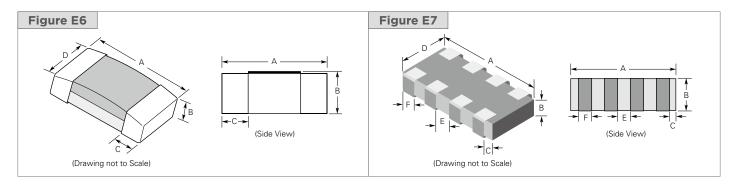


Table E2 — Dimensions in Millimeters (Inches*)

Part	Α		A B		С		-	D		E		F	
Number	Min	Max	Figure										
PESD0402-140	0.90	1.10	0.23	0.43	0.10	0.30	0.40	0.60	_	_	_	_	E6
PESD0402-240	(0.035)	(0.043)	(0.009)	(0.017)	(0.004)	(0.012)	(0.016)	(0.024)					
PESD0603-240	1.50	1.70	0.45	0.55	0.10	0.50	0.70	0.95	_	_	_	_	E6
	(0.059)	(0.067)	(0.018)	(0.022)	(0.004)	(0.020)	(0.028)	(0.037)					
PESD1206Q-240	3.10	3.30	0.40	0.60	0.10	0.30	1.50	1.70	0.20	0.60	0.20	0.60	E7
	(0.122)	(0.130)	(0.016)	(0.024)	(0.004)	(0.012)	(0.059)	(0.067)	(0.008)	(0.024)	(0.008)	(0.024)	

^{*}The dimensions in inches are rounded approximations.

Figures E6-E7 — Dimension Figures

Table E3 — Environmental Specifications

	Test Conditions	Pass / Fail Criteria
Bias Humidity Test	85°C, 85% RH, V _{DC (max)} , 1000 hrs	$I_L \le 10 \ \mu A$
Thermal Shock	-55°C to 125°C, 30 min Dwell, 1000 Cycles	$I_L \leq 10 \ \mu A$
Bias Heat Test	125°C, V _{DC (max)} , 1000 hrs	$I_L \leq 10 \ \mu A$
Bias Low Temp Test	-55°C, V _{DC (max)} , 1000 hrs	$I_L \leq 10 \ \mu A$
Solderability	250°C ± 5°C, 3 ±1s	95% Coverage
Solder Heat	260°C, 10s	90% Coverage
Vibration	10 to 50Hz, 60s Cycle, 2 hrs Each in X-Y-Z-Direction	No Physical Damage
Solvent Resistance	IPA Ultrasonic 300s	No Physical Damage
Shock	1500G, 0.5ms Each, X-Y-Z Axis 3 Times Each Axis	No Physical Damage

Table E4 — General Characteristics

Storage Temperature	-40°C to +85°C
Operating Temperature	-55°C to +125°C
ESD Voltage Capability	Contact Discharge Mode: 8kV (Typ), 15kV (max)
(Tested per IEC 61000-4-2)	Air Discharge Mode: 15kV (Typ), 25kV (max) [1 Pulse: per Customer Request]
ESD Pulse Withstand	100 Pulses
	(Tested per IEC 61000-4-2, Level 4, Contact Method)

Table E5 — Materials Information

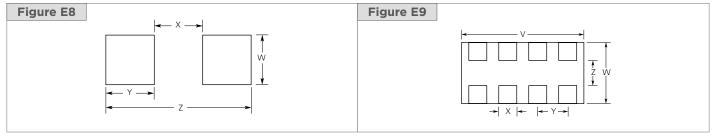
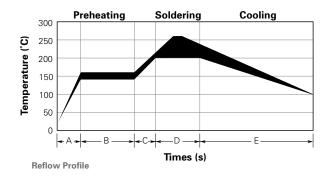

RoHS Compliant	Directive 2002/95/EC Compliant
RoHS 2.0	Directive 2011/65/EU Compliant
ELV Compliant	Directive 2000/53/EC Compliant
Halogen Free	Halogen Free Refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm

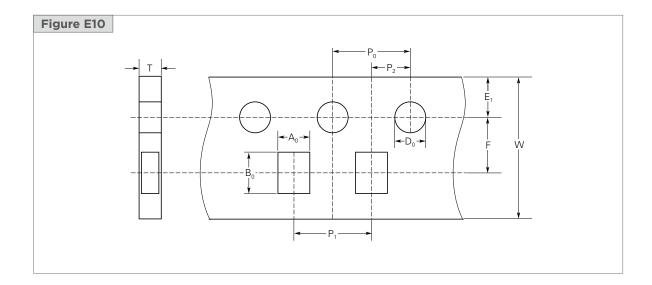
Table E6 — Recommended Pad Layout in Millimeters and (Inches*)

Part	,	V		W		X		Υ		Z	
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure
PESD0402-140	_	_	0.60	0.70	0.30	0.40	0.80	0.90	2.10	2.20	E8
PESD0402-240			(0.024)	(0.028)	(0.012)	(0.016)	(0.031)	(0.035)	(0.083)	(0.087)	
PESD0603-240	_	_	0.90	1.00	0.50	0.60	1.00	1.10	2.70	2.80	E8
			(0.035)	(0.039)	(0.020)	(0.024)	(0.039)	(0.043)	(0.106)	(0.110)	

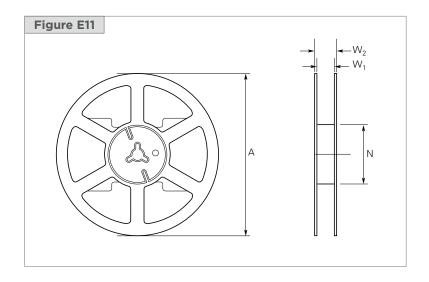
Part	V	W	X	ΥΥ	Z	Figure
Part Number	Тур	Тур	Тур	Тур	Тур	Figure
PESD1206Q-240	3.20	2.20	0.50	0.80	1.00	E9
	(0.126)	(0.087)	(0.020)	(0.031)	(0.039)	


^{*}The dimensions in inches are rounded approximations.

 $\textbf{Note:} Solder \ thickness \ 0.15 \ to \ 0.2mm.$


Table E7 — Solder Reflow Recommendations

А	Temperature Ramp-up 1	From Ambient to Preheating Temperature	30s to 60s
В	Preheating	140°C - 160°C	60s to 120s
С	Temperature Ramp-up 2	From Preheating to Main Heating Temperature	20s to 40s
D	Main Heating	at 200°C	60s to 70s
		at 220°C	50s to 60s
		at 240°C	30s to 40s
		at 260°C	5s to 10s
Е	Cooling	From Main Heating Temperature to 100°C	4°C/s (max)


Table E8 — Tape Specifications

Tape Dimension	0402	0402			1206Q	
EIA Mark	Dimension (mm)	Tolerance	Dimension (mm)	Tolerance	Dimension (mm)	Tolerance
W	8.00	±0.30	8.00	±0.30	8.00	±0.30
P ₀	4.00	±0.10	4.00	±0.10	4.00	±0.10
P ₁	2.00	±0.05	4.00	±0.05	4.00	±0.05
P ₂	2.00	±0.05	2.00	±0.05	2.00	±0.05
A ₀	0.63	±0.03	1.27	±0.15	2.02	±0.20
B ₀	1.13	±0.03	2.02	±0.20	3.62	±0.20
D_0	1.50	±0.10	1.50	±0.10	1.50	±0.10
F	3.50	±0.05	3.50	±0.05	3.50	±0.05
E ₁	1.75	±0.10	1.75	±0.10	1.75	±0.10
T	0.48	±0.03	0.60	±0.03	0.75	±0.05

Table E9 — Reel Specifications

Reel Dimensions (0402, 0603 & 1206Q)						
EIA Mark Dimension (mm)						
A max	180.0					
N min	60.5					
W ₁ max	9.5					
W ₂ max	14.0					

Parameter Definitions

Operation Voltage (V_{DC})

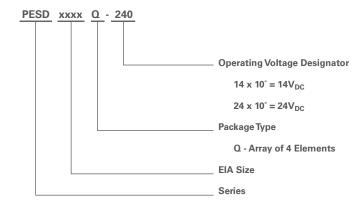
Defined as DC voltage, under which device is in OFF state and leakage current below certain threshold.

Leakage Current (I_L)

Current through device under Operation Voltage V_{DC}.

Trigger Voltage (V_T)

Voltage at which the device switches from the OFF to the ON state, during the IEC waveform or the TLP system.


Clamping Voltage (V_C)

Voltage cross device under 8kV per IEC or measured by TLP system. Typically measured 30ns after initiation of the ESD pulse (for TLP, both 30ns and 60ns are sometimes used).

Capacitance (C_P)

Capacitance of the device measured at 1MHz with 0V and max operating voltage bias.

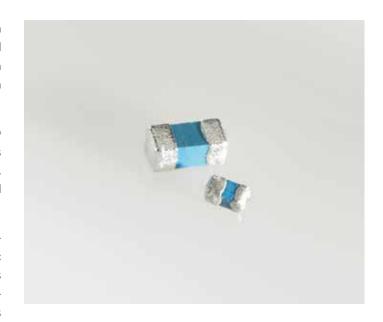
Part Numbering System

$\sqrt{}$

Warning:

Application Limitations for PESD0402-140, PESD0402-240, PESD0603-240 and PESD1206Q-240: These parts are not intended to be used on power lines or for power bus applications. Users should independently evaluate the suitability of and test each product selected for their own application.

Notice:


Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

CHIPSESD DEVICES

TE Circuit Protection's ChipSESD family of Silicon ESD devices, available in EIA-0201 and EIA-0402 sized rectangular SMT passive component packages, can help protect electronic circuits against damage from electrostatic discharge (ESD) events.

The SESD0201P1BN-0400-090, 0201-sized ChipSESD device's miniature footprint (0.6mm x 0.3mm x 0.3mm) is approximately 70% smaller than prior-generation devices. This offers designers flexibility in space constrained applications.

The ChipSESD devices are high-capacitance, bidirectional devices that can be used for low-speed generic interfaces such as keypads, power buttons, speakers and microphone ports in a portable electronics. The bidirectional operation eliminates orientation constraints

and the need for polarity inspections. The surface mount technology (SMT) passive component package allows the devices to be easily installed onto the printed circuit board using the standard PCB assembly process. Once soldered onto the boards, the ChipSESD's solder fillets at the end terminals can easily be visually inspected.

The ChipSESD devices offer 10kV contact and 16kV air discharge protection per the IEC61000-4-2, level 4 standard with a surge rating of 2A under 8x20µs pulse.

BENEFITS

- Silicon ESD devices in an EIA-0201 and EIA-0402 sized rectangular SMT passive component package
- Bi-directional operation eliminates orientation constraints
- Standard PCB assembly and rework process
- ESD protection in space-constrained portable electronics and mobile handsets
- Helps protect electronic circuits against damage from ESD
- Assists equipment to pass IEC61000-4-2, level 4 testing

FEATURES

- Input capacitance -4.0pF (typ) & 4.5pF (typ)
- Low leakage current 1.0µA (max)
- Low working reverse voltage 6.0V (max)
- Capable of withstanding numerous ESD strikes
- · RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)

APPLICATIONS

- Mobile phones and portable electronics
- Digital cameras and camcorders
- Notebooks, set top boxes, motherboards
- USB 2.0 and computer I/O ports
- Applications requiring high ESD performance in a small package

Table CE1 — Maximum Ratings

	IEC61000-4-2, level	IEC61000-4-2, level 4 (ESD Withstand)		erature
	Contact Air		Operating	Storage
Part Number	(kV)	(kV)	(°C)	(°C)
SESD0201P1BN-0400-090	±10*	±16	-40 to +125	-40 to +125
SESD0402P1BN-0450-090	±10*	±16	-40 to +125	-40 to +125

^{*10}kV @ 50 ± pulses under IEC61000-4-2; 8kV @ 1,000 pulses under IEC61000-4-2

Table CE2 — Electrical Characteristics @T=25°C

	Input Cap	acitance*	_			Clamping Voltage (typ)
	Тур	Max	Leakage Current (max)	Breakdown Voltage (min)	Working Reverse Voltage	V _{CL} @ Ipp=2A,
Part Number	(pF)	(pF)	$I_L @ V_{RWM} = 6.0V (\mu A)$	$V_{br} @ I_{T}^{\dagger} = 1mA (V)$	V _{RWM} @ peak (V)	tp=(8/20μs) (V)*
SESD0201P1BN-0400-090	4.0	5.0	1.0	9.0	6.0	+10.0
SESD0402P1BN-0450-090	4.5	5.5	1.0	9.0	6.0	+10.0

Figure CE1 — ESD Clamping Voltage - 8kV Contact

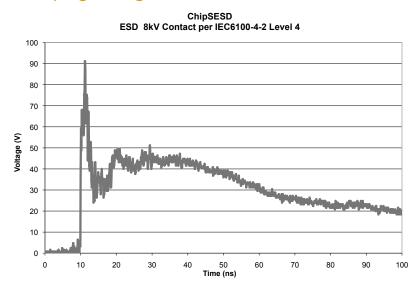
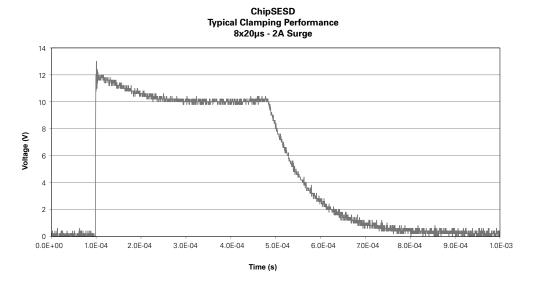
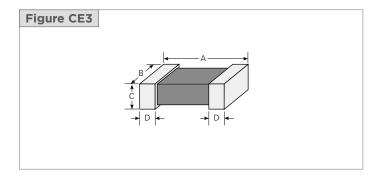



Figure CE2 — ESD Clamping Voltage - 8x20µs, 2A Surge



^{* @} Vr=0V, f=1MHz † V_{br} is measured at test current I_T

Table CE3 - Dimensions in Millimeters and (Mils)*

Part Number	А	В	С	D	Figure
SESD0201P	0.60 ± 0.05	0.30 ± 0.05	0.30 ± 0.05	0.21 ± 0.07	CE3
	(23.62 ± 2.00)	(11.81 ± 2.00)	(11.81 ± 2.00)	(8.27 ± 2.80)	
SESD0402P	1.10 ± 0.10	0.50 ± 0.10	0.50 ± 0.10	0.25 ± 0.15	CE3
	(43.31 ± 0.40)	(19.69 ± 4.00)	(19.69 ± 4.00)	(9.84 ± 6.00)	

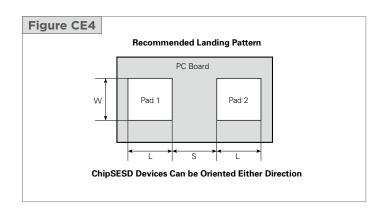
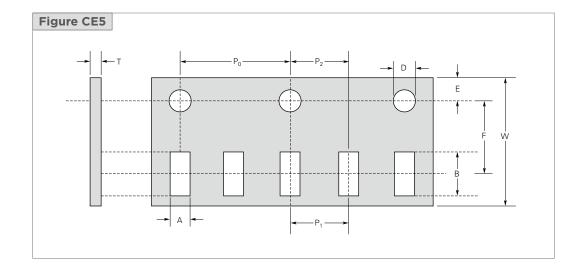
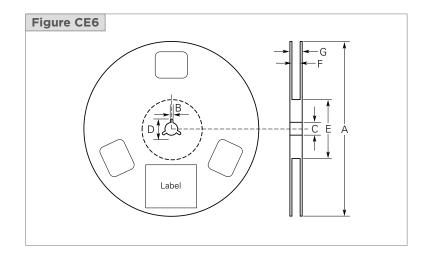

^{*} Round off approximation

Table CE4 - PCB Pad Layout in Millimeters and (Mils)*

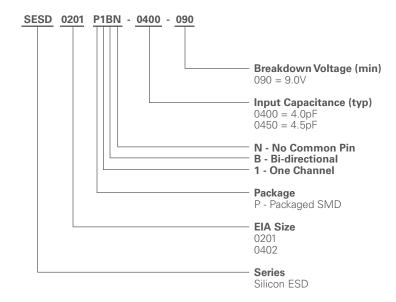

Part Number	L	S	W	Figure
SESD0201P	0.28 ± 0.01	0.19 ± 0.01	0.30 ± 0.01	CE4
	(11.00 ± 0.40)	(7.50 ± 0.40)	(11.80 ± 0.40)	
SESD0402P	0.61 ± 0.05	0.52 ± 0.05	0.50 ± 0.05	CE4
	(24.00 ± 2.00)	(21.00 ± 2.00)	(20.00 ± 2.00)	

^{*} Round off approximation


Table CE5 — Tape Specifications

Tape Dimension EIA Mark	SESD0201P1BN-0400-090	SESD0402P1BN-0450-090	
	Dimension (mm)	Dimension (mm)	
A	0.35 ± 0.02	0.58 ± 0.03	
В	0.67 ± 0.02	1.20 ± 0.03	
D	1.55 ± 0.05	1.55 ± 0.05	
E	1.75 ± 0.05	1.75 ± 0.05	
=	3.50 ± 0.05	3.50 ± 0.05	
V	8.00 ± 0.10	8.00 ± 0.10	
0	4.00 ± 0.10	4.00 ± 0.10	
1	2.00 ± 0.05	2.00 ± 0.05	
2	2.00 ± 0.05	2.00 ± 0.05	
	0.42 ± 0.03	0.60 ± 0.03	

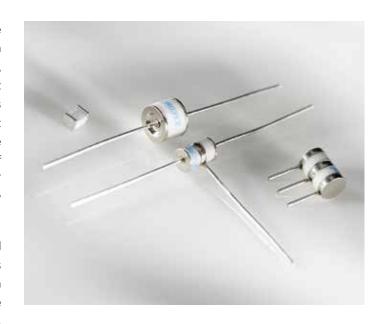
Table CE6 — Reel Specifications


Reel Dimension		
EIA Mark	Dimension (mm)	
A	178.0 ± 2.0	
В	2.0 ± 0.5	
С	13.0 ± 0.5	
D	21.0 ± 0.8	
Е	62.0 ± 1.5	
F	9.0 ± 0.5	
G	13.0 ± 1.0	

Definition of Terms

IL	Reverse Leakage Current @ V _{RWM}
V _{RWM}	Working Peak Reverse Voltage
V _{br}	Breakdown Voltage @ I _T
I _T	Test Current
V _{CL}	Clamping Voltage

Part Numbering System


Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

GAS DISCHARGE TUBES (GDTS)

TE Circuit Protection's GDTs (Gas Discharge Tubes) are placed in front of, and in parallel with, sensitive telecom equipment such as power lines, communication lines, signal lines and data transmission lines to help protect them from damage caused by transient surge voltages that may result from lightning strikes and equipment switching operations. These devices do not influence the signal in normal operation. However, in the event of an overvoltage surge, such as a lightning strike, the GDT switches to a low impedance state and diverts the energy away from the sensitive equipment.

Our GDTs offer a high level of surge protection, a broad voltage range, low capacitance, and many form factors including new surface mount devices, which makes them suitable for applications such as Main Distribution Frame (MDF) modules, high data-rate telecom applications (e.g.

ADSL, VDSL), and surge protection on power lines. Their low capacitance also results in less signal distortion. When used in a coordinated circuit protection solution with PolySwitch devices, they can help equipment manufacturers meet stringent safety regulatory standards.

BENEFITS

- Helps provide overvoltage fault protection against damage caused by high energy surges
- Suitable for use in sensitive equipment due to impulse sparkover response
- Suitable for high-frequency applications
- Highly reliable performance
- New surface-mount devices for automated manufacturing

APPLICATIONS

- Telecommunications
 - MDF modules, xDSL equipment, RF systems, antenna, base stations
- Industrial and Consumer Electronics
 - Power supplies, surge protectors, alarm systems, irrigation systems

FEATURES

- · RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Wide range of voltages (75V-4000V)
- Wide range of form factors
 (3mm, 5mm, 6mm, 7mm, 8mm diameter devices)
- Low capacitance and insertion loss
- Crowbar device with low arc voltage
- High accuracy spark-over voltages for high precision designs

- Devices tested per ITU K.12 recommendations
- Various lead configurations and surface-mount options
- · Optional fail-short mechanism
- Non radioactive materials
- Devices certified to UL497B and UL1449

Figures G1-G2 — Typical Circuits for Gas Discharge Tubes

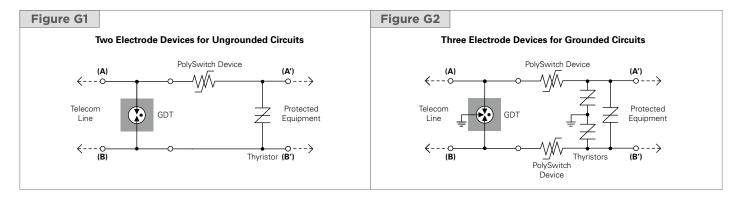


Table G1 — Device Voltage Ratings, Surge Rating, Capacitance, Insulation Resistance and Agency Approval for Two-Electrode Gas Discharge Tubes

	DC Impulse Sparkover Sparkover Impulse Voltage Voltage Discharge Current		Impulse Withstanding Voltage	Capacitance	Insulation Resistance	UL Rating		
Part Number	@ 100V/s ± 20% Tolerance	@ 1kV/μs	8x20µs 10 Hits (5 Hits Each Polarity)	8x20µs 300 Hits (150 Hits Each Polarity)	10/700µs 10 Hits (5 Times Each Polarity)	@1MHz	@100V _{DC} †	UL497B #E179610
	75*	600	- 1kA	100A	4kV	<0.5pF		
CTCC22 VVVM D01 2	90	600					1,000 (ΜΩ)	All Devices
GTCS23-XXXM-R01-2	140	600						All Devices
	150	600						
	200	700						
	230	700					1,000 (ΜΩ)	
GTCC23-XXXM-R01-2	300	900	1kA	100A	6kV‡	<0.5pF		All Devices
	350	1000						
	400 1000							

^{*} DCSO 60~105

[‡] Effective output impedance: 40ohms

	DC Sparkover Voltage	Imp Sparkove		DC Holdover Voltage	On-State Voltage	Impulse Discharge Current	Impulse Life	AC Discharge Current (1s duration; 10 hits)	Capacitance	Insulation Resistance	UL Rating
Part Number	@ 100V/s ± 20% Tolerance	@ 100V/μs	@ 1kV/μs	Per ITU K.12	Nominal (@1A) (V)	8x20µs 10 Hits	10x1000µs 300 Hits	@ 50 Hz	@ 1MHz	@ 100V _{DC}	UL497B #E179610
GTCX25-XXXM-R02	75	450	550	<52	20	2.5kA	100A	2.5Arms	<1pF	10,000 (MΩ)	All Devices
G10/25/00/01/102	90	450	550	<52	20	2.010~	100/4	2.0/41113	ν (ρ)	10,000 (11122)	All Devices
	140	500	600	<80	20						
GTCX26-XXXM-R05	150	500	600	<80	<80 20 5kA 100	100A 5Arms	5Arms	<1pF	10,000 (M Ω)	All Devices	
	200	600	700	<135	20						
	230	600	700	<135	20						
GTCX28-XXXM-R05	250	600	700	<135	20	5kA	100A	5Arms	-1 m F	10.000 (MΩ)	All Devices
GTCAZ8-AAAIVI-NUS	260	700	800	<135	20	SKA	IUUA	DAITIS	<1pF	10,000 (10152)	All Devices
	300	800	900	<150	20						
	350	900	1000	<150	20						
	400	900	1000	<150	20						
GTCX28-XXXM-R10	420	900	1000	<150	20	10kA	10kA 100A	10Arms	<1pF ^{††}	10,000 (M Ω)	All Devices
	470	1050	1150	<150	20						
	500	1100	1200	<150	20						
CTCVOC VVVA A DOC++	550	1300	1400	<150	20	001.4	1004	20 1	15-5	10.000 (1.40)	All Davidana
GTCX28-XXXM-R20**	600	1300	1400	<150	20	20kA	100A	20Arms	<1.5pF	10,000 (MΩ)	All Devices

^{**} GTCX28-XXXM-R20 parts only up to 350V

[†] Devices <=150V measured @ $50V_{DC}$

tt <1.2pF for 75V and 90V devices.

Table G2 — Device Voltage Ratings, Surge Rating, Capacitance, Insulation Resistance and Agency Approval for Two Electrode High-Voltage Gas Discharge Tubes

	DC Sparkover Voltage	Impulse Sparkover Voltage	Impulse Life	AC Discharge Current, 50Hz		Impulse Discharge Current 8/20µs		Capacitance	UL Rating
Part Number	@ 100V/s ± 20% Tolerance	@ 100V/μs	10/1000μs 100A	Multiple Hits (1s Duration: 10 Hits)	Single Hit, 9 Cycles	10 Hits (5 Hits Each Polarity)	1 Hit	@ 1MHz	UL1449 #E332226
GTCA28-801M-R05	800	1400	300 times	5A	N/A	5kA	N/A	<1pF	✓
GTCA28-102M-R03	1000	1700	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-122M-R03	1200	1900	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-152L-R03	1500 (± 15%)	2200	N/A	1A	5A	3kA	10kA	<1pF	/
GTCA28-212M-R03	2100	2700	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-242M-R03	2400	3300	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-252M-R03	2500	3500	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-272L-R03	2700 (± 15%)*	3700	300 Times [†]	N/A	N/A	3kA	10kA	<1pF	✓
GTCA28-302M-R03	3000	4000	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-312L-R03	3100 (± 15%)*	3700‡	300 Times [†]	N/A	N/A	3kA	10kA	<1pF	✓
GTCA28-362M-R03	3600	4600	N/A	1A	5A	3kA	10kA	<1pF	✓
GTCA28-402M-R03	4000	5000	N/A	1A	5A	3kA	10kA	<1pF	✓

Note: Insulation resistance: ≥10,000MΩ (all parts measured @ 1000V_{DC}, except 800V/1000V/1200V @250V_{DC}; 1500V/2100V @ 500V_{DC})

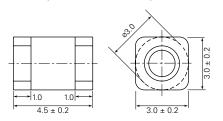
Table G3 — Device Voltage Ratings, Surge Rating, Capacitance, Insulation Resistance and Agency Approval for Three-Electrode Gas Discharge Tubes

	DC Sparkover Voltage (A-E) (B-E)	Imp Sparkove (A-E)	r Voltage	DC Holdover Voltage	On-State Voltage	Impulse Discharge Current (A+B-E)	Impulse Life (A+B-E)	AC Discharge Current (1s duration; 10 hits) (A+B-E)	Capacitance	Insulation Resistance	UL Rating
Part Number	@ 100V/s ± 20% Tolerance	@ 100V/μs	@ 1kV/μs	Per ITU K.12	Nominal (@1A) (V)	8x20μs 10 Hits	10x1000µs 300 Hits	@ 50 Hz	@ 1MHz	@ 100V _{DC} *	UL497B #E179610
GTCX35-XXXM-R05	75	450	550	<52	20	- 5kA	100A	5Arms	<1pF	10,000 (MΩ)	All Devices
	90	450	550	<52	20	010 (100A	0,	, ipi	10,000 (14122)	All Devices
	140	500	600	<80	20		κA 200A	5Arms			
GTCX36-XXXM-R05	150	500	600	<80	20	5kA			<1pF	10,000 (M Ω)	All Devices
	200	600	700	<135	20						
	230	600	700	<135	20						
GTCX36-XXXM-R10	250	600	700	<135	20	- 10kA	200A	10Arms	<1pF	10.000 (MΩ)	All Devices
G I CASO-AAAIVI-N IU	260	700	800	<135	20	IUKA	200A	200A IOAITIS	<165	10,000 (10122)	All Devices
	300	800	900	<150	20						
	350	900	1000	<150	20						
	400	900	1000	<150	20						
GTCX37-XXXM-R10	420	900	1000	<150	20	10kA	200A	10Arms	<1pF	10,000 (MΩ)	All Devices
	470	1050	1150	<150	20						
	500	1100	1200	<150	20						
CTCVOO VAAA DAO	550	1300	1400	<150	20	101.4	2004	10 /	-1F	10,000 (1,40)	All Davidson
GTCX38-XXXM-R10	600	1300	1400	<150	20	- 10kA	200A	10Arms	<1pF	10,000 (MΩ)	All Devices

Insulation resistance measured at 50V for devices less than 150V. Insulation resistance measured at 250V for devices more than 500V.

DC Sparkover Voltage measured at 5kV/s

Measured with 8/20µs,100A impulse

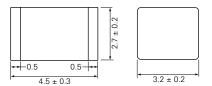

[‡] Measured at 1000V/µs

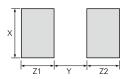
9

Figures G3-G11 — Dimensions for Gas Discharge Tubes

Figure G3 — Two Electrode 3mm Product Dimensions

Surface-mount (GTCS23-XXXM-R01)

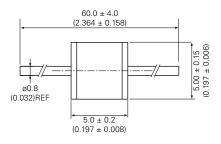

Pad Layout - Surface-mount Devices (GTCS23-XXXM-R01)


	X Nom	Y Nom	Z1 Nom	Z2 Nom
mm	3.0	2.0	2.0	2.0
in*	0.118	0.079	0.079	0.079

* The dimensions in inches are rounded approximations.

Chip GDT (GTCC23-XXXM-R01)

Pad Layout - Chip GDT Devices (GTCC23-XXXM-R01)



	X Nom	Y Nom	Z1 Nom	Z2 Nom
mm	3.5	2.7	2.0	2.0
in*	0.138	0.106	0.079	0.079

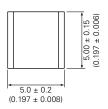
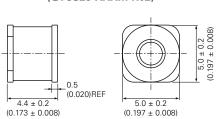
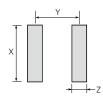

^{*} The dimensions in inches are rounded approximations.

Figure G4 — Two Electrode 5mm Product Dimensions

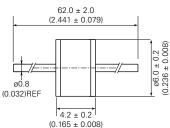

Axial Leads (GTCA25-XXXM-R02)


No Leads (GTCN25-XXXM-R02)†

Surface-mount (GTCS25-XXXM-R02)

Pad Layout - Surface-mount Devices (GTCS25-XXXM-R02)

	X Nom	Y Nom	Z Nom
mm	6.0	3.9	1.3
in*	0.197	0.154	0.051


^{*} The dimensions in inches are rounded approximations.

[†] Parts with no leads are not solderable and are meant for insertion into magazine clips.

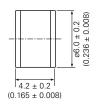
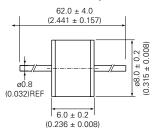

(Cont'd)

Figure G5 — Two Electrode 6mm Product Dimensions

Axial Leads (GTCA26-XXXM-R05)

No Leads (GTCN26-XXXM-R05)†

Surface-mount (GTCS26-XXXM-R05)


Pad Layout - Surface-mount Devices (GTCS26-XXXM-R05)

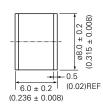
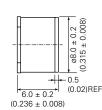
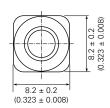

	X Nom	Y Nom	Z Nom
mm	7.0	3.7	1.3
in*	0.276	0.146	0.051

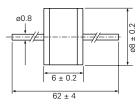
Figure G6 — Two Electrode 8mm Product Dimensions


Axial Leads (GTCA28-XXXM-R05, R10 & R20)



No Leads (GTCN28-XXXM-R05, R10 & R20)†

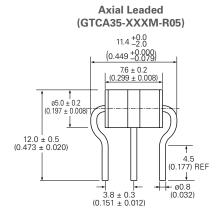
Surface-mount (GTCS28-XXXM-R05, R10 & R20)

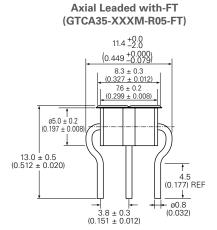

Pad Layout - Surface-mount Devices (GTCS28-XXXM-R05, R10 & R20)

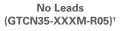
	X Nom	Y Nom	Z Nom
mm	9.0	5.6	1.2
in*	0.354	0.22	0.047

Figure G7 — Two Electrode 8mm High Voltage Product Dimensions

Axial Leads (GTCA28-XXXM-R0X)




^{*} The dimensions in inches are rounded approximations.
† Parts with no leads are not solderable and are meant for insertion into magazine clips.


^{*} The dimensions in inches are rounded approximations.
† Parts with no leads are not solderable and are meant for insertion into magazine clips.

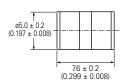
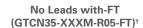
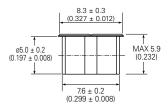
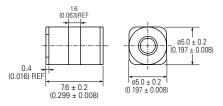

(Cont'd)

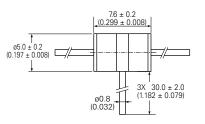
Figure G8 — Three Electrode 5mm Product Dimensions

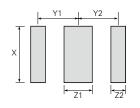






Dimensions in these drawings are in millimeters (inches)

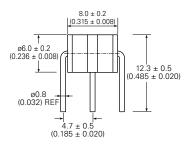



Surface-mount (GTCS35-XXXM-R05)

T Leaded (GTCT35-XXXM-R05)

Pad Layout - Surface-mount Devices (GTCS35-XXXM-R05)

	X Nom	Y1 Nom	Y2 Nom	Z1 Nom	Z2 Nom
mm	6.0	3.6	3.6	2.5	1.3
in*	0.236	0.142	0.142	0.098	0.051


^{*} The dimensions in inches are rounded approximations.

[†] Parts with no leads are not solderable and are meant for insertion into magazine clips.

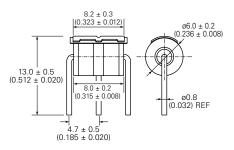
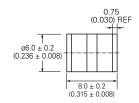
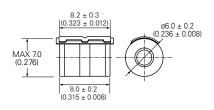

(Cont'd)

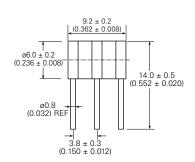
Figure G9 — Three Electrode 6mm Product Dimensions


Axial Leaded (GTCA36-XXXM-R05 and R10)

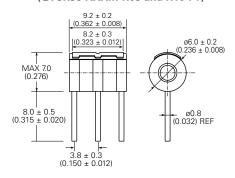
Axial Leaded with-FT (GTCA36-XXXM-R05 and R10-FT)

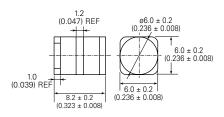


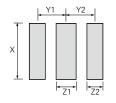
No Leads (GTCN36-XXXM-R05 and R10)†



Dimensions in these drawings are in millimeters (inches)

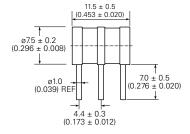

No Leads with-FT (GTCN36-XXXM-R05 and R10-FT)†


Radial Leaded (GTCR36-XXXM-R05 and R10)

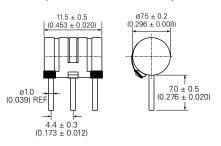

Radial Leaded with-FT (GTCR36-XXXM-R05 and R10-FT)

Surface-mount (GTCS36-XXXM-R05 and R10)

Pad Layout - Surface-mount Devices (GTCS36-XXXM-R05 and R10)


	X Nom	Y1 Nom	Y2 Nom	Z1 Nom	Z2 Nom
mm	7.0	3.6	3.6	2.5	2.0
in*	0.276	0.142	0.142	0.098	0.079

- * The dimensions in inches are rounded approximations
- † Parts with no leads are not solderable and are meant for insertion into magazine clips.


Figure G10 — Three Electrode 7mm Product Dimensions

11.5 ± 0.5 (0.453 ± 0.020) ø7.5 ± 0.2 (0.296 ± 0.008) ---1.5 (0.059) 2.0 (0.079)

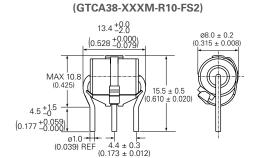
Radial Leaded (GTCR37-XXXM-R10)

Radial Leaded with-FS (GTCR37-XXXM-R10-FS2)

Downloaded from Arrow.com.

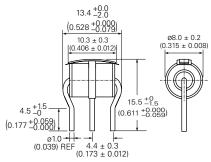
[†] Parts with no leads are not solderable and are meant for insertion into magazine clips

(Cont'd)

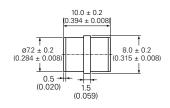

Figure G11 — Three Electrode 8mm Product Dimensions

Axial Leaded (GTCA38-XXXM-R10) $13.4^{+0.0}_{-2.0}$ (0.528 +0.000) 8.0 ± 0.2 (0.315 ± 0.008) 15.0 ± 0.5 4.5 +1.5 (0.591 ± 0.020) $(0.177^{+0.059}_{-0.000})$

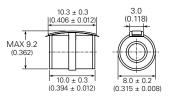
(GTCA38-XXXM-R10-FS) $13.4^{+0.0}_{-2.0}$ Ø8.0 ± 0.2 (0.315 ± 0.008) (0.528 + 0.000)MAX 13.5 (0.489)18.0 ± 0.5 (0.709 ± 0.020) $4.5^{+1.5}_{-0}$ $(0.177^{+0.059}_{-0.000}$ ø1.0 → H (0.039) REF

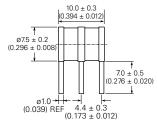

4.4 ± 0.3 (0.173 ± 0.012)

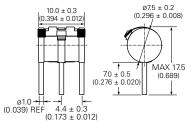
Axial Leaded with-FS

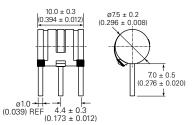


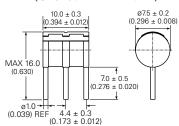
Axial Leaded with-FS

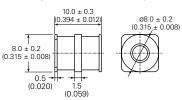

Axial Leaded with-FT (GTCA38-XXXM-R10-FT)


No Leads (GTCN38-XXXM-R10)†


No Leads with-FT (GTCN38-XXXM-R10-FT)†


Radial Leaded (GTCR38-XXXM-R10)


Radial Leaded with-FS (GTCR38-XXXM-R10-FS)


Radial Leaded with-FS (GTCR38-XXXM-R10-FS2)

Radial Leaded with-FT (GTCR38-XXXM-R10-FT)

Surface-mount (GTCS38-XXXM-R10)

Dimensions in these drawings are in millimeters (inches)

Pad Layout - Surface-mount Devices (GTCS38-XXXM-R10)

	X Nom	Y1 Nom	Y2 Nom	Z1 Nom	Z2 Nom
mm	9.0	4.65	4.65	2.5	1.5
in*	0.354	0.183	0.183	0.098	0.059

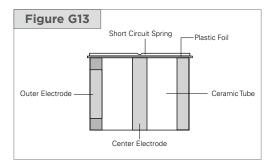
^{*} The dimensions in inches are rounded approximations.

[†] Parts with no leads are not solderable and are meant for insertion into magazine clips

Fail-Short Mechanism for Gas Discharge Tubes

Fail-Short Mechanism — FS

The FS fail-short mechanism is a short circuit spring mounted onto a solder pellet located at the center electrode of the gas tube. Under normal operating conditions, the pellet is positioned to make the spring float above the outer electrodes, as shown in Figure G11 on the previous page.


When a prolonged discharge event causes the gas tube temperature to reach the melting point of the solder, the pellet softens allowing the short circuit spring to contact with both outer electrodes (Figure G12). This process results in a permanent short circuit between all three electrodes creating a low resistance path that conducts the fault current to ground without generating a significant amount of heat.

Short Circuit Spring Solder Pellet Outer Electrode Ceramic Tube Center Electrode

Fail-Short Mechanism — FT

The FT fail-short mechanism is a short circuit spring with a piece of plastic foil spot welded onto the center electrode. Under normal operating conditions, the plastic foil makes the spring insulated from the two outer electrodes.

When a prolonged discharge event causes the gas tube temperature to reach the melting point of the plastic foil, the plastic foil melts allowing the short circuit spring to contact both outer electrodes (Figure G13). This process results in a permanent short circuit between all three electrodes creating a low resistance path that conducts the fault current to ground without generating a significant amount of heat.

Operation and Storage Temperatures for Gas Discharge Tubes

Operation Temperature Range

Models without Fail-Short Mechanism : -40°C/+90°C Models with Fail-Short Mechanism : -20°C/+65°C

Storage Temperature Range

Models without Fail-Short Mechanism : -40°C/+90°C Models with Fail-Short Mechanism : -20°C/+65°C

Packaging Information for Gas Discharge Tubes

	Parts in	Bulk	Parts in Tape and Ro	el
Part Description	Min Order Quantity	Box Quantity	Tape and Reel Min Order Quantity	Box Quantity
3mm 2Pole Surface-mount	_	_	2000	16000
5mm 2Pole No leads	5000	20000	_	_
5mm 2Pole Leads	1000	5000	_	_
5mm 2Pole Surface-mount	_	_	1500	12000
6mm 2Pole No leads	2000	10000	_	_
6mm 2Pole Leads	1000	5000	_	_
6mm 2Pole Surface-mount	_	_	750	6000
8mm 2pole No leads	2000	10000	_	_
8mm 2Pole Leads	1000	5000	_	_
8mm 2Pole Surface-mount	_	_	500	4000
5mm 3Pole No leads	2500	10000	_	_
5mm 3Pole Leads	1000	5000	_	_
5mm 3Pole Surface-mount	_	_	1000	8000
6mm 3Pole No leads	2500	10000	_	_
6mm 3Pole Leads	1000	5000	_	_
6mm 3Pole Surface-mount	_	_	750	4500
7mm 3Pole Leads	1000	5000	_	_
8mm 3Pole No leads	1000	5000	_	_
8mm 3Pole Leads	1000	5000	_	_
8mm 3Pole Surface-mount	_	_	500	2500

Installation for Gas Discharge Tubes

Care should be taken when installing GDTs equipped with fail-short mechanisms into arrester magazines, printed circuit boards, etc. Too much downward pressure may force the short circuit spring through the thin insulation tube creating a shorted condition.

Solder Reflow Recommendations for Surface-mount GDT Devices

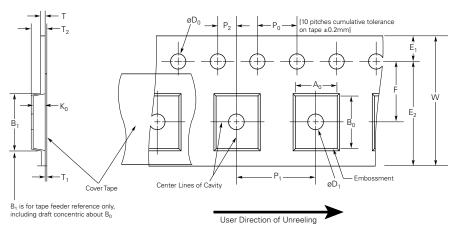
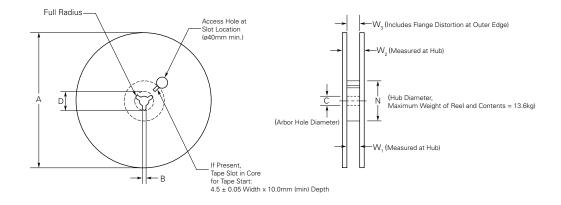

Surface-mount GDTs can be soldered using standard Pb-free reflow profiles.

Table G4 — Tape and Reel Specifications

Tape Dimension EIA Mark	3mm devices (2 pole) Dimension (mm)	5mm devices (2 pole) Dimension (mm)	6mm devices (2 pole) Dimension (mm)	8mm devices (2 pole) Dimension (mm)
A_0	3.40±0.10	4.9±0.10	6.70±0.10	8.60±0.10
B ₀	5.00±0.10	5.5±0.10	4.60±0.10	6.40±0.10
D_0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0
\mathcal{O}_1	_	1.5 MIN	_	_
E ₁	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10
E_2	14.25±0.30	14.25±0.30	14.25±0.30	14.25±0.30
F	7.50±0.10	7.50±0.10	7.50±0.10	7.50±0.10
0	4.00±0.10	4.00±0.10	4.00±0.10	4.00±0.10
1	8.00±0.10	8.00±0.10	12.00±0.10	12.00±0.10
2	2.00±0.10	2.00±0.10	2.00±0.10	2.00±0.10
V	16.00±0.30	16.00±0.30	16.00±0.30	16.00±0.30
apeThickness EIA Mark	Dimension (mm)	Dimension (mm)	Dimension (mm)	Dimension (mm)
3 ₁	_	_		_
K ₀	3.30±0.10	5.30±0.10	6.50±0.10	8.50±0.10
Γ	0.35±0.05	0.40±0.05	0.35±0.05	0.50±0.05
Γ ₁				
T ₂		_	_	_
Reel Dimension EIA Mark	Dimension (mm)	Dimension (mm)	Dimension (mm)	Dimension (mm)
A	330	330	330	330
D	0.00 0.50	0.00 0.50	0.00 0.50	0.00.0.50

В 2.20±0.50 2.20 ± 0.50 2.20±0.50 2.20±0.50 С 13.00±0.20 13.00±0.20 13.00±0.20 13.00±0.20 D 20.20±1.00 20.20±1.00 20.20±1.00 20.20±1.00 Ν 100.00±1.00 100.00±1.00 100.00 ± 1.00 100.00 ± 1.00 W_1 16.50±0.10 16.50±0.10 16.50±0.10 16.50±0.10 21.10±02.00 21.10±02.00 W_2 21.10±02.00 21.10±02.00

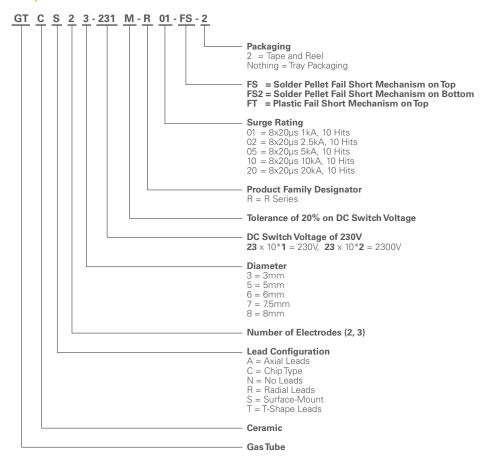
Figure G14 — EIA Referenced Taped Component Dimensions



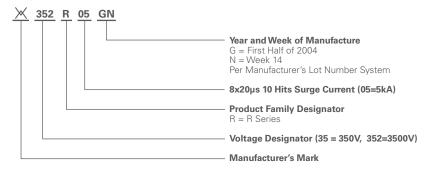
9

Table G5 — Tape and Reel Specifications

Tape Dimension EIA Mark	5mm devices (3 pole) Dimension (mm)	6mm devices (3 pole) Dimension (mm)	8mm devices (3 pole) Dimension (mm)
A ₀	5.40±0.10	6.50±0.10	8.50±0.10
B_0	8.00±0.10	8.60±0.10	10.60±0.10
D_0	1.50+0.10/-0	1.50+0.10/-0	1.50+0.10/-0
D_1	1.50(min)	1.50(min)	_
E ₁	1.75±0.10	1.75±0.10	1.75±0.10
E_2	14.25±0.30	22.25±0.30	22.25±0.30
F	7.50±0.10	11.50±0.10	11.50±0.10
P ₀	4.00±0.10	4.00±0.10	4.00±0.10
P ₁	8.00±0.10	12.00±0.10	16.00±0.10
P ₂	2.00±0.10	2.00±0.10	2.00±0.10
W	16.00±0.30	24.00±0.30	24.00±0.30
TapeThickness EIA Mark	Dimension (mm)	Dimension (mm)	Dimension (mm)
B ₁	_	_	_
K ₀	5.70±0.10	6.30±0.10	8.40±0.10
Т	0.50±0.05	0.50±0.05	0.50±0.05
T ₁	_	_	_
T ₂	_	_	_
Reel Dimension EIA Mark	Dimension (mm)	Dimension (mm)	Dimension (mm)
A	330	330	330
В	2.20±0.50	2.20±0.50	2.20±0.50
С	13.00±0.20	13.00±0.20	13.00±0.20
D	20.20±1.00	20.20±1.00	20.20±1.00
N	100.00±1.00	100.00±1.00	100.00±1.00
W ₁	16.50±0.10	24.50±0.10	24.50±0.10
$\overline{W_2}$	21.10±02.00	29.10±02.00	29.10±02.00
W ₃	_	_	_


Figure G15 — EIA Referenced Reel Dimensions

9

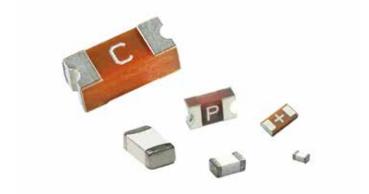

Part Numbering System for Gas Discharge Tubes

Example Part Number

NOTE: GTCS23-XXXM-R01 and GTCC23-XXXM-R01 parts available only in surface-mount and tape and reel packaging

Marking Reference Guide — Example

NOTES: GTCS23-XXXM-R01 and GTCC23-XXXM-R01 parts will have no marking. Devices with no leads (GTCNxx-xxxx-xx) are not able to be soldered as their electrodes are nickel plated. They should be installed by insertion into a magazine clip.

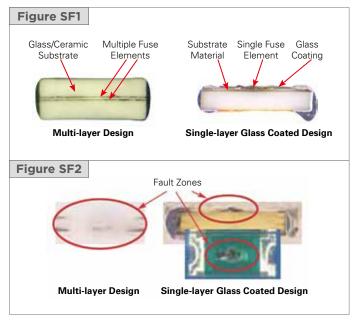

Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

Fundamentals

Overview

TE Circuit Protection offers the widest selection of surface-mount fuses available for addressing a broad range of overcurrent protection applications. Helping to prevent costly damage and promote a safe environment for electronic and electrical equipment, our single-use chip fuses provide performance stability to support applications with current ratings from .5A up to 3OA.

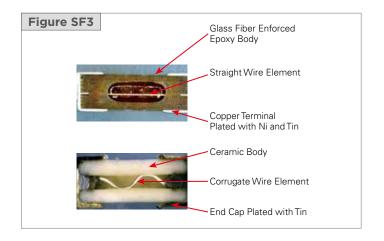


Multi-layer Design for Chip Fuses

The multi-layer design has the benefit of exposing more fuse element surface area to the glass-ceramic absorption material. When the fuse elements open, there is more material for the vaporizing fuse metals to absorb into, resulting in a very efficient and effective quenching of the fuse arc.

Figure SF1 compares the multi-layer design of our SFF fuses with standard glass coated designs. The glass coated designs rely on the coating on only one side of the fuse element to absorb the vaporizing fuse material when it opens. Therefore, there is much less absorption material available to absorb the fuse metals. The result can be prolonged arcing and possible coating breach.

Figure SF2 shows how the absorption characteristics of the two designs differ. The multi-layer design indicates a clean separation with the fuse element evenly diffusing into the surrounding ceramic substrate. In the glass coated design, the element diffusion takes place in a small portion of the device and is only absorbed by the glass material directly above the area of failure.

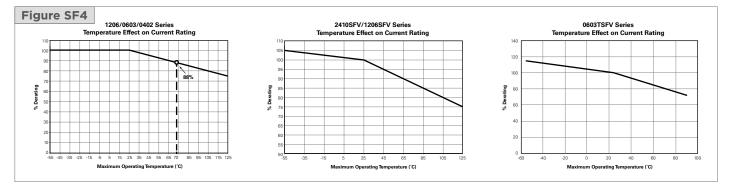


Wire-In-Air Design for 2410SFV, 1206SFV Fuses

The 2410SFV, 1206SFV fuse are Wire-In-Air SMD fuse that is suitable for secondary level overcurrent protection applications.

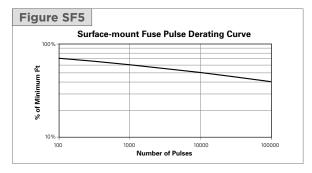
Figure SF3 compares our straight wire element design 2410SFV, 1206SFV fuses with normal corrugated wire design fuse. The straight wire element in air provides consistent fusing and cutting characteristics together with inrush current withstanding capability.

By introducing PCB assembly technology into the 2410SFV, 1206SFV fuse design and manufacturing process, lead-free compliance has been achieved without the problems associated with end caps on traditional ceramic devices.


Surface-Mount Fuses Fundamentals

Thin Film Design for 0603TSFV Fuses

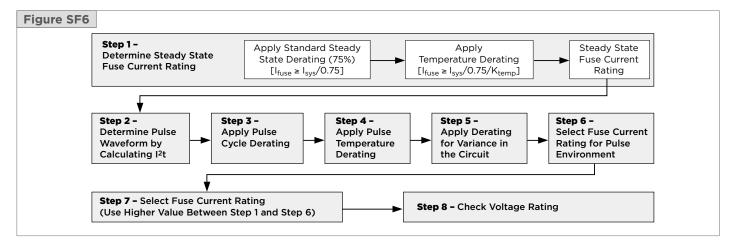
The O6O3TSFV fuses are thin film fuses that are suitable for secondary level overcurrent protection applications. The thin film design has the benefit of fast fusing under low overload current and thin thickness.


Temperature Derating

A fuse is a temperature sensitive device. Therefore, operating temperature will have an effect on fuse performance and lifetime. Operating temperature should be taken into consideration when selecting the fuse current rating. The Thermal Derating Curve for surface-mount fuses is presented in Figure SF4. Use it to determine the derating percentage based on operating temperature and apply it to the derated system current.

Pulse Cycle Derating

Once the I²t value for the application waveform has been determined, it must be derated based on the number of cycles expected over the system lifetime. Since the stress induced by the current pulse is mechanical in nature, the number of times the stress is applied has significant bearing on how much derating must be applied to the fuse rating. Figure SF5 presents the current pulse derating curve for our surface-mount chip fuses up to 100,000 cycles.

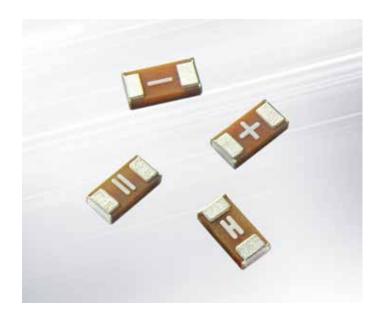


Selecting Surface-mount Fuses

Fuse selection seems straightforward, in that you pick one which has a current rating just a bit higher than your worst case system operating current. Unfortunately, it is not that simple. There are derating considerations for operating current and application temperature. Turn-on and other system operations (like processor speed changes or motor start up) cause current surges or spikes that also require consideration when selecting a fuse. So selecting the right fuse for your application is not as simple as knowing the nominal current drawn by the system.

Fuse Selection Flowchart

However, the basic considerations for fuse selection are shown in the flow chart presented in Figure SF6. Following this flow chart will help you select a fuse best suited for your application conditions. For a detailed example of this process you can download our Fuse Selection Guide available on our website.



0603 Thin Film Very Fast-Acting Chip Fuses

Very fast-acting fuses help provide overcurrent protection for systems using DC power sources up to $65V_{DC}$. The fuses' thin film design helps provide fast fusing under low overload current and low DCR (Direct Current Resistance).

These RoHS-compliant, surface-mount devices offer strong arc suppression characteristics and facilitate the development of more reliable, high-performance consumer electronics, such as notebook computers and tablets, digital cameras, memory cards, toys, Bluetooth earphones and other portable electronics devices.

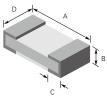
BENEFITS

- Very fast acting at 200% and 300% overloads
- Inrush current withstand capability at high overloads
- Thin body for space-limited applications
- Fiberglass enforced epoxy fuse body
- Copper termination with nickel and tin plating
- RoHS compliant and lead-free materials

FEATURES

- · Lead-free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Fiberglass enforces epoxy fuse body design
- Low DCR
- -55°C to +90°C operating temperature range

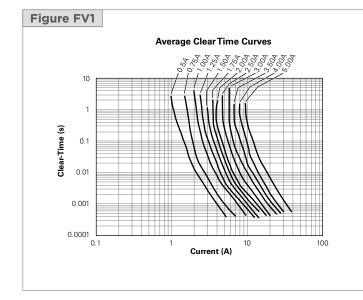
- Notebook computers and tablets
- Digital cameras
- Memory cards
- Toys
- Bluetooth earphones
- Portable electronics devices

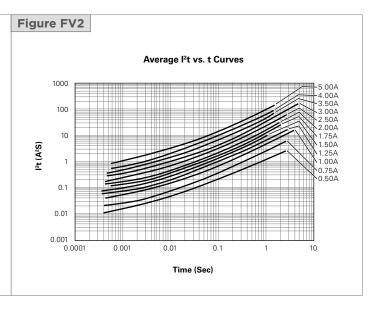

Table FV1 — Clear Time Characteristics

% of Rated Current	Clear Time at 25°C		
100%	4 hrs (min)	_	
200%	_	5 s (max)	
300%	_	0.2 s (max)	

Table FV2 — Typical Electrical Characteristics and Dimensions

0603 (1608 mm) Very Fast-Acting Chip Fuses




		4		3)
	Min	Max	Min	Max	Min	Max	Min	Max
mm	1.500	1.700	0.200	0.400	0.260	0.460	0.710	0.910
in	(0.059)	(0.067)	(0.008)	(0.016)	(0.01)	(0.018)	(0.028)	(0.036)

Part Number	Marking Code	Rated Current (A)	Interrupt Rating	Voltage Rating (V _{DC})	Nominal Cold DC Resistance (DCR) (Ω) ¹	Nominal I²t (A²s)²
0603TSFV050FM/65-2		0.50	_	65	0.185	0.0150
0603TSFV075FM/65-2		0.75	50A@35V DC/AC 13A@65V DC	65	0.112	0.0250
0603TSFV100FM/65-2	+	1.00		65	0.069	0.0300
0603TSFV125FM/65-2	×	1.25	35A@35V DC/AC	65	0.048	0.0520
0603TSFV150FM/65-2	Ш	1.50	13A@65V DC	65	0.037	0.0770
0603TSFV175FM/35-2		1.75	_	35	0.031	0.1000
0603TSFV200FM/35-2	=	2.00	_	35	0.0260	0.1200
0603TSFV250FM/35-2	Н	2.50	_	35	0.0210	0.1500
0603TSFV300FM/35-2	III	3.00	35A@35V DC/AC 50A@24V DC/AC	35	0.0176	0.3500
0603TSFV350FM/35-2	H	3.50		35	0.0148	0.4400
0603TSFV400FM/35-2		4.00		35	0.0125	1.6000
0603TSFV500FM/35-2	0	5.00		35	0.0095	1.0000

 $^{^{\}mbox{\tiny 1}}$ Measured at ${\leq}10\%$ of rated current and 25°C ambient.

Figures FV1-FV2 — Family Performance Curves

→ Please go to page 111 for more information about 0603 Thin Film Very Fast-Acting Chip Fuses.

² Melting I²t at 1 ms.

Fast-Acting Chip Fuses

Fast-acting chip fuses help provide overcurrent protection for systems using DC power sources up to $63V_{DC}$. The fuse's monolithic, multilayer design helps provide the highest hold current in the smallest footprint, reduce diffusion-related aging, improve product reliability and resilience, and enhance high-temperature performance in a wide range of circuit designs.

These RoHS-compliant surface-mount devices offer strong arc suppression characteristics and help facilitate the development of more reliable, high-performance consumer electronics such as laptops, multimedia devices, cell phones and other portable electronics.

BENEFITS

- Small size with high current ratings
- Temperature stability
- High reliability and resilience
- Strong arc suppression characteristics

FEATURES

- Lead-free and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- · Monolithic, multilayer design
- High-temperature performance
- -55°C to +125°C operating temperature range

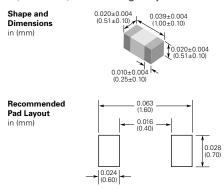
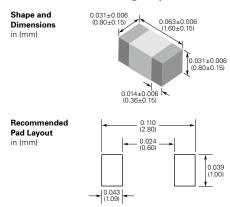
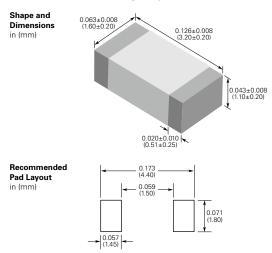

- Laptops
- Digital cameras
- Cell phones
- Printers
- DVD players
- Portable electronics
- Game systems
- LCD monitors
- Scanners

Table FF1 — Clear Time Characteristics

% of Rated Current	Clear Time at 25°C
100%	4 hrs (min)
250%	5 s (max)
400%	0.05 s (max)


Table FF2 — Typical Electrical Characteristics, Dimensions and Recommended Pad Layout

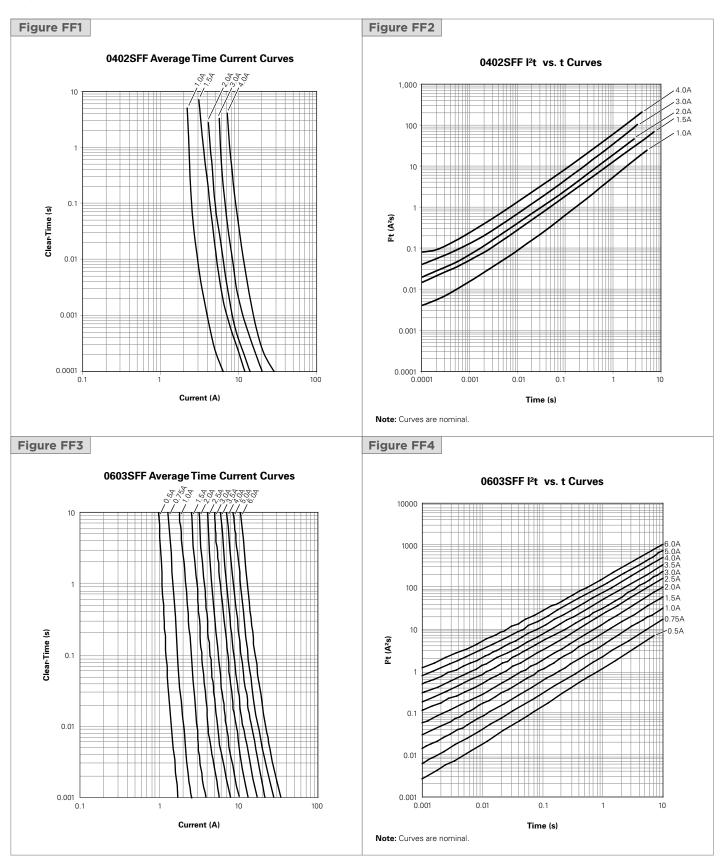
0402 (1005mm) Fast-Acting Chip Fuses


	Typical Ele	Typical Electrical Characteristics			Max Interrupt Ratings		
Part Number	Rated Current (A)	Nominal Cold DCR (Ω)*	Nominal I ² t (A ² sec) [†]	Voltage (V _{DC})	Current (A)		
0402SFF100F/24	1.00	0.120	0.0170	24	35		
0402SFF150F/24	1.50	0.056	0.0490	24	35		
0402SFF200F/24	2.00	0.035	0.0700	24	35		
0402SFF300F/24	3.00	0.021	0.1250	24	35		
0402SFF400F/24	4.00	0.014	0.2250	24	35		

0603 (1608mm) Fast-Acting Chip Fuses

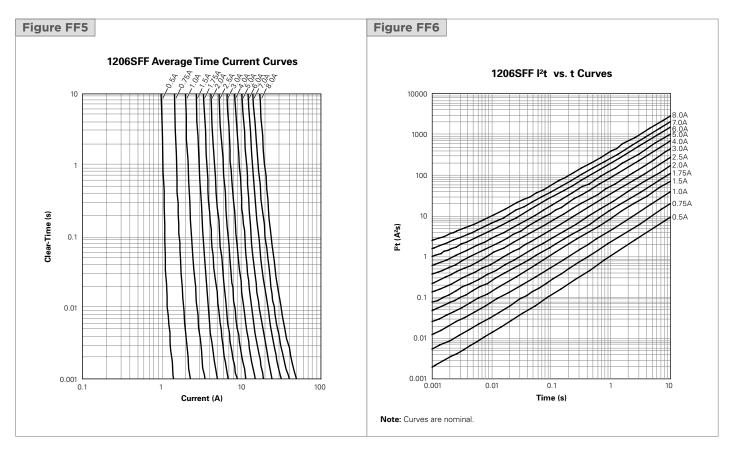
	Typical Electrical Characteristics			Max Interri	upt Ratings
Part Number	Rated Current (A)	Nominal Cold DCR (Ω)*	Nominal I2t (A2sec)†	Voltage (V _{DC})	Current (A)
0603SFF050F/32	0.50	0.485	0.0029	63	35
0603SFF075F/32	0.75	0.254	0.0064	63	35
0603SFF100F/32	1.00	0.147	0.0160	63	35
0603SFF150F/32	1.50	0.059	0.0300	63	35
0603SFF200F/32	2.00	0.044	0.0600	32	35
0603SFF250F/32	2.50	0.032	0.1150	32	35
0603SFF300F/32	3.00	0.025	0.1900	32	35
0603SFF350F/32	3.50	0.024	0.2950	32	35
0603SFF400F/32	4.00	0.018	0.4000	32	35
0603SFF500F/32	5.00	0.013	0.7000	32	35
0603SFF600F/24	6.00	0.010	1.1250	24	35

1206 (3216mm) Fast-Acting Chip Fuses



	Typical Ele	ectrical Cha	racteristics	Max Interru	upt Ratings
Part Number	Rated Current (A)	Nominal Cold DCR (Ω)*	Nominal I²t (A²sec)†	Voltage (V _{DC})	Current (A)
1206SFF050F/63	0.50	0.730	0.0021	63	50
1206SFF075F/63	0.75	0.513	0.0052	63	50
1206SFF100F/63	1.00	0.220	0.0120	63	50
1206SFF150F/63	1.50	0.120	0.0250	63	50
1206SFF175F/63	1.75	0.100	0.0450	63	50
1206SFF200F/63	2.00	0.050	0.0700	63	50
1206SFF250F/32	2.50	0.035	0.1400	32	50
1206SFF300F/32	3.00	0.031	0.2200	32	50
1206SFF400F/32	4.00	0.022	0.3800	32	45
1206SFF500F/32	5.00	0.015	0.6000	32	45
1206SFF600F/32	6.00	0.013	1.0000	32	50
1206SFF700F/32	7.00	0.011	1.7500	32	50
1206SFF800F/32	8.00	0.008	2.5000	32	50
1206SFF600F/24	6.00	0.013	1.0000	24	45
1206SFF700F/24	7.00	0.011	1.7500	24	45
1206SFF800F/24	8.00	0.008	2.5000	24	45

^{*} Measured at \leq 10% of rated current and 25°C ambient temperature.


[†] Melting I²t at 0.001 sec clear time.

Figures FF1-FF6 — Family Performance Curves

Figures FF1-FF6 — Family Performance Curves

(Cont'd)

→ Please go to page 111 for more information about Fast-Acting Chip Fuses.

0603 Very Fast-Acting Chip Fuses

Very fast-acting chip fuses help provide overcurrent protection for systems using DC power sources up to $32V_{DC}$. The fuse's monolithic, multilayer design helps provide the highest hold current in the smallest footprint, reduce diffusion-related aging, improve product reliability and resilience, and enhance high-temperature performance in a wide range of circuit designs.

These RoHS-compliant surface-mount devices offer strong arc suppression characteristics and facilitate the development of more reliable, high-performance consumer electronics such as laptops, multimedia devices, cell phones and other portable electronics.

BENEFITS

- Very fast acting at 200% and 300% overloads
- Inrush current withstand capability at high overloads
- Thin body for space-limited applications
- · Glass ceramic monolithic structure
- Silver fusing element and silver termination with nickel and tin plating
- RoHS compliant and lead-free materials
- Symmetrical design with marking on both sides (optional)

FEATURES

- · Lead-free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Monolithic, multilayer design
- High-temperature performance
- -55°C to +125°C operating temperature range

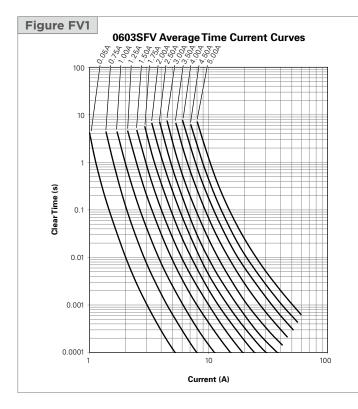
- Laptops
- Digital cameras
- Cell phones
- Printers
- DVD players
- Portable electronics
- Game systems
- LCD monitors
- Scanners

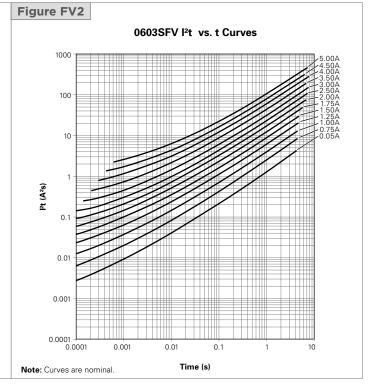
Table FV1 — Clear Time Characteristics

% of Rated Current	Clear Time at 25°C		
100%	4 hrs (min)	_	
200%	0.01 s (min)	5 s (max)	
300%	0.001 s (min)	0.2 s (max)	

Table FV2 — Typical Electrical Characteristics and Dimensions

0603 (1608 mm) Very Fast-Acting Chip Fuses




	Α		-	В		С		D	
	Min	Max	Min	Max	Min	Max	Min	Max	
mm	1.45	1.75	0.22	0.48	0.21	0.51	0.65	0.95	
in	(0.057)	(0.069)	(0.009)	(0.019)	(0.008)	(0.020)	(0.025)	(0.037)	

	Electri	Typical Electrical Characteristics			ax t Ratings
Part Number	Rated Current (A)	Nominal Cold DCR $(\Omega)^*$	Nominal I ² t (A ² sec)	Voltage (V _{DC})	Current (A)
0603SFV050F/32-2	0.5	0.860	0.0093	32	50
0603SFV075F/32-2	0.8	0.450	0.0191	32	50
0603SFV100F/32-2	1.0	0.280	0.0360	32	50
0603SFV125F/32-2	1.3	0.205	0.0630	32	35
0603SFV150F/32-2	1.5	0.143	0.0950	32	35
0603SFV175F/32-2	1.8	0.095	0.1400	32	35
0603SFV200F/32-2	2.0	0.073	0.2100	32	35
0603SFV250F/32-2	2.5	0.046	0.3000	32	35
0603SFV300F/32-2	3.0	0.039	0.4600	32	35
0603SFV350F/32-2	3.5	0.028	0.7300	32	35
0603SFV400F/32-2	4.0	0.023	1.1500	32	35
0603SFV450F/32-2	4.5	0.019	1.6800	32	35
0603SFV500F/32-2	5.0	0.015	2.6200	32	35

^{*} Measured at 10% of rated current and 25°C.

Figures FV1-FV2 — Family Performance Curves

→ Please go to page 111 for more information about Very Fast-Acting Chip Fuses.

1206 Very Fast-Acting Chip Fuses

Very fast-acting chip fuses help provide overcurrent protection for systems using DC power sources up to $65V_{DC}$. The fuses' wire-in-air design helps provide the highest voltage rating and excellent inrush current withstand capability, reduces diffusion-related aging, improves product reliability and resilience, and enhances high-temperature performance in a wide range of circuit designs.

These RoHS-compliant, surface-mount devices offer strong arc suppression characteristics and facilitate the development of more reliable, high-performance consumer electronics. These include laptop computers and ultra-portable notebooks, backlight drivers, DC/DC converters, low-voltage power for lighting applications and automotive electronics.

BENEFITS

- Fast acting at 250% overloads
- Inrush current withstand capability at high overloads
- Thin body for space-limited applications
- Fiberglass-enforced epoxy fuse body for reliability
- Symmetrical design with markings on both sides (optional)
- Wire-in-air design increases safety
- Meet environmental standards for greener designs

FEATURES

- Lead-free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- -55°C to +125°C operating temperature range
- Fast acting at 250% overload current level
- Copper/copper alloy fusing element

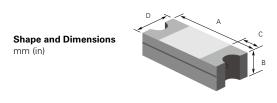
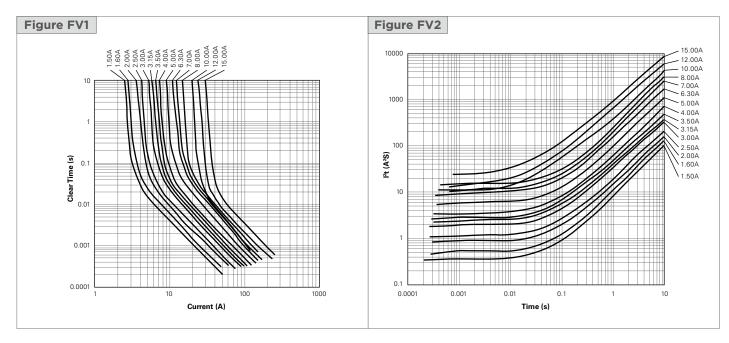

- Laptop computers and ultra-portable notebooks
- Backlight Drivers
- DC/DC Converters
- Low-voltage Power for Lighting Applications
- Automotive Electronics

Table FV1 — Clear Time Characteristics

% of Rated Current	Clear Time at 25°C			
100%	4 hrs (min)	_		
250%	_	5 s (max)		

Table FV2 — Typical Electrical Characteristics and Dimensions

1206 (3216 mm) Very Fast-Acting Fuses



	Α		E	В		С		D	
	Min	Max	Min	Max	Min	Max	Min	Max	
mm	3	3.4	0.93	1.23	0.55	1.15	1.5	1.9	
in	(0.118)	(0.134)	(0.036)	(0.048)	(0.021)	(0.045)	(0.059)	(0.075)	

Part Number	Marking Code	Rated Current (A)	Interrupt Rating	Voltage Rating (V _{DC})	Nominal Cold DC Resistance (DCR) (Ω)¹	Nominal l²t (A²s)
1206SFV1.50FM/065-2	G	1.50		65	0.050	0.37
1206SFV1.60FM/065-2	Т	1.60		65	0.043	0.52
1206SFV2.00FM/065-2	I	2.00		65	0.032	0.88
1206SFV2.50FM/065-2	J	2.50	50A@	65	0.028	1.1
1206SFV3.00FM/065-2	K	3.00	$65V_{DC}$	65	0.022	1.9
1206SFV3.15FM/065-2	V	3.15		65	0.020	2.2
1206SFV3.50FM/065-2	L	3.50		65	0.018	2.6
1206SFV4.00FM/065-2	M	4.00		65	0.016	3.3
1206SFV5.00FM/032-2	N	5.00		32	0.013	5.4
1206SFV6.30FM/032-2	0	6.30		32	0.010	8.9
1206SFV7.00FM/032-2	Р	7.00		32	0.0092	10.4
1206SFV8.00FM/032-2	R	8.00	50A@ 32V _{DC}	32	0.0084	13.5
1206SFV10.0FM/032-2	Q	10.00	* DC	32	0.0050	11.2
1206SFV12.0FM/032-2	X	12.00		32	0.0041	15.0
1206SFV15.0FM/032-2	Υ	15.00		32	0.0035	24.5

 $^{^{\}mbox{\tiny 1}}$ Measured at ${\leq}10\%$ of rated current and 25°C ambient.

Figures FV1-FV2 — Family Performance Curves

→ Please go to page 111 for more information about Very Fast-Acting Chip Fuses.

2410 Very Fast-Acting Chip Fuses

The 2410 (6125mm) Wire-in-Air (WIA) SMD Fuse is suitable for secondary-level overcurrent protection applications.

These lead-free surface-mount devices offer increased reliability and avoid the risk of end caps falling off. Their straight wire element in air performs consistent fusing and cutting characteristics.

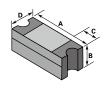
BENEFITS

- Very fast acting at 200% overload current level
- Excellent inrush current withstand capability
- High reliability and resilience
- Strong arc suppression characteristics
- · Copper terminal with nickel and tin plating

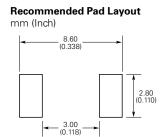
FEATURES

- Halogen free, RoHS compliant and 100% lead free
- Copper or copper alloy composite fuse link
- Fiberglass enforced epoxy fuse body
- Wide range of current rating
- -55°C to +125°C operating temperature range (With de-rating)

- Industrial equipment
- LCD/PDP TV
- · Backlight inverter
- Power supplier
- Telecom system
- Networking
- Game systems
- · White goods
- Automotive

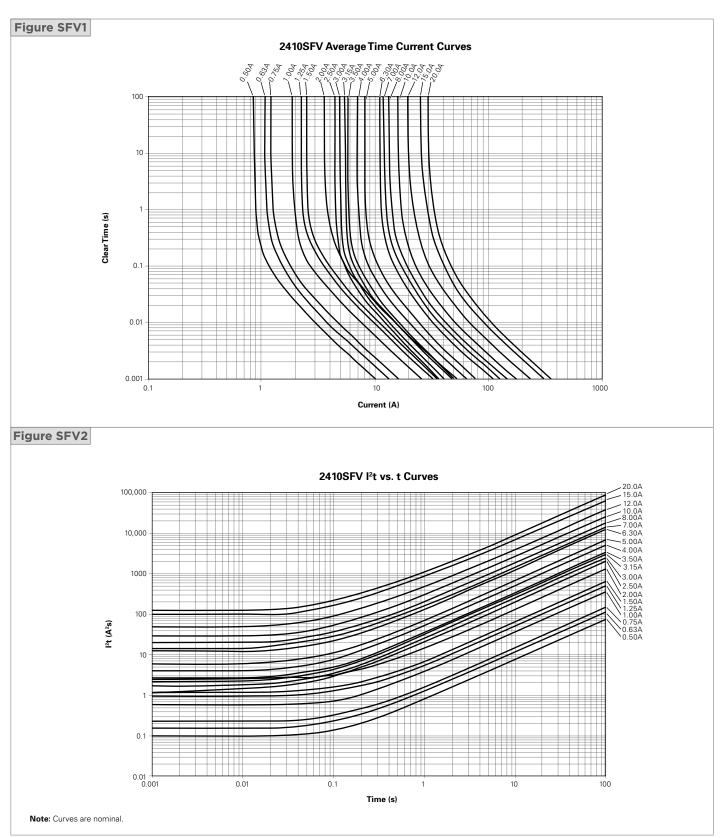

Table SFV1 — Clear Time Characteristics

% of Rated Current	Clear Tim	ne at 25°C
100%	4 hrs (min)	_
200% (0.5A-10.0A)	0.01 s (min)	5 s (max)
200% (12.0A-20.0A)	0.01 s (min)	20 s (max)


Table SFV2 — Typical Electrical Characteristics, Dimensions and Recommended Pad Layout

2410 (6125 mm) Very Fast-Acting Fuse

Shape and Dimensions mm (in)


	Α		В		(С)
	Min	Max	Min	Max	Min	Max	Min	Max
mm	5.95	6.25	1.96	2.36	0.97	1.73	2.34	2.64
in	(0.234)	(0.246)	(0.077)	(0.093)	(0.038)	(0.068)	(0.092)	(0.104)

				Voltage Rating (V)		Nominal Cold	Naminal 12t
Part Number	Marking Code	Rated Current (A)	Interrupt Rating	AC	DC	DC Resistance (DCR) (Ω)*	Nominal I ² t (A ² s)
2410SFV0.50FM/125	С	0.5		250	125	0.231	0.1
2410SFV0.63FM/125	S	0.63	UL:	250	125	0.174	0.16
2410SFV0.75FM/125	D	0.75	0.5~2A	250	125	0.148	0.23
2410SFV1.00FM/125	Е	1	100A @ 250V _{AC}	250	125	0.093	0.59
2410SFV1.25FM/125	F	1.25	2.5~8A 50A @ 125V _{AC}	250	125	0.07	0.96
2410SFV1.50FM/125	G	1.5	0.5~8A 50A @ 125V _{DC} 300A @ 32V _{DC} TUV: 0.5A, 0.63A,	250	125	0.062	1.19
2410SFV2.00FM/125	1	2		250	125	0.042	2.75
2410SFV2.50FM/125	J	2.5		125	125	0.031	1.21
2410SFV3.00FM/125	K	3		125	125	0.0249	1.73
2410SFV3.15FM/125	V	3.15	1A, 1.25A, 2A	125	125	0.0232	2.2
2410SFV3.50FM/125	L	3.5	100A @ 250V _{AC} 50A @ 125V _{DC}	125	125	0.022	2.5
2410SFV4.00FM/125	М	4		125	125	0.0172	4.1
2410SFV5.00FM/125	N	5	CQC: 0.5A, 1A, 2A	125	125	0.0143	5.9
2410SFV6.30FM/125	0	6.3	100A @ 250V _{AC}	125	125	0.01	12.5
2410SFV7.00FM/125	Р	7	50A @ 125V _{DC}	125	125	0.0094	14.2
2410SFV8.00FM/125	R	8		125	125	0.0086	20.3
2410SFV10.0FM/125	Q	10	UL: 35A @ 125V _{AC} 50A @ 125V _{DC} 300A @ 32V _{DC}	125	125	0.0066	29.2
2410SFV12.0FM/065	X	12	UL: 50A @ 65V _{AC}	65	65	0.0053	49.2
2410SFV15.0FM/065	Υ	15	50A @ 65V _{DC} 300A @ 32V _{DC}	65	65	0.0038	102.5
2410SFV20.0FM/065	Z	20	UL: 50A @ 65V _{AC} 100A @ 65V _{DC} 300A @ 32V _{DC}	65	65	0.0034	126.2

^{*} Measured at ≤10% of rated current and 25°C ambient

Figures SFV1-SFV2 — Family Performance Curves

→ Please go to page 111 for more information about 2410 Very Fast-Acting Chip Fuses.

Pulse Tolerant Chip Fuses

Pulse Tolerant Chip Fuses have high inrush current withstand capability and provide overcurrent protection for DC power systems. These devices combine a silver fusing element and monolithic, multilayer design to provide strong arc suppression characteristics.

These RoHS-compliant surface-mount devices can help facilitate the development of more reliable, high-performance consumer electronics such as laptops, multimedia devices, cell phones and other portable electronics.

BENEFITS

- · High inrush current withstanding capability
- · Ceramic monolithic structure
- Silver fusing element and silver termination with nickel and tin plating
- Temperature stability
- Strong arc suppression characteristics

FEATURES

- · Lead free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- · Monolithic, multilayer design
- High-temperature performance
- -55°C to +125°C operating temperature range

- Laptops
- Digital cameras
- Cell phones
- Printers
- DVD players
- Portable electronics
- Game systems
- LCD monitors
- Scanners

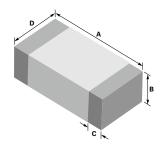
Table FP1 — Clear Time Characteristics

% of Rated Current	Clear Tim	ne at 25°C
100%	4 hrs (min)	_
200%	1 s (min)	60 s (max)
1000%	0.0002 s (min)	0.02 s (max)

Table FP2 — Typical Electrical Characteristics and Dimensions

0603 (1608 mm) Pulse Tolerant Chip Fuses

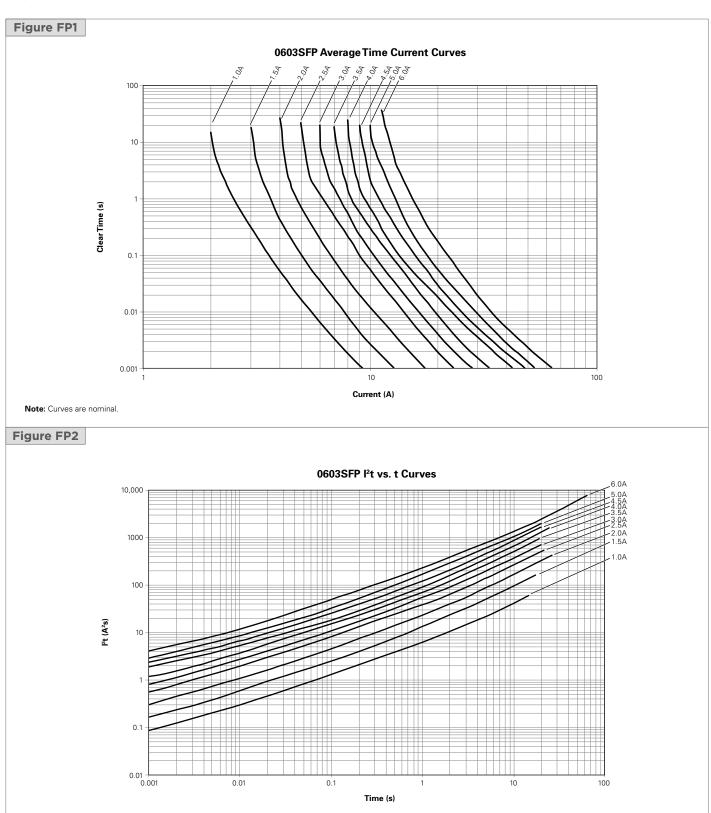
Shape and Dimensions mm (in)



	Α		ı	В		С)
	Min	Max	Min	Max	Min	Max	Min	Max
mm	1.45	1.75	0.65	0.95	0.21	0.51	0.65	0.95
in	(0.057)	(0.069)	(0.026)	(0.037)	(0.008)	(0.020)	(0.026)	(0.037)

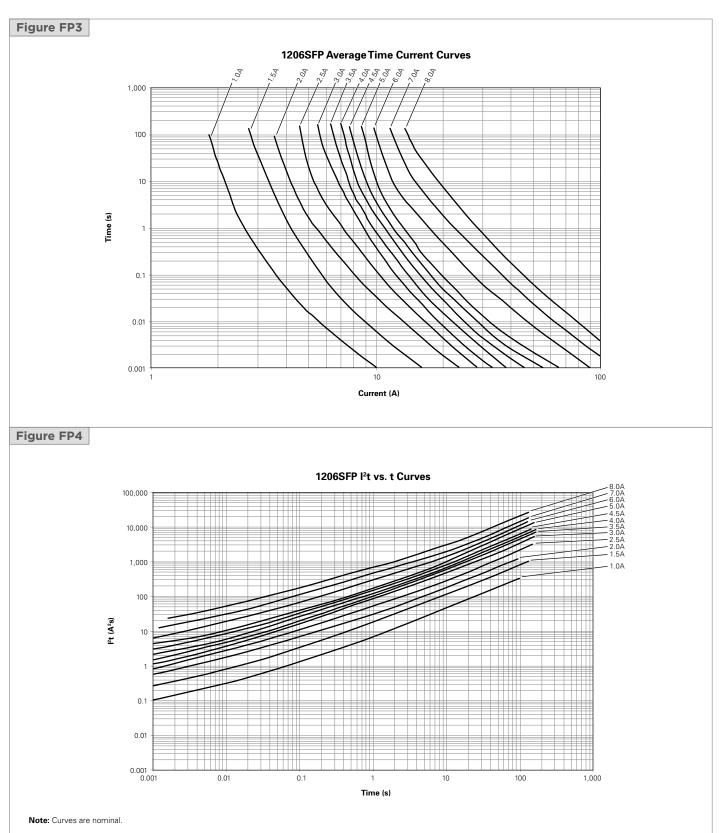
	Typical Electrical Characteristics			Max Interrupt Ratings		
Part Number	Rated Current (A)	Nominal Cold DCR $(\Omega)^*$	Nominal I ² t (A ² sec) [†]	Voltage (V _{DC})	Current (A)	
0603SFP100F/32-2	1.0	0.210	0.08	32	50	
0603SFP150F/32-2	1.5	0.101	0.11	32	50	
0603SFP200F/32-2	2.0	0.057	0.24	32	50	
0603SFP250F/32-2	2.5	0.042	0.56	32	50	
0603SFP300F/32-2	3.0	0.030	0.72	32	50	
0603SFP350F/32-2	3.5	0.022	1.10	32	50	
0603SFP400F/32-2	4.0	0.018	2.08	32	50	
0603SFP450F/32-2	4.5	0.014	2.63	32	50	
0603SFP500F/32-2	5.0	0.013	3.25	32	50	
0603SFP600F/32-2	6.0	0.010	4.00	32	70	

1206 (3216 mm) Pulse Tolerant Chip Fuses


	Α		E	В		С)
	Min	Max	Min	Max	Min	Max	Min	Max
mm	3.00	3.40	0.77	1.17	0.26	0.76	1.40	1.80
in	(0.118)	(0.134)	(0.030)	(0.046)	(0.010)	(0.030)	(0.055)	(0.071)

	Typical Electrical Characteristics			Max Interrupt Ratings	
Part Number	Rated Current (A)	Nominal Cold DCR (Ω)*	Nominal I ² t (A ² sec) [†]	Voltage (V _{DC})	Current (A)
1206SFP100F/63-2	1.0	0.340	0.11	63	50
1206SFP150F/63-2	1.5	0.150	0.33	63	50
1206SFP200F/63-2	2.0	0.090	0.80	63	50
1206SFP250F/32-2	2.5	0.070	1.19	32	50
1206SFP300F/32-2	3.0	0.035	1.35	32	50
1206SFP350F/32-2	3.5	0.029	1.84	32	50
1206SFP400F/32-2	4.0	0.023	2.74	32	50
1206SFP450F/32-2	4.5	0.021	3.20	32	50
1206SFP500F/32-2	5.0	0.017	5.50	32	50
1206SFP600F/24-2	6.0	0.013	12.50	24	80
1206SFP700F/24-2	7.0	0.010	30.00	24	80
1206SFP800F/24-2	8.0	0.009	60.00	24	80

^{*} Measured at ≤10% of rated current and 25°C ambient temperature.


 $[\]ensuremath{^{\dagger}}$ Melting I²t at 0.001 sec clear time.

Figures FP1-FP4 — Family Performance Curves

Figures FP1-FP4 — Family Performance Curves

(Cont'd)

→ Please go to page 111 for more information about Pulse Tolerant Chip Fuses.

High-Current-Rated Chip Fuses

The monolithic multilayer design of the TE Circuit Protection high-current-rated chip fuses helps to provide some of the highest current ratings available in the 1206 size and enhances high-temperature performance in a wide range of circuit protection designs. The devices' small size, high reliability and strong arc suppression characteristics make them suitable for overcurrent protection of power supplies, servers, communications equipment, voltage regulator modules, and other high current, small size applications.

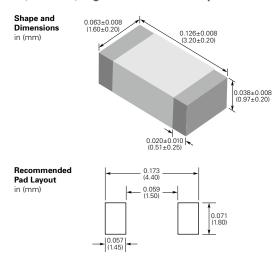
BENEFITS

- Glass ceramic monolithic structure provides stability in application cycling
- High-current rating in a small package allows more efficient use in system space
- Strong arc suppression in overcurrent conditions

FEATURES

- Lead-free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Monolithic multilayer design
- High-temperature performance
- -55°C to +150°C operating temperature range

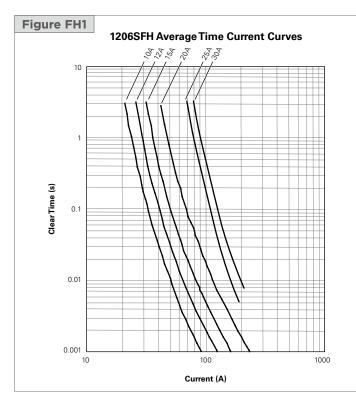
- Communications equipment
- Voltage regulator modules
- Power supplies
- Servers

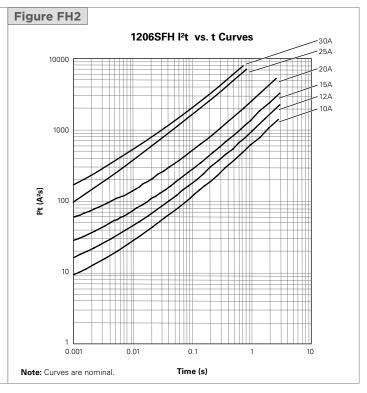

Table FH1 — Clear Time Characteristics

1206SFH Series

% of Rated Current	Clear Time at 25°C		
100%	4 hrs (min)		
250% (10-20A)	5 s (max)		
350% (25-30A)	5 s (max)		

Table FH2 — Typical Electrical Characteristics, Dimensions and Recommended Pad Layout


1206 (3216mm) High-Current-Rated Chip Fuses



	Typical Electrical Characteristics			Max Interrupt Ratings	
Part Number	Rated Current (A)	Nominal Cold DCR $(\Omega)^*$	Nominal I²t (A²sec)†	Voltage (V _{DC})	Current (A)
1206SFH100F/24	10	0.010	9	24	100
1206SFH120F/24	12	0.008	14	24	100
1206SFH150F/24	15	0.005	26	24	100
1206SFH200F/24	20	0.003	56	24	100
1206SFH250F/24	25	0.0016	187	24	250
1206SFH300F/24	30	0.0012	270	24	300

^{*} Measured at ≤10% of rated current and 25°C ambient temperature.

Figures FH1-FH2 — Family Performance Curves

→ Please go to page 111 for more information about High-Current-Rated Chip Fuses.

[†] Melting I2t at 0.001 sec clear time.

SURFACE-MOUNT FUSES

Slow-Blow Chip Fuses

Available in industry standard 1206 and 0603 chip sizes, TE Circuit Protection's slow-blow chip fuses help provide overcurrent protection on systems that experience large and frequent current surges as part of their normal operation.

The slow-blow chip fuse's monolithic, multilayer design helps provide some of the highest current ratings available in the 1206 and 0603 footprints and enhances high-temperature performance in a wide range of circuit protection designs. The devices' small size, high reliability and strong arc suppression characteristics make them suitable for overcurrent protection of power supplies, capacitor filter banks, Liquid Crystal Display (LCD) backlight inverters, electric motors and portable electronics.

BENEFITS

- Time-delayed design prevents nuisance openings in pulsed and high inrush current applications
- Small size with high-current ratings
- Strong arc suppression characteristics

FEATURES

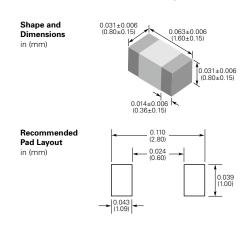
- Lead-free materials and RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- · Monolithic multilayer design
- High-temperature performance
- -55°C to +125°C operating temperature range

APPLICATIONS

- Small motors systems
- Portable electronics
- Input power ports
- Power over Ethernet (PoE)
- Test equipment
- POL converter protection
- Computer drives
- Displays
- Printers

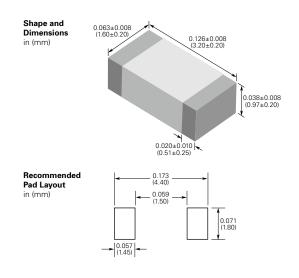
Table FS1 — Clear Time Characteristics

0603SFS Series


% of Rated Current	Clear Time at 25°C		
100%	4 hrs (min)	_	
200%	1 s (min)	120 s (max)	
300%	0.1 s (min)	3 s (max)	
800% (1.0A-1.5A)	0.0005 s (min)	0.05 s (max)	
800% (2.0A-5.0A)	0.001 s (min)	0.05 s (max)	

1206SFS Series

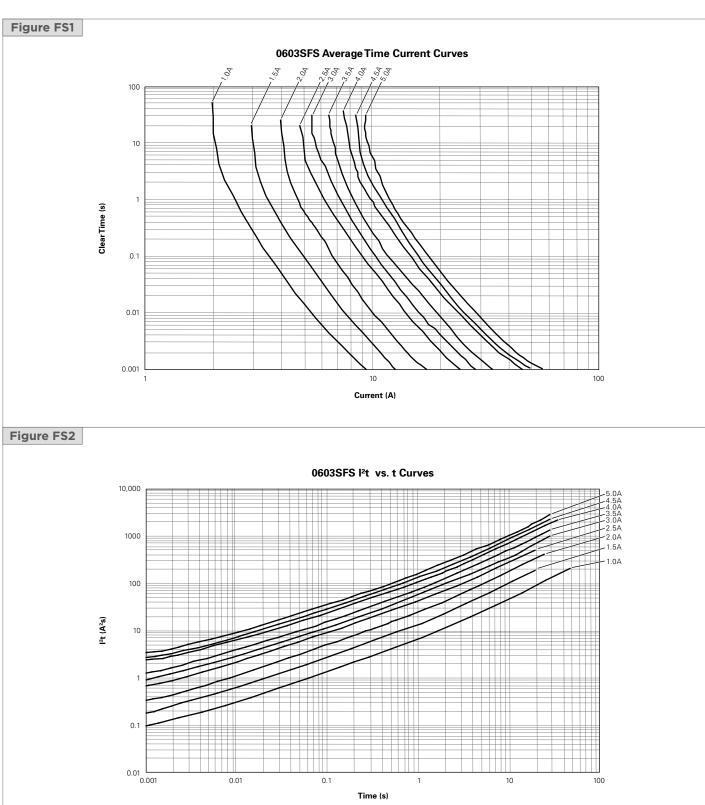
% of Rated Current	Clear Time at 25°C		
100%	4 hrs (min)	_	
200%	1 s (min)	120 s (max)	
300%	0.1 s (min)	3 s (max)	
800% (1.0A-1.5A)	0.0016 s (min)	0.05 s (max)	
800% (2.0A-8.0A)	0.002 s (min)	0.05 s (max)	


Table FS2 — Typical Electrical Characteristics, Dimensions and Recommended Pad Layout

0603 (1608 mm) Slow-Blow Chip Fuses

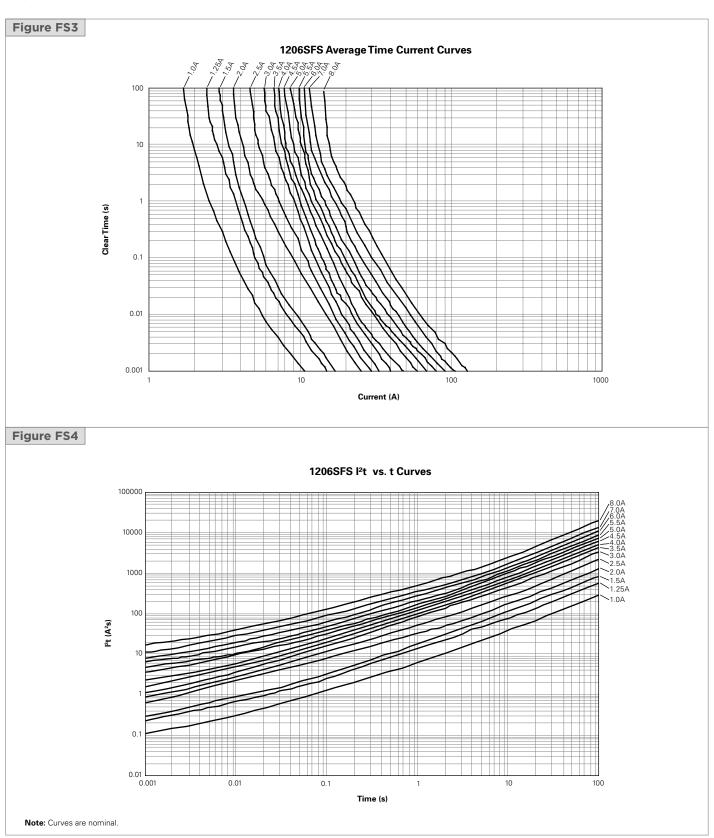
	Typical Electrical Characteristics			Max Interrupt Ratings		
Part Number	Rated Current (A)	Nominal Cold DCR $(\Omega)^*$	Nominal I ² t (A ² sec) [†]	Voltage (V _{DC})	Current (A)	
0603SFS100F/32	1.0	0.200	0.093	32	50	
0603SFS150F/32	1.5	0.100	0.18	32	50	
0603SFS200F/32	2.0	0.052	0.32	32	50	
0603SFS250F/32	2.5	0.041	0.63	32	50	
0603SFS300F/32	3.0	0.031	0.87	32	50	
0603SFS350F/32	3.5	0.021	1.20	32	50	
0603SFS400F/32	4.0	0.017	2.30	32	50	
0603SFS450F/32	4.5	0.015	2.70	32	50	
0603SFS500F/32	5.0	0.013	3.20	32	50	

1206 (3216 mm) Slow-Blow Chip Fuses



	Typical Electrical Characteristics				ax t Ratings
Part Number	Rated Current (A)	Nominal Cold DCR (Ω)*	Nominal I²t (A²sec)†	Voltage (V _{DC})	Current (A)
1206SFS100F/63	1.0	0.360	0.11	63	50
1206SFS125F/63	1.25	0.200	0.22	63	50
1206SFS150F/63	1.5	0.150	0.23	63	50
1206SFS200F/63	2.0	0.088	0.63	63	50
1206SFS250F/32	2.5	0.065	0.90	32	50
1206SFS300F/32	3.0	0.034	1.20	32	50
1206SFS350F/32	3.5	0.028	1.60	32	50
1206SFS400F/32	4.0	0.024	2.20	32	50
1206SFS450F/32	4.5	0.020	3.60	32	50
1206SFS500F/32	5.0	0.016	5.30	32	50
1206SFS550F/24	5.5	0.014	6.40	24	50
1206SFS600F/24	6.0	0.011	8.50	24	60
1206SFS700F/24	7.0	0.010	10.00	24	60
1206SFS800F/24	8.0	0.009	16.90	24	60

^{*} Measured at ≤10% of rated current and 25°C ambient temperature.


[†] Melting I²t at 0.001 sec clear time.

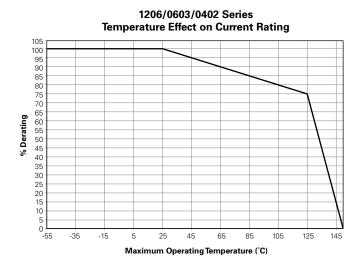
Figures FS1-FS4 — Family Performance Curves

Note: Curves are nominal.

(Cont'd)

→ Please go to page 111 for more information about Slow-Blow Chip Fuses.

SPECIFICATIONS, PACKAGING INFORMATION, AGENCY APPROVALS AND PART NUMBERING SYSTEMS FOR ALL FUSES


Table F1 — Environmental Specifications for All Fuses

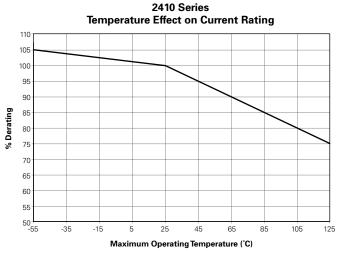
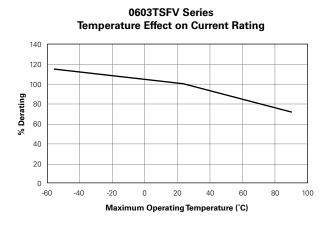
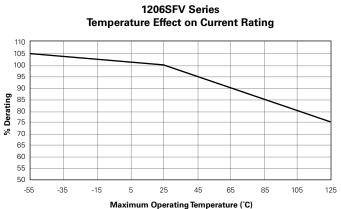

Operating Temperature	-55°C to +125°C (for the 0603TSFV series the Operating Temperature is -55°C to +90°C)
Mechanical Vibration	Withstands 5-3000 Hz at 30Gs when evaluated per Method 204 of MIL-STD-202
Mechanical Shock	Withstands 1500Gs, 0.5 millisecond half-sine pulses when evaluated per Method 213 of MIL-STD-202
Thermal Shock	Withstands 100 cycles from -65°C to +125°C when evaluated per Method 107 of MIL-STD-202
Resistance to Soldering Heat	Withstands 60 seconds at +260°C when evaluated per Method 210 of MIL-STD-202
Solderability	Meets 95% minimum coverage requirement when evaluated per Method 208 of MIL-STD-202
Moisture Resistance	Withstands 10 cycles when evaluated per Method 106 of MIL-STD-202
Salt Spray	Withstands 48-hour exposure when evaluated per Method 101 of MIL-STD-202
Storage Condition	≤35°C/ 75% RH

Table F2 — Material Specifications for All Fuses

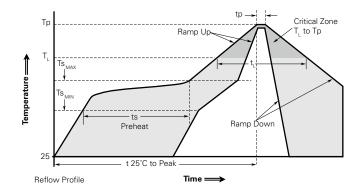
Construction Body Material	Ceramic (1206/0603/0402SFF, 1206/0603SFS, 1206/0603SFP, 1206SFH, 0603SFV)				
	Fiberglass/Epoxy (2410SFV, 1206SFV, 0603TSFV)				
Termination Material	Silver, Nickel, Tin (1206/0603/0402SFF, 1206/0603SFS, 1206/0603SFP, 1206SFH, 0603SFV)				
	Copper, Nickel, Tin(2410SFV, 1206SFV, 0603TSFV)				
Fuse Element	Silver (1206/0603/0402SFF, 1206/0603SFS, 1206/0603SFP, 1206SFH, 0603SFV)				
	Copper/Copper Alloy (2410SFV, 1206SFV)				
	Copper/Tin Alloy (0603TSFV)				


Figure F1 — Thermal Derating Current for All Fuse



Figures F1 — Thermal Derating Current for All Fuse

(Cont'd)

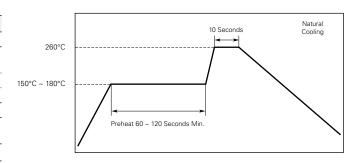

Table F3 — Electrical Specifications for All Fuses

Insulation Resistance after Opening	$20,000\Omega$ minimum @ rated voltage. Fuse clearing under low-voltage conditions may result in lower post- clearing insulation values. Under normal fault conditions TE Circuit Protection fuses help provide sufficient insulation resistance for circuit protection. Notes: for 1206 SFV series, the minimum DCR is $10,000\Omega$; for 0603 TSFV, the minimum DCR is 100Ω .
Current Carrying Capacity	Withstands 100% rated current at +25°C ambient for 4 hours when evaluated per MIL-PRF-23419.

Table F4 — Packaging Information for All Fuses

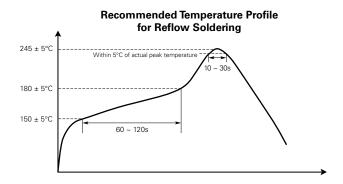
	Reel Quantity			Carrier		Reels per Outside	Outside Shipment
Size	(pcs)	Reel Diameter	Reel Width	Tape Size	Tape Type	Shipment Box	Boxes per Overpack
0402 (1005)	10,000	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Paper	5	1 to 10
0603 (1608)	4,000	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Paper	5	1 to 10
0603SFV (1608)	6,000	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Paper	5	1 to 10
0603TSFV (1608)	8,000	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Paper	5	1 to 10
1206 (3216)	3,000	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Plastic	5	1 to 10
1206SFV (3216)	3,500	178mm white plastic	9.0 ± 0.5mm	8.00 ± 0.10mm	Plastic	5	1 to 10
2410SFV (6125)	2,000	178mm white plastic	13.4 ± 0.5mm	12.00 ± 0.10mm	Plastic	4	1 to 10

Figure F2 — Recommended Soldering Temperature Profile for All Fuses



Classification Reflow Profile

Profile Feature	1206/0603/0402	2410	
Average Ramp Up Rate (Ts _{MAX} to Tp)	3°C/second max	3°C/second max	
Preheat			
• Temperature min (Ts _{MIN})	150°C	150°C	
• Temperature max (Ts _{MAX})	200°C	200°C	
• Time (ts _{MIN} to ts _{MAX})	60-180 seconds	40-100 seconds	
Time Maintained Above:			
• Temperature (T _L)	217°C	200°C	
• Time (t _L)	60-150 seconds	30-90 seconds	
Peak/Classification Temperature (Tp)	260°C max	250°C max	
Time Within 5°C of Actual Peak Temperature			
Time (tp)	20-40 seconds	30-40 seconds	
From 25°C to Preheating (150°C)	8 minutes max	40-100 seconds	
Ramp Down Rate	4°C/seconds max	Natural Cooling	

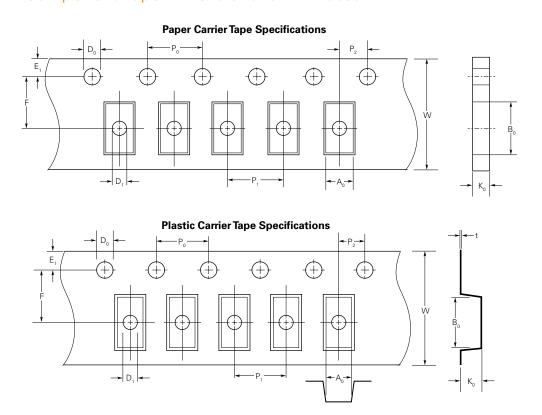

Classification Reflow Profile

Profile Feature	0603TSFV
Average Ramp Up Rate	3°C/second max
Preheat	
• Temperature min	150°C
Temperature max	180°C
• Time	60 -120 seconds
Peak/Classification temperature (Tp)	260°C Max
Time of actual peak temperature	
Time	10 seconds
Ramp down rate	Natural Cooling

Classification Reflow Profile

Profile Feature	1206SFV
Average Ramp Up Rate	3°C/second max
Preheat	
Temperature min	150°C
Temperature max	180°C
• Time	60-120 seconds
Peak/Classification temperature (Tp)	245°C Max
Time within 5°C of actual peak temperature	
Time	10-30 seconds
Ramp down rate	Natural Cooling

Recommended Conditions for Hand Soldering:


- 1. Using a hot air rework station that can reflow the solder on both terminations at the same time is strongly recommended; do not directly contact the chip termination with the tip of soldering iron.
- 2. Preheating: 150°C, 60s (min) Appropriate temperature (max) of soldering iron tip/soldering time (max): 280°C /10s or 350°C /3s.

RoHS Compliant, ELV Compliant

Table F4 — Packaging Information for All Fuses

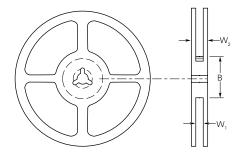
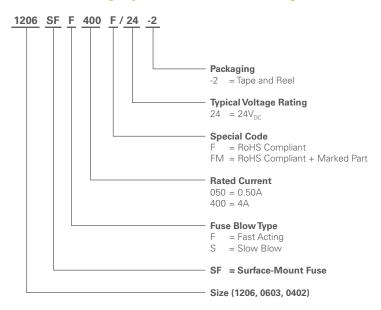

			Dimension in in (n	nm)		
Mark	0402 (1005)	0603 (1608)	1206 (3216)	0603SFV(1608)	2410SFV(6125)	1206SFV (3216)
E ₁	0.069 ± 0.004	0.069 ± 0.004	0.069 ± 0.004	0.069 ± 0.004	0.069 ± 0.004	0.069±0.004
	(1.75 ± 0.10)	(1.75 ± 0.10)	(1.75 ± 0.10)	(1.75 ± 0.10)	(1.75 ± 0.10)	(1.75 ± 0.10)
F	0.138 ± 0.002	0.138 ± 0.002	0.138 ± 0.002	0.138 ± 0.002	0.217 ± 0.004	0.138 ± 0.002
	(3.50 ± 0.05)	(3.50 ± 0.05)	(3.50 ± 0.05)	(3.50 ± 0.05)	(5.50 ± 0.10)	(3.50 ± 0.05)
W	0.315 ± 0.004	0.315 ± 0.004	0.315 ± 0.004	0.315 ± 0.004	0.472 ± 0.004	0.315 ± 0.004
	(8.00 ± 0.10)	(8.00 ± 0.10)	(8.00 ± 0.10)	(8.00 ± 0.10)	(12.00 ± 0.10)	(8.00 ± 0.10)
P ₁	0.079 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004
	(2.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)
P ₀	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.157 ± 0.004
	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)	(4.00 ± 0.10)
P ₂	0.079 ± 0.002	0.079 ± 0.002	0.079 ± 0.002	0.079 ± 0.002	0.079 ± 0.004	0.079 ± 0.002
	(2.00 ± 0.05)	(2.00 ± 0.05)	(2.00 ± 0.05)	(2.00 ± 0.05)	(2.00 ± 0.10)	(2.00 ± 0.05)
D_0	0.059 ± 0.004	0.059 ± 0.004	0.059 ± 0.004	0.059 ± 0.004	0.059 ± 0.004	0.059+0.004/-0.00
	(1.50+0.10/-0.00)	(1.50+0.10/-0.00)	(1.50+0.10/-0.00)	(1.50+0.10/-0.00)	(1.50+0.10/-0.00)	1.50+0.10/-0.00
D_1	_	_	0.039 max	_	0.61 ± 0.004	0.039 ± 0.002
			(1.00 max)		(1.55 ± 0.10)	1.00 ± 0.05
t	_	_	0.009 ± 0.001	_	0.010 ± 0.002	0.009 ± 0.002
			(0.23 ± 0.02)		(0.25 ± 0.05)	0.22±0.05
A ₀	0.026 ± 0.004	0.039 ± 0.004	0.071 ± 0.004	0.039 ± 0.004	0.112 ± 0.004	0.081±0.004
	(0.67 ± 0.10)	(0.98 ± 0.10)	(1.80 ± 0.10)	(0.98 ± 0.10)	(2.85 ± 0.10)	(2.05 ± 0.10)
B ₀	0.046 ± 0.004	0.071 ± 0.004	0.138 ± 0.004	0.071 ± 0.004	0.252 ± 0.004	0.138 ± 0.004
	(1.17 ± 0.10)	(1.80 ± 0.10)	(3.50 ± 0.10)	(1.80 ± 0.10)	(6.40 ± 0.10)	(3.50 ± 0.10)
K ₀	0.025 ± 0.004	0.037 ± 0.003	0.050 ± 0.004	0.024 ± 0.003	0.093 ± 0.004	0.051 ± 0.004
	(0.63 ± 0.10)	(0.95 ± 0.08)	(1.27 ± 0.10)	(0.60 ± 0.08)	(2.35 ± 0.10)	(1.30 ± 0.10)

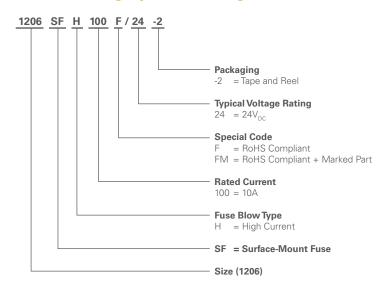
Figure F3 — Component Tape Dimensions for All Fuses

Figure F4 — Reel Dimensions for All Fuses

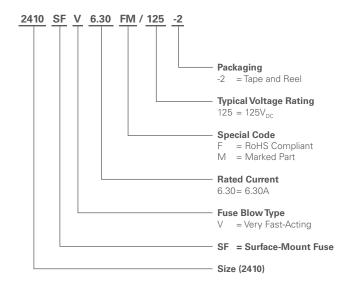
Dimension			
Description	Mark	1206/0603/0402	2410
Hub Outer Diameter	В	60	60.2
Reel Inside Width	W ₁	9	13.4
Reel Outside Width	W ₂	11.4	16
Tape Width		8	

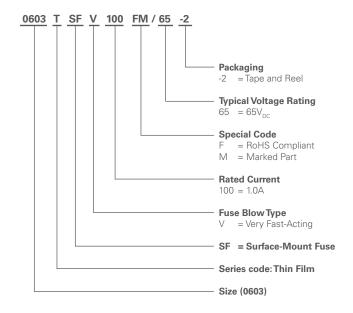

Agency Approvals for All Fuses

UL: All fuses


CQC: File # 12012078873 (for 2410SFV 0.5A, 1A, 2A)

TUV: File # 50236400 (for 2410SFV 0.5A, 0.63A, 1A, 1.25A, 2A)


Part Numbering System for Fast-Acting, Slow-Blow And 0603 Very Fast-Acting Chip Fuses


Part Numbering System for High-Current-Rated Chip Fuses

Part Numbering System for 1206/2410 Very Fast-Acting Fuses

Part Numbering System for 0603 Thin Film Very Fast-Acting Chip Fuses

Notice:

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability and test each product selected for their own applications. Tyco Electronics Corporation and its affiliates in the TE Connectivity Ltd. group of companies ("TE") reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product. This publication supersedes and replaces all information previously supplied. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

POLYSWITCH RESETTABLE DEVICES

Fundamentals

Overview

PolySwitch polymeric positive temperature coefficient (PPTC) devices help protect against damage caused by harmful overcurrent surges and overtemperature faults. Like traditional fuses, these devices limit the flow of dangerously high current during fault conditions. The PolySwitch device, however, resets after the fault is cleared and power to the circuit is removed, thereby helping to reduce warranty, service and repair costs.

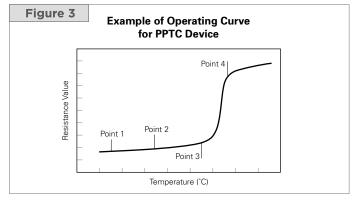
PolySwitch circuit protection devices are made from a composite of semi-crystalline polymer and conductive particles. At normal temperature, the conductive particles form low-resistance networks in the polymer (Figure 1.a). However, if the temperature rises, either from high current through the part or from an increase in the ambient temperature, the crystallites in the polymer melt and become amorphous. The increase in volume during melting of the crystalline phase separates the conductive particles, resulting in a large non-linear increase in the resistance of the device.

Figure 1 How a PolySwitch Device Works Figure 1.a Figure 1.b **Normal Condition** Trip Condition Temperature rises during short circuit condition Temperature drops after circuit resets Polymer has a Polymer expands due crystalline structure. to I²R heating. Conductive path is made of Conductive path breaks down carbon black materials due to polymer expansion

Overcurrent Protection Using a PPTC Device

The PPTC device is a series element in a circuit. The PPTC device helps protect the circuit by going from a low-resistance to a high-resistance state in response to an overcurrent condition, as shown in Figure 2. This is referred to as "tripping" the device.

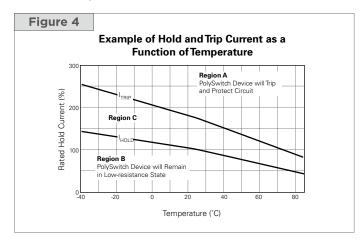
In normal operation the device has a resistance that is much lower than that of the circuit. In response to an overcurrent condition, the device increases in resistance (trips), reducing the current in the circuit to a value that can be safely carried by any of the circuit elements. This change is the result of a rapid increase in the temperature of the device caused by I²R heating.


Typical PPTC Application I Rs Rs RL

Principles of Operation

PolySwitch PPTC device's operation is based on an overall energy balance, as shown in Figure 3. Under normal operating conditions, the heat generated by the device and the heat lost by the device to the environment are in balance at a relatively low temperature, as shown between Points 1 and 2.

If the current through the device is increased while the ambient temperature is kept constant, the temperature of the device increases. Further increases in either current, ambient temperature, or both, will cause the device to reach a temperature where the resistance rapidly increases, as shown in Point 3.


Any further increase in current or ambient temperature will cause the device to generate heat at a rate greater than the rate at which heat can be dissipated, thus causing the device to heat

up rapidly. At this stage, a very large increase in resistance occurs for a very small change in temperature, between Points 3 and 4. This is the normal operating region for a device in the tripped state. This large change in resistance causes a corresponding decrease in the current flowing to the circuit. This relation holds until the device resistance reaches the upper knee of the curve (Point 4). As long as the applied voltage remains at this level, the device will remain in the tripped state (that is, the device will remain latched in its protective state). Once the voltage decreases, the power is removed and the device cools, the device will reset.

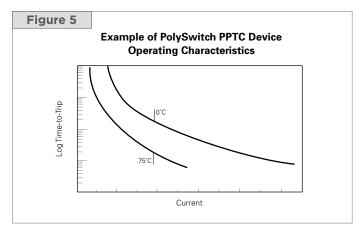
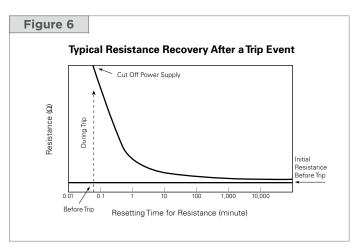

Example of Hold and Trip Current as a Function of Temperature

Figure 4 illustrates the hold- and trip-current behavior of a PolySwitch PPTC device as a function of temperature. One such curve can be defined for each available device. Region A describes the combinations of current and temperature at which the PolySwitch device will trip (go into the high-resistance state) and protect the circuit. Region B describes the combinations of current and temperature at which the PolySwitch device will allow for normal operation of the circuit. In Region C, it is possible for the device to either trip or remain in the low-resistance state (depending on individual device resistance).

Operating Characteristics of a PolySwitch PPTC Device


Figure 5 shows a typical pair of operating curves for a PolySwitch device in still air at 0°C and 75°C. The curves are different because the heat required to trip the device comes both from electrical I2R heating and from the device environment. At 75°C the heat input from the environment is substantially greater than it is at 0°C, so the additional I2R needed to trip the device is correspondingly less. This results in a lower trip current at a given trip time (or a faster trip at given trip current).

Typical Resistance Recovery After a Trip Event

Figure 6 shows typical behavior of a PolySwitch device that is tripped and then allowed to cool. This figure illustrates how, even after a number of hours, the device resistance is still greater than the initial resistance. Over an extended period of time, device resistance will continue to fall and will eventually approach initial resistance.

However, since this time can be measured in days, months, or years, it is not practical to expect that the device resistance will reach the original value for operational purposes. Therefore, when PolySwitch devices are chosen, R_{1MAX} should be taken into consideration when determining hold current. R_{1MAX} is the resistance of the device one hour after the thermal event.

POLYSWITCH RESETTABLE DEVICES

Product Selection Guide

Table 1 — PolySwitch Device Characteristics

PolySwitch Device Family	V _{MAX} Operating (V _{DC})	V _{MAX} Interrupt (V _{RMS})	I _H	Temp. Range	Form Factor	Agency Spec.	Application
LVR	120V/240V	135V/265V	0.05 to 2A	-20 to 85°C	Radial-leaded	UL, CSA, TÜV	Line Voltage
LVB	240V	265V	1.25A	-40 to 85°C	Radial-leaded	UL	Line Voltage
RGEF	16V	_	2.5 to 14.0A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV	General Electronics
RHEF	16 to 30V	_	0.5 to 15A	-40 to 125°C	Radial-leaded	UL, CSA, TÜV	General Electronics
RUEF	30V	_	0.9 to 9.0A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV, CQC	General Electronics
RKEF	60V	_	0.50 to 5A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV	General Electronics
RXEF	60 to 72V	_	0.05 to 3.75A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV, CQC	General Electronics
RUSBF	6 to 16V	_	0.75 to 2.5A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV	Computer/General Electronics
femtoSMDC	6 to 15V	_	0.05 to 0.35A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
High Temperature SMD	6 to 30V	_	0.10 to 0.75A	-40 to 125°C	Surface-mount	_	Computer/General Electronics
microSMD	6 to 30V	_	0.05 to 2.0A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
midSMD	6 to 60V	_	0.3 to 2.0A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
miniSMDC	6 to 60V	_	0.10 to 3A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
nanoSMDC	6 to 60V	_	0.10 to 2.0A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
picoSMDC	6 to 15V	_	0.10 to 1.1A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
SMD	6 to 60V	_	0.3 to 3.0A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
SMD2	15 to 33V	_	1.5 to 2.5A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
SMDC	18 to 33V	_	1.25 to 3.1A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Computer/General Electronics
BD	16V	_	8 to 21A	-40 to 125°C	Plug-in	_	Automotive
AGRF	16V	_	4.0 to 14.0A	-40 to 85°C	Radial-leaded	_	Automotive
AHRF	16 to 30V	_	0.50 to 15A	-40 to 125°C	Radial-leaded	_	Automotive
AHS	16V	_	0.80 to 3.0A	-40 to 125°C	Surface-mount	_	Automotive
ASMD	16 to 60V	_	0.23 to 1.97A	-40 to 85°C	Surface-mount	_	Automotive
AHEF	32V	_	0.50 to 10A	-40 to 125°C	Radial-leaded	_	Automotive
nanoASMDC	16 to 48V	_	0.12 to 0.35A	-40 to 85°C	Surface-mount	_	Automotive
microASMD	30V	_	0.05 to 0.1A	-40 to 85°C	Surface-mount	_	Automotive
miniASMDC	16 to 60V	_	0.1 to 2.6A	-40 to 85°C	Surface-mount	_	Automotive
TCF	60V	250V	0.09 to 0.18A	-40 to 85°C	Chip	_	Telecom & Networking
TRF250	60 to 100V	250V	0.055 to 0.184A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV	Telecom & Networking
TRF600	60 to 250V	600V	0.15 to 0.40A	-40 to 85°C	Radial-leaded	UL, CSA, TÜV	Telecom & Networking
TS250/TSV250	60V	250V	0.13 to 0.184A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Telecom & Networking
TSL250	80V	250V	0.08A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Telecom & Networking
TS600/TSM600	60 to 250V	600V	0.17 to 0.40A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Telecom & Networking
MXP	6V	_	1.9 to 3.7A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
MGP	6V	_	4.5 to 5.0A	-40 to 85°C	Axial-leaded	UL, TÜV	Battery
LR4	15 to 20V	_	1.9 to 13.0A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
SRP	15 to 30V	_	1.2 to 4.2A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
VLP	16V	_	1.2 to 2.7A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
VLR	12V	_	1.7 to 2.3A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
VTP	16V	_	1.1 to 2.1A	-40 to 85°C	Axial-leaded	UL, CSA, TÜV	Battery
low resistivity SMD	6V	_	1.75 to 5.0A	-40 to 85°C	Surface-mount	UL, CSA, TÜV	Battery

Table 2 — Thermal Derating PPTC

PolySwitch Device Family	-40°C	-20°C	0°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	85°C	125°C
LVR005-055	_	1.48	1.24	1.00	0.99	0.93	0.82	0.72	0.60	0.51	0.35	
LVR075-200	_	1.69	1.34	1.00	0.99	0.95	0.88	0.80	0.73	0.66	0.55	_
LVB	1.67	1.45	1.22	1.00	0.98	0.88	0.79	0.69	0.59	0.48	0.33	_
RGEF	1.47	1.33	1.20	1.04	1.00	0.95	0.87	0.80	0.71	0.63	0.47	_
RHEF	1.36	1.25	1.15	1.03	1.00	0.96	0.88	0.81	0.75	0.67	0.55	0.25
RUEF	1.48	1.32	1.16	1.00	0.96	0.92	0.84	0.76	0.68	0.60	0.48	_
RKEF	1.45	1.30	1.15	1.00	0.97	0.92	0.83	0.77	0.68	0.61	0.52	_
RXEF	1.56	1.37	1.19	1.00	0.95	0.91	0.82	0.72	0.63	0.54	0.40	_
RUSBF	1.41	1.27	1.14	1.00	0.97	0.93	0.87	0.80	0.73	0.66	0.56	_
femtoSMDC	1.59	1.39	1.18	1.05	1.00	0.86	0.78	0.66	0.61	0.47	0.41	_
High Temperature SMD	0.18	0.16	0.15	0.11	0.10	0.09	0.08	0.07	0.07	0.06	0.06	0.03
microSMD	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
midSMD	1.41	1.27	1.14	1.00	0.97	0.93	0.87	0.80	0.73	0.66	0.56	_
miniSMDC	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
nanoSMDC	1.56	1.39	1.15	1.04	1.00	0.96	0.87	0.79	0.70	0.61	0.49	_
picoSMDC	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
SMD	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
SMDC	2.02	1.78	1.55	1.31	1.25	1.08	0.96	0.84	0.72	0.60	0.54	_
BD	1.50	1.35	1.19	1.04	1.00	0.96	0.88	0.81	0.73	0.65	0.54	0.23
AGRF	1.47	1.33	1.20	1.04	1.00	0.95	0.87	0.80	0.71	0.63	0.47	_
AHRF	1.36	1.25	1.15	1.03	1.00	0.96	0.88	0.81	0.75	0.67	0.55	0.25
AHS	1.41	1.28	1.16	1.03	1.00	0.97	0.91	0.84	0.78	0.72	0.62	0.37
ASMD	1.59	1.41	1.23	1.05	1.00	0.95	0.86	0.77	0.68	0.59	0.45	_
AHEF	1.36	1.25	1.14	1.03	1.00	0.96	0.89	0.81	0.74	0.66	0.55	0.20
nanoASMDC	1.56	1.39	1.15	1.04	1.00	0.96	0.87	0.79	0.70	0.61	0.49	_
microASMD	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
miniASMDC	1.45	1.30	1.15	1.00	0.96	0.93	0.85	0.78	0.70	0.63	0.51	_
TCF	1.54	1.36	1.18	1.00	0.96	0.91	0.82	0.73	0.64	0.55	0.42	_
TRF	1.54	1.36	1.18	1.00	0.96	0.91	0.82	0.73	0.64	0.55	0.42	_
TS	1.54	1.36	1.18	1.00	0.96	0.91	0.82	0.73	0.64	0.55	0.42	_
MXP	1.99	1.68	1.37	1.07	1.00	0.91	0.76	0.61	0.45	0.30	0.07	
MGP	1.90	1.65	1.35	1.08	1.00	0.93	0.80	0.65	0.50	0.35	0.13	
LR4	1.41	1.27	1.14	1.00	0.97	0.93	0.87	0.80	0.73	0.66	0.56	
SRP	1.47	1.31	1.16	1.00	0.96	0.92	0.85	0.77	0.69	0.61	0.50	_
VLP	1.88	1.67	1.43	1.05	1.00	0.95	0.76	0.62	0.48	0.33	0.04	_
VLR	2.05	1.70	1.41	1.08	1.00	0.92	0.74	0.59	0.41	0.18	_	
VTP	1.88	1.67	1.43	1.05	1.00	0.95	0.76	0.62	0.48	0.33	0.04	
low resistivity SMD	5.80	5.20	4.60	4.00	3.90	3.40	3.10	2.82	2.52	2.23	2.10	

PolySwitch Resettable Devices Product Selection Guide

PolySwitch Device Selection Guide

Step 1. Determine your circuit's parameters

You will need to determine the following parameters of your circuit:

- Maximum ambient operating temperature
- Normal operating current
- Maximum operating voltage
- Maximum interrupt current

Step 2. Select a PolySwitch device that will accommodate the circuit's maximum ambient temperature and normal operating current

Use the Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] table on page 112 and choose the column with the temperature that most closely matches the circuit's maximum ambient temperature. Look down that column to find the value equal to or greater than the circuit's normal operating current. Now look to the far left of that row to find the part number that will best accommodate that current.

Step 3. Compare the selected device's maximum electrical ratings with the circuit's maximum operating voltage and interrupt current

Use the Electrical Characteristics table on page 111 to verify that the part you selected in Step 2 will handle your circuit's maximum operating voltage and interrupt current. Find the device's maximum operating voltage (V_{MAX}) and maximum interrupt current (I_{MAX}). Ensure that V_{MAX} and I_{MAX} are greater than or equal to the circuit's maximum operating voltage and maximum fault current.

Step 4. Determine time-to-trip

Time-to-trip is the amount of time it takes for a device to switch to a high-resistance state once a fault current has been applied through the device. Identifying the PolySwitch device's time-to-trip is important in order to provide the desired protection capabilities. If the chosen device trips too fast, undesired or nuisance tripping may occur. If the device trips too slowly, the components being protected may be damaged before the device can trip and limit the current.

Use the Typical Time-to-trip Curves at 20°C on page 110 Figure 5 to determine if the PolySwitch device's time-to-trip characteristics are acceptable at expected fault levels. If not, go back to Step 2 and choose an alternate device.

Step 5. Verify ambient operating temperature

Ensure that your application's minimum and maximum ambient temperatures are within the operating temperature of the PolySwitch device. Most PolySwitch devices have an operating temperature range from -40°C to 85°C with some exceptions to 125°C.

Step 6. Verify the PolySwitch device dimensions

Use the Dimensions table on pages 122-125 to compare the dimensions of the PolySwitch device you selected with the application's space considerations.

Definitio	ns of terms
I _H	the maximum steady state current at 20°C that can be passed through a PolySwitch device without causing the device to trip
I _T	the minimum current that will cause the PolySwitch device to trip at 20°C
V _{MAX}	the maximum voltage that can safely be dropped across a PolySwitch device in its tripped state also called: Maximum Device Voltage, Maximum Voltage, Vmax, Max Interrupt Voltage
I _{MAX}	the maximum fault current that can safely be used to trip a PolySwitch device
P _D	the power (in Watts) dissipated by a PolySwitch device in its tripped state
R _{MAX}	the maximum resistance prior to the trip of a PolySwitch device
R _{MIN}	the minimum resistance prior to the trip of a PolySwitch device
R _{1MAX}	the maximum resistance of a PolySwitch device at 20°C 1 hour after being tripped and reset or after reflow soldering
R _{Tripped Typ}	the typical resistance of a PolySwitch device 1 hour after the initial trip and reset

POLYSWITCH RESETTABLE DEVICES

Surface-Mount Devices

PolySwitch surface-mount devices are an effective circuit protection method for computer, consumer, multimedia, portable and automotive electronics applications.

In an affort to reduce the size and cost of surface-mount devices, TE Circuit Protection introduced the miniSMD product series in 1995. Subsequently, we developed the microSMD, nanoSMD, picoSMD and femtoSMD family of products. The femtoSMD series reduced the device size to a 1608mm (0603 mils) footprint, which is one-twelfth the size of the popular miniSMD series.

Recent additions to the PolySwitch surface-mount series include 1.1A picoSMD 1210mm (0805 mils) and 0.35A femtoSMD 1608mm (0603 mils) devices.

BENEFITS

- Smaller size helps save board space and cost
- Many product choices optimizes design flexibility
- Compatible with high-volume electronics assembly
- · Assists in meeting regulatory requirements
- Higher voltage ratings allow use in new applications

FEATURES

- RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Broadest range of resettable devices available in the industry
- Current ratings from 0.05 to 3.1A
- Voltage ratings from 6V computer and electronic applications to 60V telecom applications
- Agency recognition: UL, CSA, TÜV
- Small footprint
- Fast time-to-trip
- · Low resistance

APPLICATIONS

- Computer
- Portable electronics
- Multimedia
- · Game machines
- · Telephony and broadband
- Mobile phones
- Automotive
- · Industrial controls
- Battery

PolySwitch Resettable Devices Surface-Mount Devices

Application Selection Table

- The table below lists PolySwitch surface-mount devices recommended for use in typical applications
- Specifications for the suggested PolySwitch surface-mount device part numbers can be found in this table
- Once a part has been selected, the user should evaluate and test each product for the intended application

			PolySwitch Resettable	Devices - Key Selection Cr	iteria
Protection Application	Additional Comments	Overcurrent Overvoltage	Small Size	Low Resistance	Fast Time-to-trip (Temperature Protection)
AC Adapter Input Power	Use w/ Zener & Triac		SMD250F	SMD250F	SMD200F
Battery Pack Protection			nanoSMDC150F	miniSMDC260F	miniSMDE200F/16
Charger Protection			nanoSMDC050F	miniSMDC110F/16	nanoSMDC075F
CPU/IC Protection			nanoSMDC110F	nanoSMDC150F	nanoSMDC075F
Data Acquisition/Sensor			microSMD005F	_	microSMD005F
DC Input/Output Power	≤6V		nanoSMDC075F	nanoSMDC150F	nanoSMDC050F/13.2
	≤12V		miniSMDC075F	miniSMDC110F/16	miniSMDC075F
DDC			nanoSMDC075F	nanoSMDC110F	nanoSMDC050F/13.2
Device Bay System	DB12, DB20		miniSMDC200F	miniSMDC260F	miniSMDC200F
	DB32		miniSMDC260F	SMD300F	miniSMDC200F
Ethernet/LAN			nanoSMDC050F/13.2	miniSMDC110F/16	nanoSMDC075F
Fan			microSMD035F	microSMD050F	microSMD035F
HDMI			picoSMDC035S	picoSMDC035S	picoSMDC035S
IEEE 802.3af	VoIP		decaSMDC050F/60	decaSMDC050F/60	decaSMDC050F/60
IEEE-1394	Power Provider		SMD100F/33	SMD185F	SMD100F/33
	Alt. Power Provider		SMD185F	SMD185F	SMD150F/33
	Self-Powered		SMD185F	SMD185F	SMD150F/33
LCD Inverter			nanoSMDC050F/13.2	miniSMDC110F/16	nanoSMDC075F
LCD Screen Power			nanoSMDC050F/13.2	nanoSMDC050F/13.2	microSMD035F
LNB (Low Noise Block)			SMD075F	SMD075F	SMD050F
Motor	≤6V		nanoSMDC110F	nanoSMDC150F	microSMD075F
	≤13.2V		miniSMDC075F	miniSMDC110F/16	miniSMDC075F
PS/2 Mouse/Keyboard			nanoSMDC075F	nanoSMDC110F	nanoSMDC050F/13.2
Signal - Data Communication	≤6V		nanoSMDC075F	nanoSMDC075F	nanoSMDC075F
	≤13.2V		miniSMDC050F	miniSMDC075F	miniSMDC020F
	≤30V		SMD030F-2018	SMD075F	SMD050F
SCSI			nanoSMDC110F	nanoSMDC150F	nanoSMDC075F
SIM/Smart Card Reader			femtoSMDC010F	femtoSMDC010F	femtoSMDC005F
Telecom - Modem	Digital Line	OC	miniSMDC014F	miniSMDC014F	miniSMDC014F
Telecom - PBX	Subscriber	ОС	miniSMDC014F	miniSMDC014F	miniSMDC014F
Temperature Sensor	CPU		nanoSMDC050F/13.2	nanoSMDC075F	nanoSMDC050F/13.2
USB	Individual Port		nanoSMDC075F	nanoSMDC110F	nanoSMDC050F/13.2
	2 Port Ganged		nanoSMDC150F	miniSMDC150F	miniSMDC125F
	3 Port Ganged		miniSMDC200F	miniSMDC200F	miniSMDC200F

Note: This list is not exhaustive. TE Circuit Protection welcomes our customers' input for additional application ideas for PolySwitch resettable devices.

Table S1 — Product Series: Size, Current Rating, Voltage Rating/Maximum Resistance

	femtoSMD	picoSMD	nanoSMD	microSMD	miniSMD	midSMD
Size mm	1608	2012	3216	3225	4532	5050
mils)	(0603)	(0805)	(1206)	(1210)	(1812)	(2018)
Hold Current (A)				-	
0.050	15V _{DC} /30.00Ω	_	_	30V _{DC} /50Ω	_	_
0.080	12V _{DC} /14.00Ω	_	_	_	_	_
0.100	12V _{DC} /8.00Ω	15V _{DC} /11.00Ω	60V _{DC} /15.00Ω	30V _{DC} /15Ω	60V _{DC} /12.70Ω	_
	_	_	_	_	_	_
0.120	9V _{DC} /5.80Ω	15V _{DC} /9.00Ω	48V _{DC} /6.50Ω	_	_	_
0.140	_	_	_	_	60V _{DC} /6.00Ω	_
0.160	9V _{DC} /4.20Ω	_	48V _{DC} /5.00Ω	_	_	_
0.200	9V _{DC} /3.00Ω	9V _{DC} /3.20Ω	24V _{DC} /3.10Ω	_	30V _{DC} /3.30Ω	_
D.250	_	_	16V _{DC} /2.10Ω		_	
0.300					30V _{DC} /1.75Ω	60V _{DC} /2.30Ω
0.350	6V _{DC} /1.00Ω	6V _{DC} /1.40Ω	16V _{DC} /1.35Ω	6V _{DC} /1.30Ω	_	_
0.500		6V _{DC} /0.80Ω	13.2V _{DC} /0.75Ω	13.2V _{DC} /0.90Ω	24V _{DC} /1.00Ω	_
0.750		6V _{DC} /0.35Ω*	6V _{DC} /0.30Ω	6V _{DC} /0.40Ω	13.2V _{DC} /0.45Ω	_
	_	_		_	24V _{DC} /0.29Ω	_
	_	_	_	_	33V _{DC} /0.39Ω	_
1.000						15V _{DC} /0.40Ω
1.000	_	_	_	_	_	
1.100						
1.100	_	0 V DC/ 0. 17 S2	0 V DC/ 0.20\$2	0 V DC/ 0.2 1 S2		_
	_	_	_	_	16V _{DC} /0.18Ω	_
1 000	<u> </u>		<u> </u>		24V _{DC} /0.18Ω	
1.200						
1.250	_	_	_	_	6V _{DC} /0.14Ω	_
					16V _{DC} /0.14Ω	
1.500	_	_	6V _{DC} /0.11Ω	6V _{DC} /0.11Ω	6V _{DC} /0.11Ω	$15V_{DC}/0.18\Omega$
	_	_	_	_	12V _{DC} /0.11Ω	_
	_	_	_	_	16V _{DC} /0.11Ω	_
	_		_		24V _{DC} /0.12Ω	_
1.600	_				9V _{DC} /0.10Ω	
1.750	_		_	6V _{DC} /0.08Ω		_
1.850	_	_	_	_	_	_
2.000	_	_	$6V_{DC}/0.072\Omega$	$6V_{DC}/0.06\Omega$	$8V_{DC}/0.07\Omega$	$6V_{DC}/0.10\Omega$
	_	_	_	_	$16V_{DC}/0.085\Omega$	_
2.500	_	_	_		_	_
2.600	_	_	_	_	$6V_{DC}/0.043\Omega$	_
	_	_	_	_	$12V_{DC}/0.047\Omega$	_
	_	_	_	_	$13.2V_{DC}/0.050\Omega$	_
	_	_	_	_	$16V_{DC}/0.050\Omega$	_
3.000	_	_	_	_	6V _{DC} /0.036Ω	_
	_	_	_	_	_	_
3.100	_	_	_	_	_	_

Table S1 — Product Series: Size, Current Rating, Voltage Rating/Maximum Resistance (Cont'd)

	SMDC	SMD	SMD2	decaSMD	High Temperature SMD
Size mm	7555	7555	8763	5050	3216 & 3225
(mils)	(2920)	(2920)	(3425)	(2018)	(1206) & (1210)
Hold Current (A))				
0.050	_	_	_	_	_
0.080	_	_	_	_	_
0.100	_	_	_	_	30V _{DC} /10.0Ω
	_	_	_	_	30V _{DC} /11.0Ω
0.120	_	_	_	_	_
0.140	_	_	_	_	_
0.160	_	_	_	_	_
0.200	_	_	_	_	_
0.250	_	_	_	_	_
0.300	_	60V _{DC} /4.80Ω	_	_	_
0.350	_	_	_	_	_
0.500	_	60V _{DC} /1.40Ω	_	60V _{DC} /1.10Ω	6V _{DC} /0.90Ω
0.750	_	30V _{DC} /1.00Ω	_	_	6V _{DC} /0.36Ω
	_	60V _{DC} /1.00Ω	_	_	_
	_	_	_	_	_
1.000	_	30V _{DC} /0.48Ω	_	_	_
	_	33V _{DC} /0.41Ω	_	_	_
1.100	_	_	_	_	_
	_	_	_	_	_
	_	_	_	_	_
1.200		16V _{DC} /0.34Ω	_	_	_
1.250	33V _{DC} /0.25Ω	15V _{DC} /0.25Ω	_		_
200	—	—	_	_	_
1.500		33V _{DO} /0.23Ω	15V _{DC} /0.25Ω		
1.500	_	—	33V _{DC} /0.23Ω	_	_
	_	_		_	_
	_	_	_	_	_
1.600			16V _{DC} /0.15Ω		
1.750	_			_	
1.850	33V _{DC} /0.15Ω		33V _{DC} /0.165Ω		
2.000		24V _{DC} /0.125Ω	15V _{DC} /0.125Ω		
2.000	_	—	—	_	_
2.500			15V _{DC} /0.85Ω		
2.600		6V _{DC} /0.075Ω	13 v DC/ 0.03 \$2		
2.000	_		_	_	_
	_	_	_	_	_
	_	_	_	_	_
2.000		-	_	_	_
3.000	$24V_{DC}/0.072\Omega$	6V _{DC} /0.048Ω	_	_	_
	-	15V _{DC} /0.05Ω			
3.100	18V _{DC} /0.036Ω	_			

Table S2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part .					IVIAX	imum Ambi	lent lemper	ature				
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C	125
femtoSMDC Series Size 1608mm/0603m	ils											
femtoSMDC005F	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02	
femtoSMDC008F	0.13	0.11	0.10	0.08	0.08	0.07	0.06	0.06	0.05	0.04	0.04	
femtoSMDC010F	0.16	0.14	0.12	0.11	0.10	0.09	0.08	0.07	0.06	0.05	0.04	
femtoSMDC012F	0.18	0.16	0.14	0.12	0.12	0.11	0.10	0.08	0.08	0.07	0.06	
femtoSMDC016F	0.25	0.22	0.18	0.17	0.16	0.14	0.12	0.11	0.10	0.08	0.07	
femtoSMDC020F	0.30	0.27	0.24	0.20	0.20	0.17	0.16	0.14	0.12	0.11	0.10	_
femtoSMDC035F	0.53	0.47	0.41	0.36	0.35	0.30	0.27	0.25	0.22	0.19	0.17	
picoSMDC Series Size 2012mm/0805m	ils											
picoSMDC010S	0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.07	0.06	0.05	0.05	_
picoSMDC012S	0.20	0.17	0.15	0.13	0.12	0.10	0.09	0.08	0.07	0.06	0.05	_
picoSMDC020S	0.30	0.27	0.24	0.21	0.20	0.18	0.16	0.15	0.13	0.12	0.11	_
picoSMDC035S	0.55	0.49	0.44	0.37	0.35	0.31	0.28	0.26	0.23	0.20	0.18	
picoSMDC050S	0.70	0.62	0.55	0.55	0.50	0.43	0.38	0.33	0.30	0.28	0.26	
picoSMDC075S	1.13	1.01	0.90	0.78	0.75	0.67	0.61	0.55	0.49	0.43	0.40	
picoSMDC110S	1.64	1.47	1.30	1.14	1.10	0.97	0.89	0.80	0.72	0.64	0.59	
nanoSMDC Series Size 3216mm/1206m	ils											
nanoSMDC010F	0.15	0.14	0.12	0.10	0.10	0.09	0.08	0.07	0.06	0.05	0.05	_
nanoSMDC012F	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.08	0.07	0.07	_
nanoSMDC016F	0.21	0.20	0.18	0.16	0.16	0.14	0.13	0.12	0.11	0.10	0.09	_
nanoSMDC020F	0.34	0.30	0.26	0.22	0.20	0.17	0.15	0.13	0.11	0.09	0.08	_
nanoSMDC025F	0.38	0.33	0.30	0.26	0.25	0.22	0.20	0.19	0.16	0.13	0.11	_
nanoSMDC035F	0.58	0.51	0.44	0.38	0.35	0.31	0.28	0.24	0.21	0.18	0.16	_
nanoSMDC050F/13.2	0.78	0.69	0.61	0.52	0.50	0.44	0.39	0.35	0.30	0.25	0.24	_
nanoSMDC075F	1.15	1.04	0.92	0.78	0.75	0.69	0.63	0.58	0.51	0.46	0.43	_
nanoSMDC110F	1.64	1.46	1.30	1.10	1.06	0.92	0.83	0.80	0.65	0.56	0.52	_
nanoSMDC150F	2.20	1.99	1.77	1.55	1.50	1.34	1.23	1.10	1.01	0.90	0.84	_
nanoSMDC200F	2.92	2.64	2.35	2.07	2.00	1.79	1.64	1.50	1.36	1.22	1.15	_
microSMD Series Size 3225mm/1210m	ils											
microSMD005F	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02	_
microSMD010F	0.15	0.13	0.12	0.10	0.10	0.09	0.08	0.06	0.06	0.05	0.05	
microSMD035F	0.51	0.46	0.40	0.35	0.34	0.30	0.27	0.24	0.22	0.19	0.18	
microSMD050F	0.76	0.66	0.58	0.50	0.48	0.42	0.38	0.35	0.29	0.25	0.23	_
microSMD075F	1.10	0.97	0.86	0.75	0.72	0.64	0.58	0.55	0.47	0.42	0.39	
microSMD110F	1.60	1.42	1.26	1.10	1.06	0.94	0.86	0.80	0.70	0.62	0.58	_
microSMD150F	2.30	2.02	1.76	1.50	1.43	1.24	1.11	1.00	0.85	0.72	0.65	_
microSMD175F	2.80	2.45	2.10	1.75	1.70	1.55	1.45	1.35	1.25	1.15	1.10	_
microSMD200F	2.60	2.44	2.35	2.00	1.96	1.78	1.67	1.50	1.45	1.15	1.10	_
miniSMDC Series Size 4532mm/1812m	ils											
miniSMDC010F	0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.07	0.06	0.05	0.04	_
miniSMDC014F	0.23	0.20	0.17	0.14	0.13	0.11	0.10	0.09	0.07	0.06	0.05	_
miniSMDC020F	0.30	0.27	0.23	0.20	0.19	0.17	0.15	0.13	0.12	0.10	0.09	_
miniSMDC030F	0.49	0.44	0.39	0.32	0.30	0.27	0.24	0.22	0.18	0.16	0.14	_
miniSMDC050F	0.59	0.57	0.55	0.50	0.48	0.45	0.43	0.35	0.30	0.25	0.23	_
miniSMDC075F	1.10	0.99	0.87	0.75	0.72	0.63	0.57	0.49	0.45	0.39	0.35	
	10		0.07	0.70	5.72	0.00	0.07	0.10	0.10	0.00	0.00	

Table S2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] (Cont'd)

	Part -					iviaxi	mum Amb	lent lemper	ature		Maximum Ambient Temperature										
	Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C	125								
	miniSMDC Series Size 4532mm/1812mi	ils																			
	miniSMDC075F/33	1.09	0.98	0.87	0.77	0.75	0.66	0.61	0.55	0.50	0.45	0.42	_								
	miniSMDC100F	1.60	1.45	1.28	1.10	1.07	0.92	0.83	0.71	0.66	0.57	0.52	_								
	miniSMDC110F	1.60	1.45	1.28	1.10	1.07	0.92	0.83	0.71	0.66	0.57	0.52	_								
	miniSMDC110F/16	1.68	1.49	1.30	1.10	1.05	0.92	0.83	0.75	0.64	0.55	0.50	_								
	miniSMDC110F/24	2.00	1.70	1.40	1.10	1.06	0.95	0.88	0.80	0.73	0.65	0.61	_								
	miniSMDC125F	2.00	1.69	1.47	1.25	1.17	1.03	0.92	0.90	0.69	0.58	0.53	_								
	miniSMDC125F/16	2.00	1.69	1.47	1.25	1.17	1.03	0.92	0.90	0.69	0.58	0.53	_								
	miniSMDC150F	2.30	2.05	1.77	1.50	1.44	1.23	1.09	0.95	0.82	0.68	0.61	_								
	miniSMDC150F/12	2.40	2.10	1.80	1.50	1.44	1.25	1.13	1.00	0.88	0.75	0.69	_								
	miniSMDC150F/16	2.40	2.10	1.80	1.50	1.44	1.25	1.13	1.00	0.88	0.75	0.69	_								
	miniSMDC150F/24	2.10	1.90	1.70	1.50	1.44	1.25	1.13	1.00	0.88	0.75	0.69									
	miniSMDC160F	2.50	2.19	1.89	1.60	1.53	1.31	1.16	1.10	0.95	0.79	0.71									
	miniSMDC200F	2.60	2.44	2.22	2.00	1.96	1.78	1.67	1.50	1.45	1.34	1.29									
	miniSMDC200F/16	3.07	2.74	2.40	2.07	2.00	1.74	1.57	1.40	1.24	1.07	0.99	_								
-	miniSMDC260F	3.40	3.16	2.80	2.60	2.54	2.32	2.18	2.00	1.90	1.76	1.69	_								
-	miniSMDC260F/12	3.40	3.16	3.00	2.60	2.54	2.32	2.18	2.00	1.90	1.76	1.69									
-	miniSMDC260F/13.2	3.40	3.16	3.00	2.60	2.54	2.32	2.18	2.00	1.90	1.76	1.69									
-	miniSMDC260F/16	3.50	3.20	3.00	2.60	2.53	2.30	2.15	2.00	1.85	1.70	1.63									
-	miniSMDC300F	4.13	3.75	3.33	3.02	3.00	2.70	2.54	2.35	2.22	2.06	1.98									
-	midSMD Series Size 5050mm/2018mils																				
-	SMD030F-2018	0.48	0.42	0.35	0.30	0.28	0.24	0.21	0.17	0.15	0.12	0.10									
-	decaSMDC050F/60	1.00	0.85	0.70	0.55	0.53	0.45	0.40	0.35	0.30	0.25	0.23									
-	SMD100F-2018	1.59	1.43	1.20	1.10	1.03	0.94	0.85	0.72	0.69	0.61	0.57									
-	SMD150F-2018	2.21	1.97	1.70	1.50	1.43	1.26	1.15	1.00	0.91	0.79	0.73									
-	SMD200F-2018	2.81	2.54	2.27	2.00	1.93	1.73	1.59	1.46	1.32	1.19	1.12									
	SMDC Series Size 7555mm/2920mi		2.04	2.27	2.00	1.00	1.70	1.00	1.40	1.02	1.10	1.12									
-	SMDC125F/33	2.02	1.78	1.55	1.31	1.25	1.08	0.96	0.84	0.72	0.60	0.54									
-	SMDC185F/33	2.83	2.50	2.20	1.85	1.74	1.53	1.37	1.22	1.04	0.88	0.80									
-	SMDC300F/24	4.70	4.19	3.70	3.17	3.00	2.66	2.41	2.20	1.90	1.65	1.50									
-	SMDC310F/18	4.50	4.06	3.78	3.19	3.10	2.75	2.54	2.32	2.10	1.88	1.76									
	SMD Series		4.00	0.70	0.10	3.10	2.75	2.04	2.02	2.10	1.00	1.70									
-	Size 7555mm/2920mi	0.44	0.39	0.32	0.30	0.28	0.26	0.23	0.19	0.18	0.17	0.15									
-	SMD030F SMD050F	0.44	0.39	0.55	0.30	0.28	0.26	0.23	0.19	0.18	0.17	0.15									
-	SMD075F		0.05	0.55	0.50		0.43		0.33	0.31	0.28										
-		1.11				0.71		0.57				0.36									
-	SMD075F/60	1.11	0.99	0.84	0.75	0.71	0.63	0.57	0.49	0.45	0.39	0.36									
-	SMD100F	1.59	1.43	1.20	1.10	1.03	0.94	0.85	0.72	0.69	0.61	0.57									
-	SMD100F/33	1.48	1.35	1.20	1.10	1.06	0.98	0.91	0.83	0.79	0.73	0.69									
-	SMDH120	2.34	1.96	1.58	1.20	1.15	1.02	0.92	0.83	0.74	0.65	0.60	0.:								
-	SMD125F	1.89	1.68	1.50	1.25	1.21	1.04	0.93	0.85	0.71	0.61	0.55									
-	SMD150F/33-2920	2.27	2.01	1.76	1.50	1.44	1.25	1.12	0.99	0.86	0.74	0.67									
-	SMD200F/24-2920	2.90	2.60	2.30	2.00	1.93	1.70	1.55	1.40	1.25	1.10	1.03									
	SMD250F/15-2920	3.65	3.25	2.80	2.50	2.33	2.02	1.82	1.60	1.41	1.20	1.11									
	SMD260F	3.82	3.41	2.90	2.60	2.45	2.19	1.99	1.70	1.58	1.38	1.28									
	SMD300F	4.13	3.75	3.30	3.00	2.87	2.62	2.43	2.25	2.00	1.87	1.78									
	SMD300F/15	4.20	3.80	3.30	3.00	2.90	2.62	2.43	2.25	2.00	1.87	1.78	_								

Table S2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] (Cont'd)

Part					Maxi	mum Ambi	ent Temper	ature				
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C	125°
SMD2 Series Size 8763mm/3425n	nils											
SMD150F	2.30	2.04	1.80	1.50	1.45	1.23	1.10	0.99	0.83	0.70	0.63	_
SMD150F/33	2.30	2.04	1.80	1.50	1.45	1.23	1.10	0.99	0.83	0.70	0.63	_
SMDH160	2.14	1.96	1.78	1.60	1.56	1.42	1.33	1.24	1.15	1.06	1.02	0.44
SMD185F	2.54	2.29	2.20	1.85	1.80	1.55	1.43	1.31	1.19	1.06	1.00	_
SMD200F	3.01	2.67	2.30	2.00	1.90	1.66	1.50	1.30	1.16	0.99	0.91	_
SMD250F	3.72	3.31	2.80	2.50	2.35	2.09	1.89	1.60	1.48	1.28	1.18	_
High Temperature S Size 3216mm/1206n		nm/1210mi	ls									
nanoSMDCH010F	0.18	0.16	0.15	0.11	0.10	0.09	0.08	0.07	0.07	0.06	0.06	0.0
nanoSMDH075F	1.07	0.98	0.90	0.78	0.75	0.70	0.66	0.61	0.56	0.52	0.50	0.3
microSMDCH010F	0.18	0.16	0.15	0.11	0.10	0.09	0.08	0.07	0.06	0.05	0.05	0.0
microSMDCH050F	0.85	0.78	0.75	0.54	0.50	0.48	0.45	0.42	0.38	0.35	0.35	0.18

Figure S1 — Thermal Derating Curve

- A = femtoSMD / picoSMD / nanoSMD / microSMD / miniSMD decaSMD / SMDC and SMD
- B = SMDH120 / SMDH160 and High Temperature SMD

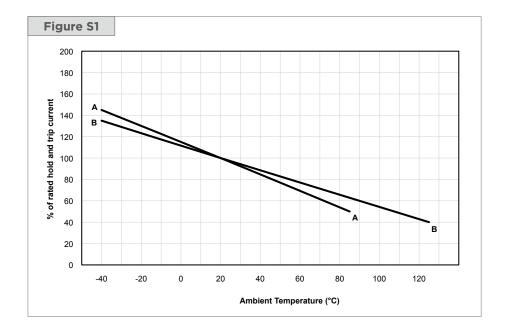


Table S3 — Electrical Characteristics for Surface-Mount Devices at Room Temperature

Part		I _H	I _T	V_{MAX}	I _{MAX}	P _{D MAX}		e-to-Trip	R _{MIN}	R _{1MAX}	Figure 1
Number		(A)	(A)	(V _{DC})	(A)	(W)	(A)	(S)	(Ω)	(Ω)	Dimensi
femtoSMD0 Size 1608m	C Series m/0603mils										
femtoSMDC	005F	0.05	0.15	15	40	0.50	0.50	0.10	3.80	30.00	S2
femtoSMDC	008F	0.08	0.20	12	40	0.50	0.60	0.10	2.80	14.00	S2
femtoSMDC	010F	0.10	0.25	12	40	0.50	0.70	0.10	1.70	8.00	S2
femtoSMDC	012F	0.12	0.30	9	40	0.50	0.80	0.10	1.10	5.80	S2
femtoSMDC	016F	0.16	0.40	9	40	0.50	1.00	0.10	1.00	4.20	S2
femtoSMDC	020F	0.20	0.45	9	40	0.50	2.00	0.10	0.70	3.00	S2
femtoSMDC	035F	0.35	0.70	6	40	0.50	3.50	0.10	0.28	1.00	S2
picoSMDC Size 2012m	Series m/0805mils										
picoSMDC0	10S	0.10	0.30	15	100	0.50	0.50	0.60	1.50	11.00	S2
picoSMDC0	12S	0.12	0.30	15	100	0.50	1.00	0.10	1.50	9.00	S2
picoSMDC0	20S	0.20	0.47	9	100	0.50	2.00	0.10	0.75	3.20	S2
picoSMDC0	35S	0.35	0.75	6	100	0.50	1.75	0.20	0.35	1.40	S2
picoSMDC0	50S	0.50	1.00	6	100	0.50	8.00	0.10	0.15	0.80	S2
picoSMDC0	75S	0.75	1.50	6	40	0.70	8.00	0.20	0.10	0.35	S2
picoSMDC1	10S	1.10	2.20	6	40	0.80	8.00	0.20	0.05	0.17	S2
nanoSMDC Size 3216m	Series m/1206mils										
nanoSMDC0	010F	0.10	0.25	60	10	0.80	0.50	1.00	1.60	15.00	S2
nanoSMDC0	D12F	0.12	0.39	48	10	0.50	1.00	0.20	1.40	6.50	S2
nanoSMDC0	D16F	0.16	0.45	48	10	0.50	1.00	0.30	1.10	5.00	S2
nanoSMDC0)20F	0.20	0.42	24	100	0.60	8.00	0.10	0.65	3.10	S2
nanoSMDC0	D25F	0.25	0.58	16	100	0.60	8.00	0.10	0.40	2.10	S2
nanoSMDC0)35F	0.35	0.75	16	20	0.60	3.50	0.10	0.45	1.35	S2
nanoSMDC0	050F/13.2	0.50	1.10	13.2	100	0.80	8.00	0.10	0.20	0.75	S2
nanoSMDC0	075F	0.75	1.50	6	100	0.80	8.00	0.10	0.09	0.30	S2
nanoSMDC1	110F	1.10	2.20	6	100	0.80	8.00	0.10	0.07	0.20	S2
nanoSMDC1	150F	1.50	3.00	6	100	0.80	8.00	0.30	0.04	0.11	S2
nanoSMDC2	200F	2.00	4.00	6	100	1.00	8.00	1.50	0.02	0.072	S2
microSMD Size 3225m	Series m/1210mils										
microSMD0	05F	0.05	0.15	30	10	1.00	0.25	1.50	3.60	50.00	S2
microSMD0	10F	0.10	0.25	30	10	0.80	0.50	1.00	2.10	15.00	S2
microSMD0	35F	0.35	0.75	6	40	0.80	8.00	0.20	0.32	1.30	S2
microSMD0	50F	0.50	1.00	13.2	40	0.80	8.00	0.05	0.25	0.90	S2
microSMD0	75F	0.75	1.50	6	40	0.80	8.00	0.10	0.11	0.40	S2
microSMD1	10F	1.10	2.20	6	40	0.80	8.00	0.20	0.07	0.21	S2
microSMD1	50F	1.50	3.00	6	40	0.80	8.00	1.00	0.04	0.11	S2
microSMD1	75F	1.75	3.50	6	40	0.80	8.00	0.80	0.025	0.08	S2
microSMD2	00F	2.00	4.00	6	100	0.80	8.00	2.50	0.020	0.06	S2
miniSMDC Size 4532m	Series m/1812mils										
miniSMDC0	10F	0.10	0.30	60	40	0.75	0.50	5.00	0.70	12.70	S2
miniSMDC0	14F	0.14	0.28	60	10	0.75	8.00	0.008	1.50	6.00	S2
miniSMDC0	20F	0.20	0.40	30	10	0.80	8.00	0.02	0.60	3.30	S2
miniSMDC0	30F	0.30	0.60	30	40	0.80	8.00	0.10	0.20	1.75	S2
miniSMDC0	50F	0.50	1.00	24	100	0.80	8.00	0.15	0.15	1.00	S2
miniSMDC0	75F	0.75	1.50	13.2	100	1.00	8.00	0.20	0.11	0.45	S2
miniSMDC0		0.75	1.50	24	40	0.80	8.00	0.30	0.09	0.29	S2

Table S3 — Electrical Characteristics for Surface-Mount Devices at Room Temperature

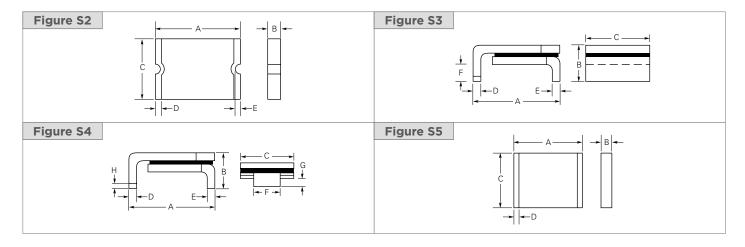

	Part	I _H	I _T	V_{MAX}	I_{MAX}	P _{D MAX}	MaxTin	ne-to-Trip	R_{MIN}	R _{1MAX}	Figure for
	Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(S)	(Ω)	(Ω)	Dimensions
	miniSMDC Series Size 4532mm/1812mils										
	miniSMDC075F/33	0.75	1.60	33	100	1.00	8.00	1.00	0.11	0.39	S2
	miniSMDC100F	1.10	2.20	8	100	1.20	8.00	0.30	0.04	0.21	S2
	miniSMDC110F	1.10	2.20	8	100	1.20	8.00	0.30	0.04	0.21	S2
	miniSMDC110F/16	1.10	2.20	16	100	0.80	8.00	0.30	0.06	0.18	S2
	miniSMDC110F/24	1.10	2.20	24	20	0.80	8.00	0.50	0.06	0.18	S2
	miniSMDC125F	1.25	2.50	6	100	0.80	8.00	0.40	0.05	0.14	S2
	miniSMDC125F/16	1.25	2.50	16	100	0.80	8.00	0.40	0.05	0.14	S2
	miniSMDC150F	1.50	3.00	6	100	0.80	8.00	0.50	0.04	0.11	S2
	miniSMDC150F/12	1.50	2.80	12	100	0.80	8.00	0.50	0.04	0.11	S2
	miniSMDC150F/16	1.50	2.80	16	100	0.80	8.00	0.50	0.04	0.11	S2
	miniSMDC150F/24	1.50	3.00	24	20	1.00	8.00	1.50	0.04	0.12	S2
-	miniSMDC160F	1.60	3.20	9	100	0.80	8.00	1.00	0.03	0.10	S2
	miniSMDC200F	2.00	4.00	8	100	1.00	8.00	5.00	0.020	0.070	S2
-	miniSMDC200F/16	2.00	4.00	16	40	1.20	8.00	5.00	0.020	0.085	S2
-	miniSMDC260F	2.60	5.00	6	100	1.00	8.00	5.00	0.015	0.043	S2
-	miniSMDC260F/12	2.60	5.00	12	100	1.00	8.00	5.00	0.015	0.047	S2
-	miniSMDC260F/13.2	2.60	5.00	13.2	100	1.20	8.00	5.00	0.015	0.050	S2
-	miniSMDC260F/16	2.60	5.00	16	100	1.20	8.00	5.00	0.015	0.050	S2
-	miniSMDC300F	3.00	6.00	6	100	1.00	8.00	5.00	0.011	0.036	S2
-	midSMD Series Size 5050mm/2018mils										
	SMD030F-2018	0.30	0.80	60	20	1.50	1.50	1.50	0.500	2.30	S3
	decaSMDC050F/60	0.55	1.10	60	10	1.00	8.00	0.10	0.200	1.10	S2
	SMD100F-2018	1.10	2.20	15	40	1.40	8.00	0.50	0.100	0.40	S3
	SMD150F-2018	1.50	3.00	15	40	1.80	8.00	1.00	0.070	0.18	S3
	SMD200F-2018	2.00	4.20	6	40	1.50	8.00	3.00	0.048	0.10	S3
	SMDC Series Size 7555mm/2920mils										
Ī	SMDC125F/33	1.25	2.50	33	40	1.50	8.00	2.00	0.040	0.250	S2
Ī	SMDC185F/33	1.85	3.70	33	40	1.70	8.00	2.50	0.050	0.150	S2
Ī	SMDC300F/24	3.00	6.00	24	40	1.70	8.00	5.00	0.015	0.072	S2
Ī	SMDC310F/18	3.10	6.00	18	50	1.50	8.00	25.00	0.013	0.036	S2
	SMD Series Size 7555mm/2920mils										
	SMD030F	0.30	0.60	60	10	1.70	1.50	3.00	1.200	4.800	S4
	SMD050F	0.50	1.00	60	10	1.70	2.50	4.00	0.350	1.400	S4
	SMD075F	0.75	1.50	30	40	1.70	8.00	0.30	0.350	1.000	S4
	SMD075F/60	0.75	1.50	60	10	1.70	8.00	0.30	0.350	1.000	S4
	SMD100F	1.10	2.20	30	40	1.70	8.00	0.50	0.120	0.480	S4
-	SMD100F/33	1.10	2.20	33	40	1.70	8.00	0.50	0.120	0.410	S4
-	SMDH120	1.20	2.30	16	50	2.00	8.00	2.00	0.150	0.340	S4
-	SMD125F	1.25	2.50	15	40	1.70	8.00	2.00	0.070	0.250	S4
-	SMD150F/33-2920	1.50	3.00	33	40	1.50	8.00	5.00	0.080	0.230	S4
-	SMD200F/24-2920	2.00	4.00	24	40	1.50	8.00	5.00	0.050	0.125	S4
-	SMD250F/15-2920	2.50	5.00	15	40	1.50	8.00	10.00	0.035	0.085	S4
	SMD260F	2.60	5.20	6	40	1.70	8.00	20.00	0.025	0.075	S4
-	SMD300F	3.00	6.00	6	40	1.50	8.00	35.00	0.015	0.048	S4

Table S3 — Electrical Characteristics for Surface-Mount Devices at Room Temperature

(Cont'd)

Part	I _H	I _T	V_{MAX}	I _{MAX}	P _{D MAX}	MaxTim	e-to-Trip	R _{MIN}	R _{1MAX}	Figure for
Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(S)	(Ω)	(Ω)	Dimensions
SMD2 Devices Size 8763mm/3425mi	ls									
SMD150F	1.50	3.00	15	40	1.90	8.00	5.00	0.060	0.250	S4
SMD150F/33	1.50	3.00	33	40	1.90	8.00	5.00	0.080	0.230	S4
SMDH160	1.60	3.20	16	70	2.20	8.00	15.00	0.050	0.150	S4
SMD185F	1.85	3.60	33	40	1.50	8.00	5.00	0.065	0.165	S4
SMD200F	2.00	4.00	15	40	1.90	8.00	12.00	0.050	0.125	S4
SMD250F	2.50	5.00	15	40	1.90	8.00	25.00	0.035	0.085	S4
High Temperature SN Size 3216mm/1206mi		1210mils								
nanoSMDCH010F	0.10	0.35	30	10	0.80	1.00	0.10	1.10	10.00	S2
nanoSMDH075F	0.75	2.00	6	10	1.10	8.00	0.10	0.10	0.36	S5
microSMDCH010F	0.10	0.35	30	10	0.90	1.00	0.10	1.20	11.00	S2
microSMDCH050F	0.50	1.50	6	10	1.10	8.00	0.05	0.19	0.90	S2

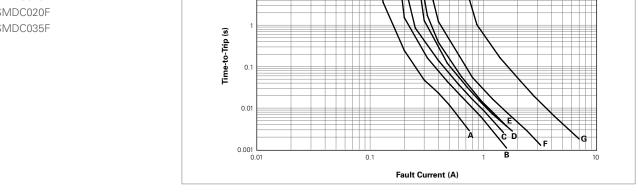
Figures S2-S5 — Dimension Figures

Table S4 — Dimensions in Millimeters (Inches)

Part	-	4	- 1	В	(С	- 1)	Е			F	(3	Н	F:
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Figure
femtoSMDC Series Size 1608mm/0603																
femtoSMDC005F	1.40	1.80	0.45	0.85	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.017)	(0.033)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_	_	_	_	_	_	
femtoSMDC008F	1.40	1.80	0.45	0.85	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.017)	(0.033)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_	_	_	_	_	_	
femtoSMDC010F	1.40	1.80	0.45	0.85	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.017)	(0.033)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_	_	_	_	_	_	
femtoSMDC012F	1.40	1.80	0.35	0.75	0.60	1.00	0.10	0.50	0.075	_		_	_	_	_	S2
	(0.055)	(0.071)	(0.013)	(0.030)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_	_	_	_	_	_	

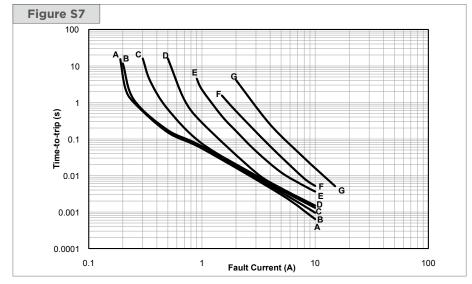
Part		4		В		С		D				F		G	Н	Figure
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	riguie
femtoSMDC Series Size 1608mm/0603	mils															
femtoSMDC016F	1.40	1.80	0.35	0.75	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.013)	(0.030)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_	_	_	_	_	_	
femtoSMDC020F	1.40	1.80	0.35	0.75	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.013)	(0.030)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_					_	
femtoSMDC035F	1.40	1.80	0.55	0.95	0.60	1.00	0.10	0.50	0.075	_	_	_	_	_	_	S2
	(0.055)	(0.071)	(0.021)	(0.037)	(0.023)	(0.039)	(0.004)	(0.020)	(0.003)	_		_				
picoSMDC Series Size 2012mm/0805	mils															
picoSMDC010S	2.00	2.20	0.60	1.00	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.023)	(0.040)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC012S	2.00	2.20	0.44	0.68	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.017)	(0.027)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC020S	2.00	2.20	0.44	0.68	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.017)	(0.027)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC035S	2.00	2.20	0.44	0.68	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.017)	(0.027)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC050S	2.00	2.20	0.63	0.93	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.025)	(0.036)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC075S	2.00	2.20	0.63	0.93	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.025)	(0.036)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
picoSMDC110S	2.00	2.20	0.80	1.20	1.30	1.50	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.079)	(0.087)	(0.031)	(0.047)	(0.051)	(0.059)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
nanoSMDC Series																
Size 3216mm/1206	mils															
nanoSMDC010F	mils 3.00	3.40	0.62	1.00	1.37	1.80	0.25	0.75	0.076	_						S2
		3.40 (0.134)	0.62 (0.024)	1.00 (0.039)	1.37 (0.054)	1.80 (0.071)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)							S2
	3.00															S2 S2
nanoSMDC010F	3.00 (0.118)	(0.134)	(0.024)	(0.039)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)							
nanoSMDC010F	3.00 (0.118) 3.00	(0.134)	0.62	(0.039)	(0.054)	(0.071)	(0.010)	(0.030)	0.076							
nanoSMDC010F	3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134)	(0.024) 0.62 (0.024)	(0.039) 1.00 (0.039)	(0.054) 1.37 (0.054)	(0.071) 1.80 (0.071)	(0.010) 0.25 (0.010)	(0.030) 0.75 (0.030)	(0.003) 0.076 (0.003)					- - - - -		S2
nanoSMDC010F	3.00 (0.118) 3.00 (0.118) 3.00	(0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62	(0.039) 1.00 (0.039) 1.00	(0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076							S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024)	(0.039) 1.00 (0.039) 1.00 (0.039)	(0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003)					- - - - - -		S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076		- - - - - -			- - - - - - -	- - - - - - -	S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)		- - - - - - -			- - - - - - - -	- - - - - - - -	S2 S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076		- - - - - - - - - - - - - - - - - - -	- - - - - - - - -		- - - - - - - - - -	- - - - - - - - -	S2 S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)		- - - - - - - - - - - - - - - - - - -			- - - - - - - - - -		\$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		_	\$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.82 (0.032)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)	_	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -			\$2 \$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.82 (0.032)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)							\$2 \$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC035F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023) 0.50 (0.019)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)	_ _ _ _				_ _ _		S2 S2 S2 S2 S2 S2 S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC035F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023) 0.50 (0.019) 0.44 (0.017)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029) 0.68 (0.027)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)	_ _ _				_ _ _		\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC050F/13.2	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023) 0.50 (0.019) 0.44 (0.017)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029) 0.68 (0.027)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)					_ _ _ _		S2 S2 S2 S2 S2 S2 S2 S2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC050F/13.2	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.58 (0.023) 0.50 (0.019) 0.44 (0.017)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029) 0.68 (0.027) 0.67 (0.026)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071)	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)						- - - -	\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC050F/13.2 nanoSMDC075F nanoSMDC075F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.50 (0.019) 0.44 (0.017) 0.28 (0.011) 0.55	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029) 0.68 (0.027) 0.67 (0.026)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)						- - - - - -	\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2
nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC020F nanoSMDC025F nanoSMDC035F nanoSMDC050F/13.2 nanoSMDC075F nanoSMDC075F	3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118) 3.00 (0.118)	(0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134) 3.40 (0.134)	(0.024) 0.62 (0.024) 0.62 (0.024) 0.58 (0.023) 0.58 (0.023) 0.59 (0.019) 0.44 (0.017) 0.28 (0.011)	(0.039) 1.00 (0.039) 1.00 (0.039) 0.82 (0.032) 0.82 (0.032) 0.74 (0.029) 0.68 (0.027) 0.67 (0.026)	(0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054) 1.37 (0.054)	(0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80 (0.071) 1.80	(0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)	(0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030)	(0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003) 0.076 (0.003)						- - - - - - -	\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2

Part	1	A	I	В	(С	- 1	D	I	E		F	(G	Н	F:
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Figure
microSMD Series Size 3225mm/1210	mils															
microSMD005F	3.0	3.43	0.50	0.85	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.019)	(0.034)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)				_			
microSMD010F	3.0	3.43	0.50	0.85	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.019)	(0.034)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)		_	_	_		_	
microSMD035F	3.0	3.43	0.38	0.62	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.015)	(0.025)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
microSMD050F	3.0	3.43	0.38	0.62	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.015)	(0.025)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
microSMD075F	3.0	3.43	0.38	0.62	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.015)	(0.025)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
microSMD110F	3.0	3.43	0.28	0.48	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	S2
	(0.118)	(0.135)	(0.011)	(0.019)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
microSMD150F	3.0	3.43	0.51	1.22	2.35	2.80	0.25	0.75	0.076		_	_		_	_	S2
	(0.118)	(0.135)	(0.020)	(0.048)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
microSMD175F	3.0	3.43	0.40	0.76	2.35	2.80	0.25	0.75	0.076							S2
1111010011121701	(0.118)	(0.135)	(0.016)	(0.030)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	02
microSMD200F	3.0	3.43	0.79	1.17	2.35	2.80	0.25	0.75	0.076							S2
THICIOSIVIDZOOF											_	_	_	_	_	32
	(0.118)	(0.135)	(0.031)	(0.046)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)							
miniSMDC Series Size 4532mm/1812	mils															
miniSMDC010F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC014F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC020F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC030F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC050F	4.37	4.73	0.38	0.62	3.07	3.41	0.25	0.95	0.20							S2
	(0.172)	(0.186)	(0.015)	(0.025)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	02
miniSMDC075F	4.37	4.73	0.38	0.62	3.07	3.41	0.25	0.95	0.20							S2
THIIIISIVIDC075I			(0.015)			(0.134)		(0.040)								32
:-:CNADCO7FE/04	(0.172)	(0.186)		(0.025)	(0.121)		(0.010)		(0.008)							
miniSMDC075F/24	4.37	4.83	0.81	1.46	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
. :01 15 00755 100	(0.172)	(0.190)	(0.032)	(0.057)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							
miniSMDC075F/33	4.37	4.83	0.94	1.46	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.190)	(0.037)	(0.057)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							
miniSMDC100F	4.37	4.73	0.38	0.62	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.015)	(0.025)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							
miniSMDC110F	4.37	4.73	0.38	0.62	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.015)	(0.025)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							
miniSMDC110F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC110F/24	4.37	4.83	0.81	1.46	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.190)	(0.032)	(0.057)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC125F	4.37	4.73	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)		(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC125F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20							S2
	(0.172)		(0.011)	(0.019)	(0.121)	(0.134)	(0.010)		(0.008)	_	_	_	_	_	_	32
	(0.1/2)	(0.130)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							


Part	1	Δ.	1	В	(С	- 1)	I	E	1	=	(G	Н	
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Figu
miniSMDC Series Size 4532mm/1812r	mils															
miniSMDC150F	4.37	4.73	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC150F/12	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC150F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20		_	_		_		S2
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC150F/24	4.37	4.83	1.00	1.94	3.07	3.41	0.25	0.95	0.20			_	_			S2
	(0.172)	(0.190)	(0.040)	(0.077)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC160F	4.37	4.73	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	_	_	_	_	_	S2
	(0.172)	(0.186)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC200F	4.37	4.73	0.51	1.22	3.07	3.41	0.25	0.95	0.20				_	_		S2
	(0.172)	(0.186)	(0.020)	(0.048)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC200F/16	4.37	4.73	0.51	1.22	3.07	3.41	0.25	0.95	0.20			_				S2
	(0.172)	(0.186)	(0.020)	(0.048)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	
miniSMDC260F	4.37	4.73	0.48	0.78	3.07	3.41	0.25	0.95	0.20							S2
	(0.172)	(0.186)	(0.019)	(0.031)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	0.
miniSMDC260F/12	4.37	4.83	1.02	1.52	3.07	3.41	0.25	0.95	0.20							S2
11111101111012001712	(0.172)	(0.190)	(0.042)	(0.060)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_		_	_	02
miniSMDC260F/13.2	4.37	4.83	1.02	1.52	3.07	3.41	0.25	0.95	0.20							S
111111011111111111111111111111111111111	(0.172)	(0.190)	(0.042)	(0.060)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_		_		_	_	02
miniSMDC260F/16	4.37	4.83	1.02	1.52	3.07	3.41	0.25	0.95	0.20							S2
111111011111111111111111111111111111111	(0.172)	(0.190)	(0.042)	(0.060)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	_	_	_	_	_	02
miniSMDC300F	4.37	4.73	0.45	0.76	3.07	3.41	0.25	0.95	0.20							S2
THIIIISIVID COOK	(0.172)	(0.186)	(0.018)	(0.030)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)							52
midSMD Series	(0.172)	(0.100)	(0.010)	(0.030)	(0.121)	(0.154)	(0.010)	(0.040)	(0.000)							
Size 5050mm/2018r	nils															
SMD030F-2018	4.72	5.44	_	1.78	4.22	4.93	0.25	0.36	0.25	0.36	0.30	0.46	_	_	_	S
	(0.186)	(0.214)	_	(0.070)	(0.166)	(0.194)	(0.010)	(0.014)	(0.010)	(0.014)	(0.012)	(0.018)	_	_	_	
decaSMDC050F/60	4.70	5.31	0.63	0.89	4.19	4.81	0.25	0.95	0.25	_	_	_	_	_	_	S2
	(0.185)	(0.209)	(0.025)	(0.035)	(0.165)	(0.189)	(0.010)	(0.040)	(0.010)	_	_	_	_	_	_	
SMD100F-2018	4.72	5.44	_	1.52	4.22	4.93	0.25	0.36	0.25	0.36	0.30	0.46	_	_		S
	(0.186)	(0.214)	_	(0.060)	(0.166)	(0.194)	(0.010)	(0.014)	(0.010)	(0.014)	(0.012)	(0.018)	_	_	_	
SMD150F-2018	4.72	5.44	_	1.52	4.22	4.93	0.25	0.36	0.25	0.36	0.30	0.46	_	_	_	S
	(0.186)	(0.214)	_	(0.060)	(0.166)	(0.194)	(0.010)	(0.014)	(0.010)	(0.014)	(0.012)	(0.018)	_	_	_	
SMD200F-2018	4.72	5.44	_	1.52	4.22	4.93	0.25	0.36	0.25	0.36	0.30	0.46	_	_	_	S
	(0.186)	(0.214)	_	(0.060)	(0.166)	(0.194)	(0.010)	(0.014)	(0.010)	(0.014)	(0.012)	(0.018)	_	_	_	
SMDC Series	/				/	/	: = /		/		: =/	=/				
	mils															
Size 7555mm/2920r	7.30	7.70	0.45	0.71	4.90	5.30	0.25	0.95	0.20	_	_	_	_	_	_	S
Size 7555mm/2920r SMDC125F/33			(0.010)	(0.000)	(0.193)	(0.209)	(0.010)	(0.040)	(0.008)				_			
	(0.287)	(0.303)	(0.018)	(0.028)												
	(0.287)	7.70	0.90	1.20	4.90	5.30	0.25	0.95	0.20	_	_	_	_	_	_	S
SMDC125F/33						5.30 (0.209)	0.25 (0.010)	0.95 (0.040)	0.20 (0.008)	_	_	_	_	_	_	S
SMDC125F/33	7.30	7.70	0.90	1.20	4.90							_ 		_ 	_ 	
SMDC125F/33 SMDC185F/33	7.30 (0.287)	7.70 (0.303)	0.90 (0.035)	1.20 (0.047)	4.90 (0.193)	(0.209)	(0.010)	(0.040)	(800.0)		_ 	_ 	_ 			S2 S2
SMDC125F/33 SMDC185F/33	7.30 (0.287) 7.30	7.70 (0.303) 7.70	0.90 (0.035) 0.80	1.20 (0.047) 1.10	4.90 (0.193) 4.90	(0.209)	(0.010)	(0.040)	(0.008)		_ _ _ _	_ 	_ 	_ 		

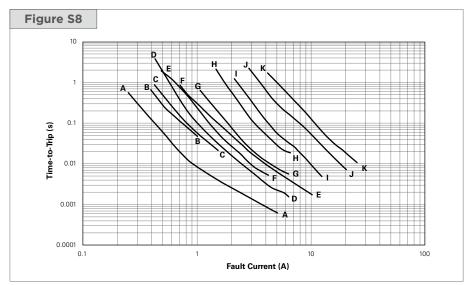
Part		4		В	(C		D		E		F		3	Н	Ei-
Number	Min	Max	Min	Fig												
SMD Series Size 7555mm/2920	mils															
SMD030F	6.73	7.98	_	3.18	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	;
	(0.265)	(0.314)	_	(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD050F	6.73	7.98	_	3.18	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD075F	6.73	7.98	_	3.18	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD075F/60	6.73	7.98	_	3.18	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD100F	6.73	7.98	_	3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD100F/33	6.73	7.98	_	3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMDH120	6.73	7.98	_	3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD125F	6.73	7.98	_	3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD150F/33-2920	6.73	7.98		3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD200F/24-2920	6.73	7.98		3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
0.0.020017212020	(0.265)	(0.314)	_	(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD250F/15-2920	6.73	7.98		3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
314102301 / 13-2320	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD260F	6.73	7.98		3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
31/10/2001	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD300F	6.73	7.98		3.00	4.80	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	
SIVID300F																
CMD200E/1E	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
SMD300F/15		7.98	_	3.00	4.80	5.44	0.56	0.71	0.56			2.41	0.66	1.37	0.43	
SMD2 Devices	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)	
Size 8763mm/3425																
SMD150F	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
SMD150F/33	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
SMDH160	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
SMD185F	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
SMD200F	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
SMD250F	8.00	9.40	_	3.00	6.00	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	
	(0.315)	(0.370)		(0.118)	(0.236)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)	
High Temperature Size 3216mm/1206			210mils													
nanoSMDCH010F	3.00	3.40	0.30	0.70	1.37	1.80	0.25	0.75	0.076							
	(0.118)	(0.134)	(0.012)	(0.028)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	
nanoSMDH075F	3.00	3.40	0.60	1.00	1.40	1.80	0.20	0.80								
101001VID11070F									_	_	_	_	_	_	_	
mioroCMDCII010F	(0.118)	(0.134)	(0.023)	(0.039)	(0.055)	(0.071)	(0.008)	(0.032)	0.076						_	
microSMDCH010F	3.00	3.43	0.57	0.97	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_		
	(0.118)	(0.135)	(0.022)	(0.038)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)							
microSMDCH050F	3.00	3.43	0.24	0.64	2.35	2.80	0.25	0.75	0.076	_	_	_	_	_	_	
	(0.118)	(0.135)	(0.009)	(0.025)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	_	_	_	_	_	

Figure S6


femtoSMDCxxxF

A = femtoSMDC005F
B = femtoSMDC008F
C = femtoSMDC010F
D = femtoSMDC012F
E = femtoSMDC016F
F = femtoSMDC020F
G = femtoSMDC035F

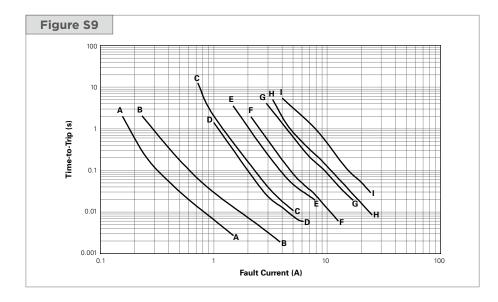
picoSMDCxxxS


A = picoSMDC010S
 B = picoSMDC012S
 C = picoSMDC020S
 D = picoSMDC035S
 E = picoSMDC050S
 F = picoSMDC075S
 G = picoSMDC110S

nanoSMDCxxxF

A = nanoSMDC010F
B = nanoSMDC012F
C = nanoSMDC016F
D = nanoSMDC020F
E = nanoSMDC025F
F = nanoSMDC035F
G = nanoSMDC050F/13.2
H = nanoSMDC075F
I = nanoSMDC110F
J = nanoSMDC150F

nanoSMDC200F



(Cont'd)

microSMDxxxF

A = microSMD005FB = microSMD010F = microSMD035F = microSMD050F D microSMD075F = microSMD110F = microSMD150F

H = microSMD175F = microSMD200F

miniSMDCxxxF

A = miniSMDC010F,miniSMDC014F B = miniSMDC020F

= miniSMDC030F = miniSMDC050F D

= miniSMDC075F

= miniSMDC075F/24

G = miniSMDC075F/33

H = miniSMDC100F, miniSMDC110F

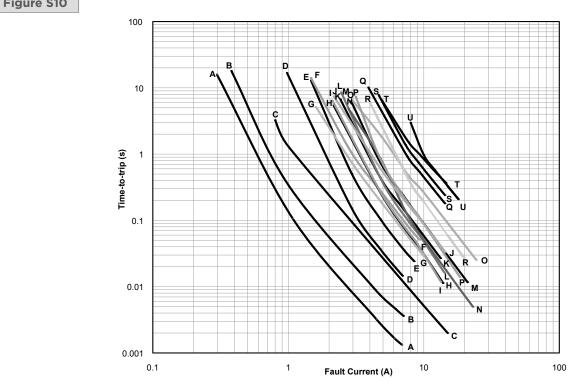
miniSMDC110F/16 = miniSMDC110F/24 = miniSMDC125F = miniSMDC125F/16

M = miniSMDC150F, miniSMDC150F/12

N = miniSMDC150F/16

O = miniSMDC150F/24

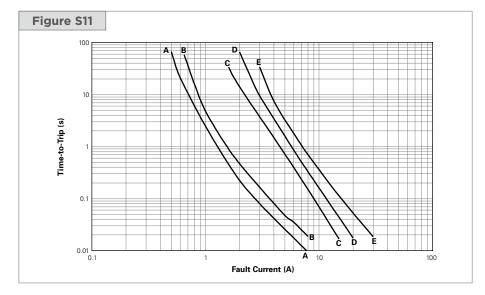
P = miniSMDC160F Q = miniSMDC200F


R = miniSMDC200F/16

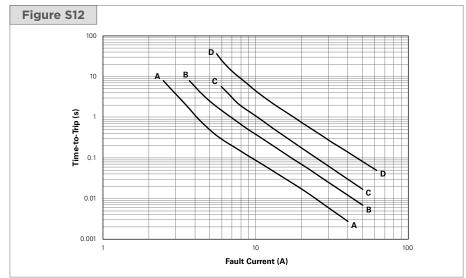
S = miniSMDC260F

T = miniSMDC260F/12, miniSMDC260F/13.2miniSMDC260F/16

U = miniSMDC300F


Figure S10

(Cont'd)


midSMD

A = SMD030F-2018 B = decaSMDC050F/60 C = SMD100F-2018 D = SMD150F-2018 E = SMD200F-2018

SMDCxxxF

A = SMDC125F/33 B = SMDC185F/33 C = SMDC300F/24 D = SMDC310F/18

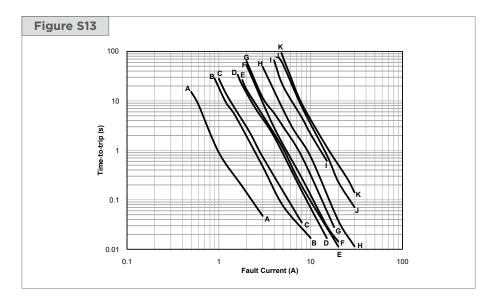
SMDxxxF

A = SMD030F

B = SMD050F

C = SMD075F, SMD075F/60D = SMD100F, SMD100F/33

E = SMDH120

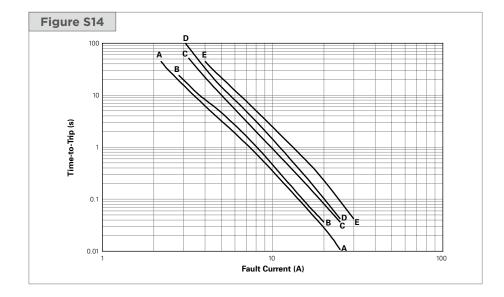

F = SMD150F/33-2920

G = SMD125F

H = SMD200F/24-2920 I = SMD250F/15-2920

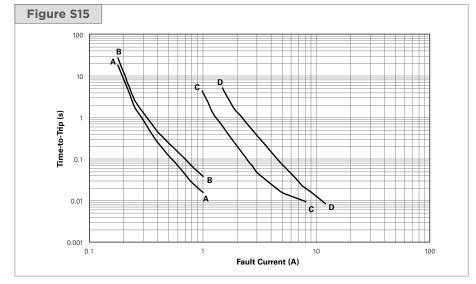
J = SMD260F

K = SMD300F, SMD300F/15



(Cont'd)

SMD2xxxF


A = SMD150F, SMD150F/33

B = SMDH160 C = SMD185F D = SMD200F E = SMD250F

High Temperature SMD

A = nanoSMDCH010F B = microSMDCH010F C = microSMDCH050F D = nanoSMDH075F

Table S5 — Physical Characteristics and Environmental Specifications

Operating temperature range -40°C to 85°C, -40°C to 125°C for SMDH120, SMDH160 and High Temperature SMD

Physical Characteristi	cs		
Terminal Pad Material	100% Matte Tin with Nickel Unde	erplate	
Soldering Characteristics	ANSI/J-STD-002 Category 3 for f	emtoSMD, picoSMD, nanoSMD, mid	croSMD, miniSMD and SMDC Series
	ANSI/J-STD-002 Category 1 for S	SMD Series	
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Se	ction 5, Method 1A	
Flammability Resistance	per IEC 695-2-2 Needle Flame Te	est for 20 seconds	
Recommended Storage Conditions	40°C max, 70% R.H. max; Devic	es May Not Meet Specified Ratings	if Storage Conditions Are Exceeded
Environmental Specif	ications		
Test	Test Method	Conditions	Resistance Change
Storage Life	PS300, Section 5.3.2	60°C, 1000 hrs	±3% typ
		85°C, 1000 hrs	±5% typ
Humidity Aging	PS300, Section 5.3.1	85°C, 85% RH, 100 hrs	±1.2% typ
Thermal Shock	MIL-STD-202, Method 107G	85°C, -40°C (20 Times)	-33% typ
		125°C, -55°C (10 Times)	-33% typ
Vibration	MIL-STD-883C	per MIL-STD-883C	No Change
Solvent Resistance	PS300, Section 5.2.2	Freon	No Change

Trichloroethane

Hydrocarbons

Table S6 — Packaging and Marking Information

				Recommende	ed Pad Layout Fig	ures [mm (in)]	
Part Number	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)	Agency Recognition
femtoSMDC Series Size 1608mm/0603mils							
femtoSMDC005F	4,000	20,000	А	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA
femtoSMDC008F	4,000	20,000	Т	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA
femtoSMDC010F	4,000	20,000	В	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA, TÜV
femtoSMDC012F	5,000	25,000	С	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA
femtoSMDC016F	5,000	25,000	Е	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA
femtoSMDC020F	5,000	25,000	F	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA, TÜV
femtoSMDC035F	4,000	20,000	K	0.80 (0.032)	0.60 (0.024)	0.80 (0.032)	UL, CSA
picoSMDC Series Size 2012mm/0805mils							
picoSMDC010S	3,000	15,000	С	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC012S	4,000	20,000	F	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC020S	4,000	20,000	Н	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC035S	4,000	20,000	I	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC050S	3,000	15,000	K	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC075S	3,000	15,000	M	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, CSA, TÜV
picoSMDC110S	3,000	15,000	S	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	UL, TÜV
nanoSMDC Series Size 3216mm/1206mils							
nanoSMDC010F	3,000	15,000	А	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, TÜV
nanoSMDC012F	3,000	15,000	Р	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC016F	3,000	15,000	N	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV

No Change

No Change

NEW

Table S6 — Packaging and Marking Information

			_	Recommende			
Part Number	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)	Agency Recognition
nanoSMDC Series Size 3216mm/1206mils							
nanoSMDC020F	3,000	15,000	02	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC025F	3,000	15,000	С	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC035F	3,000	15,000	03	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC050F/13.2	3,000	15,000	M	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC075F	3,000	15,000	L	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC110F	3,000	15,000	K	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC150F	3,000	15,000	15	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nanoSMDC200F	3,000	15,000	T	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD Series Size 3225mm/1210mils							
microSMD005F	4,000	20,000	05	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD010F	4,000	20,000	10	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD035F	4,000	20,000	3	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD050F	4,000	20,000	50	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD075F	4,000	20,000	75	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD110F	4,000	20,000	11	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD150F	4,000	20,000	15	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD175F	4,000	20,000	17	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
nicroSMD200F	3,000	15,000	20	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
miniSMDC Series Size 4532mm/1812mils	· · · · · · · · · · · · · · · · · · ·						
miniSMDC010F	2,000	10,000	10	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC014F	2,000	10,000	14	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC020F	2,000	10,000	2	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC030F	2,000	10,000	3	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC050F	2,000	10,000	5	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC075F	2,000	10,000	7	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC075F/24	1,500	7,500	075F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC075F/33	1,500	7,500	075F 33V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC100F	2,000	10,000	1	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC110F	2,000	10,000	1	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC110F/16	2,000	10,000	110F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC110F/24	1,500	7,500	110F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC125F	2,000	10,000	12	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC125F/16	2,000	10,000	125F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC150F	2,000	10,000	15	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC150F/12	2,000	10,000	150F 12V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC150F/16	2,000	10,000	150 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC150F/24	1,000	5,000	150F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC160F	2,000	10,000	16	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC200F	2,000	10,000	20	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC200F/16	2,000	10,000	200F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, TÜV
miniSMDC260F	2,000	10,000	260F	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
		-	260F 12V				UL, CSA, TÜV
miniSMDC260F/12	1,500	7,500		3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	
miniSMDC260F/13.2	1,500	7,500	260F 13V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV
miniSMDC260F/16	1,500	7,500	260F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	UL, CSA, TÜV

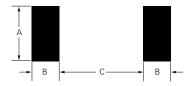
(Cont'd)

					Recommende	ed Pad Layout Fig	ures [mm (in)]	_
	Part Number	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)	Agency Recognition
	midSMD Series Size 5050mm/2018mils							
	SMD030F-2018	4,000	20,000	A03F	4.60 (0.18)	1.50 (0.059)	3.40 (0.134)	UL, CSA, TÜV
	decaSMDC050F/60	1,000	5,000	050F 60V	4.32 (0.17)	1.40 (0.055)	3.61 (0.142)	UL, CSA, TÜV
	SMD100F-2018	4,000	20,000	A10F	4.60 (0.18)	1.50 (0.059)	3.40 (0.134)	UL, CSA, TÜV
	SMD150F-2018	4,000	20,000	A15F	4.60 (0.18)	1.50 (0.059)	3.40 (0.134)	UL, CSA, TÜV
	SMD200F-2018	4,000	20,000	A20F	4.60 (0.18)	1.50 (0.059)	3.40 (0.134)	UL, CSA, TÜV
	SMDC Series Size 7555mm/2920mils							
V	SMDC125F/33	4,000	20,000	125F	5.30 (0.209)	2.00 (0.079)	4.60 (0.18)	UL
V	SMDC185F/33	4,000	20,000	185F 33V	5.30 (0.209)	2.00 (0.079)	4.60 (0.18)	UL, CSA, TÜV
/	SMDC300F/24	4,000	20,000	300F 24V	5.30 (0.209)	2.00 (0.079)	4.60 (0.18)	UL, CSA, TÜV
V	SMDC310F/18	3,000	15,000	310F 18V	5.30 (0.209)	2.00 (0.079)	4.60 (0.18)	UL, CSA
	SMD Series Size 7555mm/2920mils							
	SMD030F	2,000	10,000	030F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD050F	2,000	10,000	050F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD075F	2,000	10,000	075F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD075F/60	2,000	10,000	756F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD100F	2,000	10,000	100F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD100F/33	2,000	10,000	103F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMDH120	2,000	10,000	H12	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD125F	2,000	10,000	125F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD150F/33-2920	2,000	10,000	S15F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD200F/24-2920	2,000	10,000	S20F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD250F/15-2920	2,000	10,000	S25F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD260F	2,000	10,000	260F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD300F	2,000	10,000	300F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD300F/15	2,000	10,000	315F	3.10 (0.12)	2.30 (0.09)	5.10 (0.201)	UL, CSA, TÜV
	SMD2 Devices Size 8763mm/3425mils							
	SMD150F	1,500	7,500	150F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	SMD150F/33	1,500	7,500	153F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	SMDH160	1,500	7,500	160F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	SMD185F	1,500	7,500	185F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	SMD200F	1,500	7,500	200F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	SMD250F	1,500	7,500	250F	4.60 (0.18)	2.30 (0.09)	6.10 (0.240)	UL, CSA, TÜV
	High Temperature SMD S Size 3216mm/1206mils 8		s					
٧	nanoSMDCH010F	4,000	20,000	H01	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	
V	nanoSMDH075F	3,000	15,000	H75	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	
٧	microSMDCH010F	3,000	15,000	H01	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	_

20,000

H05

4,000

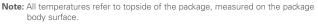

1.00 (0.039)

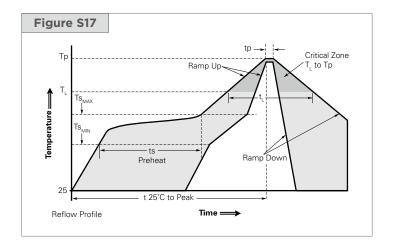
2.00 (0.079)

2.50 (0.098)

NEW microSMDCH050F

Figure S16 — Recommended Pad Layout


Agency Recognition


UL	File # E74889 for all Surface-mount Devices
CSA	File # CA78165 for all Surface-mount Devices
TÜV	Certificate Number Available Upon Request (Certified to IEC 60730-1)

Solder Reflow and Rework Recommendation

Classification Reflow Profiles

Profile Feature	Pb-Free Assembly
Average Ramp-up Rate (Ts _{MAX} to Tp)	3°C/s max
Preheat	
• Temperature min (Ts _{MIN})	150°C
• Temperature max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-120s
Time Maintained Above:	
• Temperature (T _L)	217°C
• Time (t _L)	60-150s
Peak/Classification Temperature (Tp)	260°C
Time within 5°C of Actual Peak Temperat	ure
Time (tp)	30s max
Ramp-down Rate	3°C/s max
Time 25°C to Peak Temperature	8 mins max

Solder Reflow

- Recommended reflow methods:
 - IR
 - Hot air
 - Nitrogen
- Recommended maximum paste thickness: 0.25mm (0.010in)
- Devices can be cleaned using standard methods and aqueous solvents.
- Experience has shown the optimum conditions for forming acceptable solder fillets occur when a reasonable amount of solder paste is
 placed underneath each device's termination. As such, we request that customers comply with our recommended solder pad layouts.
- · Customer should validate that the solder paste amount and reflow recommendations meet its application.
- We request that customer board layouts refrain from placing raised features (e.g. vias, nomenclature, traces, etc.) underneath PolySwitch
 devices. It is possible that raised features could negatively impact solderability performance of our devices.

Rework

- femtoSMD, picoSMD, nanoSMD, microSMD, miniSMD and SMDC series: standard industry practices.
 (Please also avoid direct contact to the device.)
- SMD series: Rework should be confined to removal of the installed product and replacement with a fresh device.

Table S7 — Tape and Reel Specifications (Millimeters)

Description	femtoSMDC EIA 481-1	picoSMDC EIA 481-1	nanoSMDC nanoSMDCH010F and nanoSMDH075F EIA 481-1	microSMD microSMDCH010F and microSMDCH050F EIA 481-1	miniSMDC and decaSMDC050F/60 EIA 481-1	midSMD except decaSMDC050F/60 EIA 481-2	SMDC EIA 481-1	SMD EIA 481-2	SMD2 EIA 481-2
W	8.0 ± 0.30	8.0 ± 0.30	8.0 ± 0.30	8.0 ± 0.30	12.0 ± 0.30	16.0 ± 0.30	16.0 ± 0.30	16.0 ± 0.30	16.0 ± 0.30
P_0	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10
P ₁	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	8.0 ± 0.10	8.0 ± 0.10	8.0 ± 0.10	8.0 ± 0.10	12.0 ± 0.10
P ₂	2.0 ± 0.05	2.0 ± 0.10	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.10	2.0 ± 0.10	2.0 ± 0.10	2.0 ± 0.10
A ₀	0.95 ± 0.05	1.70 ± 0.10	1.95 ± 0.10	2.9 ± 0.10	Table S8	5.11 ± 0.15	Table S8	5.6 ± 0.23	6.9 ± 0.23
B ₀	1.85 ± 0.05	2.45 ± 0.10	Table S8	Table S8	Table S8	5.6 ± 0.23	Table S8	8.1 ± 0.15	9.6 ± 0.15
B ₁ max	4.35	4.35	4.35	4.35	6.15	6.4	12.1	12.1	12.1
D ₀	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.5 + 0.10/00	1.5 + 0.10/00	1.5 + 0.10/00	1.5 + 0.10/00
F	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	5.50 ± 0.10	7.50 ± 0.10	7.50 ± 0.10	7.50 ± 0.10	7.50 ± 0.10
E ₁	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10
E ₂ min	6.25	6.25	6.25	6.25	10.25	14.25	14.25	14.25	14.25
T max	0.3	0.3	0.3	0.3	0.35	0.4	0.35	0.4	0.4
T ₁ max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
K ₀	Table S8	Table S8	Table S8	Table S8	Table S8	1.8 ± 0.15	Table S8	3.2 ± 0.15	3.4 ± 0.15

Table S8 — Tape and Reel Specifications (Millimeters)

	femtoSMDC005F femtoSMDC008F femtoSMDC010F femtoSMDC035F	femtoSMDC012F femtoSMDC016F femtoSMDC020F	picoSMDC012S picoSMDC020S picoSMDC035S	picoSMDC010S picoSMDC050S picoSMDC075S	picoSMDC110S	nanoSMDCH010F and All nanoSMDC series except nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC200F	nanoSMDH075F nanoSMDC010F nanoSMDC012F nanoSMDC016F nanoSMDC200F	microSMDCH050F and All microSMD series except microSMD200F
A_0	0.95 ± 0.05	0.95 ± 0.05	1.70 ± 0.1	1.70 ± 0.1	1.70 ± 0.1	1.95 ± 0.1	1.95 ± 0.1	2.9 ± 0.1
B ₀	1.85 ± 0.05	1.85 ± 0.05	2.45 ± 0.1	2.45 ± 0.1	2.45 ± 0.1	3.50 ± 0.1/-0.08	3.5 ± 0.1	3.5 ± 0.1
K ₀	0.90 ± 0.1	0.55 ± 0.05	0.86 ± 0.1	1.12 ± 0.1	1.35 ± 0.1	0.89 ± 0.1	1.27 ± 0.1	0.9 ± 0.1
	microSMDCH010F microSMD200F	miniSMDC010F miniSMDC014F~075F miniSMDC100F~110F/16 miniSMDC125F~150F/16 miniSMDC160F~260F miniSMDC300F	miniSMDC075F/24 miniSMDC075F/33 miniSMDC110F/24 miniSMDC260F/12 miniSMDC260F/13.2 miniSMDC260F/16	miniSMDC150F/24	decaSMDC050F/60	SMDC125F/33	SMDC185F/33 SMDC300F/24	SMDC310F/18
A_0	2.9 ± 0.1	3.5 ± 0.1	3.7 ± 0.1	3.7 ± 0.1	5.0 ± 0.1	5.5 ± 0.1	5.35 ± 0.1	5.5 ± 0.1
B ₀	3.55 ± 0.1	4.95 ± 0.1	4.9 ± 0.1	4.9 ± 0.1	5.4 ± 0.1	7.9 ± 0.1	7.85 ± 0.1	8.0 ± 0.1
K ₀	1.27 ± 0.1	0.9 ± 0.1	1.4 ± 0.1	1.78 ± 0.1	1.7 ± 0.1	0.9 ± 0.1	1.45 ± 0.1	2.0 ± 0.1

Table S9 — Reel Dimensions (Millimeters)

	femto/pico/nano/microSMD/ High Temperature SMD	miniSMDC	midSMD	SMD/SMDC	SMD2
A max	185	185	330	330	330
N min	50	50	50	50	50
W ₁	8.4 + 1.5/00	12.4 + 2.0/00	16.4 + 2.0/00	16.4 + 2.0/00	16.4 + 2.0/00
W ₂ max	14.4	18.4	22.4	22.4	22.4

Figure S18 — EIA Referenced Taped Component Dimensions

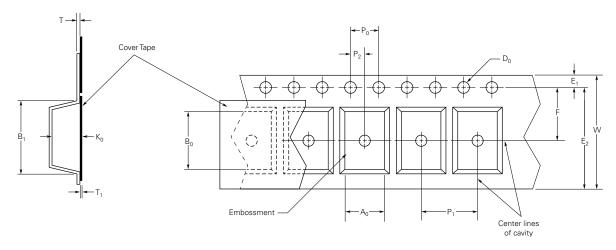
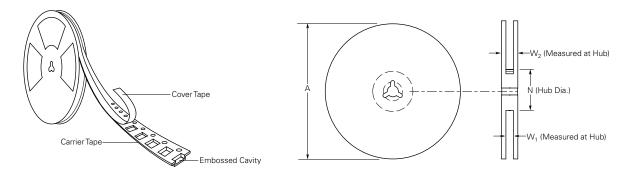
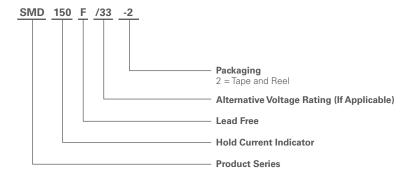
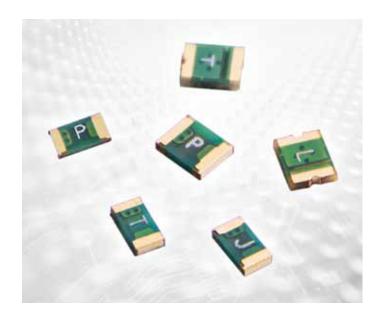




Figure S19 — EIA Referenced Reel Dimensions

Part Numbering System

$^{\prime !}ackslash$ Warning :


- Users should independently evaluate the suitability of and test each product selected for their own application.
- · Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

POLYSWITCH RESETTABLE DEVICES

Low Resistivity SMD Devices

The low resistivity SMD (surface-mount device) series is well suited to space-constrained mobile applications. The devices can help provide both overcurrent and overtemperature protection for battery pack PCMs (protection circuit modules) used in compact consumer devices such as smartphones and MP3/MP4 media players. In particular, the low resistivity SMD series helps battery pack suppliers achieve their design goals and simplify their installation methods.

The low resistivity SMD series comprises eleven devices. In the model number descriptions, the "micro" prefix refers to the 1210 form factor and the "nano" prefix refers to the 1206 form factor.

BENEFITS

- Helps save board space and power consumption, and therefore costs, in space-constrained mobile electronics
- Are more compact in comparison with similar offerings and are available in an industry-standard form factor
- Can be assembled with a reflowable soldering technique, as opposed to the spot welding process required by many other components
- Maximum electrical rating: Voltage $6V_{DC}$ and short circuit current 50A
- Industry-standard form factor of 1210
 (3.0mmx2.54mm, or 0.12inx0.10in), or 1206
 (3.0mmx1.52mm; or 0.12inx0.060in)
- Useful for an operating current of 2A and above
- Useful for and packaged for surface mounting on the PCB

FEATURES

- RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Current ratings from 1.75 to 5.0A

APPLICATIONS

- Mobile and smart phones
- Media players (MP3/MP4)
- · Digital still and video cameras
- Mini notebooks
- Tablets

- · Agency recognition: UL, CSA, TÜV
- Small footprint
- Fast time-to-trip

Table LR1 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part					Maximum	Ambient Te	mperature				
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C
nanoSMDLR Series Size 3216mm/1206											
nanoSMD175LR	3.00	2.60	2.20	1.75	1.70	1.40	1.20	1.00	0.80	0.60	0.50
nanoSMD200LR	3.60	3.20	2.80	2.00	1.90	1.80	1.60	1.40	1.20	1.00	0.80
nanoSMD270LR	4.00	3.50	3.00	2.70	2.60	2.20	2.00	1.60	1.40	1.20	1.10
nanoSMD350LR	5.50	4.80	4.00	3.50	3.30	2.70	2.30	1.90	1.60	1.40	1.30
nanoSMD500LR	7.40	6.60	6.00	5.00	4.90	4.60	4.20	3.70	3.30	3.00	2.80
microSMDLR Series Size 3225mm/1210r											
microSMD190LR	3.40	2.90	2.40	1.90	1.80	1.40	1.15	0.90	0.65	0.40	0.28
microSMD200LR	3.50	3.00	2.50	2.00	1.90	1.50	1.25	1.00	0.75	0.50	0.38
microSMD250LR	4.40	3.80	3.20	2.50	2.40	1.90	1.60	1.30	1.00	0.65	0.50
microSMD350LR	5.40	4.75	4.00	3.50	3.20	2.70	2.40	2.00	1.70	1.35	1.20
microSMD450LR	7.00	6.20	5.50	4.50	4.40	3.80	3.50	3.20	2.75	2.35	2.16

Figure LR1 — Thermal Derating Curve

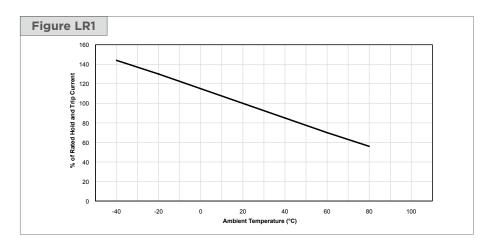
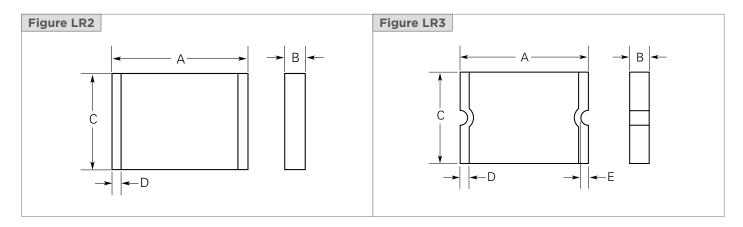



Table LR2 — Electrical Characteristics for low resistivity SMD Devices at Room Temperature

Part	I _H	I _T	V _{MAX}	I _{MAX}	P _{D MAX}	MaxTim	e-to-Trip	R _{MIN}	R _{1MAX}	Figure for
Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(S)	- (Ω)	(Ω)	Dimensions
nanoSMDLR Series Size 3216mm/1206mils										
nanoSMD175LR	1.75	5.00	6	50	1.00	9.50	1.00	0.008	0.034	LR2
nanoSMD200LR	2.00	6.00	6	50	1.00	9.50	3.00	0.006	0.024	LR2
nanoSMD270LR	2.70	6.30	6	50	1.00	8.00	5.00	0.005	0.018	LR2
nanoSMD350LR	3.50	6.30	6	50	1.00	8.00	5.00	0.004	0.018	LR2
nanoSMD500LR	5.00	10.00	6	50	1.00	25.00	2.00	0.002	0.008	LR2
microSMDLR Series Size 3225mm/1210mils										
microSMD190LR	1.90	4.90	6	50	1.00	9.50	4.00	0.006	0.021	LR3
microSMD200LR	2.00	5.00	6	50	1.00	9.50	4.00	0.006	0.021	LR3
microSMD250LR	2.50	5.20	6	50	1.00	9.50	5.00	0.005	0.018	LR3
microSMD350LR	3.50	9.00	6	50	1.00	9.50	10.00	0.0025	0.011	LR2
microSMD450LR	4.50	9.00	5	50	1.00	25.00	2.00	0.002	0.008	LR3

Figures LR2-LR3 — Dimensions Figures

Table LR3 — Dimensions in Millimeters (Inches)

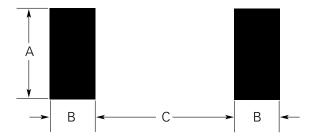
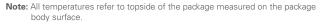

Part		A	-	В		C	1	D	Е	
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Figure
nanoSMDLR Series Size 3216mm/1206m	ils									
nanoSMD175LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	1.37 (0.054)	1.85 (0.073)	0.25 (0.010)	0.75 (0.030)	_	LR2
nanoSMD200LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	1.37 (0.054)	1.85 (0.073)	0.25 (0.010)	0.75 (0.030)	_	LR2
nanoSMD270LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	1.37 (0.054)	1.85 (0.073)	0.25 (0.010)	0.75 (0.030)	_	LR2
nanoSMD350LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	1.37 (0.054)	1.85 (0.073)	0.25 (0.010)	0.75 (0.030)	_	LR2
nanoSMD500LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	0.80 (0.031)	1.37 (0.054)	1.85 (0.073)	0.25 (0.010)	0.75 (0.030)	_	LR2
microSMDLR Series Size 3225mm/1210m	ils									
microSMD190LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	LR3
microSMD200LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	LR3
microSMD250LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	LR3
microSMD350LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	_	LR2
microSMD450LR	3.00 (0.118)	3.43 (0.135)	0.50 (0.019)	1.00 (0.039)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	LR3

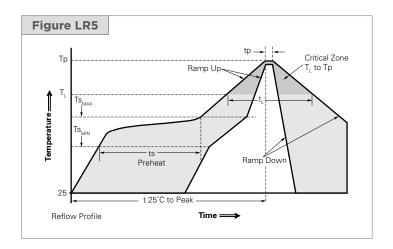
Table LR4 — Physical Characteristics Operating Temperature Range -40°C to 85°C

Physical Characteristics						
Terminal Pad Material	Gold with Nickel Underplate					
Soldering Characteristics	ANSI/J-STD-002 Category 3					
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Section 5, Method 1A					
Flammability Resistance	per IEC 695-2-2 Needle Flame Test for 20 sec.					
Recommended Storage Conditions	40°C max, 70% R.H. max; Devices May Not Meet Specified Ratings if Storage Conditions Are Exceeded.					

				Recommende	ed Pad Layout Fig	ures [mm (in)]	Agency Recognition	
Part Number	Tape & Reel Quantity	Standard Package	Part Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)		
nanoSMDLR Series Size 3216mm/1206mils								
nanoSMD175LR	3,000	15,000	J	1.75 (0.069)	1.10 (0.043)	2.00 (0.079)	UL, CSA, TÜV	
nanoSMD200LR	3,000	15,000	Т	1.75 (0.069)	1.10 (0.043)	2.00 (0.079)	UL, CSA	
nanoSMD270LR	3,000	15,000	L	1.75 (0.069)	1.10 (0.043)	2.00 (0.079)	UL, CSA, TÜV	
nanoSMD350LR	3,000	15,000	Р	1.75 (0.069)	1.10 (0.043)	2.00 (0.079)	UL, CSA, TÜV	
nanoSMD500LR	3,000	15,000	Н	1.75 (0.069)	1.10 (0.043)	2.00 (0.079)	UL, CSA, TÜV	
microSMDLR Series Size 3225mm/1210mils								
microSMD190LR	3,000	15,000	None	2.65 (0.104)	1.00 (0.039)	2.00 (0.079)	UL, CSA	
microSMD200LR	3,000	15,000	Т	2.65 (0.104)	1.00 (0.039)	2.00 (0.079)	UL, CSA	
microSMD250LR	3,000	15,000	L	2.65 (0.104)	1.00 (0.039)	2.00 (0.079)	UL, CSA	
microSMD350LR	3,000	15,000	Р	2.65 (0.104)	1.10 (0.043)	2.00 (0.079)	UL, CSA	
microSMD450LR	3,000	15,000	Н	2.65 (0.104)	1.00 (0.039)	2.00 (0.079)	UL	

Figure LR4 — Recommended Pad Layout


Agency Recognition


UL	File # E74889 for all low resistivity SMD Devices
CSA	File # CA78165 for all low resistivity SMD Devices
TÜV	Certificate Number Available Upon Request (Certified to IEC 60730-1)

Solder Reflow Recommendation

Classification Reflow Profiles

Profile Feature	Pb-Free Assembly
Average Ramp-up Rate (Ts _{MAX} to Tp)	3°C/s max
Preheat	
• Temperature min (Ts _{MIN})	150°C
• Temperature max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-120s
Time Maintained Above:	
• Temperature (T _L)	217°C
• Time (t _L)	60-150s
Peak/Classification Temperature (Tp)	260°C
Time within 5°C of Actual Peak Temperate	ure
Time (tp)	30s max
Ramp-down Rate	2°C/s max
Time 25°C to Peak Temperature	8 mins max

Solder Reflow

- Recommended reflow methods:
 - IR
 - Hot air
 - Nitrogen
- Recommended maximum paste thickness: 0.25mm (0.010 inch)
- Devices can be cleaned using standard methods and aqueous solvents.
- Experience has shown the optimum conditions for forming acceptable solder fillets occur when a reasonable amount of solder paste is placed underneath each device's termination. As such, we request that customers comply with our recommended solder pad layouts.
- Customer should validate that the solder paste amount and reflow recommendations meet its application.
- We request that customer board layouts refrain from placing raised features (e.g. vias, nomenclature, traces, etc.) underneath PolySwitch devices. It is possible that raised features could negatively impact solderability performance of our devices.

Table LR6 — Tape and Reel Specifications in Millimeters

Description	nanoSMDLR Series EIA 481-1	microSMDLR Series EIA 481-1	
W	8.0 ± 0.30	8.0 ± 0.30	
P_0	4.0 ± 0.10	4.0 ± 0.10	
P ₁	4.0 ± 0.10	4.0 ± 0.10	
P ₂	2.0 ± 0.05	2.0 ± 0.05	
A ₀	1.95 ± 0.10	2.9 ± 0.10	
B_0	3.50 +0.1/-0.08	3.55 ± 0.10	
B ₁ MAX	4.35	4.35	
D_0	1.55 ± 0.05	1.55 ± 0.05	
F	3.50 ± 0.05	3.50 ± 0.05	
E ₁	1.75 ± 0.10	1.75 ± 0.10	
E ₂ MIN	6.25	6.25	
Т мах	0.3	0.3	
T ₁ MAX	0.1	0.1	
K ₀	0.89 ± 0.10	1.27 ± 0.10	
А мах	185	185	
N MIN	50	50	
W ₁	12.4 + 2.0/00	12.4 + 2.0/00	
W ₂ MAX	14.4	14.4	

Figure LR6 — EIA Referenced Taped Component Dimensions

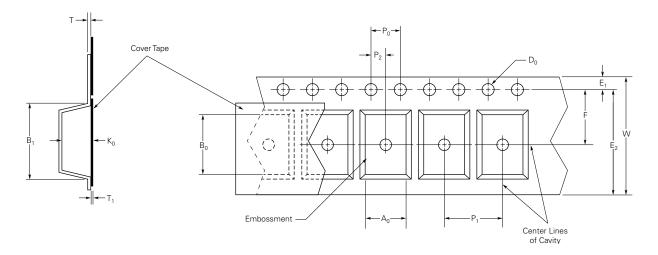
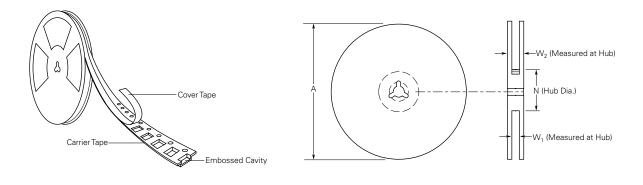
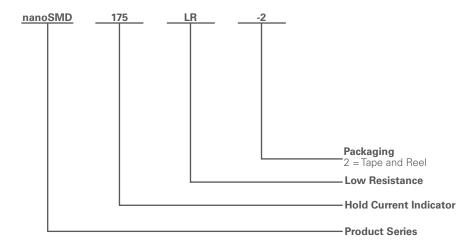
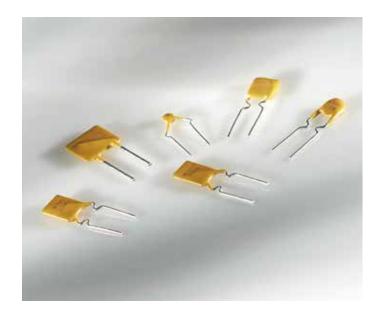




Figure LR7 — EIA Referenced Reel Dimensions

Part Numbering System

/! ackslash Warning :

- Users should independently evaluate the suitability of and test each product selected for their own application.
- · Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.


Downloaded from Arrow.com.

POLYSWITCH RESETTABLE DEVICES

Radial-Leaded Devices

TE Circuit Protection's PolySwitch radial-leaded products represent the most comprehensive and complete set of PPTC products available in the industry today.

- RGEF series for hold currents up to 14A
- RHEF series for flatter thermal derating and operating temperatures up to 125°C
- RUEF series for balance of voltage rating (30V) and hold current (up to 9A)
- RUSBF series for fast time-to-trip and low-resistance computer applications
- RXEF series for low hold currents (down to 50mA) and high voltage rating (up to 72V)
- RKEF series for balance of voltage rating (60V) and hold current (up to 5A)
- · Now offering halogen free versions of all products

BENEFITS

- Many product choices help provide engineers more design flexibility
- Compatible with high-volume electronics assembly
- Assists in meeting regulatory requirements
- Higher voltage ratings allow use in new applications

FEATURES

- RoHS compliant
- Halogen free (refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm)
- Broadest range of radial-leaded resettable devices available in the industry
- Current ratings from 50mA to 15A
- Voltage ratings from 6V (computer and electronic applications) to 72V
- Agency recognition: UL, CSA, TÜV, CQC**
- Fast time-to-trip
- Low resistance

APPLICATIONS

- Satellite video receivers
- Industrial controls
- Transformers
- Modems
- CD-ROMs
- · Game machines
- Phones
- Fax machines
- Analog and digital line cards
- Printers
- Intelligent appliance
- · Robotic machine
- Power supply
- Security
- Lighting
- Medical application

^{**}CQC only applies to RXEF, RUEF family parts

Application Selection Guide

The guide below lists PolySwitch radial-leaded devices that are typically used in each of the applications described.

Specifications for the suggested device part numbers can be found in this section.

Once a part number has been selected, the user should evaluate and test each product for its intended application.

B. C. A. P. C.	PolySwitch Resettable Devices	Key Selection Criteria	
Protection Application	Small Size	Flatter Derating	Lower Current Higher Voltage
Electromagnetic Loads	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Halogen Lighting	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Lighting Ballast	RXEF (<72V)		
Loudspeakers	RXEF (<72V)		RXEF (<72V), RKEF (<60V)
Medical Equipment	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
MOSFET Devices	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Motors, Fans and Blowers	RXEF (<72V), RGEF (<16V)	RHEF (<16V)	
POS Equipment	RXEF (<72V), RUEF (<30V)		
Process and Industrial Controls	RXEF (<72V), RUEF (<30V)		
Satellite Video Receivers	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Security and Fire Alarm Systems	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Test and Measurement Equipment	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
Transformers	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)
DDC Computer and Consumer Electronics	RUEF (<30V)		
Mouse and Keyboard	RUEF (<30V)		
SCSI	RUEF (<30V)		
USB	RUSBF (<16V)		
Traces and Printed Circuit Board Protection	RGEF (<16V), RUEF (<30V)	RHEF (<16V)	RXEF (<72V), RKEF (<60V)

Note: This list is not exhaustive. TE Circuit Protection welcomes customer input for additional application ideas for PolySwitch resettable devices.

${\sf Table\ R1-Product\ Series\ -\ Current\ Rating,\ Voltage\ Rating/Typical\ Resistance}$

Voltage Rating	RXEF 72V	RKEF 60V	RXEF 60V	RUEF 30V	RGEF 16V	RHEF 16V	RHEF 30V	RUSBF 16V	RUSBF 6V
Hold Current (A)									
0.050	_	_	9.20Ω	_	_	_	_	_	_
0.100	_	_	3.50Ω	_	_	_	_	_	_
0.170	_	_	4.30Ω	_	_	_	_	_	_
0.200	2.290Ω	_	_	_	_	_	_	_	_
0.250	1.600Ω	_	_	_	_	_	_	_	_
0.300	1.110Ω	_	_	_	_	_	_	_	_
0.400	0.710Ω	_	_	_	_	_	_	_	_
0.500	0.640Ω	0.425Ω	_	_	_	_	0.68Ω	_	_
0.550	_	_	_	_	_	_	_	_	_
0.650	0.400Ω	0.350Ω	_	_	_	_	_	_	_
0.700	_	_	_	_	_	_	0.42Ω	_	_
0.750	0.325Ω	0.295Ω	_	_	_	_	_	_	0.140Ω
0.900	0.255Ω	0.255Ω	_	0.095Ω	_	_	_	0.100Ω	_
1.000	_	_	_	_	_	_	0.24Ω	_	_
1.100	0.200Ω	0.225Ω	_	0.075Ω	_	_	_	0.075Ω	_
1.200	_	_	_	_	_	_	_	_	0.080Ω
1.350	0.155Ω	0.165Ω	_	0.060Ω	_	_	_	0.060Ω	_
1.550	_	_	_	_	_	_	_	_	0.058Ω
1.600	0.115Ω	0.150Ω	_	0.050Ω	_	_	_	0.050Ω	_
1.850	0.100Ω	0.106Ω	_	0.045Ω	_	_	_	0.045Ω	_
1.900	_	_	_	_	_	_	_	_	_

Table R1 — Product Series - Current Rating, Voltage Rating/Typical Resistance

-	_	n :	٠,	لہ	1
(O	ш	U	u	1)

Voltage Rating	RXEF 72V	RKEF 60V	RXEF 60V	RUEF 30V	RGEF 16V	RHEF 16V	RHEF 30V	RUSBF 16V	RUSBF 6V
Hold Current (A)									
2.000	_	_	_	_	_	0.0610Ω	_	_	_
2.500	0.065Ω	0.063Ω	_	0.030Ω	0.0380Ω	_	_	0.030Ω	_
3.000	0.050Ω	0.040Ω	_	0.035Ω	0.0514Ω	0.0430Ω	_	_	_
3.750	0.040Ω	0.029Ω	_	_	_	_	_	_	_
4.000	_	0.026Ω	_	0.020Ω	0.0300Ω	0.0320Ω	_	_	_
4.500	_	_	_	_	_	0.0290Ω	_	_	_
5.000	_	0.021Ω	_	0.020Ω	0.0192Ω	_	_	_	_
5.500	_	_	_	_	_	0.0200Ω	_	_	_
6.000	_	_	_	0.013Ω	0.0145Ω	0.0175Ω	_	_	_
6.500	_	_	_	_	_	0.0144Ω	_	_	_
7.000	_	_	_	0.013Ω	0.0105Ω	0.0132Ω	_	_	_
7.500	_	_	_	_	_	0.0120Ω	_	_	_
8.000	_	_	_	0.013Ω	0.0086Ω	0.0110Ω	_	_	_
9.000	_	_	_	0.008Ω	0.0070Ω	0.0100Ω	_	_	_
10.00	_	_	_	_	0.0056Ω	0.0083Ω	_	_	_
11.00	_	_	_	_	0.0050Ω	0.0073Ω	_	_	_
12.00	_	_	_	_	0.0046Ω	_	_	_	_
13.00	_	_	_	_	_	0.0055Ω	_	_	_
14.00	_	_	_	_	0.0040Ω	0.0050Ω	_	_	_
15.00	_	_	_	_	_	0.0050Ω	_	_	_

HF Halogen Free

Table R2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part	Maximum Ambient Temperature												
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°C		
RXEF 60V													
RXEF005	0.078	0.068	0.06	0.05	0.048	0.04	0.035	0.032	0.027	0.02	_		
RXEF010	0.160	0.140	0.11	0.10	0.096	0.08	0.072	0.067	0.050	0.04	_		
RXEF017	0.260	0.230	0.21	0.17	0.160	0.14	0.120	0.110	0.090	0.07	_		
RXEF 72V													
RXEF020	0.31	0.27	0.24	0.20	0.19	0.16	0.14	0.13	0.11	0.08	_		
RXEF025	0.39	0.34	0.30	0.25	0.24	0.20	0.18	0.16	0.14	0.10	_		
RXEF030	0.47	0.41	0.36	0.30	0.29	0.24	0.22	0.20	0.16	0.12	_		
RXEF040	0.62	0.54	0.48	0.40	0.38	0.32	0.29	0.25	0.22	0.16	_		
RXEF050	0.78	0.68	0.60	0.50	0.48	0.41	0.36	0.32	0.27	0.20	_		
RXEF065	1.01	0.88	0.77	0.65	0.62	0.53	0.47	0.41	0.35	0.26	_		
RXEF075	1.16	1.02	0.89	0.75	0.72	0.61	0.54	0.47	0.41	0.30	_		
RXEF090	1.40	1.22	1.07	0.90	0.86	0.73	0.65	0.57	0.49	0.36	_		
RXEF110	1.71	1.50	1.31	1.10	1.06	0.89	0.79	0.69	0.59	0.44	_		
RXEF135	2.09	1.84	1.61	1.35	1.30	1.09	0.97	0.85	0.73	0.54	_		
RXEF160	2.48	2.18	1.90	1.60	1.54	1.30	1.15	1.01	0.86	0.64	_		
RXEF185	2.87	2.52	2.20	1.85	1.78	1.50	1.33	1.17	1.00	0.74	_		
RXEF250	3.88	3.40	2.98	2.50	2.40	2.03	1.80	1.58	1.35	1.00	_		
RXEF300	4.65	4.08	3.57	3.00	2.88	2.43	2.16	1.89	1.62	1.20			
RXEF375	5.81	5.10	4.46	3.75	3.60	3.04	2.70	2.36	2.03	1.50	_		

Table R2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

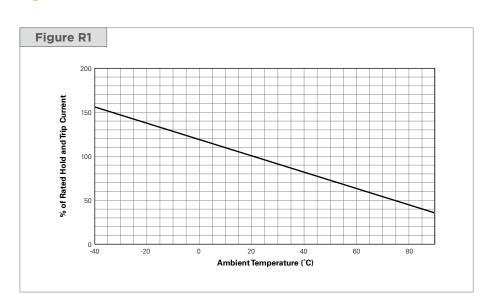
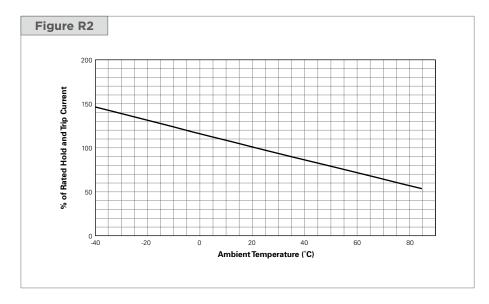
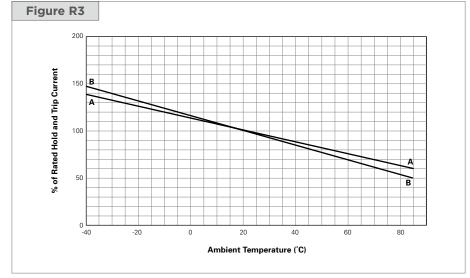

Part	Maximum Ambient Temperature											
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°C	
RKEF 60V												
RKEF050	0.73	0.65	0.58	0.50	0.48	0.42	0.38	0.34	0.31	0.26	_	
RKEF065	0.94	0.85	0.75	0.65	0.63	0.54	0.50	0.44	0.40	0.34	_	
RKEF075	1.09	0.98	0.86	0.75	0.73	0.62	0.58	0.51	0.46	0.39	_	
RKEF090	1.30	1.17	1.04	0.90	0.87	0.75	0.69	0.61	0.55	0.47	_	
RKEF110	1.60	1.43	1.27	1.10	1.06	0.92	0.85	0.75	0.67	0.57	_	
RKEF135	1.96	1.76	1.55	1.35	1.31	1.12	1.04	0.92	0.83	0.71	_	
RKEF160	2.32	2.08	1.84	1.60	1.55	1.33	1.23	1.08	0.98	0.83	_	
RKEF185	2.68	2.41	2.13	1.85	1.79	1.54	1.43	1.26	1.13	0.96		
RKEF250	3.63	3.25	2.88	2.50	2.43	2.08	1.93	1.70	1.52	1.31		
RKEF300	4.35	3.90	3.45	3.00	2.91	2.50	2.30	2.04	1.84	1.55		
RKEF375	5.44	4.88	4.31	3.75	3.64	3.11	2.90	2.54	2.29	1.94		
RKEF400	5.80	5.20	4.60	4.00	3.88	3.32	3.08	2.73	2.45	2.08		
RKEF500	7.25	6.50	5.75	5.00	4.85	4.15	3.85	3.41	3.06	2.59		
RUEF 30V	7.20	0.30	3.70	0.00	4.00	4.10	0.00	0.41	0.00	2.00		
RUEF090	1.31	1.17	1.04	0.90	0.87	0.75	0.69	0.61	0.55	0.47		
RUEF110	1.60	1.43	1.27	1.10	1.07	0.73	0.85	0.75	0.67	0.47		
RUEF135	1.96	1.76	1.55	1.35	1.31	1.12	1.04	0.73	0.82	0.70		
RUEF160	2.32	2.08	1.84	1.60	1.55	1.33	1.23	1.09	0.02	0.70		
RUEF185	2.68	2.41	2.13			1.54	1.42	1.26	1.13	0.03		
				1.85	1.79							
RUEF250	3.63	3.25	2.88	2.50	2.43	2.08	1.93	1.70	1.53	1.30		
RUEF300	4.35	3.90	3.45	3.00	2.91	2.49	2.31	2.04	1.83	1.56		
RUEF400	5.80	5.20	4.60	4.00	3.88	3.32	3.08	2.72	2.44	2.08		
RUEF500	7.25	6.50	5.75	5.00	4.85	4.15	3.85	3.40	3.05	2.60		
RUEF600	8.70	7.80	6.90	6.00	5.82	4.98	4.62	4.08	3.66	3.12		
RUEF700	10.15	9.10	8.05	7.00	6.79	5.81	5.39	4.76	4.27	3.64		
RUEF800	11.60	10.40	9.20	8.00	7.76	6.64	6.16	5.44	4.88	4.16		
RUEF900	13.05	11.70	10.35	9.00	8.73	7.47	6.93	6.12	5.49	4.68		
RHEF 30V - High Tempe	erature											
RHEF050	0.68	0.62	0.56	0.51	0.50	0.44	0.40	0.36	0.34	0.28	0.12	
RHEF070	0.95	0.87	0.79	0.72	0.70	0.62	0.56	0.51	0.47	0.39	0.17	
RHEF100	1.36	1.24	1.13	1.03	1.00	0.89	0.80	0.73	0.67	0.56	0.24	
RUSBF 16V												
RUSBF090	1.31	1.17	1.04	0.90	0.87	0.75	0.69	0.61	0.55	0.47	_	
RUSBF110	1.60	1.43	1.27	1.10	1.07	1.00	0.92	0.75	0.67	0.57		
RUSBF135	1.96	1.76	1.55	1.35	1.31	1.12	1.04	0.92	0.82	0.70		
RUSBF160	2.32	2.08	1.84	1.60	1.55	1.33	1.23	1.09	0.98	0.83		
RUSBF185	2.68	2.41	2.13	1.85	1.79	1.54	1.42	1.26	1.13	0.96	_	
RUSBF250	3.63	3.25	2.88	2.50	2.43	2.08	1.93	1.70	1.53	1.30	_	
RGEF 16V												
RGEF250	3.7	3.3	3.0	2.6	2.50	2.2	2.0	1.8	1.6	1.2	_	
RGEF300	4.4	4.0	3.6	3.1	3.00	2.6	2.4	2.1	1.9	1.4	_	
RGEF400	5.9	5.3	4.8	4.1	4.00	3.5	3.2	2.8	2.5	1.9		
RGEF500	7.3	6.6	6.0	5.2	5.00	4.4	4.0	3.6	3.1	2.4	_	
RGEF600	8.8	8.0	7.2	6.2	6.00	5.2	4.8	4.2	3.8	2.8		
RGEF700	10.3	9.3	8.4	7.3	7.00	6.2	5.6	5.0	4.4	3.3		
RGEF800	11.7	10.7	9.6	8.3	8.00	6.9	6.4	5.6	5.1	3.7		

Table R2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] (Cont'd)

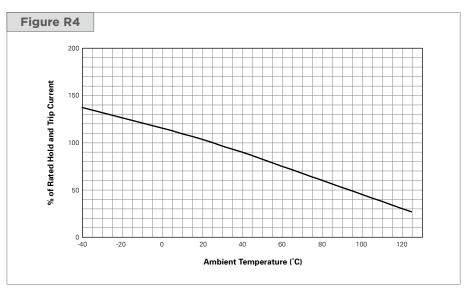
Part	Maximum Ambient Temperature												
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°C		
RGEF 16V													
RGEF900	13.2	11.9	10.7	9.4	9.00	7.9	7.2	6.4	5.6	4.2	_		
RGEF1000	14.7	13.3	12.0	10.3	10.00	8.7	8.0	7.0	6.3	4.7	_		
RGEF1100	16.1	14.6	13.1	11.5	11.00	9.7	8.8	7.8	6.9	5.2	_		
RGEF1200	17.6	16.0	14.4	12.4	12.00	10.4	9.6	8.4	7.6	5.6	_		
RGEF1400	20.5	18.7	16.8	14.5	14.00	12.1	11.2	9.8	8.9	6.5	_		
RHEF 16V - High Temp	erature												
RHEF200	2.71	2.49	2.26	2.06	2.00	1.77	1.60	1.46	1.34	1.11	0.49		
RHEF300	4.07	3.74	3.41	3.09	3.00	2.65	2.40	2.21	2.00	1.66	0.74		
RHEF400	5.57	5.11	4.65	4.22	4.00	3.62	3.29	3.01	2.73	2.27	1.01		
RHEF450	6.10	5.60	5.10	4.60	4.50	4.00	3.60	3.30	3.00	2.50	1.10		
RHEF550	7.47	6.86	6.24	5.66	5.50	4.85	4.41	4.04	3.66	3.05	1.36		
RHEF600	8.20	7.50	6.80	6.20	6.00	5.30	4.90	4.40	4.00	3.30	1.50		
RHEF650	8.80	8.10	7.40	6.70	6.50	5.70	5.30	4.80	4.30	3.60	1.60		
RHEF700	9.51	8.73	7.95	7.20	7.00	6.17	5.61	5.15	4.66	3.88	1.73		
RHEF750	10.20	9.40	8.60	7.70	7.50	6.60	6.10	5.60	5.00	4.10	1.90		
RHEF800	10.87	9.98	9.08	8.23	8.00	7.06	6.41	5.88	5.33	4.43	1.97		
RHEF900	12.21	11.19	10.16	9.26	9.00	7.97	7.20	6.56	6.04	5.01	2.19		
RHEF1000	13.60	12.50	11.40	10.30	10.00	8.80	8.10	7.40	6.60	5.50	2.50		
RHEF1100	14.94	13.72	12.49	11.31	11.00	9.70	8.82	8.09	7.32	6.09	2.71		
RHEF1300	17.70	16.30	14.80	13.40	13.00	11.40	10.50	9.60	8.60	7.20	3.30		
RHEF1400	19.01	17.46	15.89	14.40	14.00	12.35	11.22	10.29	9.32	7.76	3.45		
RHEF1500	20.40	18.80	17.10	15.50	15.00	13.20	12.10	11.10	9.90	8.30	3.80		
RUSBF 6V													
RUSBF075	1.05	0.95	0.85	0.75	0.73	0.65	0.60	0.55	0.50	0.43	_		
RUSBF120	1.69	1.52	1.36	1.20	1.16	1.04	0.96	0.88	0.80	0.68	_		
RUSBF155	2.17	1.96	1.75	1.55	1.50	1.34	1.24	1.14	1.03	0.88	_		

Figures R1-R5 — Thermal Derating Curve

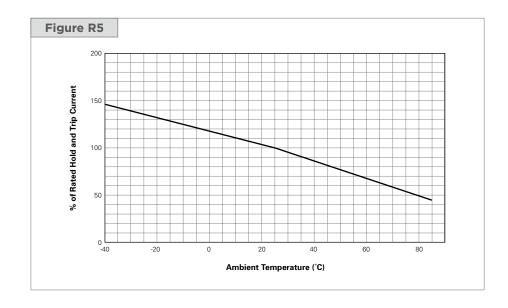

RXEF


Figures R1-R5 — Thermal Derating Curve

(Cont'd)


RKEF

- A = RUSBF075, RUSBF120, RUSBF155
- B = RUEF, and all other RUSBF


RHEF

Figures R1-R5 — Thermal Derating Curve

(Cont'd)

RGEF

Table R3 — Electrical Characteristics

Part	I _H	I _T	V	MAX	In	MAX	\mathbf{P}_{DTyp}	Max Tim	e-to-trip	R_{MIN}	R_{MAX}	R_{1MAX}	Lead Size
Number	(A)	(A)	(V _{DC})	(V _{AC RMS})	(DC _{ADC})	(AC _{ARMS})	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	[mm² (AWG)]
RXEF 60V													
RXEF005	0.05	0.10	60	_	40	_	0.22	0.25	5.0	7.3	11.10	20.00	[0.128mm² (26)]
RXEF010	0.10	0.20	60	_	40	_	0.38	0.50	4.0	2.5	4.50	7.50	[0.205mm ² (24)]
RXEF017	0.17	0.34	60	_	40	_	0.48	0.85	3.0	3.3	5.21	8.00	[0.205mm ² (24)]
RXEF 72V													
RXEF020	0.20	0.40	72	72	40	40	0.41	1.00	2.2	1.83	2.75	4.40	[0.205mm ² (24)]
RXEF025	0.25	0.50	72	72	40	40	0.45	1.25	2.5	1.25	1.95	3.00	[0.205mm ² (24)]
RXEF030	0.30	0.60	72	72	40	40	0.49	1.50	3.0	0.88	1.33	2.10	[0.205mm ² (24)]
RXEF040	0.40	0.80	72	72	40	40	0.56	2.00	3.8	0.55	0.86	1.29	[0.205mm ² (24)]
RXEF050	0.50	1.00	72	72	40	40	0.77	2.50	4.0	0.50	0.77	1.17	[0.205mm ² (24)]
RXEF065	0.65	1.30	72	72	40	40	0.88	3.25	5.3	0.31	0.48	0.72	[0.205mm ² (24)]
RXEF075	0.75	1.50	72	72	40	40	0.92	3.75	6.3	0.25	0.40	0.60	[0.205mm ² (24)]
RXEF090	0.90	1.80	72	72	40	40	0.99	4.50	7.2	0.20	0.31	0.47	[0.205mm ² (24)]
RXEF110	1.10	2.20	72	72	40	40	1.50	5.50	8.2	0.15	0.25	0.38	[0.520mm ² (20)]
RXEF135	1.35	2.70	72	72	40	40	1.70	6.75	9.6	0.12	0.19	0.30	[0.520mm ² (20)]
RXEF160	1.60	3.20	72	72	40	40	1.90	8.00	11.4	0.09	0.14	0.22	[0.520mm ² (20)]
RXEF185	1.85	3.70	72	72	40	40	2.10	9.25	12.6	0.08	0.12	0.19	[0.520mm ² (20)]
RXEF250	2.50	5.00	72	72	40	40	2.50	12.50	15.6	0.05	0.08	0.13	[0.520mm ² (20)]
RXEF300	3.00	6.00	72	72	40	40	2.80	15.00	19.8	0.04	0.06	0.10	[0.520mm ² (20)]
RXEF375	3.75	7.50	72	72	40	40	3.20	18.75	24.0	0.03	0.05	0.08	[0.520mm ² (20)]

Table R3 — Electrical Characteristics

Part	I _H	I _T	V	MAX	I	/IAX	P _{D Typ}	Max Tim	e-to-trip	R _{MIN}	R _{MAX}	R _{1MAX}	Lead Size
Number	(A)	(A)	(V _{DC})	(V _{AC RMS})	(DC _{ADC})	(AC _{ARMS})	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	[mm² (AWG)]
RKEF			. 50	, Ao Ilino	7,00	Zamo							
60V													
RKEF050	0.50	1.00	60		40		1.00	8.00	0.8	0.320	0.529	0.900	[0.205mm ² (24)]
RKEF065	0.65	1.30	60		40		1.25	8.00	1.0	0.250	0.450	0.720	[0.205mm ² (24)]
RKEF075	0.75	1.50	60		40		1.40	8.00	1.5	0.200	0.390	0.640	[0.205mm ² (24)]
RKEF090	0.90	1.80	60		40		1.50	8.00	2.0	0.190	0.320	0.520	[0.205mm ² (24)]
RKEF110	1.10	2.20	60		40		2.20	8.00	3.0	0.170	0.280	0.470	[0.520mm ² (20)]
RKEF135	1.35	2.70	60		40		2.30	8.00	4.5	0.110	0.220	0.370	[0.520mm ² (20)]
RKEF160	1.60	3.20	60		40		2.40	8.20	9.0	0.100	0.200	0.320	[0.520mm ² (20)]
RKEF185	1.85	3.70	60		40		2.60	9.25	12.6	0.060	0.152	0.250	[0.520mm ² (20)]
RKEF250	2.50	5.00	60		40		2.80	12.50	15.6	0.040	0.085	0.140	[0.520mm ² (20)]
RKEF300	3.00	6.00	60	_	40	_	3.20	15.00	19.8	0.030	0.050	0.080	[0.520mm ² (20)]
RKEF375	3.75	7.50	60	_	40	_	3.40	18.75	22.0	0.017	0.040	0.060	[0.520mm ² (20)]
RKEF400	4.00	8.00	60	_	40	_	3.70	20.00	24.0	0.014	0.038	0.060	[0.520mm ² (20)]
RKEF500	5.00	10.00	60		40		5.00	25.00	28.0	0.012	0.030	0.050	[0.520mm ² (20)]
RUEF													
RUEF090	0.90	1.80	30	30	100	70	0.60	4.50	5.9	0.070	0.120	0.22	[0.205mm ² (24)]
RUEF110	1.10	2.20	30	30	100	70	0.70	5.50	6.6	0.070	0.100	0.17	[0.205mm² (24)]
RUEF135	1.35	2.70	30	30	100	70	0.80	6.75	7.3	0.070	0.080	0.17	[0.205mm² (24)]
RUEF160	1.60	3.20	30	30	100	70	0.90	8.00	8.0	0.030	0.070	0.13	[0.205mm² (24)]
RUEF185	1.85	3.70	30	30	100	70	1.00	9.25	8.7	0.030	0.060	0.09	[0.205mm² (24)]
RUEF250	2.50	5.00	30	30	100	70	1.20	12.50	10.3	0.020	0.040	0.07	[0.205mm² (24)]
RUEF300	3.00	6.00	30	30	100	70	2.00	15.00	10.8	0.020	0.050	0.08	[0.520mm ² (20)]
RUEF400	4.00	8.00	30	30	100	70	2.50	20.00	12.7	0.020	0.030	0.05	[0.520mm² (20)]
RUEF500	5.00	10.00	30	30	100	70	3.00	25.00	14.5	0.010	0.030	0.05	[0.520mm² (20)]
RUEF600	6.00	12.00	30	30	100	70	3.50	30.00	16.0	0.005	0.030	0.04	[0.520mm² (20)]
RUEF700	7.00	14.00	30	30	100	70	3.80	35.00	17.5	0.005	0.020	0.03	
RUEF800	8.00		30	30	100	70	4.00	40.00	18.8				[0.520mm ² (20)]
RUEF900	9.00	16.00	30	30	100	70	4.00	45.00	20.0	0.005	0.013	0.02	[0.520mm² (20)]
RHEF*	3.00	10.00	- 30		100	70	4.20	45.00	20.0	0.003	0.010	0.02	[0.32011111- (20/)
30V - High T	emperatu	ire											
RHEF050	0.5	0.9	30		40		0.9	2.5	2.5	0.480	0.780	1.10	[0.205mm ² (24)]
RHEF070	0.7	1.4	30		40		1.4	3.5	3.2	0.300	0.540	0.80	[0.205mm ² (24)]
RHEF100	1.0	1.8	30		40		1.4	5.0	5.2	0.180	0.300	0.43	[0.205mm ² (24)]
RUSBF 16V													
RUSBF090	0.90	1.8	16		40		0.6	8.0	1.2	0.070	0.120	0.180	[0.205mm ² (24)]
RUSBF110	1.10	2.2	16		40		0.7	8.0	2.3	0.050	0.095	0.140	[0.205mm² (24)]
RUSBF135	1.35	2.7	16		40		0.8	8.0	4.5	0.040	0.074	0.112	[0.205mm² (24)]
RUSBF160	1.60	3.2	16		40		0.9	8.0	9.0	0.030	0.061	0.110	[0.205mm² (24)]
RUSBF185	1.85	3.7	16		40		1.0	8.0	10.0	0.030	0.051	0.090	[0.205mm² (24)]
RUSBF250	2.50	5.0	16		40		1.2	8.0	40.0	0.020	0.036	0.060	[0.205mm² (24)]
RGEF*	2.50	3.0	10		40		1.2	0.0	40.0	0.020	0.030	0.000	[0.20311111 (24)]
16V													
RGEF250	2.5	4.7	16		100		1.0	12.5	5.0	0.0220	0.0350	0.0530	[0.205mm ² (24)]
RGEF300	3.0	5.1	16		100		2.3	15.0	1.0	0.0380	0.0645	0.0975	[0.520mm ² (20)]
RGEF400	4.0	6.8	16	_	100	_	2.4	20.0	1.7	0.0210	0.0390	0.0600	[0.520mm ² (20)]
RGEF500	5.0	8.5	16		100		2.6	25.0	2.0	0.0150	0.0240	0.0340	[0.520mm ² (20)]
RGEF600	6.0	10.2	16	_	100	_	2.8	30.0	3.3	0.0100	0.0190	0.0280	[0.520mm ² (20)]
RGEF700	7.0	11.9	16	_	100	_	3.0	35.0	3.5	0.0077	0.0131	0.0200	[0.520mm ² (20)]
RGEF800	8.0	13.6	16	_	100	_	3.0	40.0	5.0	0.0056	0.0110	0.0175	[0.520mm ² (20)]
RGEF900	9.0	15.3	16	_	100	_	3.3	45.0	5.5	0.0047	0.0091	0.0135	[0.520mm ² (20)]
	10.0	17.0	16	_	100	_	3.6	50.0	6.0	0.0040	0.0070	0.0102	[0.520mm ² (20)]
RGEF1000													
	11.0	18.7	16	_	100	_	3.7	55.0	7.0	0.0037	0.0060	0.0089	[0.520mm ² (20)]
RGEF1000 RGEF1100 RGEF1200		18.7 20.4	16 16	_	100 100		3.7 4.2	55.0 60.0	7.0 7.5	0.0037	0.0060 0.0057	0.0089	[0.520mm ² (20)] [0.823mm ² (18)]

Table R3 — Electrical Characteristics

(Cont'd)

Part	I _H	I _T	V	MAX	I _N	1AX	\mathbf{P}_{DTyp}	MaxTim	e-to-trip	R_{MIN}	R_{MAX}	R _{1MAX}	Lead Size
Number	(A)	(A)	(V _{DC})	(V _{AC RMS})	(DC _{ADC})	(AC _{ARMS})	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	[mm² (AWG)]
RHEF* 16V - High To	emperatu	ıre											
RHEF200	2.0	3.8	16	_	100	_	1.4	10.0	4.3	0.0450	0.07400	0.1100	[0.205mm ² (24)]
RHEF300	3.0	6.0	16	_	100	_	3.0	15.0	5.0	0.0330	0.05300	0.0790	[0.520mm ² (20)]
RHEF400	4.0	7.5	16	_	100	_	3.3	20.0	5.0	0.0240	0.04000	0.0600	[0.520mm ² (20)]
RHEF450	4.5	7.8	16	_	100	_	3.6	22.5	3.0	0.0220	0.03600	0.0540	[0.520mm ² (20)]
RHEF550	5.5	10.0	16	_	100	_	3.5	27.5	6.0	0.0150	0.02500	0.0370	[0.520mm ² (20)]
RHEF600	6.0	10.8	16	_	100	_	4.1	30.0	5.0	0.0130	0.02150	0.0320	[0.520mm ² (20)]
RHEF650	6.5	12.0	16	_	100	_	4.1	32.5	5.5	0.0110	0.01750	0.0260	[0.520mm ² (20)]
RHEF700	7.0	13.0	16	_	100	_	4.0	35.0	7.0	0.0100	0.01640	0.0250	[0.520mm ² (20)]
RHEF750	7.5	13.1	16	_	100	_	4.5	37.5	7.0	0.0094	0.01530	0.0220	[0.520mm ² (20)]
RHEF800	8.0	15.0	16	_	100	_	4.2	40.0	8.0	0.0080	0.01350	0.0200	[0.520mm ² (20)]
RHEF900	9.0	16.5	16	_	100	_	5.0	45.0	10.0	0.0074	0.01200	0.0170	[0.520mm ² (20)]
RHEF1000	10.0	18.5	16	_	100	_	5.3	50.0	9.0	0.0062	0.01050	0.0150	[0.520mm ² (20)]
RHEF1100	11.0	20.0	16	_	100	_	5.5	55.0	11.0	0.0055	0.00900	0.0130	[0.520mm ² (20)]
RHEF1300	13.0	24.0	16	_	100	_	6.9	65.0	13.0	0.0041	0.00690	0.0100	[0.823mm ² (18)]
RHEF1400	14.0	27.0	16	_	100	_	6.9	70.0	13.0	0.0030	0.00600	0.0090	[0.823mm ² (18)]
RHEF1500	15.0	28.0	16	_	100	_	7.0	75.0	20.0	0.0032	0.00613	0.0092	[0.823mm ² (18)]
RUSBF 6V								·					·
RUSBF075	0.75	1.30	6	_	40	_	0.3	8.0	0.4	0.110	0.1750	0.23	[0.205mm ² (24)]
RUSBF120	1.20	2.00	6	_	40	_	0.6	8.0	0.5	0.070	0.0975	0.14	[0.205mm ² (24)]
RUSBF155	1.55	2.65	6	_	40	_	0.6	7.8	2.2	0.040	0.0705	0.10	[0.205mm ² (24)]

Notes:

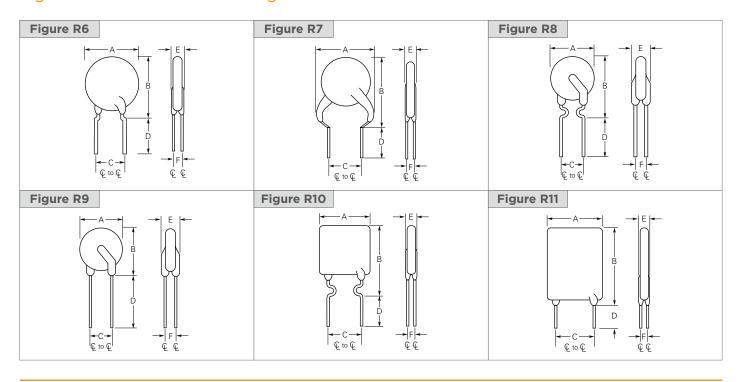
Notes:

I_H: Hold current: maximum current device will pass without interruption in 20°C still air.

I_T: Trip current: minimum current that will switch the device from low resistance to high resistance in 20°C still air.

V_{MAX}: Maximum continuous voltage device can withstand without damage at rated current.

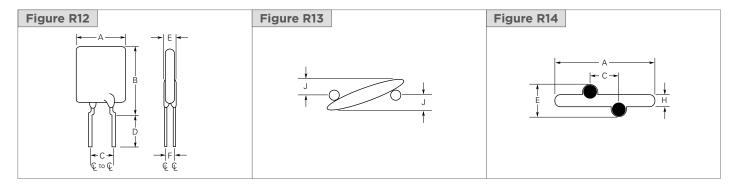
I_{MAX}: Maximum fault current device can withstand without damage at rated voltage.


P_D: Power dissipated from device when in the tripped state in 20°C still air.

SMinimum resistance of device as supplied at 20°C unless otherwise specified.

R_{MAX}: Maximum resistance of device as supplied at 20°C unless otherwise specified.

R_{MAX}: Maximum resistance of device when measured one hour post reflow (surface-mount device) or one hour post trip (radial-leaded device) at 20°C unless otherwise specified.


Figures R6-R14 — Dimension Figures

^{*} Electrical characteristics determined at 25°C.

Figures R6-R14 — Dimension Figures

(Cont'd)

Table R4 — Dimensions and Weights

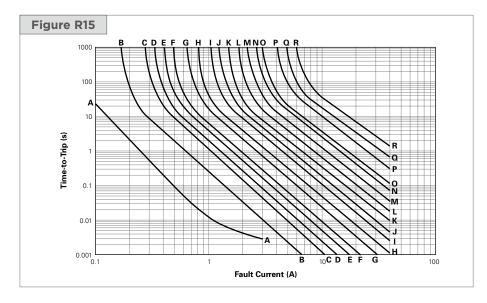
		Dimensions in Millimeters (Inches)													
Part		A		В	С)		E	F	Н	J	Figure	Device Mass (g) (Only for Reference)
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Тур	Тур		(0) 101 11010101007
RXEF 60V															
RXEF005	_	8.0	_	8.3	4.3	5.8	7.6	_	_	3.0	_	1.07	1.0	R7, R13,	0.069
		(0.32)		(0.33)	(0.17)	(0.23)	(0.30)			(0.12)		(0.042)	(0.04)	R14	
RXEF010	_	7.4	_	11.6	4.3	5.8	7.6	_	_	3.0	_	1.07	1.0	R8, R13,	0.128
		(0.29)		(0.46)	(0.17)	(0.23)	(0.30)			(0.12)		(0.042)	(0.04)	R14	
RXEF017	_	7.4	_	12.7	4.3	5.8	7.6	_	_	3.0	_	1.68	1.7	R8, R13,	0.174
		(0.29)		(0.50)	(0.17)	(0.23)	(0.30)			(0.12)		(0.066)	(0.07)	R14	
RXEF 72V															
RXEF020	_	7.4	_	11.7	4.3	5.8	7.6	_	_	3.0	_	1.17	1.0	R8, R13,	0.119
		(0.29)		(0.46)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.04)	R14	
RXEF025	_	7.4	_	12.7	4.3	5.8	7.6	_	_	3.0	_	1.17	1.0	R8, R13,	0.130
		(0.29)		(0.50)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.04)	R14	
RXEF030	_	7.4	_	12.7	4.3	5.8	7.6	_	_	3.0	_	1.17	1.0	R8, R13,	0.143
		(0.29)		(0.50)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.04)	R14	
RXEF040		7.6	_	13.5	4.3	5.8	7.6	_	_	3.0	_	1.17	1.2	R8, R13,	0.202
		(0.30)		(0.53)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.05)	R14	
RXEF050	_	7.9	_	13.7	4.3	5.8	7.6	_	_	3.0	_	1.17	1.2	R8, R13,	0.210
		(0.31)		(0.54)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.05)	R14	
RXEF065	_	9.4	_	14.5	4.3	5.8	7.6	_	_	3.0	_	1.17	1.5	R8, R13,	0.277
		(0.37)		(0.57)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.06)	R14	
RXEF075		10.2		15.2	4.3	5.8	7.6	_		3.0		1.17	1.5	R8, R13,	0.310
		(0.40)		(0.60)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.06)	R14	
RXEF090	_	11.2	_	15.8	4.3	5.8	7.6	_	_	3.0	_	1.17	1.5	R8, R13,	0.365
		(0.44)		(0.62)	(0.17)	(0.23)	(0.30)			(0.12)		(0.046)	(0.06)	R14	
RXEF110	_	12.8	_	17.5	4.3	5.8	7.6	_	_	3.0	_	1.37	1.2	R9, R13,	0.546
		(0.50)		(0.69)	(0.17)	(0.23)	(0.30)			(0.12)		(0.054)	(0.05)	R14	
RXEF135		14.5	_	19.1	4.3	5.8	7.6	_	_	3.0	_	1.37	1.2	R9, R13,	0.653
		(0.57)		(0.75)	(0.17)	(0.23)	(0.30)			(0.12)		(0.054)	(0.05)	R14	
RXEF160	_	16.3	_	20.8	4.3	5.8	7.6	_	_	3.0	_	1.37	1.5	R9, R13,	0.684
		(0.64)		(0.82)	(0.17)	(0.23)	(0.30)			(0.12)		(0.054)	(0.06)	R14	
RXEF185	_	17.5	_	22.4	4.3	5.8	7.6	_	_	3.0	_	1.37	1.5	R9, R13,	0.808
		(0.69)		(0.88)	(0.17)	(0.23)	(0.30)			(0.12)		(0.054)	(0.06)	R14	
RXEF250		20.8		25.4	9.4	10.9	7.6	_		3.0	_	1.37	1.7	R9, R13,	1.139
		(0.82)		(1.00)	(0.37)	(0.43)	(0.30)			(0.12)		(0.054)	(0.07)	R14	
RXEF300		23.9		28.6	9.4	10.9	7.6	_	_	3.0	_	1.37	1.7	R9, R13,	1.379
		(0.94)		(1.13)	(0.37)	(0.43)	(0.30)			(0.12)		(0.054)	(0.07)	R14	
RXEF375	_	27.2	_	31.8	9.4	10.9	7.6	_	_	3.0	_	1.37	1.7	R9, R13,	1.708
		(1.07)		(1.25)	(0.37)	(0.43)	(0.30)			(0.12)		(0.054)	(0.07)	R14	

Table R4 — Dimensions and Weights

					Dim	ensions i	in Millime	eters (Ind	ches)						
Dout		A		В		C)		E	F	Н	J	Figure	Device Mass (g) (Only for Reference)
Part Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Тур	Тур		(Only for Reference)
RKEF 60V															
RKEF050		7.10	_	11.43	4.32	5.84	7.60	_		3.56			_	R10, R13,	0.166
		(0.28)		(0.45)	(0.17)	(0.23)	(0.30)			(0.14)				R14	
RKEF065	_	7.11	_	12.20	4.32	5.84	7.60	_	_	3.56	_	_	_	R10, R13,	0.182
DVEEOZE		(0.28)		(0.48)	(0.17)	(0.23)	(0.30)			(0.14)				R14	0.001
RKEF075	_	7.87	_	12.20	4.32	5.84	7.60	_	_	3.56	_	_	_	R10, R13,	0.201
RKEF090		(0.31) 7.87		(0.48)	(0.17) 4.32	(0.23)	(0.30) 7.60			3.56				R14 R10, R13,	0.235
TIKLI 000		(0.31)		(0.55)	(0.17)	(0.23)	(0.30)			(0.14)				R14	0.233
RKEF110		7.60		15.00	4.32	5.84	7.60			4.10			_	R10, R13,	0.353
		(0.30)		(0.59)	(0.17)	(0.23)	(0.30)			(0.16)				R14	
RKEF135	_	10.20	_	17.00	4.32	5.84	7.60	_	_	3.81	_	_	_	R11, R13,	0.438
		(0.40)		(0.67)	(0.17)	(0.23)	(0.30)			(0.15)				R14	
RKEF160	_	12.20	_	18.30	4.32	5.84	7.60	_	_	3.81	_	_	_	R11, R13,	0.546
		(0.48)		(0.72)	(0.17)	(0.23)	(0.30)			(0.15)				R14	
RKEF185	_	13.00	_	18.80	4.32	5.84	7.60	_	_	3.81	_	_	_	R11, R13,	0.538
		(0.51)		(0.74)	(0.17)	(0.23)	(0.30)			(0.15)				R14	
RKEF250	_	14.00	_	20.60	4.32	5.84	7.60	_	_	3.00	_	_	_	R11, R13,	0.775
DKEE300		(0.55)		(0.81)		(0.23)	(0.30)			(0.12)				R14	0.071
RKEF300	_	16.50 (0.65)	_	21.20 (0.83)	4.32	5.84 (0.23)	7.60 (0.30)	_	_	3.00 (0.12)	_	_	_	R11, R13, R14	0.971
RKEF375		16.50		25.20	9.40	10.90	7.60			3.00				R11, R13,	1.142
TIKEI 373		(0.65)		(0.99)	(0.37)	(0.43)	(0.30)			(0.12)				R14	1.142
RKEF400		21.00		24.90	9.40	10.90	7.60			3.00				R11, R13,	1.391
		(0.83)		(0.98)		(0.43)	(0.30)			(0.12)				R14	
RKEF500	_	24.10	_	29.00	9.40	10.90	7.60	_	_	3.00	_	_	_	R11, R13,	1.783
		(0.95)		(1.14)	(0.37)	(0.43)	(0.30)			(0.12)				R14	
RUEF 30V															
RUEF090	_	7.4	_	12.2	4.3	5.8	7.6	_	_	3.0	_	0.89	0.8	R10, R13,	0.183
		(0.29)		(0.48)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.03)	R14	-
RUEF110	_	7.4	_	14.2	4.3	5.8	7.6	_	_	3.0	_	0.89	0.8	R10, R13,	0.204
DUEE40E		(0.29)		(0.56)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.03)	R14	0.055
RUEF135	_	8.9	_	13.5	4.3	5.8	7.6	_	_	3.0	_	0.89	1.0	R10, R13,	0.255
RUEF160		(0.35)		(0.53)	4.3	(0.23)	(0.30)			3.0		(0.035)	1.0	R14 R10, R13,	0.289
NOLI 100		(0.35)		(0.60)		(0.23)	(0.30)			(0.12)		(0.035)	(0.04)	R14	0.209
RUEF185		10.2		15.7	4.3	5.8	7.6			3.0		0.89	1.0	R10, R13,	0.379
		(0.40)		(0.62)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.04)	R14	
RUEF250		11.4	_	18.3	4.3	5.8	7.6	_	_	3.0	_	0.89	1.2	R10, R13,	0.493
		(0.45)		(0.72)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.05)	R14	
RUEF300	_	11.4	_	16.5	4.3	5.8	7.6	_	_	3.0	_	1.19	1.5	R11, R13,	0.516
		(0.45)		(0.65)	(0.17)	(0.23)	(0.30)			(0.12)		(0.047)	(0.06)	R14	
RUEF400	_	14.0	_	19.3	4.3	5.8	7.6	_	_	3.0	_	1.19	1.7	R11, R13,	0.670
		(0.55)		(0.76)	(0.17)	(0.23)	(0.30)			(0.12)		(0.047)	(0.07)	R14	
RUEF500	_	14.0	_	24.1	9.4	10.9	7.6	_	_	3.0	_	1.19	1.0	R11, R13,	0.926
DUEECCC		(0.55)		(0.95)		(0.43)	(0.30)			(0.12)		(0.047)	(0.04)	R14	4.050
RUEF600	_	16.5	_	24.1	9.4	10.9	7.6	_	_	3.0	_	1.19	1.0	R11, R13,	1.352
RUEF700		(0.65)		(0.95)	9.4	(0.43)	(0.30)			3.0		(0.047)	1.2	R14 R11, R13,	1.543
11011/00	_	(0.75)	_	(1.02)		(0.43)	(0.30)	_	_	(0.12)	_	(0.047)	(0.05)	R14	1.040
RUEF800		21.6		28.4	9.4	10.9	7.6			3.0		1.19	1.5	R11, R13,	1.852
		(0.85)		(1.12)		(0.43)	(0.30)			(0.12)		(0.047)	(0.06)	R14	
RUEF900		24.1	_	29.0	9.4	10.9	7.6	_	_	3.0	_	1.19	1.5	R11, R13,	2.104
														,	

Table R4 — Dimensions and Weights

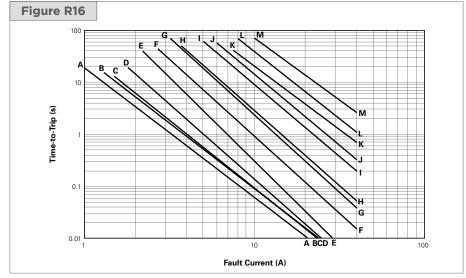
					Dim	ensions	in Millime	eters (Inc	ches)						
Part		\ \	- 1	В	(C	С)	ı	E	F	Н	J	Figure	Device Mass (g) (Only for Reference
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Тур	Тур		(Only for Reference
RHEF															
30V - High Te	mperatui	'e 7.4		12.7	4.0	5.8	7.6			3.0	1.0			DO D10	0.177
RHEF050	_	(0.29)	_	(0.50)	4.3 (0.17)	(0.23)	(0.30)	_	_	(0.12)	1.2 (0.05)	_	_	R8, R13, R14	0.177
RHEF070		6.9		10.8	4.3	5.8	7.6			3.0	1.2	1.24	1.2		0.259
NHEFU/U	_	(0.27)	_	(0.43)	(0.17)	(0.23)	(0.30)	_	_	(0.12)	(0.05)	(0.049)	(0.05)	R10, R13, R14	0.259
RHEF100		9.7		13.6	4.3	5.8	7.6			3.0	(0.03)	(0.043)	(0.00)	R8, R13,	0.312
THILLIOO		(0.38)		(0.54)	(0.17)	(0.23)	(0.30)			(0.12)				R14	0.012
RUSBF		(0.00)		(0.0.1)	(41117)	(0.20)	(0.00)			(01112)					
16V															
RUSBF090	_	7.4	_	12.2	4.3	5.8	7.6	_	_	3.1	_	0.89	0.8	R10, R13,	0.183
DUIODEAAA		(0.29)		(0.48)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.03)	R14	
RUSBF110	_	7.4	_	14.2	4.3	5.8	7.6	_	_	3.0	_	0.89	0.8	R10, R13,	0.204
DUCDEAGE		(0.29)		(0.56)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.03)	R14	0.040
RUSBF135	_	8.9	_	13.5	4.3	5.8	7.6	_	_	3.0	_	0.89	1.0	R10, R13,	0.240
RUSBF160		(0.35)		(0.53)	(0.17)	(0.23)	(0.30)			3.0		0.89	1.0	R14 R10, R13,	0.300
NUSBEIOU	_	(0.35)	_	(0.60)	(0.17)	(0.23)	(0.30)	_	_	(0.12)	_	(0.035)	(0.04)	R14	0.300
RUSBF185		10.2		15.7	4.3	5.8	7.6	_		3.0		0.89	1.0	R10, R13,	0.368
110001 100		(0.40)		(0.62)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.04)	R14	0.300
RUSBF250		11.4		18.3	4.3	5.8	7.6			3.0		0.89	1.2	R10, R13,	0.467
110001 200		(0.45)		(0.72)	(0.17)	(0.23)	(0.30)			(0.12)		(0.035)	(0.05)	R14	0.107
RGEF													, , , , ,		
16V															
RGEF250	_	8.9	_	12.8	4.3	5.8	3.18	6.18	_	3.0	1.2	1.24	1.2	R10, R13,	0.277
		(0.35)		(0.50)	(0.17)	(0.23)	(0.13)	(0.24)		(0.12)	(0.05)	(0.049)	(0.05)	R14	
RGEF300	6.1	7.1	6.1	11.0	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	1.2	R11, R13,	0.323
	(0.24)	(0.28)	(0.24)	(0.43)	(0.17)	(0.23)	(0.30)		(0.08)		(0.05)	(0.049)	(0.05)	R14	
RGEF400	7.9	8.9	7.9	12.8	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	1.4	R11, R13,	0.417
DOEEEOO	(0.31)	(0.35)	(0.31)	(0.50)	(0.17)	(0.23)	(0.30)		(0.08)	(0.12)	(0.05)	(0.049)	(0.06)	R14	0.540
RGEF500	9.4	10.4	9.4	14.3	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	1.6	R11, R13, R14	0.540
RGEF600	(0.37)	10.7	(0.37)	(0.56)	(0.17)	(0.23)	(0.30)		(0.08)	3.0	(0.05)	(0.049)	(0.06)	R11, R13,	0.604
NGEFOUU	(0.38)	(0.42)	12.2 (0.48)	(0.67)	(0.17)	(0.23)	(0.30)	_	(0.08)	(0.12)	(0.05)	(0.049)	1.6 (0.06)	R14	0.604
RGEF700	10.2	11.2	14.7	19.7	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	1.7	R11, R13,	0.701
HGLI 700	(0.40)	(0.44)	(0.58)	(0.78)	(0.17)	(0.23)	(0.30)		(0.08)	(0.12)	(0.05)	(0.049)	(0.07)	R14	0.701
RGEF800	11.7	12.7	16.0	20.9	4.3	5.8	7.6		2.0	3.0	1.2	1.24	1.8	R11, R13,	0.829
	(0.46)	(0.50)		(0.82)		(0.23)	(0.30)			(0.12)	(0.05)	(0.049)	(0.07)	R14	0.020
RGEF900	13.0	14.0	16.8	21.7	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	2.0	R11, R13,	0.887
	(0.51)	(0.55)	(0.66)	(0.85)	(0.17)	(0.23)	(0.30)		(0.08)	(0.12)	(0.05)	(0.049)	(0.08)	R14	
RGEF1000	_	16.5	21.1	25.2	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	2.0	R11, R13,	1.219
		(0.65)	(0.83)	(0.99)	(0.17)	(0.23)	(0.30)		(0.08)	(0.12)	(0.05)	(0.049)	(0.08)	R14	
RGEF1100	16.5	17.5	21.1	26.0	4.3	5.8	7.6	_	2.0	3.0	1.2	1.24	2.4	R11, R13,	1.408
	(0.65)	(0.69)	(0.83)	(1.02)	(0.17)	(0.23)	(0.30)		(0.08)	(0.12)	(0.05)	(0.049)	(0.09)	R14	
RGEF1200	16.4	17.5	22.6	28.0	9.4	10.9	7.6	_	2.3	3.5	1.4	1.45	1.5	R11, R13,	1.650
	(0.65)	(0.69)	(0.89)	(1.10)	(0.37)	(0.43)	(0.30)		(0.09)	(0.14)	(0.06)	(0.057)	(0.06)	R14	
RGEF1400	_	23.5	22.6	27.9	9.4	10.9	7.6	_	2.3	3.5	1.4	1.45	1.9	R11, R13,	2.146
B.1155		(0.925)	(0.89)	(1.10)	(0.37)	(0.43)	(0.30)		(0.09)	(0.14)	(0.06)	(0.057)	(0.08)	R14	
RHEF 16V - High Te	mperatui	·e													
RHEF200	_	9.4		14.4	4.3	5.8	7.6	_		3.1				R8, R13,	0.278
		(0.37)		(0.57)	(0.17)	(0.23)	(0.30)			(0.12)				R14	
RHEF300	_	8.8	_	13.8	4.3	5.8	7.6	_	_	3.0	1.2	_	_	R12, R13,	0.433
		(0.35)		(0.55)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			R14	
RHEF400		10.0		15.0	4.3	5.8	7.6	_		3.0	1.2	1.24	1.6	R12, R13,	0.509
1111111 400										0.0				,,	


Table R4 — Dimensions and Weights

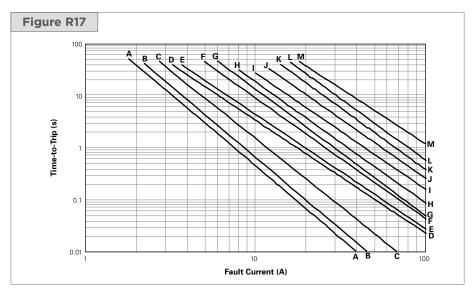
					Dim	ensions	in Millime	eters (In	ches)						
Part		4		В	(0)		E	F	Н	J	Figure	Device Mass (g) (Only for Reference)
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Тур	Тур		(Only for Helefelice)
RHEF 16V - High Te	mperatu	re													
RHEF450	_	10.4	_	15.6	4.3	5.8	7.6	_	_	3.0	1.2	1.24	1.6	R12, R13,	0.605
		(0.41)		(0.61)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)	(0.049)	(0.06)	R14	
RHEF550	_	11.2	_	18.9	4.3	5.8	7.6	_	_	3.0	1.2	_	_	R12, R13,	0.704
		(0.44)		(0.74)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			R14	
RHEF600	_	11.2	_	21.0	4.3	5.8	7.6	_	_	3.0	1.2	1.24	1.7	R12, R13,	0.792
		(0.44)		(0.83)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)	(0.049)	(0.067)	R14	
RHEF650	_	12.7	_	22.2	4.3	5.8	7.6	_	_	3.0	1.2	1.24	1.8	R12, R13,	0.952
		(0.50)		(88.0)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)	(0.049)	(0.07)	R14	
RHEF700	_	14.0	_	21.9	4.3	5.8	7.6	_	_	3.0	1.2	_	_	R12, R13,	0.850
		(0.55)		(0.86)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			R14	
RHEF750	_	14.0	_	23.5	4.3	5.8	7.6	_	_	3.0	1.2	1.24	2.0	R12, R13,	1.054
		(0.55)		(0.93)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)	(0.049)	(80.0)	R14	
RHEF800	_	16.5	_	22.5	4.3	5.8	7.6	_	_	3.0	1.2	_	_	R12, R13,	1.073
		(0.65)		(0.88)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			R14	
RHEF900	_	16.5	_	25.7	4.3	5.8	7.6	_	_	3.0	1.2	_	_	R12, R13,	1.516
		(0.65)		(1.01)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			R14	
RHEF1000	_	17.5	_	26.5	9.4	10.9	7.6	_	_	3.0	1.2	1.24	1.5	R12, R13,	1.791
		(0.69)		(1.04)	(0.37)	(0.43)	(0.30)			(0.12)	(0.05)	(0.049)	(0.06)	R14	
RHEF1100	_	21.0		26.1	9.4	10.9	7.6			3.0	1.2	_	_	R12, R13,	1.570
		(0.83)		(1.03)	(0.37)	(0.43)	(0.30)			(0.12)	(0.05)			R14	
RHEF1300	_	23.5	_	28.7	9.4	10.9	7.6	_	_	3.6	1.4	1.45	1.9	R12, R13,	2.257
		(0.925)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)	(0.057)	(0.084)	R14	
RHEF1400	_	23.5	_	28.6	9.4	10.9	7.6	_	_	3.6	1.4	_	_	R12, R13,	2.051
		(0.925)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)			R14	
RHEF1500	_	23.5	_	28.7	9.4	10.9	7.6	_	_	3.6	1.4	1.45	1.9	R12, R13,	2.257
		(0.925)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)	(0.057)	(0.084)	R14	
RUSBF 6V															
RUSBF075	_	6.9	_	11.4	4.3	5.9	7.6	_	_	3.1	_	0.91	1.0	R8, R13,	0.123
		(0.27)		(0.45)	(0.17)	(0.23)	(0.30)			(0.12)		(0.036)	(0.04)	R14	
RUSBF120	_	6.9	_	11.7	4.3	5.9	7.6	_	_	3.1	_	0.91	1.0	R8, R13,	0.111
		(0.27)		(0.46)	(0.17)	(0.23)	(0.30)			(0.12)		(0.036)	(0.04)	R14	
RUSBF155	_	6.9	_	11.7	4.3	5.9	7.6	_	_	3.1	_	0.91	1.0	R8, R13,	0.135
		(0.27)		(0.46)	(0.17)	(0.23)	(0.30)			(0.12)		(0.036)	(0.04)	R14	

Figures R15-R20 — Typical Time-to-Trip Curves at 20°C

RXEF


A = RXEF005J = RXEF075B = RXEF010K = RXEF090L = RXEF110= RXEF017 D = RXEF020M = RXEF135RXEF025 N = RXEF160= RXEF030 O = RXEF185G = RXEF040P = RXEF250H = RXEF050Q = RXEF300RXEF065 R = RXEF375

RKEF


A = RKEF050 J = RKEF300 B = RKEF065 K = RKEF375 C = RKEF075 L = RKEF400 D = RKEF090 M = RKEF500 E = RKEF110

F = RKEF135 G = RKEF160 H = RKEF185 I = RKEF250

RUEF

G = RUEF300

Figures R15-R20 — Typical Time-to-Trip Curves at 20°C

(Cont'd)

RGEF (data at 25°C)

A = RGEF250

B = RGEF300

= RGEF400

D = RGEF500

RGEF600

= RGEF700

G = RGEF800

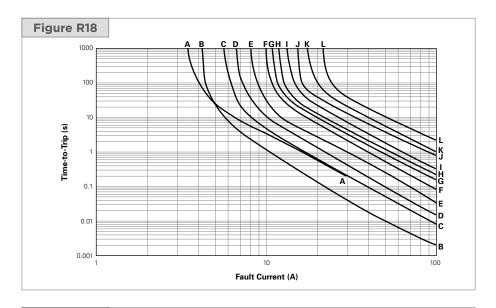
H = RGEF900

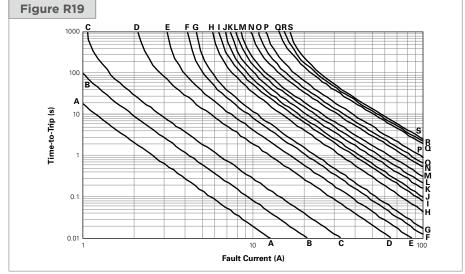
RGEF1000

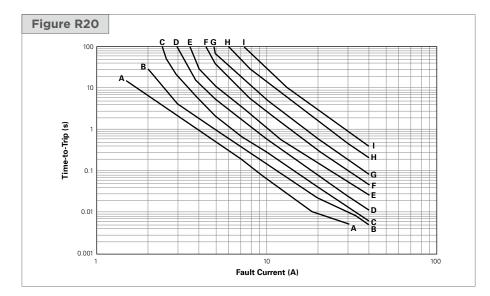
RGEF1100

RGEF1200

RGEF1400


A = RHEF050K = RHEF700В = RHEF070 L = RHEF750= RHEF100 M = RHEF800= RHEF200 N = RHEF900D RHEF300 O = RHEF1000RHEF400 P = RHEF1100RHEF450 Q = RHEF1300R = RHEF1400RHEF550 RHEF600 S = RHEF1500


RHEF650


RUSBF

RUSBF075 B = RUSBF090= RUSBF110 RUSBF120 D Ε RUSBF135 = RUSBF155 G = RUSBF160

> RUSBF185 = RUSBF250

Table R5 — Physical Characteristics and Environmental Specifications

RXEF							
Physical Characteristic	s						
Lead Material	RXEF005	: Tin-plated Nickel-copper Alloy, 0.128mm² (26AWG), ø0.40mm (0.016in)					
	RXEF010	: Tin-plated Nickel-copper Alloy, 0.205mm² (24AWG), ø0.51mm (0.020in)					
	RXEF017 to 040	:Tin-plated Copper-clad Steel, 0.205mm² (24AWG), ø0.51mm (0.020in)					
	RXEF050 to 090	: Tin-plated Copper, 0.205mm² (24AWG), ø0.51mm (0.020in)					
	RXEF110 to 375	:Tin-plated Copper, 0.52mm² (20AWG), ø0.81mm (0.032in)					
Soldering Characteristics	Solderability per ANSI/J-STD-002 Category 3						
	RXEF005, RXEF010 Meet ANSI/J-STD-002 Category 1						
Solder Heat Withstand	RXEF005- RXEF025: per IEC-STD 68-2-20, Test Tb, Method 1a, Condition a;						
	Can Withstand 5s at 260°C ±5°C						
	All Other Sizes	: per IEC-STD 68-2-20, Test Tb, Method 1a, Condition b;					
	Can Withstand 10:	s at 260°C ±5°C					
Insulating Material	Cured, Flame-reta	rdant Epoxy Polymer; Meets UL 94V-0					
Operation Temperature	-40°C~85°C						

Note: Devices are not designed to be placed through a reflow process.

Environmental Specifications							
Conditions	Resistance Change						
-40°C, 1000 hrs	±5%						
85°C, 1000 hrs	±5%						
85°C, 85%RH, 1000 hrs	±10%						
85°C, -40°C (10 Times)	±10%						
MIL-STD-202, Method 215F	No Change						
	Conditions -40°C, 1000 hrs 85°C, 1000 hrs 85°C, 85%RH, 1000 hrs 85°C, -40°C (10 Times)	Conditions Resistance Change -40°C, 1000 hrs ±5% 85°C, 1000 hrs ±5% 85°C, 85%RH, 1000 hrs ±10% 85°C, -40°C (10 Times) ±10%					

RKEF								
Physical Characteristic	es s							
Lead Material	RKEF050 to 090 : Tin-plated Copper, 0.205mm² (24AWG), ø0.51mm (0.020in)							
	RKEF110 to 500 : Tin-plated Copper, 0.52mm² (20AWG), ø0.81mm (0.032in)							
Soldering Characteristics	olderability per ANSI/J-STD-002 Category 3							
Solder Heat Withstand	RKEF050-RKEF185: per IEC-STD 68-2-20, Test Tb, Method 1a, Condition a;							
	Can Withstand 5s at 260°C ±5°C							
	All Other Sizes : per IEC-STD 68-2-20, Test Tb, Method 1a, Condition b;							
	RKEF Can Withstand 10s at 260°C ±5°C							
Insulating Material	Cured, Flame-retardant Epoxy Polymer; Meets UL 94V-0							
Operation Temperature	-40°C~85°C							

Note: Devices are not designed to be placed through a reflow process.

Environmental Specifications						
Test	Conditions	Resistance Change				
Passive Aging	-40°C, 1000 hrs	±5%				
	85°C, 1000 hrs	±5%				
Humidity Aging	85°C, 85%RH, 1000 hrs	±10%				
Thermal Shock	85°C, -40°C (10 Times)	±10%				
Solvent Resistance	MIL-STD-202, Method 215F	No Change				

Table R5 — Physical Characteristics and Environmental Specifications

(Cont'd)

RUEF							
Physical Characteristic	cs						
Lead Material	RUEF090 to RUEF250: Tin-plated Copper-clad Steel, 0.205mm² (24AWG)						
	RUEF300 to RUEF900: Tin-plated Copper, 0.52mm² (20AWG), ø0.81mm (0.032in)						
Soldering Characteristics	Solderability per ANSI/J-STD-002 Category 3						
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Method1A, Condition B, Can Withstand 10s at 260°C ±5°C						
Insulating Material	Cured, Flame-retardant Epoxy Polymer; Meets UL 94V-0						
Operation Temperature	-40°C~85°C						

Note: Devices are not designed to be placed through a reflow process.

Environmental Spec	Environmental Specifications							
Test	Conditions	Resistance Change						
Passive Aging	70°C, 1000 hrs	±5%						
	85°C, 1000 hrs	±5%						
Humidity Aging	85°C, 85%RH, 1000 hrs	±5%						
Thermal Shock	85°C, -40°C (10 times)	±5%						
Solvent Resistance	MIL-STD-202, Method 215F	No Change						

RUSBF							
Physical Characteristic	cs						
Lead Material	RUSBF075	: Tin-plated Nickel-copper Alloy, 0.205mm² (24AWG), ø0.51mm/0.020in					
	RUSBF090 to RUSBF250: Tin-plated Copper-clad Steel, 0.205mm² (24AWG), ø0.51mm/0.020in						
Soldering Characteristics	Solderability per ANSI/J-STD-002 Category 3 Except						
	RUSBF075 Meet ANSI/J-STD-002 Category 1						
Solder Heat Withstand	RUSBF120: per IEC-STD 68-2-20, Test Tb, Method 1A, Condition A; Can Withstand 5s at 260°C ±5°C						
	All Others : per IE	C-STD 68-2-20, Test Tb, Method 1A, Condition B; Can Withstand 10s at 260°C ±5°C					
Insulating Material	Cured, Flame-reta	ardant Epoxy Polymer; Meets UL 94V-0					
Operation Temperature	-40°C~85°C						

Note: Devices are not designed to be placed through a reflow process.

Environmental Spec	Environmental Specifications							
Test	Conditions	Resistance Change						
Passive Aging	70°C, 1000 hrs	±5%						
	85°C, 1000 hrs	±5%						
Humidity Aging	85°C, 85%RH, 1000 hrs	±5%						
Thermal Shock	85°C, -40°C (10 Times)	±5%						
Solvent Resistance	MIL-STD-202, Method 215F	No change						

Table R5 — Physical Characteristics and Environmental Specifications

(Cont'd)

RGEF		
Physical Characteristics	S	
Lead Material	RGEF250	:Tin-plated Copper-clad Steel, 0.205mm² (24AWG), ø0.51mm/0.020in
	RGEF300 to RGEF1100	:Tin-plated Copper, 0.52mm² (20AWG), ø0.81mm/0.032in
	RGEF1200 to RGEF140	0: Tin-plated Copper, 0.82mm² (18AWG), ø1.0mm/0.04in
Soldering Characteristics	Solderability per ANSI/J	J-STD-002 Category 3
Solder Heat Withstand	RGEF250 and RGEF400	O : per IEC 68-2-20, Test Tb, Method 1a, Condition a;
	can withstand 5s at 260	0°C ±5°C
	RGEF500 to RGEF1400	: per IEC 68-2-20, Test Tb, Method 1a, Condition b;
	can withstand 10s at 26	60°C ±5°C
Insulating Material	Cured, Flame-retardant	Epoxy Polymer; Meets UL 94V-0
Operation Temperature	-40°C~85°C	

Note: Devices are not designed to be placed through a reflow process.

Environmental Specifications					
Test	Conditions	Resistance Change			
Passive Aging	-40°C, 1000 hrs	±5%			
	85°C, 1000 hrs	±5%			
Humidity Aging	85°C, 85%RH, 1000 hrs	±5%			
Thermal Shock	85°C, -40°C (10 Times)	±5%			
Solvent Resistance	MIL-STD-202, Method 215F	No Change			

RHEF	
Physical Characteristics	s
Lead Material	RHEF050 to RHEF200 : Tin-plated Copper-clad Steel, 0.205mm² (24AWG), ø0.51mm/0.020in
	RHEF300 to RHEF1100 : Tin-plated Copper, 0.52mm² (20AWG), ø0.81mm/0.032in
	RHEF1300 to RHEF1500: Tin-plated Copper, 0.82mm² (18AWG), ø1.0mm/0.04in
Soldering Characteristics	Solderability per ANSI/J-STD-002 Category 3
Solder Heat Withstand	per IEC 68-2-20, Test Tb, Method 1A, Condition B; Can Wthstand 10s at 260°C ±5°C
Insulating Material	Cured, Flame-retardant Epoxy Polymer; Meets UL 94V-0
Operation Temperature	-40°C~125°C

Note: Devices are not designed to be placed through a reflow process.

Environmental Spec	Environmental Specifications				
Test	Conditions	Resistance Change			
Passive Aging	70°C, 1000 hrs	±5%			
	85°C, 1000 hrs	±5%			
Humidity Aging	85°C, 85%RH, 1000 hrs	±5%			
Thermal Shock	125°C, -40°C (10 Times)	±5%			
Solvent Resistance	MIL-STD-202, Method 215F	No Change			

Storage Conditions

Storage Conditions	40°C max, 70% RH max; devices should remain in original sealed bags prior to use.
	Devices may not meet specified values if these storage conditions are exceeded.

 $\textbf{Note:} \ \mathsf{For} \ \mathsf{the} \ \mathsf{TR} \ \mathsf{devices} \ \mathsf{series}, \ \mathsf{see} \ \mathsf{the} \ \mathsf{telecommunications} \ \mathsf{and} \ \mathsf{networking} \ \mathsf{devices} \ \mathsf{section}.$

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
RXEF 60V						
RXEF005	500	_	_	10,000	_	UL, CSA, TÜV, CQC
RXEF005-2	_	3,000	_	15,000	_	UL, CSA, TÜV, CQC
RXEF005-AP	_	_	2,000	10,000	_	UL, CSA, TÜV, CQC
RXEF010	500	_	_	10,000	X10	UL, CSA, TÜV, CQC
RXEF010-2	_	3,000	_	15,000	X10	UL, CSA, TÜV, CQC
RXEF010-AP	_	_	2,000	10,000	X10	UL, CSA, TÜV, CQC
RXEF017	500	_	_	10,000	X17	UL, CSA, TÜV, CQC
RXEF017-2	_	2,500	_	12,500	X17	UL, CSA, TÜV, CQC
RXEF017-AP	_	_	2,000	10,000	X17	UL, CSA, TÜV, CQC
RXEF 72V						
RXEF020	500	_	_	10,000	X20	UL, CSA, TÜV, CQC
RXEF020-2	_	3,000	_	15,000	X20	UL, CSA, TÜV, CQC
RXEF020-AP	_	_	2,000	10,000	X20	UL, CSA, TÜV, CQC
RXEF025	500	_	_	10,000	X25	UL, CSA, TÜV, CQC
RXEF025-2	_	3,000	_	15,000	X25	UL, CSA, TÜV, CQC
RXEF025-AP	_	_	2,000	10,000	X25	UL, CSA, TÜV, CQC
RXEF030	500	_	_	10,000	X30	UL, CSA, TÜV, CQC
RXEF030-2	_	3,000	_	15,000	X30	UL, CSA, TÜV, CQC
RXEF030-AP	_	_	2,000	10,000	X30	UL, CSA, TÜV, CQC
RXEF040	500	_	_	10,000	X40	UL, CSA, TÜV, CQC
RXEF040-2	_	3,000	_	15,000	X40	UL, CSA, TÜV, CQC
RXEF040-AP	_	_	2,000	10,000	X40	UL, CSA, TÜV, CQC
RXEF050	500	_	_	10,000	X50	UL, CSA, TÜV, CQC
RXEF050-2	_	3,000	_	15,000	X50	UL, CSA, TÜV, CQC
RXEF050-AP	_	_	2,000	10,000	X50	UL, CSA, TÜV, CQC
RXEF065	500	_	_	10,000	X65	UL, CSA, TÜV, CQC
RXEF065-2	_	3,000	_	15,000	X65	UL, CSA, TÜV, CQC
RXEF065-AP	_	_	2,000	10,000	X65	UL, CSA, TÜV, CQC
RXEF075	500	_	_	10,000	X75	UL, CSA, TÜV, CQC
RXEF075-2	_	3,000	_	15,000	X75	UL, CSA, TÜV, CQC
RXEF075-AP	_		2,000	10,000	X75	UL, CSA, TÜV, CQC
RXEF090	500	_	_	10,000	X90	UL, CSA, TÜV, CQC
RXEF090-2	_	3,000	_	15,000	X90	UL, CSA, TÜV, CQC
RXEF090-AP	_	_	2,000	10,000	X90	UL, CSA, TÜV, CQC
RXEF110	500	_	_	10,000	X110	UL, CSA, TÜV, CQC
RXEF110-2	_	1,500	_	7,500	X110	UL, CSA, TÜV, CQC
RXEF110-AP	_	_	1,000	5,000	X110	UL, CSA, TÜV, CQC
RXEF135	500	_	_	10,000	X135	UL, CSA, TÜV, CQC
RXEF135-2	_	1,500	_	7,500	X135	UL, CSA, TÜV, CQC
RXEF135-AP	_	_	1,000	5,000	X135	UL, CSA, TÜV, CQC
RXEF160	500	_	_	10,000	X160	UL, CSA, TÜV, CQC
RXEF160-2	_	1,500		7,500	X160	UL, CSA, TÜV, CQC
RXEF160-AP	_		1,000	5,000	X160	UL, CSA, TÜV, CQC
RXEF185	500			10,000	X185	UL, CSA, TÜV, CQC
RXEF185-2	_	1,500		7,500	X185	UL, CSA, TÜV, CQC
RXEF185-AP			1,000	5,000	X185	UL, CSA, TÜV, CQC
RXEF250	250	_	_	5,000	X250	UL, CSA, TÜV, CQC
RXEF250-2		1,000		5,000	X250	UL, CSA, TÜV, CQC
		.,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UL, CSA, TÜV, CQC

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
RXEF 72V						
RXEF300	250	_	_	5,000	X300	UL, CSA, TÜV, CQC
RXEF300-2	_	1,000	_	5,000	X300	UL, CSA, TÜV, CQC
RXEF300-AP	_	_	1,000	5,000	X300	UL, CSA, TÜV, CQC
RXEF375	250	_	_	5,000	X375	UL, CSA, TÜV, CQC
RKEF 60V						
RKEF050	500	_	_	10,000	K50	UL, CSA, TÜV
RKEF065	500	_	_	10,000	K65	UL, CSA, TÜV
RKEF075	500	_	_	10,000	K75	UL, CSA, TÜV
RKEF090	500	_	_	10,000	K90	UL, CSA, TÜV
RKEF110	500	_	_	10,000	K110	UL, CSA, TÜV
RKEF135	500	_	_	10,000	K135	UL, CSA, TÜV
RKEF160	500	_	_	10,000	K160	UL, CSA, TÜV
RKEF185	500	_	_	10,000	K185	UL, CSA, TÜV
RKEF250	500	_	_	10,000	K250	UL, CSA, TÜV
RKEF300	250	_	_	5,000	K300	UL, CSA, TÜV
RKEF375	250	_	_	5,000	K375	UL, CSA, TÜV
RKEF400	250	_	_	5,000	K400	UL, CSA, TÜV
RKEF500	250			5,000	K500	UL, CSA, TÜV
RUEF				0,000	1,000	02, 00, 10
RUEF090	500	_	_	10,000	U90	UL, CSA, TÜV, CQC
RUEF090-2	_	3,000	_	15,000	U90	UL, CSA, TÜV, CQC
RUEF090-AP	_	_	2,000	10,000	U90	UL, CSA, TÜV, CQC
RUEF110	500	_		10,000	U110	UL, CSA, TÜV, CQC
RUEF110-2	_	3,000	_	15,000	U110	UL, CSA, TÜV, CQC
RUEF110-AP	_	_	2,000	10,000	U110	UL, CSA, TÜV, CQC
RUEF135	500	_	_	10,000	U135	UL, CSA, TÜV, CQC
RUEF135-2		3,000	_	15,000	U135	UL, CSA, TÜV, CQC
RUEF135-AP	_		2,000	10,000	U135	UL, CSA, TÜV, CQC
RUEF160	500			10,000	U160	UL, CSA, TÜV, CQC
RUEF160-2		3,000		15,000	U160	UL, CSA, TÜV, CQC
RUEF160-AP			2,000	10,000	U160	UL, CSA, TÜV, CQC
RUEF185	500		2,000	10,000	U185	UL, CSA, TÜV, CQC
RUEF185-2		3,000	_	15,000	U185	UL, CSA, TÜV, CQC
RUEF185-AP			2,000	10,000	U185	UL, CSA, TÜV, CQC
RUEF250	500			10,000	U250	UL, CSA, TÜV, CQC
RUEF250-2		3,000		15,000	U250	UL, CSA, TÜV, CQC
		· · · · · · · · · · · · · · · · · · ·		10,000		
RUEF250-AP RUEF300	500		2,000		U250 U300	UL, CSA, TÜV, CQC UL, CSA, TÜV, CQC
RUEF300-2		2 500		10,000 12,500	U300	UL, CSA, TÜV, CQC
		2,500	1 000			
RUEF300-AP		_	1,000	5,000	U300	UL, CSA, TÜV, CQC
RUEF400	500	1 500		10,000	U400	UL, CSA, TÜV, CQC
RUEF400-2		1,500	1,000	7,500	U400	UL, CSA, TÜV, CQC
RUEF400-AP			1,000	5,000	U400	UL, CSA, TÜV, CQC
RUEF500	250		_	5,000	U500	UL, CSA, TÜV, CQC
RUEF500-2		1,500		7,500	U500	UL, CSA, TÜV, CQC
RUEF500-AP			1,000	5,000	U500	UL, CSA, TÜV, CQC
RUEF600	250			5,000	U600	UL, CSA, TÜV, CQC
RUEF600-2	_	1,000	_	5,000	U600	UL, CSA, TÜV, CQC

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
RUEF 30V						
RUEF600-AP	_	_	1,000	5,000	U600	UL, CSA, TÜV, CQC
RUEF700	250	_	_	5,000	U700	UL, CSA, TÜV, CQC
RUEF700-2	_	1,000	_	5,000	U700	UL, CSA, TÜV, CQC
RUEF700-AP	_	_	1,000	5,000	U700	UL, CSA, TÜV, CQC
RUEF800	250	_	_	5,000	U800	UL, CSA, TÜV, CQC
RUEF800-2	_	1,000	_	5,000	U800	UL, CSA, TÜV, CQC
RUEF800-AP	_	_	1,000	5,000	U800	UL, CSA, TÜV, CQC
RUEF900	250	_	_	5,000	U900	UL, CSA, TÜV, CQC
RUEF900-2	_	1,000	_	4,000	U900	UL, CSA, TÜV, CQC
RUEF900-AP	_	_	1,000	4,000	U900	UL, CSA, TÜV, CQC
RHEF BOV - High Temperate	ure		·	·		
RHEF050	500	_	_	10,000	H0.5	UL, CSA, TÜV
RHEF050-2	_	2,500	_	12,500	H0.5	UL, CSA, TÜV
RHEF070	500	_	_	10,000	H0.7	UL, CSA, TÜV
RHEF070-2	_	2,500	_	12,500	H0.7	UL, CSA, TÜV
RHEF100	500	_	_	10,000	H1	UL, CSA, TÜV
RHEF100-2	_	2,500	_	12,500	H1	UL, CSA, TÜV
RUSBF 16V		·		·		
RUSBF090	500	_	_	10,000	R90	UL, CSA, TÜV
RUSBF090-2	_	3,000	_	15,000	R90	UL, CSA, TÜV
RUSBF090-AP	_	_	2,000	10,000	R90	UL, CSA, TÜV
RUSBF110	500	_	_	10,000	R110	UL, CSA, TÜV
RUSBF110-2	_	3,000	_	15,000	R110	UL, CSA, TÜV
RUSBF110-AP	_	_	2,000	10,000	R110	UL, CSA, TÜV
RUSBF135	500	_	_	10,000	R135	UL, CSA, TÜV
RUSBF135-2	_	3,000	_	15,000	R135	UL, CSA, TÜV
RUSBF135-AP	_	_	2,000	10,000	R135	UL, CSA, TÜV
RUSBF160	500	_	_	10,000	R160	UL, CSA, TÜV
RUSBF160-2	_	3,000	_	15,000	R160	UL, CSA, TÜV
RUSBF160-AP	_	_	2,000	10,000	R160	UL, CSA, TÜV
RUSBF185	500	_	_	10,000	R185	UL, CSA, TÜV
RUSBF185-2	_	3,000	_	15,000	R185	UL, CSA, TÜV
RUSBF185-AP	_		2,000	10,000	R185	UL, CSA, TÜV
RUSBF250	500	_	_	10,000	R250	UL, CSA, TÜV
RUSBF250-2	_	3,000	_	15,000	R250	UL, CSA, TÜV
RUSBF250-AP	_	_	2,000	10,000	R250	UL, CSA, TÜV
RGEF 16V				·		
RGEF250	500	_	_	10,000	G2.5	UL, CSA, TÜV
RGEF250-2	_	3,000	_	15,000	G2.5	UL, CSA, TÜV
RGEF250-AP	_	_	2,000	10,000	G2.5	UL, CSA, TÜV
RGEF300	500			10,000	G3	UL, CSA, TÜV
RGEF300-2	_	2,500	_	12,500	G3	UL, CSA, TÜV
RGEF300-AP	_		2,000	10,000	G3	UL, CSA, TÜV
RGEF400	500	_		10,000	G4	UL, CSA, TÜV
RGEF400-2	_	2,500	_	12,500	G4	UL, CSA, TÜV
RGEF400-AP	_		2,000	10,000	G4	UL, CSA, TÜV
	500		2,000	10,000	G5	UL, CSA, TÜV

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
RGEF 16V						
RGEF500-2	_	2,000	_	10,000	G5	UL, CSA, TÜV
RGEF500-AP	_	_	2,000	10,000	G5	UL, CSA, TÜV
RGEF600	500	_	_	10,000	G6	UL, CSA, TÜV
RGEF600-2	_	2,000	_	10,000	G6	UL, CSA, TÜV
RGEF600-AP	_	_	2,000	10,000	G6	UL, CSA, TÜV
RGEF700	500	_	_	10,000	G7	UL, CSA, TÜV
RGEF700-2	_	1,500	_	7,500	G7	UL, CSA, TÜV
RGEF700-AP	_	_	1,500	7,500	G7	UL, CSA, TÜV
RGEF800	500	_	_	10,000	G8	UL, CSA, TÜV
RGEF800-2	_	1,500	_	7,500	G8	UL, CSA, TÜV
RGEF800-AP		_	1,500	7,500	G8	UL, CSA, TÜV
RGEF900	500			10,000	G9	UL, CSA, TÜV
RGEF900-2		1,000		5,000	G9	UL, CSA, TÜV
GEF900-AP			1,000	5,000	G9	UL, CSA, TÜV
RGEF1000	250		1,000 —	5,000	G10	UL, CSA, TÜV
RGEF1000	250	1,000		5,000	G10	UL, CSA, TÜV
			1,000	·		
RGEF1000-AP			1,000	5,000	G10	UL, CSA, TÜV
RGEF1100	250			5,000	G11	UL, CSA, TÜV
GEF1100-2		1,000	<u> </u>	5,000	G11	UL, CSA, TÜV
GEF1100-AP			1,000	5,000	G11	UL, CSA, TÜV
GEF1200	250			5,000	G12	UL, CSA, TÜV
RGEF1200-2		1,000		5,000	G12	UL, CSA, TÜV
RGEF1200-AP			1,000	5,000	G12	UL, CSA, TÜV
RGEF1400	250	_	_	5,000	G14	UL, CSA, TÜV
RGEF1400-2	_	1,000	_	5,000	G14	UL, CSA, TÜV
RGEF1400-AP		_	1,000	5,000	G14	UL, CSA, TÜV
RHEF 6V - High Temperatur	e					
RHEF200	500	_	_	10,000	H2	UL, CSA, TÜV
RHEF200-2	_	2,500	_	12,500	H2	UL, CSA, TÜV
RHEF200-AP	_	_	2,500	12,500	H2	UL, CSA, TÜV
RHEF300	500	_	_	10,000	НЗ	UL, CSA, TÜV
RHEF300-2	_	2,000	_	10,000	НЗ	UL, CSA, TÜV
RHEF300-AP	_	<u> </u>	2,000	10,000	H3	UL, CSA, TÜV
RHEF400	500	_	_	10,000	H4	UL, CSA, TÜV
RHEF400-2	_	1,500	_	7,500	H4	UL, CSA, TÜV
RHEF400-AP	_	_	1,500	7,500	H4	UL, CSA, TÜV
RHEF450	500	_	-	10,000	H4.5	UL, CSA, TÜV
RHEF450-2		1,500		7,500	H4.5	UL, CSA, TÜV
						UL, CSA, TÜV
HEF450-AP			1,500	7,500	H4.5	
HEF550	500			10,000	H5.5	UL, CSA, TÜV
HEF550-2		2,000		10,000	H5.5	UL, CSA, TÜV
HEF550-AP			2,000	10,000	H5.5	UL, CSA, TÜV
RHEF600	500			10,000	H6	UL, CSA, TÜV
RHEF600-2	_	2,000	_	10,000	H6	UL, CSA, TÜV
RHEF600-AP			2,000	10,000	H6	UL, CSA, TÜV
RHEF650	500	_	_	10,000	H6.5	UL, CSA, TÜV
HEF650-2	_	1,500	_	7,500	H6.5	UL, CSA, TÜV
RHEF650-AP			1,500	7,500	H6.5	UL, CSA, TÜV
RHEF700	500	_	_	10,000	H7	UL, CSA, TÜV

(Cont'd)

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
RHEF 16V - High Temperate	ure					
RHEF700-2	_	1,500	_	7,500	H7	UL, CSA, TÜV
RHEF700-AP	_	_	1,500	7,500	H7	UL, CSA, TÜV
RHEF750	500	_	_	10,000	H7.5	UL, CSA, TÜV
RHEF750-2	_	1,000	_	5,000	H7.5	UL, CSA, TÜV
RHEF750-AP	_	_	1,000	5,000	H7.5	UL, CSA, TÜV
RHEF800	500	_	_	10,000	H8	UL, CSA, TÜV
RHEF800-2	_	1,000	_	5,000	H8	UL, CSA, TÜV
RHEF800-AP	_	_	1,000	5,000	H8	UL, CSA, TÜV
RHEF900	250	_	_	5,000	H9	UL, CSA, TÜV
RHEF900-2	_	1,000	_	5,000	H9	UL, CSA, TÜV
RHEF900-AP	_	_	1,000	5,000	H9	UL, CSA, TÜV
RHEF1000	250	_	_	5,000	H10	UL, CSA, TÜV
RHEF1000-2	_	1,000	_	5,000	H10	UL, CSA, TÜV
RHEF1000-AP	_	_	1,000	5,000	H10	UL, CSA, TÜV
RHEF1100	250	_	_	5,000	H11	UL, CSA, TÜV
RHEF1100-2	_	1,000	_	5,000	H11	UL, CSA, TÜV
RHEF1100-AP	_	_	1,000	5,000	H11	UL, CSA, TÜV
RHEF1300	250	_	_	5,000	H13	UL, CSA, TÜV
RHEF1300-2	_	1,000	_	5,000	H13	UL, CSA, TÜV
RHEF1300-AP	_	_	1,000	5,000	H13	UL, CSA, TÜV
RHEF1400	250	_	_	5,000	H14	UL, CSA, TÜV
RHEF1400-2	_	1,000	_	5,000	H14	UL, CSA, TÜV
RHEF1400-AP	_	_	1,000	5,000	H14	UL, CSA, TÜV
RHEF1500	250	_	_	5,000	H15	UL, CSA, TÜV
RHEF1500-2	_	1,000	_	5,000	H15	UL, CSA, TÜV
RHEF1500-AP	_	_	1,000	5,000	H15	UL, CSA, TÜV
RUSBF 6V						
RUSBF075	500	_	_	10,000	R75	UL, CSA, TÜV
RUSBF075-2	_	3,000	_	15,000	R75	UL, CSA, TÜV
RUSBF075-AP	_	_	2,000	10,000	R75	UL, CSA, TÜV
RUSBF120	500	_	_	10,000	R120	UL, CSA, TÜV
RUSBF120-2	_	3,000	_	15,000	R120	UL, CSA, TÜV
RUSBF120-AP	_	_	2,000	10,000	R120	UL, CSA, TÜV
RUSBF155	500	_	_	10,000	R155	UL, CSA, TÜV
RUSBF155-2	_	3,000	_	15,000	R155	UL, CSA, TÜV
RUSBF155-AP	_	_	2,000	10,000	R155	UL, CSA, TÜV

Agency Recognitions

UL	File # E74889
CSA	File # CA78165
TÜV	Certificate number available on request (per IEC 60730-1).

Table R7 — Tape and Reel Specifications

RXEF and RKEF devices are available in tape and reel packaging per EIA468-B/IEC60286-2 standards. See Figures R21 and R22 for details.

Description	EIA Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	18	-0.5/+1.0
Hold-Down Tape Width	W_4	11	Minimum
Top Distance between Tape Edges	W ₆	3	Maximum
Sprocket Hole Position	W ₅	9	-0.5/+0.75
Sprocket Hole Diameter	D ₀	4	± 0.2
Abscissa to Plane (Straight Lead) (RXEF110 To RXEF300, RKEF135 To RKEF500)	Н	18.5	± 2.5
Abscissa to Plane (Kinked Lead) (RXEF010 To RXEF090, RKEF050 To RKEF110)	H ₀	16.0	± 0.5
Abscissa to Top (RXEF010 To RXEF090, RKEF050 To RKEF185)	H ₁	32.2	Maximum
Abscissa to Top* (RXEF110 To RXEF300, RKEF250 To RKEF500)	H ₁	47.5	Maximum
Overall Width with Lead Protrusion (RXEF010 To RXEF090, RKEF050 To RKEF185)	C ₁	43.2	Maximum
Overall Width with Lead Protrusion* (RXEF110 To RXEF300, RKEF250 To RKEF500)	C ₁	58	Maximum
Overall Width without Lead Protrusion (RXEF010 To RXEF090, RKEF050 To RKEF185)	C_2	42.5	Maximum
Overall Width without Lead Protrusion* (RXEF110 To RXEF300, RKEF250 To RKEF500)	C ₂	57	Maximum
Lead Protrusion	L ₁	1.0	Maximum
Protrusion of Cut-Out	L	11.0	Maximum
Protrusion beyond Hold-down Tape	l ₂	Not Specified	_
Sprocket Hole Pitch	P ₀	12.7	± 0.3
Device Pitch (RXEF010 To RXEF090, RKEF050 To RKEF185)	_	12.7	± 0.3
Device Pitch (RXEF110 To RXEF300, RKEF250 To RKEF500)	_	25.4	± 0.61
Pitch Tolerance	_	20 Consecutive	± 1
Tape Thickness	Т	0.9	Maximum
Overall Tape and Lead Thickness (RXEF010 To RXEF090, RKEF050 To RKEF185)	T ₁	1.5	Maximum
Overall Tape and Lead Thickness (RXEF110 To RXEF300, RKEF250 To RKEF500)	T ₁	2.3	Maximum
Splice Sprocket Hole Alignment	_	0	± 0.3
Body Lateral Deviation	Δh	0	± 1.0
Body Tape Plane Deviation	Δρ	0	± 1.3
Ordinate to Adjacent Component Lead (RXEF010 To RXEF185, RKEF050 To RKEF300)	P ₁	3.81	± 0.7
Ordinate to Adjacent Component Lead (RXEF250 To RXEF300, RKEF375 To RKEF500)	P ₁	7.62	± 0.7
Lead Spacing* (RXEF010 To RXEF185, RKEF050 To RKEF300)	F	5.05	± 0.75
Lead Spacing* (RXEF250 To RXEF300, RKEF375 To RKEF500)	F	10.15	± 0.75
Reel Width (RXEF010 To RXEF090, RKEF050 To RKEF185)	W_2	56.0	Maximum
Reel Width* (RXEF110 To RXEF300, RKEF250 To RKEF500)	W_2	63.5	Maximum
Reel Diameter	А	370.0	Maximum
Space between Flanges* (RXEF010 To RXEF090, RKEF050 To RKEF185)	W ₁	48.00	Maximum
Space between Flanges* (RXEF110 To RXEF300, RKEF250 To RKEF500)	W ₁	55.00	Maximum
Arbor Hold Diameter	С	26.0	± 12.0
Core Diameter*	N	91.0	Maximum
Вох	_	64/372/362	Maximum
Consecutive Missing Places	_	None	_
Empty Places per Reel	_	0.1%	Maximum

^{*}Differs from EIA specification.

Table R7 — Tape and Reel Specifications

(Cont'd)

RUEF and RUSBF devices are available in tape and reel packaging per EIA468–B/IEC60286–2 standards. See Figures R21 and R22 for details.

Description	EIA Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	18	-0.5/+1.0
Hold-down Tape Width	W_4	11	Minimum
Top Distance between Tape Edges	W ₆	3	Maximum
Sprocket Hole Position	W ₅	9	-0.5/+0.75
Sprocket Hole Diameter	D ₀	4	± 0.2
Abscissa to Plane (Straight Lead)* (RUEF300 to RUEF900)	Н	18.5	± 2.5
Abscissa to Plane (Kinked Lead) (RUSBF075 to RUSBF250, RUEF090 to RUEF250)	H ₀	16.0	± 0.5
Abscissa to Top (RUSBF075 to RUSBF250, RUEF090 to RUEF300)	H ₁	32.2	Maximum
Abscissa to Top* (RUEF400 to RUEF900)	H ₁	45.0	Maximum
Overall Width with Lead Protrusion (RUSBF075 to RUSBF250, RUEF090 to RUEF300)	C_1	43.2	Maximum
Overall Width with Lead Protrusion (RUEF400 To RUEF900)	C ₁	56	Maximum
Overall Width without Lead Protrusion (RUSBF075 to RUSBF250, RUEF090 to RUEF300)	C_2	42.5	Maximum
Overall Width without Lead Protrusion (RUEF400 to RUEF900)	C ₂	56	Maximum
Lead Protrusion	L ₁	1.0	Maximum
Protrusion of Cut-out	L	11	Maximum
Protrusion beyond Hold-down Tape		Not Specified	_
Sprocket Hole Pitch	P ₀	12.7	± 0.3
Device Pitch (RUSBF075 to RUSBF250, RUEF090 to RUEF300)	_	12.7	± 0.3
Device Pitch (RUEF400 to RUEF900)	_	25.4	± 0.6
Pitch Tolerance	_	20 Consecutive	± 1
Tape Thickness	Т	0.9	Maximum
Overall Tape and Lead Thickness (RUSBF075 to RUSBF250, RUEF090 to RUEF50)	T ₁	1.5	Maximum
Overall Tape and Lead Thickness* (RUEF300 to RUEF900)	T ₁	2.3	Maximum
Splice Sprocket Hole Alignment	_	0	± 0.3
Body Lateral Deviation	Δh	0	± 1.0
Body Tape Plane Deviation	Δρ	0	± 1.3
Ordinate to Adjacent Component Lead (RUSBF075 to RUSBF250, RUEF090 to RUEF300)	P ₁	3.81	± 0.7
Ordinate to Adjacent Component Lead (RUEF400 to RUEF900)	P ₁	7.62	± 0.7
Lead Spacing* (RUSBF075 to RUSBF250, RUEF090 to RUEF400)	F	5.05	± 0.75
Lead Spacing* (RUEF500 to RUEF900)	F	10.15	± 0.75
Reel Width (RUEF090 to RUEF400, Rusbf075 to Rusbf250)	W ₂	56.0	Maximum
Reel Width (RUEF500* to RUEF900)	W_2	63.5	Maximum
Reel Diameter	A	370.0	Maximum
Space between Flanges* (RUEF090 to RUEF400, RUSBF075 to RUSBF250)	W ₁	48.0	Maximum
Space between Flanges* (RUEF500 to RUEF900)	W ₁	55.0	Maximum
Arbor Hold Diameter	С	26.0	± 12.0
Core Diameter*	N	91.0	Maximum
Box		64/372/362	Maximum
Consecutive Missing Places		None	_

^{*}Differs from EIA specification.

Table R7 — Tape and Reel Specifications

(Cont'd)

RGEF and RHEF devices are available in tape and reel packaging per EIA468–B/IEC60286–2 standards. See Figures R21 and R22 for details.

Description	EIA Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	18	-0.5/+1.0
Hold-Down Tape Width	W_4	11	Minimum
Top Distance between Tape Edges	W ₆	3	Maximum
Sprocket Hole Position	W_5	9	-0.5/+0.75
Sprocket Hole Diameter	D ₀	4	± 0.2
Abscissa to Plane (Straight Lead) (RGEF250 to RGEF1400)	Н	18.5	± 2.5
Abscissa to Plane (Kinked Lead) (Rhef050 to RGEF1500)	H ₀	16.0	± 0.5
Abscissa to Top (RGEF250 to RGEF500, RGEF050 to RGEF450)	H ₁	32.2	Maximum
Abscissa to Top* (RGEF600 to RGEF1400, RHEF550 to RHEF1500)	H ₁	45.0	Maximum
Overall Width with Lead Protrusion (RGEF250 to RGEF600, RHEF050 to RHEF450)	C_1	43.2	Maximum
Overall Width with Lead Protrusion (RGEF700 to RGEF1400, RHEF550 to RHEF1500)	C ₁	55	Maximum
Overall Width without Lead Protrusion (RGEF250 to RGEF600, RHEF050 to RHEF450)	C ₂	42.5	Maximum
Overall Width without Lead Protrusion (RGEF700 to RGEF1400, RHEF550 to RHEF1500)	C ₂	54	Maximum
Lead Protrusion	L ₁	1.0	Maximum
Protrusion of Cut-out	L	11	Maximum
Protrusion beyond Hold-down Tape	l ₂	Not Specified	_
Sprocket Hole Pitch	P ₀	12.7	± 0.3
Device Pitch (RGEF250 to RGEF700, RHEF050 to RHEF600)	_	25.4	± 0.61
Device Pitch (RGEF800 to RGEF1400, RHEF650 to RHEF1500)	_	25.4	± 0.6
Pitch Tolerance	_	20 Consecutive	± 1
Tape Thickness	Т	0.9	Maximum
Overall Tape and Lead Thickness* (RGEF250 to RGEF1100, RHEF050 to RHEF1100)	T ₁	2.0	Maximum
Overall Tape and Lead Thickness* (RGEF1200 to RGEF1400, RHEF1300 to RHEF1500)	T ₁	2.3	Maximum
Splice Sprocket Hole Alignment	_	0	± 0.3
Body Lateral Deviation	Δh	0	± 1.0
Body Tape Plane Deviation	Δρ	0	± 1.3
Ordinate to Adjacent Component Lead (RGEF250 to RGEF1100, RHEF050 to RHEF900)	P ₁	3.81	± 0.7
Ordinate to Adjacent Component Lead (RGEF1200 to RGEF1400, RHEF1000 to RHEF1500)	P ₁	7.62	± 0.7
Lead Spacing* (RGEF250 to RGEF1100, RHEF050 to RHEF900)	F	5.05	± 0.75
Lead Spacing* (RGEF1200 to RGEF1400, RHEF1000 to RHEF1500)	F	10.15	± 0.75
Reel Width (RGEF250 to RGEF600, RHEF050 to RHEF450)	W ₂	56.0	Maximum
Reel Width* (RGEF700 to RGEF1400 & RHEF550 to RHEF1500)	W ₂	63.5	Maximum
Reel Diameter	A	370.0	Maximum
Space between Flanges* (RGEF250 to RGEF600, RHEF050 to RHEF450)	W ₁	48.0	Maximum
Space between Flanges* (RGEF700 to RGEF400, RHEF550 to RHEF1500)	W ₁	55.0	Maximum
Arbor Hold Diameter	C	26.0	± 12.0
Core Diameter*	N	91.0	Maximum
Box		64/372/362	Maximum
Consecutive Missing Places		None	_
Empty Places per Reel		0.1%	Maximum

^{*}Differs from EIA specification.

Figure R21 — EIA Referenced Taped Component Dimensions

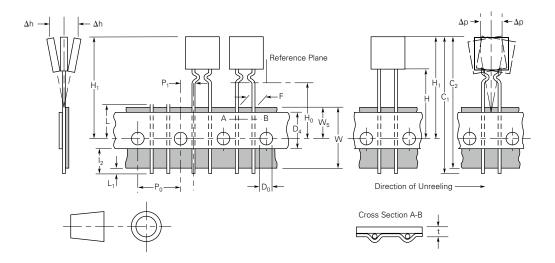
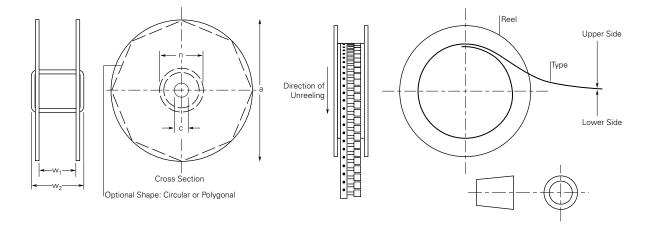
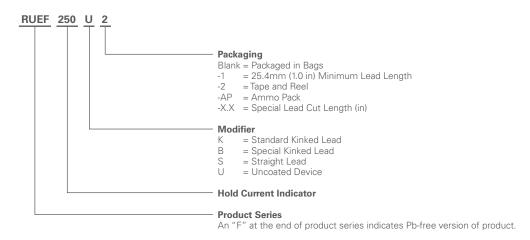
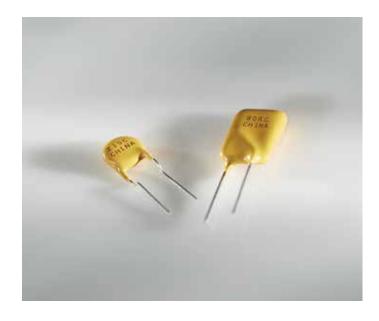




Figure R22 — EIA Referenced Reel Dimensions

Part Numbering System

Note: Kinked parts are recommended to control the height of the part on the PCB in non-auto PCB applications.

- Users should independently evaluate the suitability of and test each product selected for their own application.
- Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.


POLYSWITCH RESETTABLE DEVICES

Line-Voltage-Rated Devices

PolySwitch line-voltage-rated (LVR) devices help protect electric motors and transformers used in commercial and home appliances from damage caused by mechanical overloads, overheating, stall, lost neutral and other potentially harmful conditions.

The LVR line-voltage product line of polymeric positive temperature coefficient (PPTC) devices includes components that are rated for line voltages of $120V_{AC}$ and $240V_{AC}$, for up to 2A of operating current at $20^{\circ}C$. They help protect against damage caused by both overcurrent surges and overtemperature faults. They also offer low resistance and are compatibly sized with fuse solutions.

Unlike traditional fuses, PolySwitch devices do not require replacement after a fault event. After power has been removed and the overcurrent condition eliminated, the circuit is restored to normal operating condition. Compared to bimetal breakers, they offer greater flexibility, longer lifespan and lower electromagnetic interference (EMI).

The PolySwitch LVR devices' resettable functionality and latching attributes make them a reliable, cost-effective circuit protection solution for both intermittent- and continuous-operation motor applications. Their low resistance, fast time-to-trip, and low profile help circuit designers provide a safe and dependable product, comply with regulatory agency requirements and reduce warranty repair costs.

LVR/LVB series are suitable for line-voltage applications up to a continuous operating voltage of $240V_{AC}/120V_{AC}$.

RoHS versions of all products are available.

BENEFITS

- Choice of many devices helps provide engineers with design flexibility
- Compatible with high-volume electronics assembly
- Assist in meeting regulatory requirements
- Higher voltage ratings allow use in new applications

FEATURES

- · RoHS compliant
- Broadest range of radial-leaded resettable devices available in the industry
- Current ratings from 50mA to 2A
- \bullet Line voltage rating of $120\,V_{AC}$ and $240\,V_{AC}$
- Agency recognition: UL, CSA, TÜV, CQC
- Fast time-to-trip
- Low resistance

APPLICATIONS

- Electromagnetic loads
- · Game machines
- · Industrial controls
- Lighting ballasts
- Loudspeakers
- Medical equipment
- Motors, fans and blowers
- POS equipment
- Satellite video receivers
- · Security and fire alarm systems
- Test and measurement equipment
- Transformers
- USB hubs, ports and peripherals
- Intelligent appliance
- · Robotic machine

Table L1 — Product Series - Current Rating, Voltage Rating/Typical Resistance

Voltage Rating	LVR 240V _{AC} / 120V _{AC}	LVB 240V _{AC}
Hold Current (A)		
0.050	25.00Ω	_
0.080	9.800Ω	_
0.120	4.800Ω	_
0.160	3.400Ω	_
0.250	1.700Ω	_
0.330	1.000Ω	_
0.400	0.800Ω	_
0.550	0.590Ω	_
0.750	0.400Ω	_
1.000	0.276Ω	_
1.250	0.209Ω	0.209Ω
1.350	_	_
2.000	0.110Ω	_

Table L2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part			M	aximum Ambi	ent Temperatı	ire			
Number	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C
LVR									
LVR005N	0.08	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02
LVR008N	0.12	0.10	0.08	0.08	0.07	0.06	0.05	0.04	0.03
LVR012	0.18	0.15	0.12	0.12	0.10	0.09	0.07	0.06	0.04
LVR016	0.24	0.20	0.16	0.16	0.13	0.11	0.10	0.08	0.05
LVR025	0.38	0.32	0.25	0.25	0.21	0.18	0.15	0.13	0.09
LVR033	0.50	0.42	0.33	0.33	0.27	0.23	0.20	0.17	0.11
LVR040	0.61	0.51	0.40	0.40	0.33	0.28	0.24	0.20	0.14
LVR055	0.80	0.68	0.55	0.54	0.46	0.40	0.35	0.29	0.22
LVR075	1.23	0.98	0.75	0.74	0.60	0.56	0.49	0.45	0.41
LVR100	1.65	1.30	1.00	0.94	0.80	0.75	0.65	0.60	0.55
LVR125	2.06	1.63	1.25	1.20	1.00	0.94	0.81	0.75	0.69
LVR200	3.30	2.60	2.00	1.97	1.60	1.50	1.30	1.20	1.10
LVR075-240	1.23	0.98	0.75	0.74	0.60	0.56	0.49	0.45	0.41
LVR100-240	1.65	1.30	1.00	0.94	0.80	0.75	0.65	0.60	0.55
LVR125-240	2.06	1.63	1.25	1.20	1.00	0.94	0.81	0.75	0.69
LVR200-240	3.30	2.60	2.00	1.97	1.60	1.50	1.30	1.20	1.10

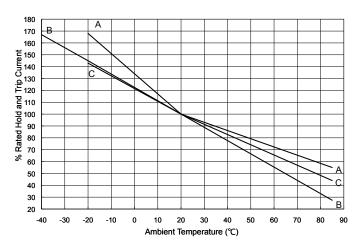

Part	Maximum Ambient Temperature											
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C		
LVB												
LVB125	2.09	1.81	1.53	1.25	1.19	0.99	0.86	0.73	0.60	0.41		

Figure L1 — Thermal Derating Curve

A = LVR075-LVR200

B = LVB125

C = LVR005N-LVR055

Table L3 — Electrical Characteristics*

			V _M		I _{MAX} †				_			Lead Size
Part	I _H	I _T	Operating		Interrupt	P _{D Typ}	Max.Tim		R _{MIN}	R _{MAX}	R _{1MAX}	[mm (AWG)]
Number LVR	(A)	(A)	(V _{AC})	(V _{AC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	
LVR005NK	0.05	0.12	240	265	1.0	0.9	0.25	10.0	18.500	31.000	65.000	[0.51mm (24)]
LVHUUSINK	0.05	0.12	120	135	20.0	0.9	0.25	10.0	10.000	31.000	05.000	[0.5111111 (24)]
LVR005NS	0.05	0.12	240	265	1.0	0.9	0.25	10.0	18.500	31.000	65.000	[0.51mm (24)]
LVIIOOSINO	0.00	0.12	120	135	20.0	0.0	0.20	10.0	10.500	01.000	00.000	[0.01111111 (24/)]
LVR008NK	0.08	0.19	240	265	1.2	0.9	0.40	10.0	7.400	12.000	26.000	[0.51mm (24)]
27110001111	0.00	0.10	120	135	20.0	0.0	0.10		7. 100	12.000	20.000	[0:0:::::(2::/]
LVR008NS	0.08	0.19	240	265	1.2	0.9	0.40	10.0	7.400	12.000	26.000	[0.51mm (24)]
			120	135	20.0							
LVR012K	0.12	0.30	240	265	1.2	1.0	0.60	15.0	3.000	6.500	12.000	[0.51mm (24)]
			120	135	20.0							
LVR012S	0.12	0.30	240	265	1.2	1.0	0.60	15.0	3.000	6.500	12.000	[0.51mm (24)]
			120	135	20.0							
LVR016K	0.16	0.37	240	265	2.0	1.4	0.80	15.0	2.500	4.100	7.800	[0.51mm (24)]
			120	135	20.0							
LVR016S	0.16	0.37	240	265	2.0	1.4	0.80	15.0	2.500	4.100	7.800	[0.51mm (24)]
			120	135	20.0							
LVR025K	0.25	0.56	240	265	3.5	1.5	1.25	18.5	1.300	2.100	3.800	[0.64mm (22)]
			120	135	20.0							
LVR025S	0.25	0.56	240	265	3.5	1.5	1.25	18.5	1.300	2.100	3.800	[0.64mm (22)]
			120	135	20.0							
LVR033K	0.33	0.74	240	265	4.5	1.7	1.65	21.0	0.770	1.240	2.600	[0.64mm (22)]
			120	135	20.0							
LVR033S	0.33	0.74	240	265	4.5	1.7	1.65	21.0	0.770	1.240	2.600	[0.64mm (22)]
			120	135	20.0							
LVR040K	0.40	0.90	240	265	5.5	2.0	2.00	24.0	0.600	0.970	1.900	[0.64mm (22)]
			120	135	20.0							
LVR040S	0.40	0.90	240	265	5.5	2.0	2.00	24.0	0.600	0.970	1.900	[0.64mm (22)]
L) /DOEEL/	0.55	4.05	120	135	20.0	0.4	0.75	00.0	0.450	0.700	4.450	[0.04 (0.0)]
LVR055K	0.55	1.25	240	265	7.0	3.4	2.75	26.0	0.450	0.730	1.450	[0.81mm (20)]
L)/DOEEC	0.55	1.05	120	135	20.0	2.4	0.75	26.0	0.450	0.700	1.450	[0.01,000,000]
LVR055S	0.55	1.25	240	265	7.0	3.4	2.75	26.0	0.450	0.730	1.450	[0.81mm (20)]
LVR075S	0.75	1.50	120 240	135	20.0	2.6	3.75	18.0	0.316	0.483	0.839	[0.81mm (20)]
LVR100S	1.00	2.00	240	265 265	7.5	2.0	5.00	21.0	0.218	0.463	0.580	[0.81mm (20)]
LVR125S	1.25	2.50	240	265	12.5	3.3	6.25	23.0	0.165	0.253	0.440	[0.81mm (20)]
LVR200S	2.00	4.00	240	265	20.0	4.5	10.00	28.0	0.089	0.233	0.221	[0.81mm (20)]
LVR075S-240	0.75	1.50	240	265	7.5	2.6	3.75	18.0	0.316	0.483	0.839	[0.81mm (20)]
LVR100S-240	1.00	2.00	240	265	10.0	2.9	5.00	21.0	0.218	0.334	0.580	[0.81mm (20)]
LVR125S-240	1.25	2.50	240	265	12.5	3.3	6.25	23.0	0.165	0.253	0.440	[0.81mm (20)]
LVR200S-240	2.00	4.00	240	265	20.0	4.5	10.00	28.0	0.089	0.131	0.221	[0.81mm (20)]
LVR075K-240	0.75	1.50	240	265	7.5	2.6	3.75	18.0	0.316	0.483	0.839	[0.81mm (20)]
LVR100K-240	1.00	2.00	240	265	10.0	2.9	5.00	21.0	0.218	0.334	0.580	[0.81mm (20)]
LVR125K-240	1.25	2.50	240	265	12.5	3.3	6.25	23.0	0.165	0.253	0.440	[0.81mm (20)]
LVR200K-240	2.00	4.00	240	265	20.0	4.5	10.00	28.0	0.089	0.131	0.221	[0.81mm (20)]
LVB												
LVB125	1.25	2.50	240	265	12.5	4.0	8.00	5.0	0.152	0.292	0.482	[0.81mm (20)]
Intes:												

Notes:

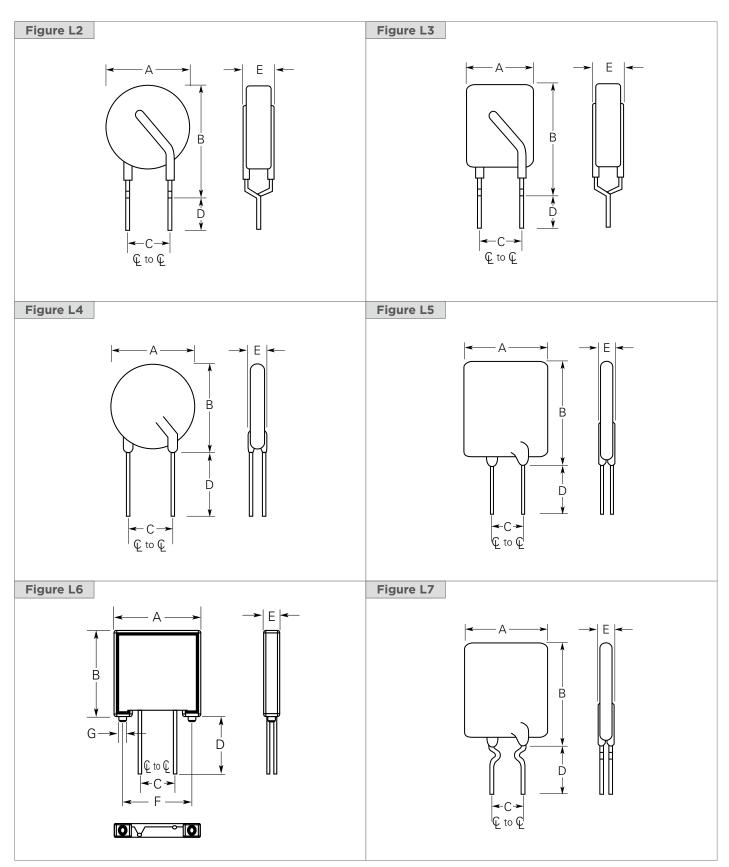
: Hold current: maximum current device will pass without interruption in 20°C still air.

Trip current: minimum current that will switch the device from low resistance to high resistance in 20°C still air.

V_{MAX} Operating: Maximum continuous voltage device can withstand without damage at rated current.

V_{MAX} Interrupt: Under specified conditions this is the highest voltage that can be applied to the device at the maximum interrupt current. I_{MAX} Interrupt: Maximum fault current device can withstand without damage at rated voltage.

P_D: Power dissipated from device when in the tripped state in 20°C still air.


R_{MIN}: Minimum resistance of device as supplied at 20°C unless otherwise specified. R_{MAX} Maximum resistance of device as supplied at 20°C unless otherwise specified.

 R_{1MAX} : Maximum resistance of device when measured one hour post trip at 20°C unless otherwise specified.

^{*} Electrical characteristics determined at 20°C.

[†] See Application Limitations on next page.

Figures L2-L7 — Dimension Figures

Table L4 - Dimensions and Weights - Millimeters (Inches)

Part		A		В	(C)		E	Eigene	Device Mass(g)
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure	(Only for Reference)
LVR												
LVR005NK	_	6.9	_	12.1	4.3	5.8	7.6	_	_	4.6		
		(0.27)		(0.48)	(0.17)	(0.23)	(0.30)			(0.18)	L2	0.177
LVR005NS	_	6.9	_	9.9	4.3	5.8	7.6	_	_	4.6		
		(0.27)		(0.39)	(0.17)	(0.23)	(0.30)			(0.18)	L4	0.211
LVR008NK	_	7.2	_	12.4	4.3	5.8	7.6	_	_	4.6		
		(0.28)		(0.49)	(0.17)	(0.23)	(0.30)			(0.18)	L2	0.233
LVR008NS	_	7.2	_	10.2	4.3	5.8	7.6	_	_	4.6		
11/20101/		(0.28)		(0.40)	(0.17)	(0.23)	(0.30)			(0.18)	L4	0.211
LVR012K	_	8.3	_	12.9	4.3	5.8	7.6	_	_	3.8	1.0	0.004
LVR012S		(0.33)		(0.51)	(0.17)	(0.23)	(0.30)			(0.15)	L2	0.231
LVHUIZS	_	8.3	_	10.7	4.3	5.8	7.6	_	_	3.8	1.4	0.005
LVR016K		9.9		(0.43)	(0.17)	(0.23)	(0.30) 7.6			(0.15)	L4	0.235
LVHUION	_	(0.39)	_	13.8 (0.54)	(0.17)	5.8 (0.23)	(0.30)	_	_	(0.15)	L2	0.253
LVR016S		9.9		12.5	4.3	5.8	7.6			3.8	LZ	0.200
LVIIOIOS		(0.39)		(0.50)	(0.17)	(0.23)	(0.30)			(0.15)	L4	0.291
LVR025K		9.6		18.8	4.3	5.8	7.6			3.8	L4	0.291
LVIIOZJK		(0.38)		(0.74)	(0.17)	(0.23)	(0.30)			(0.15)	L3	0.508
LVR025S		9.6		17.4	4.3	5.8	7.6			3.8	LO	0.506
LV110233		(0.38)		(0.69)	(0.17)	(0.23)	(0.30)			(0.15)	L5	0.472
LVR033K		11.4		19.0	4.3	5.8	7.6			3.8	LO	0.472
LVIIOSSIC		(0.45)		(0.75)	(0.17)	(0.23)	(0.30)			(0.15)	L3	0.628
LVR033S		11.4		16.5	4.3	5.8	7.6			3.8	LO	0.020
LVITOGGG		(0.45)		(0.65)	(0.17)	(0.23)	(0.30)			(0.15)	L5	0.600
LVR040K		11.5		20.9	4.3	5.8	7.6			3.8	LO	0.000
LVITOTOR		(0.46)		(0.82)	(0.17)	(0.23)	(0.30)			(0.15)	L3	0.698
LVR040S		11.5		19.5	4.3	5.8	7.6			3.8	LO	0.000
LVIIO-00		(0.46)		(0.77)	(0.17)	(0.23)	(0.30)			(0.15)	L5	0.688
LVR055K		14.0		22.4	4.3	5.8	7.6			4.1		0.000
EVITOGOIX		(0.55)		(0.88)	(0.17)	(0.23)	(0.30)			(0.16)	L3	1.100
LVR055S		14.0		21.7	4.3	5.8	7.6			4.1		
		(0.55)		(0.85)	(0.17)	(0.23)	(0.30)			(0.16)	L5	1.060
LVR075S	_	11.5	_	23.4	4.1	6.1	5.1	_	_	4.8		
		(0.45)		(0.92)	(0.16)	(0.24)	(0.20)			(0.19)	L5	1.088
LVR100S	_	18.7	_	24.4	8.9	11.4	5.1	_	_	5.1		
		(0.74)		(0.96)	(0.35)	(0.45)	(0.20)			(0.20)	L4	1.345
LVR125S		21.2		27.4	8.9	11.4	5.1			5.3		
		(0.84)		(1.08)	(0.35)	(0.45)	(0.20)			(0.21)	L4	1.800
LVR200S	_	24.9	_	33.8	8.9	11.4	5.1	_	_	6.1		
		(0.98)		(1.33)	(0.35)	(0.45)	(0.20)			(0.24)	L5	2.777
LVR075S-240	_	11.5	_	23.4	4.1	6.1	5.1	_	_	4.8		
		(0.45)		(0.92)	(0.16)	(0.24)	(0.20)			(0.19)	L5	1.088
LVR100S-240		18.7		24.4	8.9	11.4	5.1	_	_	5.1		
		(0.74)		(0.96)	(0.35)	(0.45)	(0.20)			(0.20)	L4	1.345
LVR125S-240	_	21.2	_	27.4	8.9	11.4	5.1	_	_	5.3		
		(0.84)		(1.08)	(0.35)	(0.45)	(0.20)			(0.21)	L4	1.800
LVR200S-240		24.9	_	33.8	8.9	11.4	5.1	_		6.1		
		(0.98)		(1.33)	(0.35)	(0.45)	(0.20)			(0.24)	L5	2.777
LVR075K-240	_	11.5	_	25.4	4.1	6.1	7.6	_	_	4.1		
		(0.45)		(1.00)	(0.16)	(0.24)	(0.30)			(0.16)	L3	1.088
LVR100K-240	_	18.7	_	28.8	8.9	11.4	7.6	_	_	4.1		
		(0.74)		(1.13)	(0.35)	(0.45)	(0.30)			(0.16)	L2	1.345
LVR125K-240	_	21.2	_	31.8	8.9	11.4	7.6	_	_	4.1		
		(0.84)		(1.25)	(0.35)	(0.45)	(0.30)			(0.16)	L2	1.800
LVR200K-240	_	24.9	_	34.80	8.9	11.4	7.6	_	_	4.1		
		(0.98)		(1.37)	(0.35)	(0.45)	(0.30)			(0.16)	L7	2.777

Part		A		3		0)				F		G	Figure	Device Mass(g)
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	riguie	(Only for Reference)
LVB																
LVB125	24.8	25.2	26.8	27.2	8.9	11.4	5.1	_	4.2	4.6	20.0	20.3	_	2.5		
	(0.98)	(.099)	(1.06)	(1.07)	(0.35)	(0.45)	(0.20)	_	(0.17)	(0.18)	(0.79)	(0.80)	_	(0.80)	L6	1.653

Figure L8 — Typical Time-to-Trip Curves at 20°C

LVR/LVB

A = LVR005N

B = LVR008N

C = LVR012

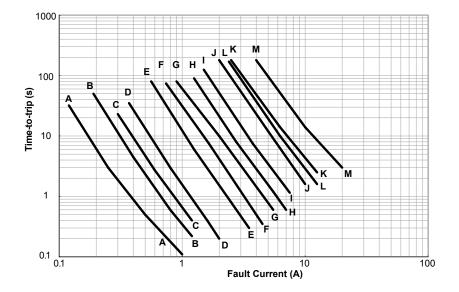
= LVR016

= LVR025

= LVR033

G = LVR040

= LVR055


= LVR075/LVR075-240

= LVR100/LVR100-240

= LVR125/LVR125-240

= LVB125

M = LVR200/LVR200-240

Table L5 — Physical Characteristics and Environmental Specifications

LVR/LVB		
Physical Characteristics	S	
Lead Material	LVR005N to LVR016	: Tin-plated Copper, (24AWG), ø0.51mm (0.020in)
	LVR025 to LVR040	:Tin-plated Copper, (22AWG), ø0.64mm (0.025in)
	LVR055 to LVR200	: Tin-plated Copper, (20AWG), ø0.81mm (0.032in)
	LVR075-240 to LVR200-24	0: Tin-plated Copper, (20AWG), ø0.81mm (0.032in)
	LVB125	: Tin-plated Copper, (20AWG), ø0.81mm (0.032in)
Soldering Characteristics	Solderability per ANSI/J-S	TD-002 Category 3
Solder Heat Withstand	Per IEC-STD 68-2-20, Test	Tb, Method 1A, Condition B, Can Withstand 10 s at 260°C ±5°C
Insulating Material	LVR005N to LVR055	: Cured, Flame-retardant Epoxy Polymer, Meets UL 94V-0
	LVR075 to LVR200	: Cured, Flame-retardant Modified Silicone, Meets UL 94V-0
	LVR075-240 to LVR200-24	0: Cured, Flame-retardant Epoxy Polymer, Meets UL 94V-0
	LVB125	: Glass Reinforced PBT, Meets UL 94V-0

Note: Devices are not intended to be placed through a reflow process.

Environmental Specifications									
Test	Conditions	Resistance Change							
Passive Aging	70°C, 1000 hrs	±10%							
	85°C, 1000 hrs	±10%							
Humidity Aging	85°C, 85% RH, 1000 hrs	±20%							
Thermal Shock	85°C, -40°C (10 Times)	±15%							
Solvent Resistance	MIL-STD-202, Method 215F	No Change							

Agency Recognitions

UL	File # E74889
CSA	File # CA78165
TÜV	Certificate Number Available on Request (per IEC 60730-1).

Table L6 — Packaging and Marking Information

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
LVR/LVB						
LVR005NK	500	_	_	10,000	L005	UL, CSA, TÜV, CQC
LVR005NK-2	_	1,500	_	7,500	L005	UL, CSA, TÜV, CQC
LVR005NS	500	_	_	10,000	L005	UL, CSA, TÜV, CQC
LVR005NS-2		1,500		7,500	L005	UL, CSA, TÜV, CQC
LVR008NK	500			10,000	L008	UL, CSA, TÜV, CQC
LVR008NK-2	_	1,500	_	7,500	L008	UL, CSA, TÜV, CQC
LVR008NS	500			10,000	L008	UL, CSA, TÜV, CQC
LVR008NS-2		1,500		7,500	L008	UL, CSA, TÜV, CQC
LVR012K	500			10,000	L012	UL, CSA, TÜV, CQC
LVR012K-2	_	2,000	_	10,000	L012	UL, CSA, TÜV, CQC
LVR012S	500	_	_	10,000	L012	UL, CSA, TÜV, CQC
LVR012S-2	_	2,000	_	10,000	L012	UL, CSA, TÜV, CQC
LVR016K	500	_	_	10,000	L016	UL, CSA, TÜV, CQC
LVR016K-2	_	2,000	_	10,000	L016	UL, CSA, TÜV, CQC
LVR016S	500	_	_	10,000	L016	UL, CSA, TÜV, CQC
LVR016S-2	_	2,000	_	10,000	L016	UL, CSA, TÜV, CQC
LVR025K	500	_	_	10,000	L025	UL, CSA, TÜV, CQC
LVR025K-2	_	2,000	_	10,000	L025	UL, CSA, TÜV, CQC
LVR025S	500	_	_	10,000	L025	UL, CSA, TÜV, CQC
LVR025S-2	_	2,000	_	10,000	L025	UL, CSA, TÜV, CQC
LVR033K	500		_	10,000	L033	UL, CSA, TÜV, CQC
LVR033K-2	_	2,000	_	10,000	L033	UL, CSA, TÜV, CQC
LVR033S	500	_	_	10,000	L033	UL, CSA, TÜV, CQC
LVR033S-2	_	2,000	_	10,000	L033	UL, CSA, TÜV, CQC
_VR040K	500		_	10,000	L040	UL, CSA, TÜV, CQC
_VR040K-2	_	2,000	_	10,000	L040	UL, CSA, TÜV, CQC
LVR040S	500		_	10,000	L040	UL, CSA, TÜV, CQC
LVR040S-2	_	2,000	_	10,000	L040	UL, CSA, TÜV, CQC
LVR055K	500			10,000	L055	UL, CSA, TÜV, CQC
LVR055S	500			10,000	L055	UL, CSA, TÜV, CQC
LVR055S-2	_	1,000	_	5,000	L055	UL, CSA, TÜV, CQC
LVR075S	500	— 1,000		10,000	L075	UL, CSA, TÜV, CQC
LVR100S	250			5,000	L100	UL, CSA, TÜV, CQC
LVR125S	250			5,000	L125	UL, CSA, TÜV, CQC
LVR200S	250			5,000	L200	UL, CSA, TÜV, CQC
LVR075S-240	500			10,000	L075	UL, CSA, TÜV, CQC
				· · · · · · · · · · · · · · · · · · ·	L075	UL, CSA, TÜV, CQC
LVR075S-240-2		1,000		5,000	L075	UL, CSA, TÜV, CQC
LVR075S-240-AP LVR100S-240	250	<u> </u>	1,000	5,000		UL, CSA, TÜV, CQC
LVR1005-240 LVR100S-240-2	250	1.000		5,000 5,000	L100 L100	UL, CSA, TÜV, CQC
	_	1,000	1 000	<u> </u>		
LVR100S-240-AP			1,000	5,000	L100	UL, CSA, TÜV, CQC
LVR125S-240	250			5,000	L125	UL, CSA, TÜV, CQC
VR125S-240-2		1,000	1,000	5,000	L125	UL, CSA, TÜV, CQC
LVR125S-240-AP			1,000	5,000	L125	UL, CSA, TÜV, CQC
LVR200S-240	250			5,000	L200	UL, CSA, TÜV, CQC
LVR200S-240-2	_	1,000	_	5,000	L200	UL, CSA, TÜV, CQC
LVR200S-240-AP			1,000	5,000	L200	UL, CSA, TÜV, CQC
LVR075K-240	500		_	10,000	L075	UL, CSA, TÜV, CQC
_VR075K-240-2	_	1,000	_	5,000	L075	UL, CSA, TÜV, CQC
_VR075K-240-AP	_		1,000	5,000	L075	UL, CSA, TÜV, CQC
_VR100K-240	250			5,000	L100	UL, CSA, TÜV, CQC
_VR100K-240-2	_	1,000	_	5,000	L100	UL, CSA, TÜV, CQC
LVR100K-240-AP	_		1,000	5,000	L100	UL, CSA, TÜV, CQC
_VR125K-240	250	_	_	5,000	L125	UL, CSA, TÜV, CQC
_VR125K-240-2	_	1,000		5,000	L125	UL, CSA, TÜV, CQC
_VR125K-240-AP	_	_	1,000	5,000	L125	UL, CSA, TÜV, CQC
LVR200K-240	250	_	_	5,000	L200	UL, CSA, TÜV, CQC
LVR200K-240-2	_	1,000	_	5,000	L200	UL, CSA, TÜV, CQC
LVR200K-240-AP	_	_	1,000	5,000	L200	UL, CSA, TÜV, CQC
	250	_	_	5,000	B125	UL

Table L7 — Tape and Reel Specifications

LVR devices are available in tape and reel packaging per EIA468-B/IEC60286-2 standards. See Figures L9 and L10 for details.

Description	EIA Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	18	-0.5/+1.0
Hold-down Tape Width	W ₄	11	Minimum
Top Distance between Tape Edges	W ₆	3	Maximum
Sprocket Hole Position	W ₅	9	-0.5/+0.75
Sprocket Hole Diameter	D ₀	4	± 0.2
Abscissa to Plane (Straight Lead) (LVR005N to LVR200)	Н	18.5	± 2.5
Abscissa to Plane (Kinked Lead) (LVR005N to LVR055)	H ₀	16.0	± 0.5
Abscissa to Top (LVR005N to LVR016)	H ₁	32.2	Maximum
Abscissa to Top* (LVR025 to LVR200)	H ₁	45.0	Maximum
Overall Width with Lead Protrusion (LVR005N to LVR016)	C ₁	43.2	Maximum
Overall Width with Lead Protrusion (LVR025 to LVR200)	C ₁	56.0	Maximum
Overall Width without Lead Protrusion (LVR005N to LVR016)	C_2	42.5	Maximum
Overall Width without Lead Protrusion (LVR025 to LVR200)	C_2	56.0	Maximum
Lead Protrusion	L ₁	1.0	Maximum
Protrusion of Cut-out	L	11.0	Maximum
Protrusion beyond Hold-down Tape	l ₂	Not Specified	_
Sprocket Hole Pitch	P ₀	12.7	± 0.3
Device Pitch (LVR005N to LVR040)	_	12.7	± 0.3
Device Pitch (LVR055 to LVR200)	_	25.4	± 0.6
Pitch Tolerance	_	20 Consecutive	± 1
Tape Thickness	t	0.9	Maximum
Overall Tape and Lead Thickness (LVR005N to LVR040)	t ₁	1.5	Maximum
Overall Tape and Lead Thickness (LVR055 to LVR200)	t ₁	2.3	Maximum
Splice Sprocket Hole Alignment	_	0	± 0.3
Body Lateral Deviation	Δh	0	± 1.0
Body Tape Plane Deviation	Δρ	0	± 1.3
Ordinate to Adjacent Component Lead	P ₁	3.81	± 0.7
Lead Spacing*	F	5.08	+0.75/-0.5
Reel Width (LVR005N to LVR040)	W_2	56.0	Maximum
Reel Width* (LVR055 to LVR200)	W_2	63.5	Maximum
Reel Diameter	а	370.0	Maximum
Space between Flanges* (LVR005N to LVR040)	W_1	48.0	Maximum
Space between Flanges* (LVR055 toLVR200)	W_1	55.0	Maximum
Arbor Hold Diameter	С	26.0	± 12.0
Core Diameter*	n	91.0	Maximum
Вох	_	64/372/362	Maximum
Consecutive Missing Places		None	
Empty Places per Reel	_	0.1%	Maximum

^{*}Differs from EIA specification.

Figure L9 — EIA Referenced Taped Component Dimensions

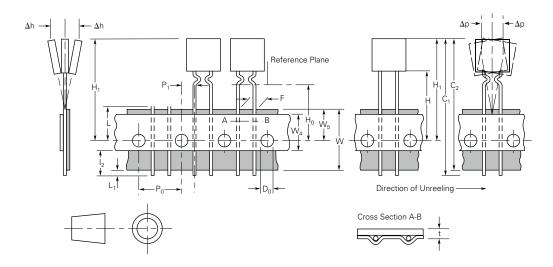
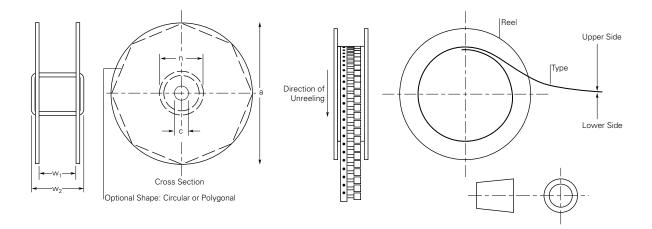
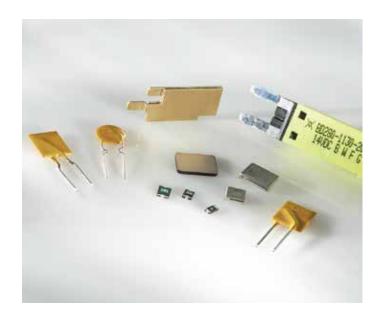



Figure L10 — EIA Referenced Reel Dimensions

Part Numbering System


/!ackslash Warning : Application Limitations for the LVR Product Line

- · Users should independently evaluate the suitability of and test each product selected for their own application.
- This product should not be used in an application where the maximum interrupt voltage or maximum interrupt current can be exceeded in a fault condition. Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- · A PPTC device is not a fuse it is a nonlinear thermistor that limits current. Under a fault condition all PPTC devices go into a high-resistance state but do not open circuit, so hazardous voltage may be present at PPTC locations.
- . The devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- In most applications power must be removed and the fault condition cleared in order to reset a PPTC device; however under certain unusual conditions, a PPTC device may automatically reset. PPTC devices should not be used in an application where an automatic reset could create a safety hazard, such as garbage disposals and blenders. Appropriate qualification testing should be performed.
- It is the responsibility of the user to determine the need for back-up or failsafe protection to prevent damage that may occur in the event of abnormal function or failure of the PPTC device.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of a PPTC device. This product should not be used in an application where the maximum interrupt voltage or maximum interrupt current can be exceeded by inductive spikes.
- Devices are not recommended for reflow soldering.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, or mechanical procedures for electronic components.
- *PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- *Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices. *Does not apply for LVB devices.

POLYSWITCH RESETTABLE DEVICES

Automotive Devices

We have provided PPTC resettable devices for the automotive industry for over 25 years. With the advent of TS16949 and our continued involvement in the automotive industry, TE Circuit Protection developed automotive-specific versions of our PolySwitch PPTC devices (the nanoASMDC, microASMD, miniASMDC, AHS, ASMD, AHRF, AHEF, AGRF and BD families). These products are qualified and sold under the PS400 specification which is derived from AEC-Q200, the standard for electronic components used in the automotive industry. The key difference between these product families and other protection devices in our circuit protection product portfolio is the qualification process that is followed that includes a series of rigorous tests related to the automotive environment. As a result, they are characterized by specific additional values determined following automotive-related testing.

BENEFITS

- Expertise from the world's leading resettable overcurrent protection manufacturer
- High-quality products from the world's largest passive component manufacturer
- Worldwide team dedicated to support automotive applications
- Wide range of dedicated automotive surface-mount and radial-leaded resettable overcurrent devices
- High-performance transient voltage protection devices

FEATURES

- RoHS compliant
- Overcurrent and overvoltage circuit protection devices
- Resettable and single-use overcurrent devices
- Wide range of form factor and termination methods
- Products meet applicable automotive industry standards
- Devices compatible with high-volume electronics assembly

APPLICATIONS

- Motor and motor circuit protection including power door-locks, mirrors, lumbar pumps, seats, sunroofs and windows
- Electronic Control Unit (ECU) I/O protection
- Heating, Ventilation and Cooling (HVAC) motor and I/O protection
- Telematics, infotainment and navigations systems
- Liquid Crystal Display (LCD) back-light heaters
- Power and cigarette lighter outlets, plugs and adapter/chargers
- Powered networks and buses
- Air-flow detection and overcurrent protection in HVAC and cooling fan systems
- Stall detection in express window and sunroof circuits
- Resettable overcurrent protection for power distribution, electrical centers and junction boxes
- · Wire downsizing
- Motor electromagnetic interference (EMI) suppression
- Electrostatic discharge (ESD) damage protection
- Load dump and other transient voltage protection

${\it Table A1-Product Series-Current\ Rating,\ Voltage\ Rating/Typical\ Resistance}$

Voltage Rating	AGRF 16V	AHRF 16V	AHRF 30V	AHEF 32V	AHS 16V	ASMD 16V	ASMD 30V	ASMD 33V	ASMD 60V	BD 14V	BD 16V
Hold Current	(A)										
0.30	_	_	_	_	_	_	_	_	2.90Ω	_	_
0.50	_	_	0.565Ω	0.5650Ω	_	_	_	_	0.90Ω	_	_
0.70	_	_	0.385Ω	0.3850Ω	_	_	_	_	_	_	_
0.75	_	_	_	_	_	_	0.60Ω	_	_	_	_
0.80	_	_	_	_	0.250Ω	_	_	_	_	_	_
1.00	_	_	0.225Ω	0.2250Ω	_	_	0.30Ω	_	_	_	_
1.20	_	_	_	_	0.245Ω	_	_	_	_	_	_
1.25	_	_	_	_	_	0.160Ω	_	_	_	_	_
1.50	_	_	_	_	_	0.140Ω	_	0.149Ω	_	_	_
1.60	_	_	_	_	0.100Ω	_	_	_	_	_	_
1.85	_	_	_	_	_	0.079Ω	_	_	_	_	_
2.00	_	0.0565Ω	_	_	0.070Ω	0.090Ω	_	_	_	_	_
2.50	_	_	_	_	_	0.060Ω	_	_	_	_	_
3.00	_	0.0410Ω	_	0.0520Ω	0.050Ω	_	_	_	_	_	_
4.00	0.0300Ω	0.0305Ω	_	_	_	_	_	_	_	_	_
4.50	_	0.0290Ω	_	_	_	_	_	_	_	_	_
5.00	0.0192Ω	_	_	0.0200Ω	_	_	_	_	_	_	_
5.50	_	0.0190Ω	_	_	_	_	_	_	_	_	_
6.00	0.0145Ω	0.0180Ω	_	_	_	_	_	_	_	_	_
6.50	_	0.0140Ω	_	_	_	_	_	_	_	_	_
7.00	0.0105Ω	0.0126Ω	_	_	_	_	_	_	_	_	_
7.50	_	0.0120Ω	_	0.0120Ω	_	_	_	_	_	_	_
8.00	0.0086Ω	0.0104Ω	_	_	_	_	_	_	_	0.01150Ω	_
9.00	0.0070Ω	0.0100Ω	_	_	_	_	_	_	_	_	_
10.00	0.0056Ω	0.0083Ω	_	0.0083Ω	_	_	_	_	_	_	_
11.00	0.0050Ω	0.0069Ω	_	_	_	_	_	_	_	_	_
12.00	0.0046Ω	_	_	_	_	_	_	_	_	0.00600Ω	_
13.00	_	0.0055Ω	_	_	_	_	_	_	_	_	_
14.00	0.0040Ω	0.0050Ω	_	_	_	_	_	_	_	_	_
15.00	_	0.0050Ω	_	_	_	_	_	_	_	_	_
16.00	_	_	_	_	_	_	_	_	_	0.00365Ω	_
20.00	_	_	_	_	_	_	_	_	_	0.00285Ω	_
21.00	_	_	_	_	_	_	_	_	_	0.00260Ω	0.0030Ω

Voltage Rating	nanoASMDC 48V	nanoASMDC 24V	nanoASMDC 16V	microASMD 30V	miniASMDC 60V	miniASMDC 30V	miniASMDC 24V	miniASMDC 16V
Hold Current (A	A)							
0.05	_	_	_	26.80Ω	_	_	_	_
0.10	_	_	_	8.55Ω	6.70Ω	_	_	_
0.12	3.95Ω	_	_	_	_	_	_	_
0.14	_	_	_	_	3.75Ω	_	_	_
0.16	3.05Ω	_	_	_	_	_	_	_
0.20	_	1.875Ω	_	_	_	1.950Ω	_	_
0.30	_	_	_	_	_	0.975Ω	_	_
0.35	_	_	0.90Ω	_	_	_	_	_
0.50	_	_	_	_	_	_	0.575Ω	_
0.75	_	_	_	_	_	_	0.190Ω	_
1.10	_	_	_	_	_	_	0.120Ω	0.1200Ω
1.25	_	_	_	_	_	_	_	0.0950Ω
1.50	_	_	_	_	_	_	0.080Ω	0.0750Ω
2.60	_	_	_	_	_	_	_	0.0325Ω

Table A2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

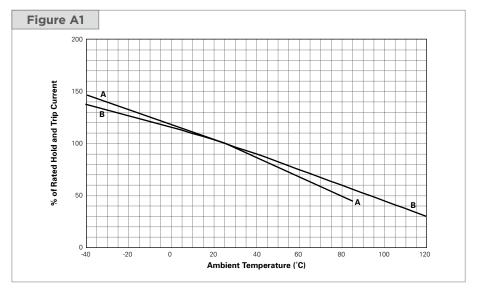
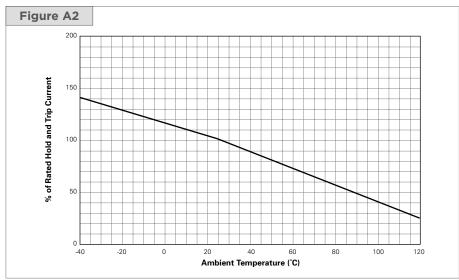
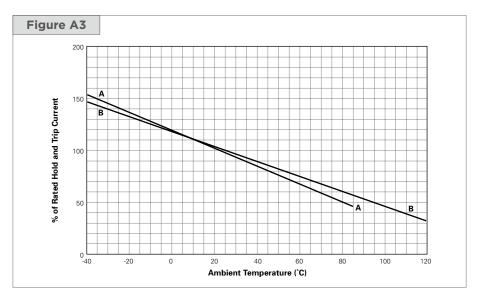

Part					Maximum	Ambient Te	mperature				
Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°C
AGRF 16V — Radial-leaded											
AGRF400	5.9	5.3	4.8	4.1	4.0	3.5	3.2	2.8	2.5	1.9	_
AGRF500	7.3	6.6	6.0	5.2	5.0	4.4	4.0	3.6	3.1	2.4	_
AGRF600	8.8	8.0	7.2	6.2	6.0	5.2	4.8	4.2	3.8	2.8	_
AGRF700	10.3	9.3	8.4	7.3	7.0	6.2	5.6	5.0	4.4	3.3	_
AGRF800	11.7	10.7	9.6	8.3	8.0	6.9	6.4	5.6	5.1	3.7	_
AGRF900	13.2	11.9	10.7	9.4	9.0	7.9	7.2	6.4	5.6	4.2	_
AGRF1000	14.7	13.3	12.0	10.3	10.0	8.7	8.0	7.0	6.3	4.7	_
AGRF1100	16.1	14.6	13.1	11.5	11.0	9.7	8.8	7.8	6.9	5.2	_
AGRF1200	17.6	16.0	14.4	12.4	12.0	10.4	9.6	8.4	7.6	5.6	_
AGRF1400	20.5	18.7	16.8	14.5	14.0	12.1	11.2	9.8	8.9	6.5	_
AHRF (High Temperatu 30V — Radial-leaded	ıre)										
AHRF050	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.1
AHRF070	1.0	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.2
AHRF100	1.4	1.2	1.1	1.0	1.0	0.9	0.8	0.7	0.7	0.6	0.2
AHRF (High Temperatu 16V — Radial-leaded	ıre)										
AHRF200	2.7	2.5	2.3	2.1	2.0	1.8	1.6	1.5	1.3	1.1	0.5
AHRF300	4.1	3.7	3.4	3.1	3.0	2.7	2.4	2.2	2.0	1.7	0.7
AHRF400	5.6	5.1	4.7	4.2	4.0	3.6	3.3	3.0	2.7	2.3	1.0
AHRF450	6.1	5.6	5.1	4.6	4.5	4.0	3.6	3.3	3.0	2.5	1.1
AHRF550	7.5	6.9	6.2	5.7	5.5	4.9	4.4	4.0	3.7	3.1	1.4
AHRF600	8.2	7.5	6.8	6.2	6.0	5.3	4.9	4.4	4.0	3.3	1.5
AHRF650	8.8	8.1	7.4	6.7	6.5	5.7	5.3	4.8	4.3	3.6	1.6
AHRF700	9.5	8.7	8.0	7.2	7.0	6.2	5.6	5.2	4.7	3.9	1.7
AHRF750	10.2	9.4	8.6	7.7	7.5	6.6	6.1	5.6	5.0	4.1	1.9
AHRF800	10.9	10.0	9.1	8.2	8.0	7.1	6.4	5.9	5.3	4.4	2.0
AHRF900	12.2	11.2	10.2	9.3	9.0	8.0	7.2	6.6	6.0	5.0	2.2
AHRF1000	13.6	12.5	11.4	10.3	10.0	8.8	8.1	7.4	6.6	5.5	2.5
AHRF1100	14.9	13.7	12.5	11.3	11.0	9.7	8.8	8.1	7.3	6.1	2.7
AHRF1300	17.7	16.3	14.8	13.4	13.0	11.4	10.5	9.6	8.6	7.2	3.3
AHRF1400	19.0	17.5	15.9	14.4	14.0	12.4	11.2	10.3	9.3	7.2	3.5
AHRF1500	20.4	18.8	17.1	15.5	15.0	13.2	12.1	11.1	9.9	8.3	3.8
AHEF (High Temperatu 32V — Radial-leaded		10.0	17.1	10.0	10.0	10.2	12.1	11.1	0.0	0.0	0.0
AHEF050	0.7	0.6	0.60	0.5	0.5	0.4	0.400	0.40	0.30	0.300	0.1
AHEF070	1.0	0.9	0.80	0.7	0.7	0.6	0.600	0.50	0.50	0.400	0.2
AHEF100	1.4	1.2	1.10	1.0	1.0	0.9	0.800	0.70	0.70	0.600	0.2
AHEF300	4.1	3.8	3.42	3.1	3.0	2.7	2.430	2.22	1.98	1.650	0.6
AHEF500	6.8	6.3	5.70	5.2	5.0	4.5	4.050	3.70	3.30	2.750	1.0
AHEF750	10.2	9.4	8.55	7.7	7.5	6.7	6.075	5.55	4.95	4.125	1.5
AHEF1000	13.6	12.5	11.40	10.3	10.0	8.9	8.100	7.40	6.60	5.500	2.0
AHS (High Temperatur	e)	12.0	11.40	10.3	10.0	0.3	0.100	7.40	0.00	0.000	2.0
16V — Surface-mount AHS080-2018	1.20	1.04	0.90	0.8	0.77	0.68	0.62	0.60	0.53	0.46	0.26
AHS120	1.72	1.54	1.36	1.2	1.14	1.01	0.92	0.83	0.74	0.61	0.25
AHS160	2.15	1.96	1.78	1.6	1.55	1.42	1.33	1.24	1.15	1.01	0.64
AHS200	2.90	2.50	2.20	2.0	1.94	1.80	1.75	1.70	1.40	1.18	0.67
AHS300	4.20	3.80	3.70	3.0	2.92	2.63	2.44	2.10	2.00	1.76	1.00
1113300	4.20	J.0U	3.70	3.0	2.52	2.03	4.44	Z. IU	2.00	1.70	1.0

Table A2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] (Cont'd)


	Part _					Maximum	Ambient Te	mperature				
	Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°0
	ASMD 16-60V — Surface-mo	unt										
-	ASMD030F	0.35	0.31	0.27	0.23	0.22	0.19	0.17	0.15	0.13	0.11	_
-	ASMD050F	0.59	0.53	0.46	0.39	0.37	0.33	0.29	0.26	0.23	0.18	_
-	ASMD075F	0.91	0.81	0.71	0.60	0.58	0.50	0.45	0.40	0.35	0.28	_
-	ASMD100F	1.37	1.22	1.06	0.90	0.86	0.76	0.68	0.60	0.52	0.41	_
	ASMD125F	1.58	1.40	1.23	1.04	1.00	0.87	0.78	0.70	0.60	0.48	_
-	ASMD150F	1.93	1.70	1.50	1.27	1.22	1.07	0.95	0.85	0.74	0.58	_
ľ	ASMD150F/33	1.96	1.73	1.50	1.26	1.20	1.03	0.91	0.80	0.68	0.51	
-	ASMD185F	2.93	2.58	2.30	1.93	1.85	1.62	1.44	1.30	1.12	0.88	_
-	ASMD200F	2.63	2.34	2.04	1.73	1.66	1.45	1.30	1.16	1.00	0.80	
-	ASMD250F	3.00	2.66	2.32	1.97	1.89	1.65	1.48	1.32	1.14	0.91	
	nanoASMDC 16-48V — Surface-mo	unt									,	
-	nanoASMDC012F	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.08	0.07	_
-	nanoASMDC016F	0.21	0.20	0.18	0.16	0.16	0.14	0.13	0.12	0.11	0.09	_
-	nanoASMDC020F	0.34	0.30	0.26	0.22	0.20	0.17	0.15	0.13	0.11	0.08	_
-	nanoASMDC035F	0.58	0.51	0.44	0.38	0.35	0.31	0.28	0.24	0.21	0.16	_
	microASMD 30V — Surface-mount	t										
	microASMD005F	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	_
-	microASMD010F	0.15	0.13	0.12	0.10	0.10	0.09	0.08	0.06	0.06	0.05	_
	miniASMDC 16-60V — Surface-mo	unt										
-	miniASMDC010F	0.17	0.15	0.13	0.11	0.10	0.09	0.08	0.07	0.06	0.04	_
-	miniASMDC014F	0.23	0.20	0.17	0.14	0.13	0.11	0.10	0.09	0.07	0.05	_
	miniASMDC020F	0.30	0.27	0.23	0.20	0.19	0.17	0.15	0.13	0.12	0.09	_
-	miniASMDC030F	0.49	0.44	0.39	0.32	0.30	0.27	0.24	0.22	0.18	0.14	_
	miniASMDC050F	0.59	0.57	0.55	0.50	0.48	0.45	0.43	0.35	0.30	0.23	_
-	miniASMDC075F/24	1.50	1.25	1.00	0.75	0.73	0.65	0.60	0.55	0.50	0.43	_
-	miniASMDC110F/16	1.68	1.49	1.30	1.10	1.05	0.92	0.83	0.75	0.64	0.50	_
-	miniASMDC110F/24	2.00	1.70	1.40	1.10	1.06	0.95	0.88	0.80	0.73	0.61	_
-	miniASMDC125F/16	2.00	1.69	1.47	1.25	1.17	1.03	0.92	0.90	0.69	0.53	_
-	miniASMDC150F/16	2.40	2.10	1.80	1.50	1.44	1.25	1.13	1.00	0.88	0.69	
-	miniASMDC150F/24	2.10	1.90	1.70	1.50	1.44	1.25	1.13	1.00	0.88	0.69	
-	miniASMDC260F/16	3.50	3.20	3.00	2.60	2.53	2.30	2.15	2.00	1.85	1.63	
	BD 14-16V— Bladed Devi	ce										
-	BD280-1130-10/16	12.4	11.0	9.7	8.3	8.0	7.0	6.3	5.6	5.0	4.0	1.8
-	BD280-1130-15/16	17.4	15.7	14.1	12.4	12.0	10.8	9.9	9.1	8.3	7.0	2.6
-	BD280-1130-20/16	24.0	21.6	19.1	16.6	16.0	14.1	12.9	11.7	10.4	8.6	3.5
-	BD280-1927-25/16-W	32.0	28.3	24.6	20.9	20.0	17.2	15.4	13.5	11.7	8.9	4.4
-	BD280-1927-30/16-W	34.1	30.1	26.0	22.0	21.0	18.0	16.0	14.0	11.9	9.1	4.6
-	BD540-30	34.1	30.1	26.0	22.0	21.0	18.0	16.0	14.0	11.9	9.1	4.6

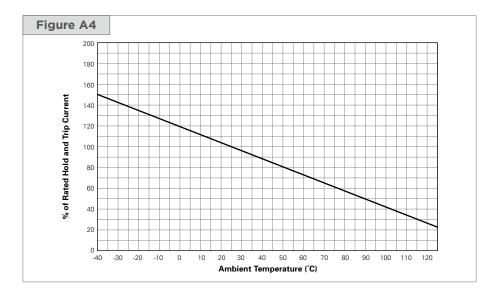
Figures A1-A4 — Thermal Derating Curves

A = AGRF B = AHRF



AHEF

A = ASMD, nanoASMDC, microASMD, miniASMDC


B = AHS

Figures A1-A4 — Thermal Derating Curves

(Cont'd)

BD

Table A3 — Electrical Characteristics

Part	I _H (A)@	I _H (A)@	I _T	V_{MAX}	I_{MAX}	\mathbf{P}_{DTyp}	Max.Tin	ne-to-trip	R_{MIN}	R _{1MAX}	R_{aMAX}	Figure for
Number	R _{1MAX}	R_{aMAX}	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	Dimensions
AGRF 16V — Radial-lea	nded											
AGRF400	4.0	3.0	7.6	16	100	2.5	20.0	2.0	0.0186	0.0610	0.0850	A5, A8, A9
AGRF500	5.0	4.3	9.4	16	100	2.7	25.0	2.5	0.0140	0.0340	0.0480	A5, A8, A9
AGRF600	6.0	5.3	10.7	16	100	2.8	30.0	3.5	0.0095	0.0280	0.0320	A5, A8, A9
AGRF700	7.0	6.5	13.2	16	100	3.0	35.0	4.0	0.0066	0.0200	0.0220	A5, A8, A9
AGRF800	8.0	7.6	15.0	16	100	3.2	40.0	5.5	0.0049	0.0175	0.0181	A5, A8, A9
AGRF900	9.0	8.6	16.5	16	100	3.4	45.0	6.0	0.0041	0.0135	0.0140	A5, A8, A9
AGRF1000	10.0	9.6	18.5	16	100	3.6	50.0	7.0	0.0034	0.0102	0.0106	A5, A8, A9
AGRF1100	11.0	10.5	20.3	16	100	3.7	55.0	7.5	0.0033	0.0089	0.0093	A5, A8, A9
AGRF1200	12.0	11.5	22.1	16	100	4.2	60.0	8.0	0.0030	0.0086	0.0091	A5, A8, A9
AGRF1400	14.0	13.0	27.3	16	100	4.6	70.0	9.0	0.0022	0.0064	0.0067	A5, A8, A9
AHRF (High Temp	•											
AHRF050	0.5	0.5	1.0	30	40	0.9	2.5	3.0	0.3500	1.100	1.100	A8, A9, A11
AHRF070	0.7	0.7	1.4	30	40	1.4	3.5	3.2	0.2300	0.800	0.800	A5, A8, A9
AHRF100	1.0	1.0	1.9	30	40	1.4	5.0	6.2	0.1500	0.430	0.430	A8, A9, A10
AHRF (High Temp	•											
AHRF200	2.0	2.0	3.8	16	100	1.4	10.0	4.8	0.0390	0.1100	0.1100	A8, A9, A10
AHRF300	3.0	3.0	6.5	16	100	3.0	15.0	5.0	0.0290	0.0790	0.0790	A5, A8, A9
AHRF400	4.0	4.0	7.4	16	100	3.3	20.0	5.0	0.0210	0.0600	0.0600	A5, A8, A9
AHRF450	4.5	4.5	8.7	16	100	3.6	22.5	4.0	0.0170	0.0540	0.0540	A5, A8, A9
AHRF550	5.5	5.5	10.0	16	100	3.5	27.5	6.0	0.0130	0.0370	0.0370	A5, A8, A9
AHRF600	6.0	6.0	12.0	16	100	4.1	30.0	6.5	0.0100	0.0320	0.0320	A5, A8, A9
AHRF650	6.5	6.5	13.7	16	100	4.3	32.5	7.0	0.0090	0.0260	0.0260	A5, A8, A9
AHRF700	7.0	7.0	13.1	16	100	4.0	35.0	7.0	0.0087	0.0250	0.0250	A5, A8, A9
AHRF750	7.5	7.5	14.8	16	100	4.5	37.5	8.0	0.0074	0.0220	0.0220	A5, A8, A9
AHRF800	8.0	8.0	15.0	16	100	4.2	40.0	8.0	0.0072	0.0200	0.0200	A5, A8, A9
AHRF900	9.0	9.0	18.5	16	100	5.0	45.0	11.5	0.0061	0.0170	0.0170	A5, A8, A9
AHRF1000	10.0	10.0	20.5	16	100	5.3	50.0	10.5	0.0051	0.0150	0.0150	A5, A8, A9
AHRF1100	11.0	11.0	21.2	16	100	5.5	55.0	11.0	0.0048	0.0130	0.0130	A5, A8, A9
AHRF1300	13.0	13.0	27.0	16	100	6.9	65.0	15.0	0.0034	0.0100	0.0100	A5, A8, A9
AHRF1400	14.0	14.0	28.3	16	100	6.9	70.0	15.5	0.0029	0.0090	0.0090	A5, A8, A9
AHRF1500	15.0	15.0	33.0	16	100	7.0	75.0	20.0	0.0027	0.0092	0.0092	A5, A8, A9

Table A3 — Electrical Characteristics

Pa	art	I _H (A)@	I _H (A)@	I _T	V_{MAX}	I_{MAX}	$P_{D Typ}$	Max.Tin	ne-to-trip	R _{MIN}	R _{1MAX}	R_{aMAX}	Figure f
	umber	R_{1MAX}	R_{aMAX}	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	Dimension
	HEF (High Temperate 2V — Radial-leaded	ure)											
Al	HEF050	0.5	0.5	1.0	32	100	0.9	2.5	3.0	0.3500	1.100	1.100	A8, A9, A
Al	HEF070	0.7	0.7	1.4	32	100	1.4	3.5	3.2	0.2300	0.800	0.800	A8, A9, A
Al	HEF100	1.0	1.0	1.9	32	100	1.4	5.0	6.2	0.1500	0.430	0.430	A8, A9,
Al	HEF300	3.0	3.0	6.0	32	100	3.2	15.0	5.0	0.0350	0.110	0.110	A8, A9,
Al	HEF500	5.0	5.0	10.0	32	100	5.3	25.0	9.0	0.0150	0.040	0.040	A8, A9,
Al	HEF750	7.5	7.5	15.0	32	100	6.5	37.5	13.0	0.0074	0.023	0.023	A8, A9,
Al	HEF1000	10.0	10.0	20.0	32	100	7.0	50.0	15.0	0.0060	0.016	0.016	A8, A9,
	HS (High Temperatu SV — Surface-moun												
Al	HS080-2018	0.80	0.80	2.00	16	70	1.5	8.0	9.0	0.130	0.550	0.550	A6
Al	HS120	1.20	1.20	2.30	16	50	2.2	8.0	2.0	0.150	0.340	0.340	A7
Al	HS160	1.60	1.60	3.20	16	70	2.2	8.0	15.0	0.050	0.150	0.150	A7
Al	HS200	2.00	2.00	4.00	16	70	2.3	8.0	13.4	0.050	0.140	0.140	A7
Al	HS300	3.00	3.00	6.00	16	70	3.0	15.0	8.0	0.024	0.083	0.083	A7
	SMD 6-60V — Surface-mo	unt											
AS	SMD030F	0.23	0.23	0.59	60	10	1.1	1.15	12.0	0.980	4.800	4.800	A7
AS	SMD050F	0.37	0.37	0.98	60	10	1.7	1.95	20.0	0.290	1.400	1.400	A7
AS	SMD075F	0.60	0.60	1.48	30	40	1.1	3.00	20.0	0.290	1.000	1.000	A7
AS	SMD100F	0.90	0.90	2.16	30	40	1.1	4.50	20.0	0.098	0.480	0.480	A7
AS	SMD125F	1.04	1.04	2.46	16	40	1.1	5.20	20.0	0.057	0.250	0.250	A7
AS	SMD150F	1.27	1.27	2.95	16	40	1.2	6.35	25.0	0.049	0.250	0.250	A7
AS	SMD150F/33	1.20	1.20	2.88	33	40	1.9	6.00	14.0	0.068	0.230	0.230	A7
AS	SMD185F	1.85	1.85	3.70	16	40	1.5	9.25	11.3	0.032	0.126	0.126	A7
AS	SMD200F	1.73	1.73	3.93	16	40	1.2	8.65	30.0	0.050	0.120	0.120	A7
AS	SMD250F	1.97	1.97	5.00	16	40	1.2	9.85	30.0	0.035	0.085	0.085	A7
	anoASMDC 6-48V — Surface-mo	unt											
na	anoASMDC012F	0.12	0.12	0.39	48	10	0.5	1.0	0.2	1.40	6.50	6.50	A15
na	anoASMDC016F	0.16	0.16	0.45	48	10	0.5	1.0	0.3	1.10	5.00	5.00	A15
na	anoASMDC020F	0.20	0.20	0.42	24	100	0.6	8.0	0.1	0.65	3.10	3.10	A15
na	anoASMDC035F	0.35	0.75	0.75	16	20	0.6	3.5	0.1	0.45	1.35	1.35	A15
	icroASMD DV — Surface-moun	t											
m	icroASMD005F	0.05	0.05	0.15	30	10	1.0	0.25	1.5	3.6	50.0	50.0	A15
m	icroASMD010F	0.10	0.10	0.25	30	10	0.8	0.50	1.0	2.1	15.0	15.0	A15
	iniASMDC 6-60V — Surface-mo	unt											
m	iniASMDC010F	0.10	0.10	0.30	60	40	0.75	0.5	5.000	0.700	12.70	12.70	A15
m	iniASMDC014F	0.14	0.14	0.28	60	10	0.75	8.0	0.008	1.500	6.00	6.00	A15
m	iniASMDC020F	0.20	0.20	0.40	30	10	0.80	8.0	0.020	0.600	3.30	3.30	A15
m	iniASMDC030F	0.30	0.30	0.60	30	40	0.80	8.0	0.100	0.200	1.75	1.75	A15
m	iniASMDC050F	0.50	0.50	1.00	24	100	0.80	8.0	0.150	0.150	1.00	1.00	A15
m	iniASMDC075F/24	0.75	0.75	1.50	24	40	0.80	8.0	0.300	0.090	0.29	0.29	A15
m	iniASMDC110F/16	1.10	1.10	2.20	16	100	0.80	8.0	0.300	0.060	0.18	0.18	A15
m	iniASMDC110F/24	1.10	1.10	2.20	24	20	0.80	8.0	0.500	0.060	0.18	0.18	A15
m	iniASMDC125F/16	1.25	1.25	2.50	16	100	0.80	8.0	0.400	0.050	0.14	0.14	A15
m	iniASMDC150F/16	1.50	1.50	2.80	16	100	0.80	8.0	0.500	0.040	0.11	0.11	A15
			1.50	0.00		20	1.00	0.0	1 500	0.040			A15
_	iniASMDC150F/24	1.50	1.50	3.00	24	20	1.00	8.0	1.500	0.040	0.12	0.12	CIA

Table A3 — Electrical Characteristics

(Cont'd)

Part	I _H (A)@	I _H (A)@	I _T	V_{MAX}	I_{MAX}	P_{DTyp}	Max.Tim	ne-to-trip	R_{MIN}	R _{1MAX}	R_{aMAX}	Figure for
Number	R _{1MAX}	R_{aMAX}	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	Dimensions
BD 14V — Bladed Device												
BD280-1130-10/16	8	8	13	14	100	4.4	40	8	0.0095	0.0185	0.0185	A13
BD280-1130-15/16	12	12	20	14	100	4.5	60	8	0.0050	0.0070	0.0070	A13
BD280-1130-20/16	16	16	26	14	100	5.2	80	10	0.0028	0.0064	0.0064	A13
BD280-1927-25/16-W	20	20	32	14	100	6.0	100	13	0.0024	0.0042	0.0042	A14
BD280-1927-30/16-W	21	21	38	14	100	6.2	120	13	0.0021	0.0043	0.0043	A14
BD 16V — Bladed Device												
BD540-30	21	21	40	16	100	6	120	13	0.0016	0.0044	0.0044	A16

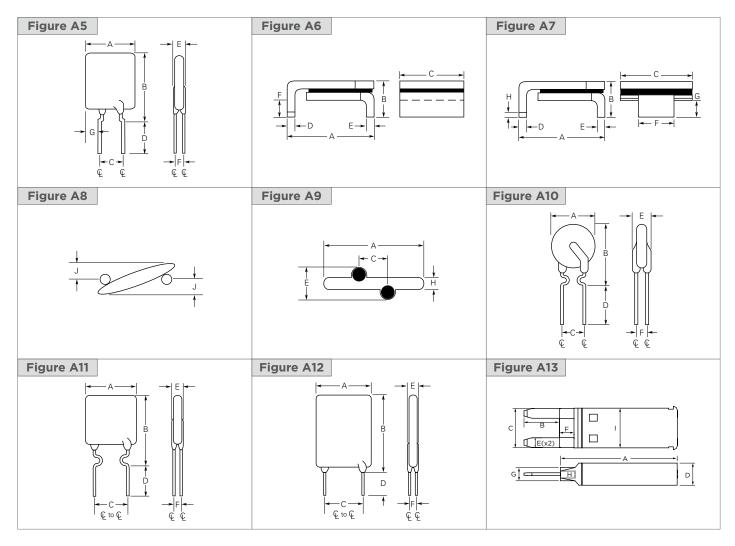
Notes:

- Hold current: maximum current device will pass without interruption in 25°C, unless otherwise specified (20°C for ASMD).

 Trip current: minimum current that will switch the device from low-resistance to high-resistance in 25°C still air, unless otherwise specified.

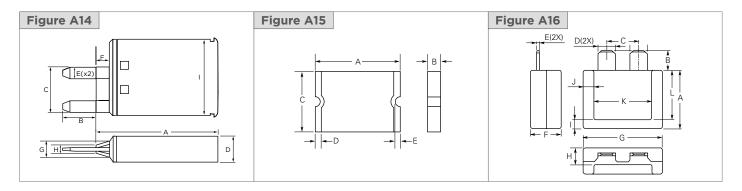
 Maximum voltage device can withstand without damage at rated current.

- Maximum fault current device can withstand without damage at rated voltage.


 Po : Power dissipated from device when in the tripped state in 25°C still air, unless otherwise specified.

 R_{MIN} : Minimum resistance of device as supplied at 25°C, unless otherwise specified.
- R_{1MAX}: Maximum resistance of device when measured one hour post reflow (surface-mount device) or one hour post trip (radial-leaded device) at 25°C unless otherwise specified.

 R_{aMAX}: Maximum functional resistance of device after being subjected to the stresses described in PS400 at 25°C, unless otherwise specified.


 R_{aMIN}: Minimum functional resistance of device after being subjected to the stresses described in PS400 at 25°C, unless otherwise specified.

Figures A5-A16 — Dimension Figures

Figures A5-A16 — Dimension Figures

(Cont'd)

Table A4 — Dimensions in Millimeters and (Inches)

Part		A		В	(С)		E	ı	=		G	Н	J	
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Max	Figure
AGRF 16V — Radi	al-leade	ed															
AGRF400	_	8.9	_	14.1	4.3	5.8	7.6	_	_	3.0	1.2	_	_	3.10	1.24	1.4	A5, A8,
		(0.350)		(0.56)	(0.17)	(0.20)	(0.3)			(0.12)	(0.15)			(0.120)	(0.049)	(0.06)	A9
AGRF500	_	10.4	_	15.6	4.3	5.8	7.6	_	_	3.0	1.2	_	_	3.94	1.24	1.6	A5, A8,
		(0.410)		(0.61)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.155)	(0.049)	(0.06)	A9
AGRF600	_	10.7	_	18.4	4.3	5.8	7.6	_	_	3.0	1.2	_	_	4.07	1.24	1.6	A5, A8,
		(0.420)		(0.73)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.160)	(0.049)	(0.06)	A9
AGRF700	_	11.2	_	21.0	4.3	5.8	7.6	_	_	3.0	1.2	_	_	4.49	1.24	1.7	A5, A8,
		(0.440)		(0.73)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.177)	(0.049)	(0.07)	A9
AGRF800	_	12.7	_	22.2	4.3	5.8	7.6	_	_	3.0	1.2	_	_	5.08	1.24	1.8	A5, A8,
		(0.500)		(0.88)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.200)	(0.049)	(0.07)	A9
AGRF900	_	14.0	_	23.0	4.3	5.8	7.6	_	_	3.0	1.2	_	_	5.69	1.24	2.0	A5, A8,
		(0.550)		(0.91)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.224)	(0.049)	(0.08)	A9
AGRF1000	_	16.51	_	25.7	4.3	5.8	7.6	_	_	3.0	1.2	_	_	6.96	1.24	2.0	A5, A8,
		(0.650)		(1.01)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.274)	(0.049)	(0.08)	A9
AGRF1100	_	17.5	_	26.5	4.3	5.8	7.6	_	_	3.0	1.2	_	_	7.47	1.24	2.4	A5, A8,
		(0.690)		(1.04)	(0.17)	(0.20)	(0.3)			(0.12)	(0.05)			(0.294)	(0.049)	(0.09)	A9
AGRF1200	_	17.5	_	28.8	9.4	10.9	7.6	_	_	3.5	1.4	_	_	4.83	1.45	1.5	A5, A8,
		(0.690)		(1.14)	(0.37)	(0.43)	(0.3)			(0.14)	(0.06)			(0.190)	(0.057)	(0.06)	A9
AGRF1400	_	23.5	_	28.7	9.4	10.9	7.6	_	_	3.5	1.4	_	_	7.82	1.45	1.9	A5, A8,
		(0.925)		(1.13)	(0.37)	(0.43)	(0.3)			(0.14)	(0.06)			(0.308)	(0.057)	(0.07)	A9
AHRF (High 30V — Radi																	
AHRF050	_	7.4	_	12.7	4.3	5.8	7.6	_	_	3.3	1.2	_	_	_	1.24	1.6	A8, A9,
		(0.29)		(0.50)	(0.17)	(0.23)	(0.30)			(0.13)	(0.05)				(0.049)	(0.06)	A10
AHRF070		6.9		10.8	4.3	5.8	7.6	_		3.3	1.2	_	_	_	1.24	1.6	A8, A9,
		(0.27)		(0.43)	(0.17)	(0.23)	(0.30)			(0.13)	(0.05)				(0.049)	(0.06)	A11
AHRF100		9.7	_	13.6	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A8, A9,
		(0.38)		(0.54)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A10

Table A4 — Dimensions in Millimeters and (Inches)

Part		A		В	(С	- 1	D		E	- 1	F		G	Н	J	F:
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Тур	Max	Figure
AHRF (High	Temper	ature)															
16V — Radi	al-leade	ed															
AHRF200	_	9.4	_	14.4	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A8, A9,
		(0.37)		(0.57)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A10
AHRF300	_	8.8	_	13.8	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A5, A8,
		(0.35)		(0.55)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A9
AHRF400	_	10.0	_	15.0	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A5, A8,
		(0.39)		(0.59)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A9
AHRF450	_	10.4	_	15.6	4.3	5.8	7.6	_	_	3.0	1.2	_	_	3.94	1.24	1.6	A5, A8,
		(0.41)		(0.61)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			(0.155)	(0.049)	(0.06)	A9
AHRF550	_	11.2	_	18.9	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A5, A8,
		(0.44)		(0.74)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A9
AHRF600	_	11.2	_	21.0	4.3	5.8	7.6	_	_	3.0	1.2	_	_	4.49	1.24	1.7	A5, A8,
		(0.44)		(0.73)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			(0.177)	(0.049)	(0.07)	A9
AHRF650	_	12.7	_	22.2	4.3	5.8	7.6	_	_	3.0	1.2	_	_	5.08	1.24	1.8	A5, A8,
		(0.50)		(0.88)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			(0.200)	(0.049)	(0.07)	А9
AHRF700	_	14.0	_	21.9	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A5, A8,
		(0.55)		(0.86)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	А9
AHRF750	_	14.0	_	23.5	4.3	5.8	7.6	_	_	3.0	1.2	_	_	5.69	1.24	2.0	A5, A8,
		(0.55)		(0.93)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)			(0.224)	(0.049)	(80.0)	A9
AHRF800	_	16.5	_	22.5	4.3	5.8	7.6	_	_	3.0	1.2	_	_	_	1.24	1.6	A5, A8,
		(0.65)		(0.88)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A9
AHRF900		16,5	_	25.7	4.3	5.8	7.6	_	_	3.0	1.2	_		_	_		A5, A8,
		(0.65)		(1.01)	(0.17)	(0.23)	(0.30)			(0.12)	(0.05)						A9
AHRF1000		17.5		26.5	9.4	10.9	7.6		_	3.0	1.2	_		7.47	1.24	1.5	A5, A8,
		(0.69)		(1.04)	(0.37)	(0.43)	(0.30)			(0.12)	(0.05)			(0.294)	(0.049)	(0.06)	A9
AHRF1100		21.0		26.1	9.4	10.9	7.6			3.0	1.2				1.24	1.6	A5, A8,
		(0.83)		(1.03)	(0.37)	(0.43)	(0.30)			(0.12)	(0.05)				(0.049)	(0.06)	A9
AHRF1300		23.5		28.7	9.4	10.9	7.6			3.5	1.4			7.82	1.45	1.9	A5, A8,
		(0.925)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)			(0.308)	(0.057)	(0.08)	A9
AHRF1400		23.5		28.7	9.4	10.9	7.6			3.6	1.4				1.24	1.6	A5, A8,
AIIII 1400		(0.93)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)				(0.049)	(0.06)	A9
AHRF1500		23.5		28.7	9.4	10.9	7.6			3.5	1.4			7.82	(0.043)		A5, A8,
AIIII 1000		(0.93)		(1.13)	(0.37)	(0.43)	(0.30)			(0.14)	(0.06)			(0.308)			A9
AHEF (High	Tompor			(1.15)	(0.37)	(0.43)	(0.30)			(0.14)	(0.00)			(0.300)			
32V — Radi	ial-leade	ed															
AHEF050	_	7.4	_	12.7	4.3	5.8	7.6	_	_	3.3	_	_	_	_	_	_	A8, A9,
		(0.29)		(0.50)	(0.17)	(0.23)	(0.30)			(0.13)							A10
AHEF070	_	6.9	_	10.8	4.3	5.8	7.6	_	_	3.0		_		_	_		A8, A9,
		(0.27)		(0.43)	(0.17)	(0.23)	(0.30)			(0.12)							A11
AHEF100		9.7		13.6	4.3	5.8	7.6	_		3.0							A8, A9,
		(0.38)		(0.54)	(0.17)	(0.23)	(0.30)			(0.12)							A10
AHEF300		10.2		15.5	4.32	5.84	7.6			3.8							A8, A9,
		(0.40)		(0.61)	(0.17)	(0.23)	(0.30)			(0.15)							A12
AHEF500		14.0		24.1	4.3	5.8	11.5			3.8							A8, A9,
, 11 121 000		(0.55)		(0.95)	(0.17)	(0.23)	(0.45)			(0.15)							A0, A3,
AHEF750		21.1		24.9	9.4	10.9	7.6			3.8							A8, A9,
ALIEL / DU	_	(0.83)	_	(0.98)	(0.37)	(0.43)	(0.30)		_	(0.15)	_		_				Ao, A9, A12
AUEE1000						-											
AHEF1000	_	23.5	_	27.9	9.4	10.9	7.6	_	_	4.0	_	_	_	_	_	_	A8, A9,
		(0.93)		(1.10)	(0.37)	(0.43)	(0.30)			(0.16)							A12

Table A4 — Dimensions in Millimeters and (Inches)

Part	/	4		В		C		D		Ε		F		G		1	Eigur
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figur
AHS (High Te 16V — Surfac																	
AHS080-2018	4.72	5.44	_	1.52	4.22	4.93	0.25	0.36	0.25	0.36	0.30	0.46	_	_	_	_	A6
	(0.186)	(0.214)		(0.060)	(0.166)	(0.194)	(0.010)	(0.014)	(0.010)	(0.014)	(0.012)	(0.018)					
AHS120	6.73	7.98	_	3.00	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
AHS160	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.24)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
AHS200	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.240)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
AHS300	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.240)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
ASMD 16-60V — Su	rface-mo	ount															
ASMD030F	6.73	7.98	_	3.18	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
ASMD050F	6.73	7.98	_	3.18	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
ASMD075F	6.73	7.98	_	3.18	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.125)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
ASMD100F	6.73	7.98	_	3.00	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
ASMD125F	6.73	7.98	_	3.00	4.8	5.44	0.56	0.71	0.56	0.71	2.16	2.41	0.66	1.37	0.43	_	A7
	(0.265)	(0.314)		(0.118)	(0.19)	(0.214)	(0.022)	(0.028)	(0.022)	(0.028)	(0.085)	(0.095)	(0.026)	(0.054)	(0.017)		
ASMD150F	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.24)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
ASMD150F/33	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.24)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
ASMD185F	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.24)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
ASMD200F	8.00	9.40	_	3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
	(0.315)	(0.370)		(0.118)	(0.24)	(0.264)	(0.022)	(0.028)	(0.022)	(0.028)	(0.145)	(0.155)	(0.026)	(0.054)	(0.017)		
ASMD250F	8.00	9.40		3.00	6.0	6.71	0.56	0.71	0.56	0.71	3.68	3.94	0.66	1.37	0.43	_	A7
		(0.370)		(0.118)	(0.24)	(0.264)	(0.022)			(0.028)	(0.145)		(0.026)		(0.017)		

Part		A	-	3	(3	1	D	E		
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure
nanoASMDC 16-48V — Surface-m	ount						,				
nanoASMDC012F	3.00	3.40	0.62	1.00	1.37	1.80	0.25	0.75	0.076	_	A15
	(0.118)	(0.134)	(0.024)	(0.039)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)	_	
nanoASMDC016F	3.00	3.40	0.62	1.00	1.37	1.80	0.25	0.75	0.076	_	A15
	(0.118)	(0.134)	(0.024)	(0.039)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)	_	
nanoASMDC020F	3.00	3.40	0.58	0.82	1.37	1.80	0.25	0.75	0.076	_	A15
nanoASMDC020F	(0.118)	(0.134)	(0.023)	(0.032)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)	_	
nanoASMDC035F	3.00	3.40	0.58	0.82	1.37	1.80	0.25	0.75	0.076	_	A15
	(0.118)	(0.134)	(0.023)	(0.032)	(0.054)	(0.071)	(0.010)	(0.030)	(0.003)	_	
microASMD 30V — Surface-mou	nt										
microASMD005F	3.0	3.43	0.50	0.85	2.35	2.80	0.25	0.75	0.076	_	A15
	(0.118)	(0.135)	(0.019)	(0.034)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	
microASMD010F	3.0	3.43	0.50	0.85	2.35	2.80	0.25	0.75	0.076	_	A15
	(0.118)	(0.135)	(0.019)	(0.034)	(0.092)	(0.110)	(0.010)	(0.030)	(0.003)	_	

Table A4 — Dimensions in Millimeters and (Inches)

Part	1	A	1	В	(C		D	E		
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure
miniASMDC 16-60V — Surface-mo	ount										
miniASMDC010F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC014F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC020F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20		A15
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC030F	4.37	4.73	0.635	0.89	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.186)	(0.025)	(0.035)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC050F	4.37	4.73	0.38	0.62	3.07	3.41	0.25	0.95	0.20		A15
	(0.172)	(0.186)	(0.015)	(0.025)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC075F/24	4.37	4.83	0.81	1.46	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.032)	(0.057)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC110F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC110F/24	4.37	4.83	0.81	1.46	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.032)	(0.057)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC125F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC150F/16	4.37	4.83	0.28	0.48	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.011)	(0.019)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC150F/24	4.37	4.83	1.00	1.94	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.040)	(0.077)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	
miniASMDC260F/16	4.37	4.83	1.02	1.52	3.07	3.41	0.25	0.95	0.20	_	A15
	(0.172)	(0.190)	(0.042)	(0.060)	(0.121)	(0.134)	(0.010)	(0.040)	(0.008)	_	

Part	A	Α	-	3	(0	-	D	E(:	ĸ2)	-	F	(3	ŀ	1		ı	
Number	Min	Max	Figure																
BD 14V — Bladed Device)																		
BD280-1130-10/16	29.50	30.10	8.70	9.30	10.75	11.25	6.05	6.65	2.55	3.05	3.30	3.90	3.40	4.00	1.70	2.30	10.90	11.50	A13
	(1.173)	(1.185)	(0.343)	(0.366)	(0.423)	(0.443)	(0.238)	(0.262)	(0.100)	(0.120)	(0.130)	(0.154)	(0.134)	(0.157)	(0.067)	(0.091)	(0.429)	(0.453)	
BD280-1130-15/16	29.50	30.10	8.70	9.30	10.75	11.25	6.05	6.65	2.55	3.05	3.30	3.90	3.40	4.00	1.70	2.30	10.90	11.50	A13
	(1.173)	(1.185)	(0.343)	(0.366)	(0.423)	(0.443)	(0.238)	(0.262)	(0.100)	(0.120)	(0.130)	(0.154)	(0.134)	(0.157)	(0.067)	(0.091)	(0.429)	(0.453)	
BD280-1130-20/16	29.50	30.10	8.70	9.30	10.75	11.25	6.05	6.65	2.55	3.05	3.30	3.90	3.40	4.00	1.70	2.30	10.90	11.50	A13
	(1.173)	(1.185)	(0.343)	(0.366)	(0.423)	(0.443)	(0.238)	(0.262)	(0.100)	(0.120)	(0.130)	(0.154)	(0.134)	(0.157)	(0.067)	(0.091)	(0.429)	(0.453)	
BD280-1927-25/16-W	26.65	27.35	8.60	9.20	10.75	11.25	6.05	6.65	2.55	3.05	1.80	2.20	3.50	3.90	1.70	2.30	19.00	19.40	A14
	(1.049)	(1.077)	(0.339)	(0.362)	(0.423)	(0.443)	(0.238)	(0.262)	(0.100)	(0.120)	(0.071)	(0.087)	(0.138)	(0.154)	(0.067)	(0.091)	(0.748)	(0.764)	
BD280-1927-30/16-W	26.65	27.35	8.60	9.20	10.75	11.25	6.05	6.65	2.55	3.05	1.80	2.20	3.50	3.90	1.70	2.30	19.00	19.40	A14
	(1.049)	(1.077)	(0.339)	(0.362)	(0.423)	(0.443)	(0.238)	(0.262)	(0.100)	(0.120)	(0.071)	(0.087)	(0.138)	(0.154)	(0.067)	(0.091)	(0.748)	(0.764)	

Part	4	A	1	В	(С	1	D	E(:	x2)	I	F	F:
Number	Min	Max	Figure										
BD 16V— Bladed Dev	ice												
BD540-30	21.65	22.36	7.06	7.74	9.35	10.55	5.28	5.72	0.7	0.83	9.5	10	A16
	(0.852)	(0.880)	(0.277)	(0.304)	(0.368)	(0.415)	(0.207)	(0.225)	(0.027)	(0.032)	(0.374)	(0.393)	_
		G	1	Н		I	,	J	1	K		L	
	Min	Max											
	24.75	25.4	6.05	6.65	3.4	3.6	3.4	3.6	18	18.2	18.4	18.6	-
	(0.974)	(1.000)	(0.238)	(0.261)	(0.133)	(0.141)	(0.133)	(0.141)	(0.708)	(0.716)	(0.724)	(0.732)	

AGRF

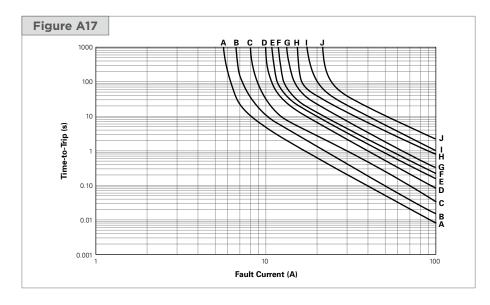
A = AGRF400B = AGRF500

C = AGRF600

D = AGRF700

E = AGRF800

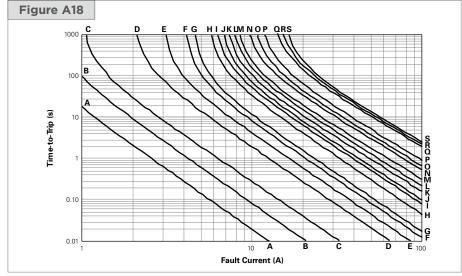
F = AGRF900


r = AGNF900

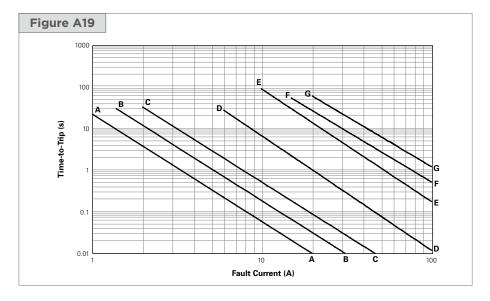
G = AGRF1000

H = AGRF1100

I = AGRF1200


J = AGRF1400

AHRF


A = AHRF050K = AHRF700В AHRF070 AHRF750 = AHRF100 AHRF800 = AHRF200 N = AHRF900D AHRF300 AHRF1000 AHRF400 P = AHRF1100G = AHRF450Q = AHRF1300AHRF550 R = AHRF1400AHRF600 S = AHRF1500

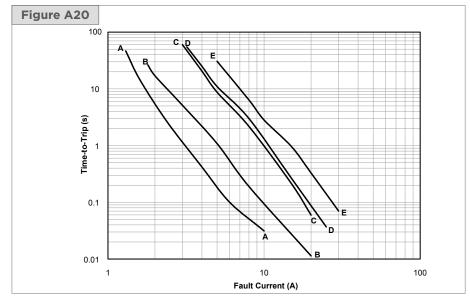
J = AHRF650

AHEF

A = AHEF050 B = AHEF070 C = AHEF100 D = AHEF300 E = AHEF500 F = AHEF750 G = AHEF1000

(Cont'd)

AHS


A = AHS080-2018

B = AHS120

= AHS160

= AHS200

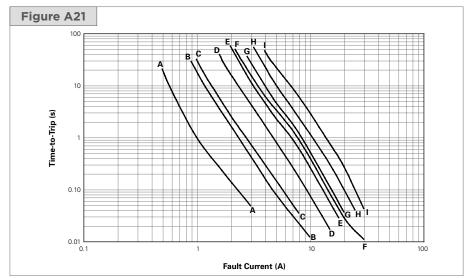
E = AHS300

ASMD

A = ASMD030F

B = ASMD050F

ASMD075F

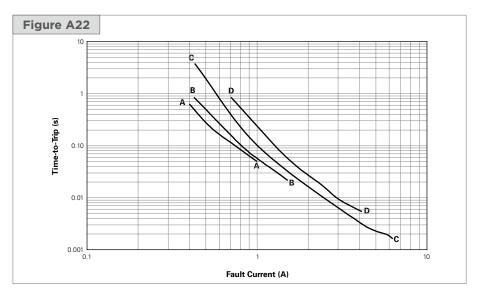

= ASMD100F D E = ASMD125F

F = ASMD150F, ASMD150F/33

G = ASMD185F

H = ASMD200F

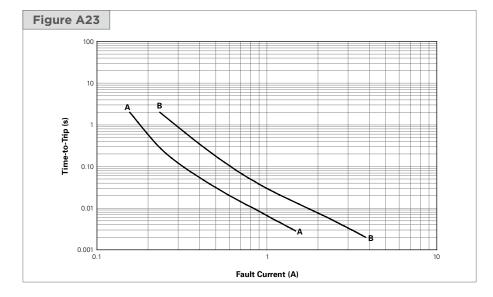
= ASMD250F


nanoASMDC

A = nanoASMDC012F

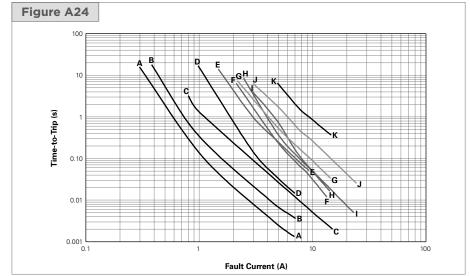
B = nanoASMDC016F

= nanoASMDC020F

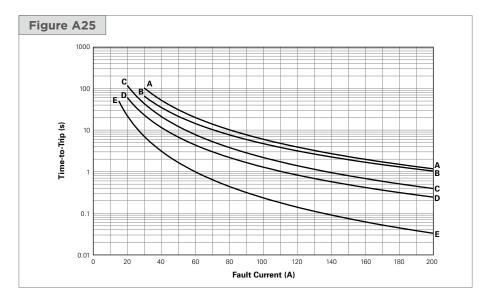

D = nanoASMDC035F

(Cont'd)

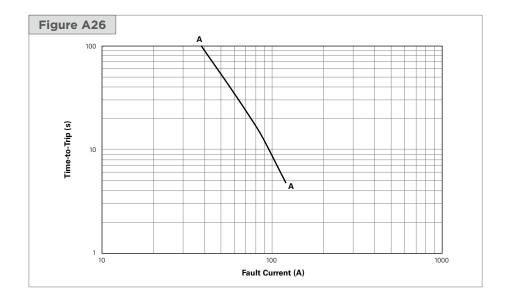
microASMD


A = microASMD005FB = microASMD010F

miniASMDC


A = miniASMDC010F, miniASMDC014F

A = miniASMDC010F, miniASMDC0
B = miniASMDC020F
C = miniASMDC030F
D = miniASMDC050F
E = miniASMDC075F/24
F = miniASMDC110F/16
G = miniASMDC110F/24
H = miniASMDC125F/16
I = miniASMDC150F/16
J = miniASMDC150F/24
K = miniASMDC260F/16


BD

A = BD30A B = BD25A C = BD20A D = BD15A E = BD10A

(Cont'd)

A = BD540-30

Table A5 — Physical Characteristics and Environmental Specifications

AGRF		
Physical Characteristic	cs	
Lead Material	AGRF400 to AGRF1100	: Tin-plated Copper, 0.52mm² (20AWG) ø 0.8 mm/0.032in
	AGRF1200 to AGRF140	00: Tin-plated Copper, 0.82mm² (18AWG) ø 1.0mm/0.040in
Soldering Characteristics	Solderability per ANSI/	J-STD-002 Category 3
Solder Heat Withstand	AGRF400	: per IEC68-2-20 Test Tb, Method 1A, Condition A: Can Withstand 5 s at 260°C \pm 5°C
	AGRF500-AGRF1400	: per IEC68-2-20 Test Tb, Method 1A, Condition B: Can Withstand 10 s at 260°C \pm 5°C
Insulating Material	Cured, Flame-retardan	t Epoxy Polymer; Meets UL 94V-0
Operation Temperature	-40°C~85°C	

Note: See PS400 for other physical characteristics.

Devices are not intended to be placed through a reflow process.

Environmental Specifications					
Test	Conditions	Resistance Change			
Passive Aging	70°C, 1000 hrs	±5%			
	85°C, 1000 hrs	±5%			
Humidity Aging	85°C, 85% RH, 1000 hrs	±5%			
Thermal Shock	85°C, -40°C (10 Times)	±5%			
Solvent Resistance	MIL-STD-202, Method 215F	No Change			

Table A5 — Physical Characteristics and Environmental Specifications

(Cont'd)

AHRF	
Physical Characteristic	es
Lead material	AHRF050 to AHRF200 : Tin-plated Copper-clad Steel, 0.205mm² (24 AWG), ø 0.51mm/0.020in
	AHRF300 to AHRF1100 : Tin-plated Copper 0.52mm² (20 AWG), ø 0.81mm/0.032in
	AHRF1300 to AHRF1500: Tin-plated Copper 0.82mm² (18 AWG), ø 1.0mm/0.04in
Soldering Characteristics	Solderability per ANSI/J-STD 002 Category 3
Solder Heat Withstand	Per IEC 68-2-20, Test Tb, Method 1A, Condition B; Can Withstand 10 s at 260°C ± 5°C
Insulating Material	Cured, Flame-retardant Epoxy Polymer; Meets UL 94V-0 Requirements
Operation Temperature	-40°C~125°C

Note: See PS400 for other physical characteristics.

Devices are not intended to be placed through a reflow process.

Environmental Specifications					
Test	Conditions	Resistance Change			
Passive Aging	70°C, 1000 hrs	±5%			
	85°C, 1000 hrs	±5%			
Humidity Aging	85°C, 85% RH, 1000 hrs	±5%			
Thermal Shock	125°C, -40°C (10 Times)	±5%			
Solvent Resistance	MIL-STD-202, Method 215F	No Change			

Note: See PS400 for other environmental specifications.

AHEF	
Physical Characteristi	cs
Lead Material	AHEF050 to AHEF100: Tin-plated Copper-clad Steel, 0.205mm² (24 AWG), ø 0.51mm/0.020in.
	AHEF300 to AHEF750: Tin-plated Copper 0.52mm² (20 AWG), ø 0.81mm/0.032in
	AHEF1000: Tin-plated Copper 0.82mm² (18 AWG), ø 1.0mm/0.04in
Soldering Characteristics	Solderability per ANSI/J-STD 002 Category 3
Solder Heat Withstand	Per IEC 68-2-20, Test Tb, Method 1A, Condition B; Can Withstand 10 s at 260°C ± 5°C
Insulating Material	Cured, Flame-retardant Epoxy Polymer; Meets UL 94V-0 Requirements
Operation Temperature	-40°C~125°C

Note: See PS400 for other physical characteristics.

Devices are not intended to be placed through a reflow process.

Environmental Specifications						
Test	Conditions	Resistance Change				
Passive Aging	70°C, 1000 hrs	±5%				
	85°C, 1000 hrs	±5%				
Humidity Aging	85°C, 85% RH, 1000 hrs	±5%				
Thermal Shock	125°C, -40°C (10 Times)	±5%				
Solvent Resistance	MIL-STD-202, Method 215F	No Change				

Table A5 — Physical Characteristics and Environmental Specifications

(Cont'd)

AHS	
Physical Characteristic	cs
Lead Material	Tin-plated Brass to MIL-T-10727B
Soldering Characteristics	Solderability per ANSI-J-STD-002 Category 1
Solder Heat Withstand	Per IEC-STD 68-2-20, Test Tb, Section 5, Method 1A
Flammability	Per IEC 695-2-2 Needle Flame Test for 20 s
Operation Temperature	-40°C~125°C

Note: See PS400 for other physical characteristics.

Environmental Specifications						
Test	Conditions	Resistance Change				
Passive Aging	70°C, 1000 hrs	±3% Typical				
	85°C, 1000 hrs	±5% Typical				
Humidity Aging	85°C, 85% RH, 1000 hrs	±1.2% Typical				
Thermal Shock	125°C, -40°C (20 Times)	-33% Typical				
Solvent Resistance	Freon	No Change				
	Trichloroethane	No Change				
	Hydrocarbons	No Change				

Note: See PS400 for other environmental specifications.

ASMD	
Physical Characteristi	cs
Terminal Pad Material	98%+Tin-plated Brass
Soldering Characteristics	Solderability per ANSI-J-STD-002 Category 1
Solder Heat Withstand	Per IEC-STD 68-2-20, Test Tb, Section 5, Method 1A
Flammability Resistance	Per IEC 695-2-2 Needle Flame Test for 20 s
Recommended Storage Conditions	40°C max, 70% RH max; Devices May Not Meet Specified Ratings if Storage Conditions are Exceeded
Operation Temperature	-40°C~85°C

Note: See PS400 for other physical characteristics.

Environmental Specifications				
Test	Conditions	Resistance Change		
Passive Aging	60°C, 1000 hrs	±3% Typical		
	85°C, 1000 hrs	±5% Typical		
Humidity Aging	85°C, 85% RH, 100 hrs	±1.2% Typical		
Thermal Shock	85°C, -40°C (20 Times)	-33% Typical		
	125°C, -55°C (10 Times)	-33% Typical		
Solvent Resistance	Freon	No Change		
	Trichloroethane	No Change		
	Hydrocarbons	No Change		

Table A5 — Physical Characteristics and Environmental Specifications

(Cont'd)

nanoASMDC/microASMD/miniASMDC					
Physical Characteristic	cs				
Terminal Pad Material	100% Matte Tin with Nickel Underplate				
Soldering Characteristics	Solderability per ANSI-J-STD-002 Category 3				
Solder Heat Withstand	Per IEC-STD 68-2-20, Test Tb, Section 5, Method 1A				
Flammability Resistance	Per IEC 695-2-2 Needle Flame Test for 20 s				
Recommended Storage Conditions	40°C max, 70% RH max; Devices May Not Meet Specified Ratings if Storage Conditions are Exceeded				
Operation Temperature	-40°C~85°C				

Note: See PS400 for other physical characteristics.

Environmental Specifications				
Test	Conditions	Resistance Change		
Passive Aging	60°C, 1000 hrs	±3% Typical		
	85°C, 1000 hrs	±5% Typical		
Humidity Aging	85°C, 85% RH, 100 hrs	±1.2% Typical		
Thermal Shock	85°C, -40°C (20 Times)	-33% Typical		
	125°C, -55°C (10 Times)	-33% Typical		
Solvent Resistance	Freon	No Change		
	Trichloroethane	No Change		
	Hydrocarbons	No Change		

Note: See PS400 for other environmental specifications.

BD	
Physical Characteristic	cs
Lead Material	Brass H65, Thickness: 0.8mm, Tin Plating Thickness: 5µm
Soldering Characteristics	NA
Solder Heat Withstand	NA
Insulating Material	Colored PBT, Meets UL94V-0 Requirements
Operation Temperature	-40°C~125°C

Note: See PS400 for other physical characteristics.

Environmental Specifications					
Test	Conditions	Resistance Change			
Passive Aging	85°C, 1000 hrs	±5%			
Humidity Aging	85°C, 85% RH,1000 hrs	±5%			
	85°C, 85% RH (with 10% I _{HOLD}), 500 hrs	±5%			
Thermal Shock	85°C to -40°C (5 Times)	Meet SCD			
Solvent Resistance	MIL-STD-202, Method 215F	No Change			

Table A6 — Packaging and Marking Information

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
AGRF Radial-leaded						
AGRF400	500	_	_	10,000	G4	*
AGRF400-2	_	2,500	_	12,500	G4	*
AGRF400-AP	_	_	2,000	10,000	G4	*
AGRF500	500	_	_	10,000	G5	*
AGRF500-2	_	2,000	_	10,000	G5	*
AGRF500-AP	_	_	2,000	10,000	G5	*
AGRF600	500	_	_	10,000	G6	*
AGRF600-2	_	2,000	_	10,000	G6	*
AGRF600-AP	_	_	2,000	10,000	G6	*
AGRF700	500	_	_	10,000	G7	*
AGRF700-2	_	1,500	_	7,500	G7	*
AGRF700-AP	_	_	1,500	7,500	G7	*
AGRF800	500	_	_	10,000	G8	*
AGRF800-2	_	1,500	_	7,500	G8	*
AGRF800-AP	_	_	1,500	7,500	G8	*
AGRF900	500	_		10,000	G9	*
AGRF900-2	_	1,000	_	5,000	G9	*
AGRF900-AP	_		1,000	5,000	G9	*
AGRF1000	250	_	_	5,000	G10	*
AGRF1000-2	_	1,000	_	5,000	G10	*
AGRF1000-AP			1,000	5,000	G10	*
AGRF1100	250	_	_	5,000	G11	*
AGRF1100-2	_	1,000	_	5,000	G11	*
AGRF1100-AP			1,000	5,000	G11	*
AGRF1200	250	_	_	5,000	G12	*
AGRF1200-2	_	1,000		5,000	G12	*
AGRF1200-AP			1,000	5,000	G12	*
AGRF1400	250	_	_	5,000	G14	*
AGRF1400-2	_	1,000		5,000	G14	*
AGRF1400-AP	_	_	1,000	5,000	G14	*
AHRF (High Tempera	ature)		,	.,	-	
AHRF050	500	_	_	10,000	H0.5	*
AHRF050-2		2,500	_	12,500	H0.5	*
AHRF050-AP	_		2,500	12,500	H0.5	*
AHRF070	500	_		10,000	H0.7	*
AHRF070-2	_	2,500	_	12,500	H0.7	*
AHRF070-AP			2,500	12,500	H0.7	*
AHRF100	500	_		10,000	H1	*
AHRF100-2		2,500	_	12,500	H1	*
AHRF100-AP			2,500	12,500	H1	*
AHRF200	500			10,000	H2	*
AHRF200-2	_	2,500	_	12,500	H2	*
AHRF200-AP	_		2,500	12,500	H2	*
AHRF300	500	_		10,000	H3	*
AHRF300-2	_	2,000	_	10,000	H3	*
AHRF300-AP			2,000	10,000	H3	*
AHRF400	500			10,000	H4	*
AHRF400-2		1,500		7,500	H4	*
AHRF400-AP		- -	1,500	7,500	H4	*

^{*} These devices are intended for use in automotive applications.

For commercial alternatives to these products please see the radial-leaded devices section or surface-mount devices section.

Table A6 — Packaging and Marking Information

Part Number	Bag Quantity	Tape and Reel Quantity	Ammo Pack Quantity	Standard Package Quantity	Part Marking	Agency Recognition
AHRF (High Temperature Radial-leaded)					
AHRF450	500	_	_	10,000	H4.5	*
AHRF450-2	_	1,500	_	7,500	H4.5	*
AHRF450-AP	_	_	1,500	7,500	H4.5	*
AHRF550	500	_	_	10,000	H5.5	*
AHRF550-2	_	2,000	_	10,000	H5.5	*
AHRF550-AP	_	<u> </u>	2,000	10,000	H5.5	*
AHRF600	500	_	_	10,000	H6	*
AHRF600-2	_	2,000	_	10,000	H6	*
AHRF600-AP	_	_	2,000	10,000	H6	*
AHRF650	500	_	_	10,000	H6.5	*
AHRF650-2		1,500	_	7,500	H6.5	*
AHRF650-AP			1,500	7,500	H6.5	*
AHRF700	500		-	10,000	H7	*
AHRF700-2		1,500		7,500	H7	*
AHRF700-AP		1,500 —	1,500	7,500	H7	*
AHRF750	500		1,500 —	10,000	H7.5	*
						*
AHRF750-2		1,000	1,000	5,000	H7.5	*
AHRF750-AP			1,000	5,000	H7.5	*
AHRF800	500			10,000	H8	*
AHRF800-2		1,000		5,000	H8	*
AHRF800-AP	_		1,000	5,000	H8	*
AHRF900	250	_		5,000	H9	
AHRF900-2	_	1,000	_	5,000	H9	*
AHRF900-AP			1,000	5,000	H9	*
AHRF1000	250	_		5,000	H10	*
AHRF1000-2		1,000	_	5,000	H10	*
AHRF1000-AP			1,000	5,000	H10	*
AHRF1100	250	_	_	5,000	H11	*
AHRF1100-2	_	1,000	_	5,000	H11	*
AHRF1100-AP			1,000	5,000	H11	*
AHRF1300	250	_	_	5,000	H13	*
AHRF1300-2	_	1,000	_	5,000	H13	*
AHRF1300-AP	_	_	1,000	5,000	H13	*
AHRF1400	250	_	_	5,000	H14	*
AHRF1400-2	_	1,000	_	5,000	H14	*
AHRF1400-AP	_	_	1,000	5,000	H14	*
AHRF1500	250	_	_	5,000	H15	*
AHRF1500-2	_	1,000	_	5,000	H15	*
AHRF1500-AP	_	_	1,000	5,000	H15	*
AHEF (High Temperature Radial-leaded)		,	<u> </u>		
AHEF050	500	_	_	10,000	E0.5	*
AHEF070	500	_	_	10,000	E0.7	*
AHEF100	500	_		10,000	E1	*
AHEF300	500	_	_	10,000	E3	*
AHEF500	250			5,000	E5	*
AHEF750	250			5,000	E7.5	*
AHEF1000	250			5,000	E10	*

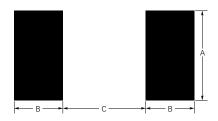
^{*} These devices are intended for use in automotive applications.

 $[\]begin{tabular}{ll} \hline For commercial alternatives to these products please see the radial-leaded devices section or surface-mount devices section. \\ \hline \end{tabular}$

Table A6 — Packaging and Marking Information

				Recommended Pa	nd Layouts [mm(ir	n) See Figure A27]	
Part Number	Tape and Reel Quantity	Standard Package Quantity	Part Marking	Dimension A (Min*/Nom)	Dimension B (Nom)	Dimension C (Nom)	Agency Recognition
AHS (High Temperature) Surface-mount							
AHS080-2018	4,000	20,000	H08	4.6 (0.18)	1.5 (0.06)	3.4 (0.134)	*
AHS120	2,000	10,000	H12	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
AHS160	1,500	7,500	160	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
AHS200	1,500	7,500	H200	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
AHS300	1,500	7,500	H300	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
ASMD Surface-mount							
ASMD030F	2,000	10,000	030F	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
ASMD050F	2,000	10,000	050F	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
ASMD075F	2,000	10,000	075F	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
ASMD100F	2,000	10,000	100F	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
ASMD125F	2,000	10,000	125F	3.1 (0.12)	2.3 (0.09)	5.1 (0.201)	*
ASMD150F	1,500	7,500	150F	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
ASMD150F/33	1,500	7,500	153F	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
ASMD185F	1,500	7,500	185A	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
ASMD200F	1,500	7,500	200F	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
ASMD250F	1,500	7,500	250F	4.6 (0.18)	2.3 (0.09)	6.1 (0.240)	*
nanoASMDC Surface-mount							
nanoASMDC012F	3,000	15,000	Р	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	*
nanoASMDC016F	3,000	15,000	N	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	*
nanoASMDC020F	3,000	15,000	02	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	*
nanoASMDC035F	3,000	15,000	03	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	*
microASMD Surface-mount							
microASMD005F	4,000	20,000	05	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	*
microASMD010F	4,000	20,000	10	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	*
miniASMDC Surface-mount							
miniASMDC010F	2,000	10,000	10	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC014F	2,000	10,000	14	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC020F	2,000	10,000	2	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC030F	2,000	10,000	3	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC050F	2,000	10,000	5	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC075F/24	1,500	7,500	075F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC110F/16	2,000	10,000	110F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC110F/24	1,500	7,500	110F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC125F/16	2,000	10,000	125F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC150F/16	2,000	10,000	150 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC150F/24	1,000	5,000	150F 24V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*
miniASMDC260F/16	1,500	7,500	260F 16V	3.15 (0.124)	1.68 (0.066)	3.10 (0.122)	*

^{*} These devices are intended for use in automotive applications.


For commercial alternatives to these products please see the radial-leaded devices section or surface-mount devices section.

Part Number	Bag Quantity	Standard Package Quantity	Part Marking	Agency Recognition
BD				
Bladed Device				
BD280-1130-10/16	200	1600	BD280-1130-10	*
BD280-1130-15/16	200	1600	BD280-1130-15	*
BD280-1130-20/16	200	1600	BD280-1130-20	*
BD280-1927-25/16-W	200	1600	BD280-1927-25	*
BD280-1927-30/16-W	200	1600	BD280-1927-30	*
BD540-30	200	1600	BD540-30	*

 $[\]ensuremath{^{*}}$ These devices are intended for use in automotive applications.

For commercial alternatives to these products please see the radial-leaded devices section or surface-mount devices section.

Figure A27 — Recommended Pad Layout

Table A7 — Tape and Reel Specifications for AGRF/AHRF/AHEF Devices

AGRF, AHRF and AHEF devices are available in tape and reel packaging per EIA468-B/IEC286-2 and EIA 481-2 standards. See Figures A28 and A29 for details.

Carrier Tape Width W 11.0 Minimum Not Do Distance between Tape Edges W4 3.0 Maximum Sprocket Hole Position W6 3.0 -0.5½40.75 Sprocket Hole Position W6 3.0 -0.5½40.75 Sprocket Hole Diameter D6 4.0 2.0 Abscissas to Plane (Straight Lead! (ARHEF300 to AHEF1000). AHEF600 to AHEF1000 H 20.3 20.5 Abscissas to Plane (Straight Lead! (ARHEF300 to AHEF1000). AHEF600 to AHEF1000 H 30.2 40.5 Abscissas to Plane (Straight Lead! (ARHEF300 to AHEF1000). AHEF600 to AHEF1000 H 32.2 Maximum Abscissas to Plane (Straight Lead! (ARHEF300 to AHEF600 to AHEF600). AHEF600 to AHEF1000 H 32.2 Maximum Abscissas to Top (AGRF700 to AGRF1400). AHEF650 to AHEF600 to AHEF1000 H 4.0 40.0 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF1400, AHEF650 to AHEF600 to AHEF1000) C, 42.5 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF1400, AHEF650 to AHEF1000 to AHEF1000) C, 5.0 Maximum Overall Width with Lead Protrusion (AGRF200 to AGRF1400, AHRF650 to AHRF1500, AH	Description	EIA Mark	Dimension (mm)	Tolerance
Top Distance between Tape Edges Wa Sprocket Hole Position Ws On 0.05/+0.76 Sprocket Hole Position Wg 9.0 4.0.6 2.6.7 Sprocket Hole Dismeter Dg 0. 4.0 2.0.2 Abscissas to Plane (Straight Leadt (AHEF300) on AHEF1000) H 20.3 ±0.5 Abscissas to Plane (Straight Leadt (AHEF300) on AHEF1000, AHEF050 to AHEF1000) H₁ 20.2 Maximum Abscissas to Top (AGRF400 to AGRF400, AHRF505 to AHRF450, AHEF050 to AHEF1000) H₁ 45.0 Maximum Abscissas to Top (AGRF400 to AGRF400 to AGRF400 to AGRF400 to AHRF405), AHEF050 to AHEF1000) H₁ 45.0 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF400 to AGRF400 to AHRF605 to AHRF400, AHEF050 to AHEF1000) C₁ 45.0 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF400, AHRF605 to AHRF400, AHEF600 to AHRF400) C₂ 42.5 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF400, AHRF605 to AHRF400, AHEF600 to AHRF400) C₂ 55.0 Maximum Lead Protrusion (AGRF400 to AGRF400 to AGRF400, AHRF605 to AHRF400, AHRF600 to AHRF400, AHRF600 to AHRF400, AHRF600 to AGRF400 to AGRF400 to AGRF400 to AGRF400 to AHRF400, AHRF600 to AHRF400, AHRF600 to AHRF400, AHRF600 to AHRF400 to AGRF400 to AGRF400 to AGRF400 to AGRF400 to AGRF400 to AGRF	Carrier Tape Width	W	18.0	-0.5/+1.0
Sprocket Hole Position W ₆ 9.0 -0.5/40.75 Sprocket Hole Diameter D ₀ 4.0 ±0.2 Abscissa to Plane (Kinked Lead) (AREF300 to AREF1000) H 20.3 a.5 Abscissa to Plane (Kinked Lead) (AREF400 to AGRF1400, AHRF050 to AHRF1500, AHEF600 to AHF1500) H₁ 15.0 ±0.5 Abscissa to Top (AGRF400 to AGRF600, AHRF050 to AHRF1500) H₁ 45.0 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF1600, AHRF600 to AHRF1600) C₁ 43.2 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF1600, AHRF600 to AHRF1600) C₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF600, AHRF600 to AHRF1600, AHRF600 to AHRF1600) C₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF600, AHRF600 to AHRF1600, AHRF600 to AHRF1000) C₂ 42.5 Maximum Portrusion C₁ 1.0 Maximum Portrusion C₂ 42.5 Maximum Portrusion C₂ 42.5 Maximum Portrusion C₂ 42.5 Maximum Portrusion <td>Hold Down Tape Width</td> <td>W_4</td> <td>11.0</td> <td>Minimum</td>	Hold Down Tape Width	W_4	11.0	Minimum
Sprocket Hole Diameter D₀ 4.0 ±0.2 Absocissa to Plane (Striaght Lead) (AREF300 to AHEF1000) H 2.0 ±0.5 Absocissa to Tellane (Kinked Lead) (AGRF400 to AGRF1400, AHRF050 to AHRF1500, AHEF050 to AHEF1000) H₁ 2.0 ±0.5 Absocissa to Top (AGRF400 to AGRF1000, AHRF050 to AHRF1500, AHEF050 to AHEF1000) H₁ 4.0 ±0.2 Absocissa to Top (AGRF700 to AGRF1000, AHRF050 to AHRF1500) H₁ 4.0 ±0.2 Absocissa to Top (AGRF700 to AGRF1000, AHRF050 to AHRF1500) C₁ 4.3 Maximum Overall Width with Lead Protrusion (AGRF700 to AGRF1000, AHRF050 to AHRF1500, AHEF000) C₁ 5.0 Maximum Overall Width with Lead Protrusion (AGRF700 to AGRF1000, AHRF050 to AHRF1500, AHEF000 to AHEF1000) C₂ 5.0 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF050 to AHRF1500, AHEF000 to AHEF1000) C₂ 5.0 Maximum Protrusion Bayond Hold-Down Tape L 1.1 1.0 Maximum Protrusion Bayond Hold-Down Tape - 2.0 ±0.3 Device Pitch (AGRF400 to AGRF1400, AHRF050 to AHRF1500, AHEF050 to AHEF000) - 2.1 ±0.3	Top Distance between Tape Edges	W ₆	3.0	Maximum
Abscissa to Plane (Straight Lead) (AHEF300 to AHEF1000) H 20.3 ±0.5 Abscissas to Plane (Kinked Lead) (AGRF400 to AGRF1400, AHEF050 to AHEF1300) H₁ 32.2 Maximum Abscissas to Top (AGRF400 to AGRF400 to AGRF400 to AHEF450, AHEF050 to AHEF300) H₁ 32.2 Maximum Abscissas to Top (AGRF400 to AGRF1400, AHRF550 to AHRF1500*, AHEF050 to AHEF300) H₁ 45.0 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF400 & AHRF650 to AHRF450, AHEF050 to AHEF300) C₂ 43.2 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF400, AHRF650 to AHRF450, AHEF050 to AHEF300) C₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF600, AHRF650 to AHRF450, AHEF600 to AHEF300) C₂ 54.0 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF600, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C₂ 54.0 Maximum Protrusion of Cut-out L 11.0 Maximum Protrusion of Symbol Hold-Down Tape J₂ Not specified — Sprocket Hole AGRF400 to AGRF700, AHRF650 to AHRF600 to AHRF1000) — 25.4 ± 0.8 Device Pitch (AGRF400 to AGRF700, AHRF650 to AHRF650 to AHRF600) <t< td=""><td>Sprocket Hole Position</td><td>W_5</td><td>9.0</td><td>-0.5/+0.75</td></t<>	Sprocket Hole Position	W_5	9.0	-0.5/+0.75
Abscissa to Plane (Kinked Lead) (AGRF400 to AGRF1400, AHRF050 to AHRF1500, AHEF030 to AHRF100) H ₁ 32.2 Maximum Abscissa to Top (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF0300) H ₁ 32.2 Maximum Overall Width with Lead Protrusion (AGRF600 to AHRF450, AHEF0300) H ₁ 43.2 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF650 to AHRF1500, AHEF600 to AHRF4000) C ₁ 43.2 Maximum Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF650 to AHRF1500, AHEF600 to AHRF4000) C ₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF1600, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C ₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF100, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C ₂ 54.0 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C ₂ 54.0 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C ₂ 54.0 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF650 to AHRF1500, AHEF600 to AHEF1000) C ₂ 54.0 Maximum Overall Width without Lead Protrusion AGRF1400, AHRF650 to AHRF1600, AHEF600 to AHEF1000) C ₃ C ₃ C ₃ C ₄ C ₃ C ₄ C ₄	Sprocket Hole Diameter	D ₀	4.0	±0.2
Abscissa to Top (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF050 to AHEF300)	Abscissa to Plane (Straight Lead) (AHEF300 to AHEF1000)	Н	20.3	±0.5
Abscissa to Top (AGRF700 to AGRF1400, AHRF1500 to AHRF1500 to AHRF1600 to AHRF1600) C1 43.2 Maximum	Abscissa to Plane (Kinked Lead) (AGRF400 to AGRF1400, AHRF050 to AHRF1500, AHEF050 to AHEF100)	H _o	16.0	±0.5
Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF050 to AHRF1500, AHEF6001 oc. 1 43.2 Maximum Overall Width with Lead Protrusion (AGRF200 to AGRF1400, AHRF550 to AHRF1500, AHEF6000) C₁ 55.0 Maximum Overall Width without Lead Protrusion (AGRF200 to AGRF1400, AHRF050 to AHRF4500, AHEF050) C₂ 42.5 Maximum Verall Width without Lead Protrusion (AGRF200 to AGRF1400, AHRF050 to AHRF1500, AHEF050) C₂ 54.0 Maximum Protrusion Brown L₁ 1.0 Maximum Protrusion of Cut-out L₁ 1.0 Maximum Protrusion Beyond Hold-Down Tape ½ Not specified — Sprocket Hole Pitch P₀ 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF1400, AHRF650 to AHRF600, AHEF605 to AHEF300) — 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000) — 20 consec. ± 0.1 Tape Thickness 1 0.9 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1500 to AHRF1500*, AHEF050 to AHEF500) t₁ 2.0 maximum Splice Sprocket Hole Alignment — 0 ± 0.3 <td>Abscissa to Top (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF050 to AHEF300)</td> <td>H₁</td> <td>32.2</td> <td>Maximum</td>	Abscissa to Top (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF050 to AHEF300)	H ₁	32.2	Maximum
Overall Width with Lead Protrusion (AGRF100 to AGRF1400, AHRF550 to AHRF1500, AHEF500 to AHEF1000) C1 55.0 Maximum Overall Width without Lead Protrusion (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF500 to AHEF1000) C2 42.5 Maximum Verall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF550 to AHRF1500, AHEF500 to AHEF1000) C2 54.0 Maximum Protrusion L1 1.0 Maximum Protrusion of Cut-out L 1.10 Maximum Protusion Beyond Hold-Down Tape L Not specified — Sprocket Hole Pitch P0 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF050 to AHRF1000, AHEF500 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 25.4 ± 0.6 Titch Tolerance — 20 consec. ± 0.1 Tage Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1500 to AHRF1100*, AHEF500 to AHEF500) t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1400, AHRF1500 to AHRF1500*, AHEF500 to AHEF500) t 0.3 ± 0.3	Abscissa to Top (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000)	H ₁	45.0	Maximum
Overall Width without Lead Protrusion (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF050 to AHEF300) C₂ 42.5 Maximum Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF550 to AHRF1500, AHEF500 to AHEF1000) C₂ 54.0 Maximum Protrusion L1 1.0 Maximum Protrusion Gurbout L2 11.0 Maximum Protrusion Beyond Hold-Down Tape I₂ Not specified — Sprocket Hole Pitch P₀ 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF100, AHRF650 to AHRF600, AHEF500 to AHEF300) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness 1 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1500 to AHRF1500*, AHEF505 to AHEF750) t1 2.0 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 ± 0.3 Body Tape Plane Deviation Δp 0 ± 0.3 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF500 to AHEF500 P₁ 3.81 ± 0.7 Lead Spacing (AGRF400 to AGRF140	Overall Width with Lead Protrusion (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300)	C ₁	43.2	Maximum
Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF650 to AHRF1500, AHEF1500 to AHEF1000) C₂ 54.0 Maximum Protrusion of Cut-out L₁ 1.0 Maximum Protrusion Seyond Hold-Down Tape L₂ Not specified — Sprocket Hole Pitch P₀ 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF650 to AHRF650, AHEF500) — 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tighe Thickness (AGRF400 to AGRF1400, AHRF650 to AHRF1500, AHRF1500, AHRF1500 to AHRF1500) t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1500 to AHRF1500*, AHEF1500) t₁ 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t₁ 2.3 Maximum Overall Tape and Lead Load Highment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 0.3 Body Tape Plane Deviation Δp 0 ± 1.3 Ord	Overall Width with Lead Protrusion (AGRF700 to AGRF1400, AHRF550 to AHRF1500, AHEF500 to AHEF1000)	C ₁	55.0	Maximum
Lead Protrusion of Cut-out L, 1.0.0 Maximum Protrusion of Cut-out L 11.0 Maximum Protrusion of Cut-out Protrusion Deyond Hold-Down Tape I₂ Not specified — Sprocket Hole Pitch P₀ 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF050 to AHRF060, AHEF000 to AHEF1000) — 25.4 ± 0.8 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness — 20 consec. ± 0.1 Tape Thickness — 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050 to AHEF750) t₁ 2.0 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1500 to AHRF1100*, AHEF1000) t₁ 2.0 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment Lead (AGRF400 to AGRF1400, AHRF1500 to AHRF900*, AHEF1000) t₁ 2.0 ± 0.7 Body Tape Plane Deviation Ap 0 ± 1.3 ± 0.7 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1400, AHRF1000 to AHRF900*, AHEF000 to AHRF900*) P₁	Overall Width without Lead Protrusion (AGRF400 to AGRF600, AHRF050 to AHRF450, AHEF050 to AHEF300)	C_2	42.5	Maximum
Protrusion of Cut-out L 11.0 Maximum Protrusion Beyond Hold-Down Tape I2 Not specified — Sprocket Hole Pitch Po 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF650 to AHRF600, AHEF600 to AHEF300) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF650 to AHRF1100*, AHEF650) t, 1 2.0 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1400, AHRF1300 to AHRF1600*, AHEF1000) t, 1 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 ± 0.3 Maximum Splice Sprocket Hole Alignment —	Overall Width without Lead Protrusion (AGRF700 to AGRF1400, AHRF550 to AHRF1500, AHEF500 to AHEF1000)	C_2	54.0	Maximum
Protrusion Beyond Hold-Down Tape Iz Not specified — Sprocket Hole Pitch Po 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF650 to AHRF600, AHEF600 to AHEF600) — 12.7 ± 0.3 Device Pitch (AGRF800 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tigae Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1300 to AHRF1500*, AHEF1000) t1 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t1 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF500 to AHRF900 P1 3.81 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF900*, AHEF600 to AHRF900, AHEF750 to AHEF1000) F 5.05 ± 0.7 Lead Spacing (AGRF1200 to AGRF1400, AHRF900 to AHRF900*, AHEF750 to AHEF1000) F 5.05 ± 0.7	Lead Protrusion	L ₁	1.0	Maximum
Sprocket Hole Pitch P ₀ 12.7 ± 0.3 Device Pitch (AGRF400 to AGRF700, AHRF050 to AHRF600, AHEF600 to AHEF300) — 12.7 ± 0.3 Device Pitch (AGRF800 to AGRF1400, AHRF650 to AHRF1500, AHEF600 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050) to AHRF1500*) t, 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t, 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t, 2.0 ± 0.3 Body Lateral Deviation — 0 ± 0.3 ± 0.3 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF900 to AHEF500 P ₁ 3.81 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF500 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF400 to AGRF1400, AHRF050 to AHRF900*, AHEF500 to AHEF500)	Protrusion of Cut-out	L	11.0	Maximum
Device Pitch (AGRF400 to AGRF700, AHRF050 to AHRF600, AHEF050 to AHEF1000) — 12.7 ± 0.3 Device Pitch (AGRF800 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050 to AHEF750) t₁ 2.0 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 ± 0.3 Body Lateral Deviation Δh 0 ± 0.3 ± 0.7 Dordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P ₁ 3.81 ± 0.7 Lead Spacing (AGRF1200 to AGRF1100, AHRF1500 to AHRF1500*, AHEF500 to AHEF500) F 5.05	Protrusion Beyond Hold-Down Tape	l ₂	Not specified	_
Device Pitch (AGRF800 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000) — 25.4 ± 0.6 Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050 to AHEF750) t, 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t, 2.3 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t, 2.3 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t, 2.3 Maximum Overall Tape and Lead Hispanent — 0 ± 0.3 ± 0.3 Body Lateral Deviation Δh 0 ± 0.3 ± 0.3 Body Lateral Deviation Δp 0 ± 1.3 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1400 to AGRF1100, AHRF050 to AHRF050 to AHRF1500, AHEF500 to AHEF500 P ₁ 3.81 ± 0.7 Lead Spacing (AGRF1400 to AGRF1100, AHRF050 to AHRF1500*, AHEF500 to AHEF500) F 5.05 ± 0.75 Read Sp	Sprocket Hole Pitch	P ₀	12.7	± 0.3
Pitch Tolerance — 20 consec. ± 0.1 Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF1500 to AHRF1500*, AHEF1500) t₁ 2.0 Maximum Oyerall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1500 to AHRF1500*, AHEF1000) t₁ 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.0 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P₁ 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF500 to AHEF1000) P₁ 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF1000) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1500 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Real Width (AGRF400 to AGRF1400, AHRF1500 to AHRF450, AHEF500 to AHEF1000) W₂ 65.0 Maximum Reel Diameter a 370.0 Maximum <	Device Pitch (AGRF400 to AGRF700, AHRF050 to AHRF600, AHEF050 to AHEF300)	_	12.7	± 0.3
Tape Thickness t 0.9 Maximum Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050 to AHEF750) t₁ 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t₁ 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P₁ 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P₁ 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1500 *, AHEF050 to AHEF1000) F 10.15 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1500 *, AHEF050 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF1400, AHRF1500 *, AHEF050 to AHEF1000) w₂ 56.0 Maximum Reel Diameter a 3.70	Device Pitch (AGRF800 to AGRF1400, AHRF650 to AHRF1500, AHEF500 to AHEF1000)	_	25.4	± 0.6
Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050) t₁ 2.0 Maximum Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t₁ 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P₁ 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500), AHEF750 to AHEF1000) P₁ 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Real Width (AGRF400 to AGRF1400, AHRF050 to AHRF1500*, AHEF050 to AHEF1000) W₂ 56.0 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) W₁ 48.0 Maximum Space between Flanges* (AHEF050 to AHEF300)	Pitch Tolerance	_	20 consec.	± 0.1
Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000) t1 2.3 Maximum Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P1 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF1000) P1 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF1000) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1500 *, AHEF1500 *, AHEF750 to AHEF1000) F 10.15 ± 0.75 Real Width (AGRF400 to AGRF1400, AHRF1500 to AHRF1500 *, AHEF050 to AHEF300) w2 56.0 Maximum Real Width (AGRF700 to AGRF1400, AHRF1500 to AHRF1500 *, AHEF500 to AHEF1000) w2 63.5 Maximum Real Width (AGRF700 to AGRF1400, AHRF1500 to AHEF1000) w1 48.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Arbor Hold Diameter c <td>Tape Thickness</td> <td>t</td> <td>0.9</td> <td>Maximum</td>	Tape Thickness	t	0.9	Maximum
Splice Sprocket Hole Alignment — 0 ± 0.3 Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P1 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P1 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF750 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1500 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Real Width (AGRF400 to AGRF1400, AHRF1500 to AHRF1500*, AHEF750 to AHEF1000) W2 56.0 Maximum Real Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) W2 63.5 Maximum Real Diameter a 370.0 Maximum Space between Flanges* (AHEF500 to AHEF300) W1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) W1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 <	Overall Tape and Lead Thickness (AGRF400 to AGRF1100, AHRF050 to AHRF1100*, AHEF050 to AHEF750)	t ₁	2.0	Maximum
Body Lateral Deviation Δh 0 ± 1.0 Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500 P₁ 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P₁ 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF100 to AGRF1400, AHRF1500 to AHRF450, AHEF050 to AHEF300) w₂ 56.0 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w₁ 48.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w₁ 48.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None	Overall Tape and Lead Thickness (AGRF1200 to AGRF1400, AHRF1300 to AHRF1500*, AHEF1000)	t ₁	2.3	Maximum
Body Tape Plane Deviation Δp 0 ± 1.3 Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500) P1 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P1 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF950 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w2 56.0 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF050 to AHEF1000) w1 48.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Splice Sprocket Hole Alignment	_	0	± 0.3
Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF1000) P1 3.81 ± 0.7 Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P1 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w2 56.0 Maximum Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w2 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF500 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Body Lateral Deviation	Δ h	0	± 1.0
Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000) P₁ 7.62 ± 0.7 Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w₂ 56.0 Maximum Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w₂ 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w₁ 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w₁ 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Body Tape Plane Deviation	Δρ	0	± 1.3
Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500) F 5.05 ± 0.75 Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w2 56.0 Maximum Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w2 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Ordinate to Adjacent Component Lead (AGRF400 to AGRF1100, AHRF050 to AHRF900, AHEF050 to AHEF500	P ₁	3.81	± 0.7
Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000) F 10.15 ± 0.75 Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w2 56.0 Maximum Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w2 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Ordinate to Adjacent Component Lead (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500, AHEF750 to AHEF1000)	P ₁	7.62	± 0.7
Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300) w2 56.0 Maximum Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w2 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Lead Spacing (AGRF400 to AGRF1100, AHRF050 to AHRF900*, AHEF050 to AHEF500)	F	5.05	± 0.75
Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000) w2 63.5 Maximum Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Lead Spacing (AGRF1200 to AGRF1400, AHRF1000 to AHRF1500*, AHEF750 to AHEF1000)	F	10.15	± 0.75
Reel Diameter a 370.0 Maximum Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Reel Width (AGRF400 to AGRF600 & AHRF050 to AHRF450, AHEF050 to AHEF300)	W ₂	56.0	Maximum
Space between Flanges* (AHEF050 to AHEF300) w1 48.0 Maximum Space between Flanges* (AHEF500 to AHEF1000) w1 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Reel Width (AGRF700 to AGRF1400, AHRF550 to AHRF1500*, AHEF500 to AHEF1000)	W ₂	63.5	Maximum
Space between Flanges* (AHEF500 to AHEF1000) w ₁ 55.0 Maximum Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Reel Diameter	а	370.0	Maximum
Arbor Hold Diameter c 26.0 ±12.0 Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Space between Flanges* (AHEF050 to AHEF300)	W ₁	48.0	Maximum
Core Diameter* n 91.0 Maximum Box — 64/372/362 Maximum Consecutive Missing Places — None —	Space between Flanges* (AHEF500 to AHEF1000)	W ₁	55.0	Maximum
Box — 64/372/362 Maximum Consecutive Missing Places — None —	Arbor Hold Diameter	С	26.0	±12.0
Consecutive Missing Places — None —	Core Diameter*	n	91.0	Maximum
•	Box	_	64/372/362	Maximum
Empty Places per Reel - 0.1% Maximum	Consecutive Missing Places	_	None	_
	Empty Places per Reel	_	0.1%	Maximum

^{*} Differs from EIA specification.

Figure A28 — EIA Referenced Taped Component Dimensions for AGRF/AHRF/AHEF Devices

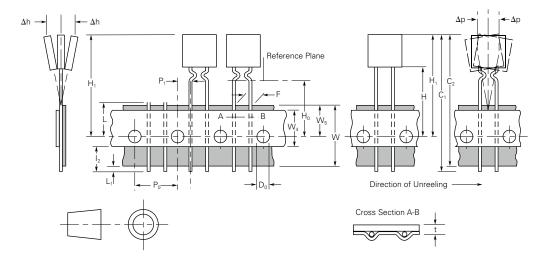


Figure A29 — EIA Referenced Reel Dimensions for AGRF/AHRF/AHEF Devices

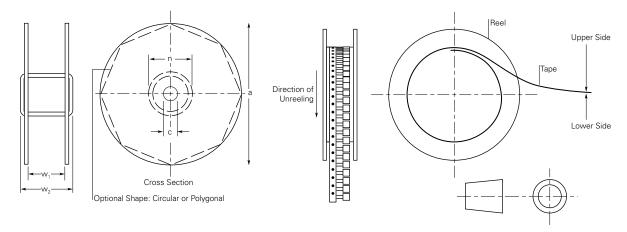


Table A8 — Tape and Reel Specifications for AHS/ASMD/nanoASMDC/microASMD/ miniASMDC Devices (in Millimeters)

Description	nanoASMDC EIA 481-1	microASMD EIA 481-1	miniASMDC EIA 481-1	AHS080-2018 EIA 481-2	AHS120 ASMD030F~ASMD125F EIA 481-2	AHS160~AHS300 ASMD150F~ASMD250F EIA 481-2
W	8.0 ± 0.30	8.0 ± 0.30	12.0 ± 0.30	16.0 ± 0.30	16.0 ± 0.30	16.0 ± 0.30
Po	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10
P ₁	4.0 ± 0.10	4.0 ± 0.10	8.0 ± 0.10	8.0 ± 0.10	8.0 ± 0.10	12.0 ± 0.10
P_2	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.10	2.0 ± 0.10	2.0 ± 0.10
A_0	1.95 ± 0.10	2.9 ± 0.10	Table A9	5.11 ± 0.15	5.6 ± 0.23	6.9 ± 0.23
B_0	Table A9	3.50 ± 0.10	Table A9	5.6 ± 0.23	8.1 ± 0.15	9.6 ± 0.15
B ₁ max	4.35	4.35	6.15	12.1	12.1	12.1
D_0	$1.55 \pm .05$	$1.55 \pm .05$	1.5 + 0.10/00	1.5 + 0.10/00	1.5 + 0.10/00	1.5 + 0.10/00
F	3.50 ± 0.05	3.50 ± 0.05	5.50 ± 0.05	7.50 ± 0.10	7.50 ± 0.10	7.50 ± 0.10
E ₁	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10
E ₂ min	6.25	6.25	10.25	14.25	14.25	14.25
T max	0.3	0.3	0.35	0.4	0.4	0.4
T ₁ max	0.1	0.1	0.1	0.1	0.1	0.1
K ₀	Table A9	0.9 ± 0.1	Table A9	1.8 ± 0.15	3.2 ± 0.15	3.4 ± 0.15
Leader min	390	390	390	400	400	400
Trailer min	160	160	160	160	160	160

Table A9 — Tape and Reel Specifications for nanoASMDC/miniASMDC Devices (in Millimeters)

Description	nanoASMDC020F nanoASMDC035F	nanoASMDC012F nanoASMDC016F	miniASMDC010F~050F miniASMDC110F/16 miniASMDC125F/16 miniASMDC150F/16	miniASMDC075F/24 miniASMDC110F/24 miniASMDC260F/16	miniASMDC150F/24
A_0	1.95 ± 0.1	1.95 ± 0.1	3.5 ± 0.1	3.7 ± 0.1	3.7 ± 0.1
B ₀	3.50 +0.1/-0.08	3.5 ± 0.1	4.95 ± 0.1	4.9 ± 0.1	4.9 ± 0.1
K ₀	0.89 ± 0.1	1.27 ± 0.1	0.9 ± 0.1	1.4 ± 0.1	1.78 ± 0.1

Table A10 — Reel Dimensions for AHS/ASMD/nanoASMDC/microASMD/miniASMDC Devices (in Millimeters)

Description	nanoASMDC microASMD	miniASMDC	AHS ASMD
A max	185	185	330
N min	50	50	50
W ₁	8.4 + 1.5/00	12.4 + 2.0/00	16.4 + 2.0/00
W ₂ max	14.4	18.4	22.4

Figure A30 — EIA Referenced Taped Component Dimensions for AHS/ASMD/ nanoASMDC/microASMD/miniASMDC Devices

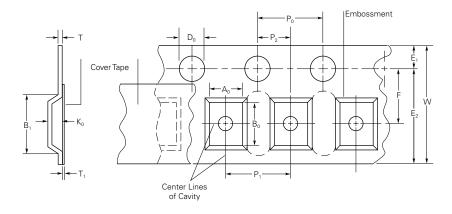
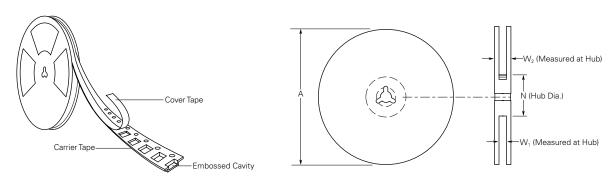
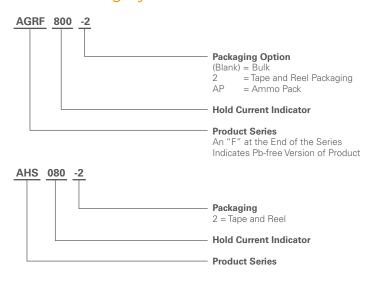
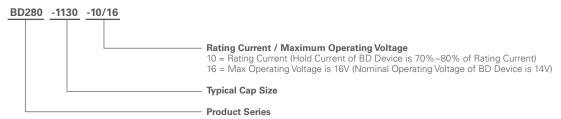
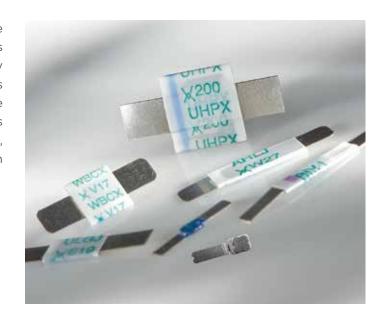





Figure A31 — EIA Referenced Reel Dimensions for AHS/ASMD/nanoASMDC/ microASMD/miniASMDC Devices

Part Numbering System



- · Users should independently evaluate the suitability of and test each product selected for their own application.
- · Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

POLYSWITCH RESETTABLE DEVICES

Strap Battery Devices

TE Circuit Protection, a pioneer of polymeric positive temperature coefficient (PPTC) resettable devices, offers several material platforms to help protect battery applications. Each of these material platforms offers different performance characteristics that allow the engineer greater design flexibility. PolySwitch devices for battery protection include SRP, LR4, VTP, VLP, VLR, MXP, MGP and RSD series, disc and special application strap devices.

BENEFITS

- Many material platforms and device form factors help provide engineers more design flexibility
- Compatible with high-volume electronics assembly
- Assists in meeting regulatory requirements
- Low-resistance devices increase battery operating time

FEATURES

- · RoHS compliant
- · Lead-free versions of all devices are available
- Broad range of resettable devices available
- Current ratings from 1.1A to 13A
- Voltage ratings from 6V to 30V
- Agency recognition: UL, CSA, TÜV
- Fast time-to-trip
- · Low resistance

APPLICATIONS

- Mobile phone and smart phone battery packs
- Tablet PC battery packs
- Mobile radio battery packs
- · Computer battery packs
- Digital camera battery packs
- Portable media player battery packs
- Power tools (charge line)

Application Selection Guide

The guide below lists PolySwitch strap battery devices which are typically used in applications. The following pages contain the specifications for the part numbers recommended below. Once a device is selected, the user should evaluate and test each product for its intended application.

B	A 1 122 1 0	PolySwitch Resettable De	evices - Key Device Selection (Criteria
Protection Application	Additional Comments	Installation Method	Lowest Resistance	Lowest Thermal Cut-off
Mobile Phone Battery Packs	Li-ion	Surface-mount	Refer to Surface-mount Se	ction of this Catalog
		Prismatic	MXP370BD, RSD310	VLR175F
Cordless Phone Battery Packs	NiMH	Cylindrical	VLP210F	_
			SRP175F	
Mobile Radio Battery Packs	NiMH	Cylindrical	LR4-380F	_
			SRP350F	
Computer Battery Packs	NiMH	Cylindrical	LR4-900F	_
	Li-ion	Cylindrical	LR4-1300SSF	_
		Prismatic	Consult Local Rep	Consult Local Rep
Camcorder Battery Packs	NiMH or Li-ion	Prismatic	VLP270F	VTP210GF
			LR4-380F	_
PDA Battery Packs	Li-ion	Prismatic	VLP220F	VLR175F
Power Tools (Charge Line)	NiCd, NiMH or Li-ion	Cylindrical	Custom LR4	Custom VTP

Table B1 — Product Series - Current Rating, Voltage Rating / Typical Resistance

	VLR	VLP	VTP	MXP	RSD	SRP	LR4
Hold	Typical Activation Te	emperature					
Current (A)	85°C	90°C	90°C	120°C	125°C	125°C	125°C
1.10	_	_	16V/0.054Ω	_	_	_	_
1.20	_	16V/0.053Ω	_	_	_	15V/0.123Ω	_
1.70	12V/0.025Ω	_	16V/0.041Ω	_	_	_	_
1.75	12V/0.024Ω	16V/0.032Ω	16V/0.040Ω	_	_	15V/0.070Ω	_
1.80	_	_	_	6V/0.0105Ω	_	_	_
1.90	_	_	_	6V/0.011Ω	_	_	15V/0.056Ω
2.00	_	_	_	_	_	30V/0.045Ω	_
2.10	_	16V/0.024Ω	16V/0.024Ω	_	_	_	_
2.20	_	16V/0.023Ω	_	_	_	_	_
2.30	12V/0.015Ω	_	_	_	_	_	_
2.50	_	_	_	6V/0.011Ω	_	_	_
2.60	_	_	_	_	_	_	15V/0.031Ω
2.70	_	16V/0.015Ω	_	6V/0.0105Ω	_	_	_
3.10	_	_	_	6V/0.0075Ω	6V/0.010Ω	_	_
3.50	_	_	_	_	_	30V/0.024Ω	_
3.70	_	_		6V/0.007Ω	6V/0.007Ω		
3.80	_	_	_	_	_	_	15V/0.020Ω
4.20	_	_	_	_	6V/0.0065Ω	30V/0.018Ω	_
4.50	_	_	_	_	_	_	20V/0.016Ω
5.50	_	_	_	_	_	_	20V/0.013Ω
6.00	_	_	_	_	_	_	20V/0.011Ω
7.30	_	_	_	_	_	_	20V/0.009Ω
9.00	_	_		_	_	_	20V/0.008Ω
13.00	_	_	_	_	_	_	20V/0.006Ω

Table B2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

		Maximum Ambient Temperature												
Part Number	-40°C A	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C			
85°C Typical Ac	tivation													
VLR170F	3.5	2.9	2.4	1.84	1.70	1.2	1.0	0.7	0.3	_				
VLR175F	3.5	2.9	2.4	1.87	1.75	1.3	1.0	0.8	0.3	_	_			
VLR175LF	3.5	2.9	2.4	1.87	1.75	1.3	1.0	0.8	0.3	_	_			
VLR230F	5.0	4.2	3.4	2.52	2.30	1.7	1.3	0.9	0.4	_	_			

Table B2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)] (Cont'd)

					IV	laximum A	mbient	Temperati	ıre				
Part Number	-40°C A	-20°C	0°C	20°C	25°C	40°	С	50°C	60°C	70°C	80°C	85°C	
90°C Typical Acti VLP*	vation												
VLP120UF	2.4	2.1	1.8	1.30	1.20	1.0		0.7	0.6	0.3	0.2	0.1	
VLP175UAF	3.2	2.7	2.3	1.70	1.75	1.2		1.0	0.9	0.5	0.2	0.1	
VLP210F	4.3	3.6	2.9	2.31	2.10	1.6		1.3	1.0	0.6	0.3	0.1	
VLP220F	4.5	3.8	3.0	2.45	2.20	1.7		1.4	1.1	0.7	0.3	0.1	
VLP270F	5.6	4.7	4.0	3.05	2.70	2.2		1.7	1.4	0.9	0.4	0.1	
VTP*													
VTP110F	2.0	1.7	1.4	1.12	1.10	0.8	5	0.75	0.7	0.4	0.2	0.1	
VTP170F	3.2	2.7	2.2	1.80	1.70	1.3		1.0	0.8	0.5	0.3	0.1	
VTP170XSF	3.2	2.7	2.2	1.80	1.70	1.3		1.0	0.8	0.5	0.3	0.1	
VTP175F	3.2	2.7	2.2	1.84	1.75	1.3		1.0	0.8	0.5	0.3	0.1	
VTP175LF	3.2	2.7	2.2	1.84	1.75	1.3		1.0	0.8	0.5	0.3	0.1	
VTP210GF	4.1	3.5	2.9	2.26	2.10	1.6		1.3	1.0	0.7	0.4	0.1	
VTP210SF	4.1	3.5	2.9	2.26	2.10	1.6		1.3	1.0	0.7	0.4	0.1	
V 11 2 1001		0.0	2.0	2.20		laximum A				0.7	0.1	0.1	
Part	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	75°C	80°C	85°C	90°C
Number	A												
120°C Typical Ac MXP*	uvation												
MXP180	_		2.45		1.8	_	_	0.80	_	_	_	_	_
MXP190BB	_		2.6	_	1.9		_	0.85			_	_	_
MXP250K	_	_	3.6	_	2.5	_	_	1.3	_	_	_	_	_
MXP270	_	_	3.8	_	2.7	_	_	1.4	_	_	_	_	0.3
MXP310	_	_	5.0	_	3.1	_	_	1.9	_	1.0	_	_	_
MXP370BD	_	_	5.0	_	3.7	_	_	1.9	_	_	_	_	_
120°C Typical Act	tivation												
MGP450	_	_	_	_	4.5	_	_	2.6	_	_	_	_	_
MGP500	_		_		5.0	_	_	3.0	2.0		_	_	
125°C Typical Ac RSD*	tivation												
RSD310	_	_	_	_	3.1	_	_	_	_	_	_	_	_
RSD370	_	_	_	_	3.7	_	_	_	_	_	_	_	
RSD420	_	_	_	_	4.2	_	_	_	_	_	_	_	_
					IV	laximum A	mbient	Temperatu	ıre				
Part	-40°C	-20°C	0°C	20°C	25°C	40°	С	50°C	60°C	70°C	80°C	85°C	
Number	Α												
125°C Typical Ac SRP	LIVALION												
SRP120F	1.9	1.7	1.5	1.20	1.17	1.0		0.9	0.8	0.6	0.5	0.4	
SRP175F	2.5	2.2	2.0	1.75	1.68	1.4		1.3	1.2	1.0	0.9	0.8	
SRP200F	3.1	2.8	2.5	2.00	1.97	1.7		1.5	1.4	1.2	1.0	0.9	
SRP350F	5.3	4.8	4.3	3.50	3.44	3.0		2.7	2.5	2.1	1.8	1.7	
SRP420F	6.3	5.7	5.1	4.20	4.11	3.6		3.3	3.0	2.6	2.2	2.1	
LR4													
LR4-190F	2.8	2.5	2.3	1.9	1.86	1.6		1.5	1.4	1.2	1.1	1.0	
LR4-260F	3.8	3.4	3.1	2.6	2.54	2.2		2.0	1.9	1.7	1.4	1.3	
LR4-380F	5.4	4.9	4.4	3.8	3.64	3.3		3.0	2.8	2.5	2.3	2.1	
LR4-380XF	5.4	4.9	4.4	3.8	3.64	3.3		3.0	2.8	2.5	2.3	2.1	
LR4-450F	6.5	5.8	5.3	4.5	4.38	3.9		3.6	3.3	2.9	2.6	2.4	
LR4-550F	7.6	6.9	6.2	5.5	5.32	4.7		4.3	4.0	3.6	3.2	3.0	
LR4-600F	8.7	7.8	7.1	6.0	5.86	5.2		4.7	4.4	3.9	3.4	3.2	
LR4-600XF	8.7	7.8	7.1	6.0	5.86	5.2		4.7	4.4	3.9	3.4	3.2	
LR4-730F	10.5	9.5	8.6	7.3	7.13	6.3		5.7	5.4	4.7	4.2	4.0	
LR4-900F	12.7	11.4	10.0	9.0	8.50	7.5		6.8	6.2	5.5	4.9	4.5	
LR4-1300SSF	17.9	16.2	14.5	13.0	12.40			10.3	9.5	8.6	7.7	7.2	
L114-1000001	17.3	10.2	14.0	13.0	12.40	11.1		10.0	0.0	0.0	1.1	1.2	

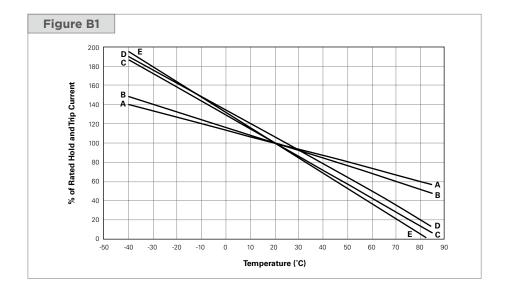

^{*} Product electrical characteristics determined at 25°C.

Figure B1 — Thermal Derating Curve

A = LR4B = SRP

C = VTP, VLP, MXP

D = MGPE = VLR

Table B3 — Electrical Characteristics

Part	I _H	I _T	V_{MAX}	I _{MAX}	P _{D MAX}	MaxTim	e-to-trip	R _{MIN}	R_{MAX}	R _{1MAX}	Figure for
Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)	Dimension
85°C Typical Activatio	on										
VLR170F	1.70	4.1	12	100	1.4	8.50	5.0	0.018	0.032	0.064	В3
VLR175F	1.75	4.2	12	100	1.4	8.75	5.0	0.017	0.031	0.062	В3
VLR175LF	1.75	4.2	12	100	1.4	8.75	5.0	0.017	0.031	0.062	В3
VLR230F	2.30	5.0	12	100	2.5	10.00	5.0	0.012	0.018	0.036	В3
90°C Typical Activatio	on										
VLP120UF	1.20	3.6	16	60	1.6	7.00	5.0	0.039	0.067	0.134	B5
VLP175UAF	1.75	3.9	16	60	1.8	8.75	5.0	0.023	0.041	0.082	B5
VLP210F	2.10	5.0	16	60	1.8	10.50	5.0	0.018	0.030	0.060	B2
VLP220F	2.20	5.3	16	60	1.8	11.00	5.0	0.017	0.029	0.058	В3
VLP270F	2.70	6.5	16	60	2.5	13.50	5.0	0.012	0.018	0.036	В3
VTP*											
VTP110F	1.10	2.7	16	100	1.3	5.50	5.0	0.038	0.070	0.140	B5
VTP170F	1.70	3.4	16	100	1.4	8.50	5.0	0.030	0.052	0.105	B2
VTP170XSF	1.70	3.4	16	100	1.4	8.50	5.0	0.030	0.052	0.105	B4
VTP175F	1.75	3.6	16	100	1.4	8.75	5.0	0.029	0.051	0.102	В3
VTP175LF	1.75	3.6	16	100	1.4	8.75	5.0	0.029	0.051	0.102	В3
VTP210GF	2.10	4.7	16	100	1.5	10.00	5.0	0.018	0.030	0.060	В3
VTP210SF	2.10	4.7	16	100	1.5	10.00	5.0	0.018	0.030	0.060	В4
120°C Typical Activati MXP*	ion										
MXP180	1.80	5.2	6	50	1.0	9.00	5.0	0.007	0.014	0.024	B10
MXP190BB	1.90	4.9	6	50	1.0	9.50	2.0	0.007	0.015	0.024	В9
MXP250K	2.50	6.2	6	50	1.0	13.50	2.0	0.006	0.016	0.028	B10
MXP270	2.70	6.2	6	50	1.0	13.50	2.0	0.006	0.015	0.026	B10
MXP310	3.10	9.0	6	50	1.3	17.50	5.0	0.003	0.012	0.018	B10
MXP370BD	3.70	9.0	6	50	1.3	18.50	5.0	0.004	0.010	0.016	B10

^{*} Product electrical characteristics determined at 25°C.

222

Table B3 — Electrical Characteristics

(Cont'd)

Part	I _H	I _T	V_{MAX}	I _{MAX}	$P_{D MAX}$	MaxTim	e-to-trip	R _{MIN}	R_{MAX}	R _{1MAX}	Figure for
Number	(A)	(A)	(V _{DC})	(A)	(VV)	(A)	(s)	(Ω)	(Ω)	(Ω)	Dimension
120°C Typical Activation MGP	l										
MGP450	4.50	9.2	6	50	1.5	25.00	5.0	0.0025	0.007	0.013	B11
MGP500	5.00	9.2	6	50	1.5	25.00	5.0	0.0025	0.0065	0.013	B12
125°C Typical Activation RSD*	1										
RSD310	3.1	11	6	50	1.5	15.5	5.0	0.0040	0.015	0.022	B13
RSD370	3.7	12	6	50	1.5	18.5	5.0	0.0035	0.012	0.018	B13
RSD420	4.2	13	6	50	1.5	21.0	5.0	0.0030	0.010	0.016	B13
125°C Typical Activation SRP	1										
SRP120F	1.20	2.7	15	100	1.2	6.00	5.0	0.085	0.160	0.220	В6
SRP175F	1.75	3.8	15	100	1.5	8.75	5.0	0.050	0.090	0.120	В6
SRP200F	2.00	4.4	30	100	1.9	10.00	4.0	0.030	0.060	0.100	В6
SRP350F	3.50	6.3	30	100	2.5	20.00	3.0	0.017	0.031	0.050	В6
SRP420F	4.20	7.6	30	100	2.9	20.00	6.0	0.012	0.024	0.040	В6
LR4											
LR4-190F	1.90	3.9	15	100	1.2	9.5	5.0	0.0390	0.0720	0.102	В7
LR4-260F	2.60	5.8	15	100	2.5	13.0	5.0	0.0200	0.0420	0.063	В7
LR4-380F	3.80	8.3	15	100	2.5	19.0	5.0	0.0130	0.0260	0.037	В7
LR4-380XF	3.80	8.3	15	100	2.5	19.0	5.0	0.0130	0.0260	0.037	В7
LR4-450F	4.50	8.9	20	100	2.3	22.5	5.0	0.0110	0.0200	0.028	В7
LR4-550F	5.50	10.5	20	100	2.8	27.5	5.0	0.0090	0.0160	0.022	В7
LR4-600F	6.00	11.7	20	100	2.8	30.0	5.0	0.0070	0.0140	0.019	В7
LR4-600XF	6.00	11.7	20	100	2.8	30.0	5.0	0.0075	0.0140	0.019	В7
LR4-730F	7.30	14.1	20	100	3.3	30.0	5.0	0.0060	0.0120	0.015	В7
LR4-900F	9.00	16.7	20	100	3.8	45.0	5.0	0.0060	0.0100	0.014	В7
LR4-1300SSF	13.00	21.2	20	100	4.5	50.0	10.0	0.0035	0.0065	0.009	В8

^{*} Product electrical characteristics determined at 25°C.

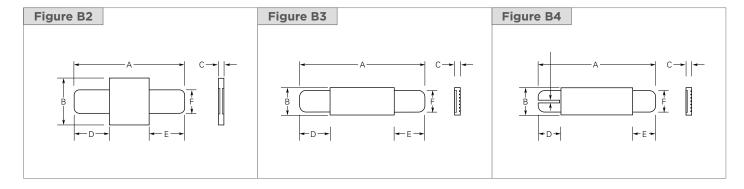
Notes

 $I_{\rm H}$: Hold current: maximum current device will pass without interruption in 20°C still air unless otherwise specified.

I_T : Trip current: minimum current that will switch the device from low-resistance to high-resistance in 20°C still air unless otherwise specified.

 V_{MAX} : Maximum voltage device can withstand without damage at rated current.

 I_{MAX} : Maximum fault current device can withstand without damage at rated voltage.


 P_D : Power dissipated from device when in the tripped state in 20°C still air unless otherwise specified.

 $\rm R_{MIN}^{-}\,$: Minimum resistance of device as supplied at 20°C unless otherwise specified.

R_{MAX}: Maximum resistance of device as supplied at 20°C unless otherwise specified.

R_{1MAX}: Maximum resistance, measured at 20°C unless otherwise specified, of device one hour after being tripped the first time.

Figures B2-B13 — Dimension Figures

Figures B2-B13 — Dimension Figures

(Cont'd)

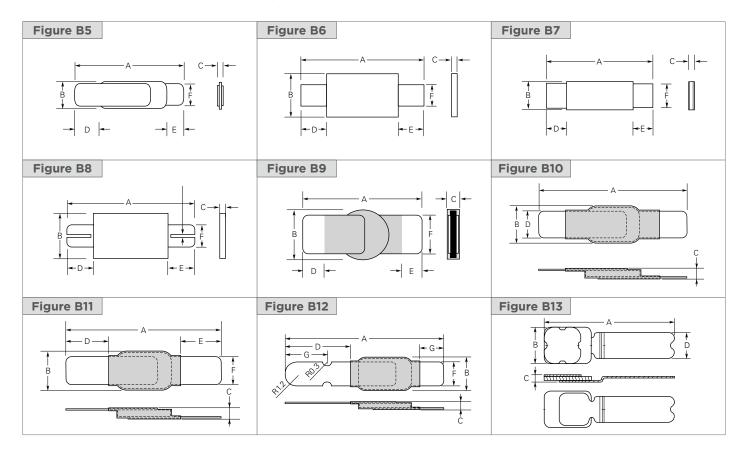


Table B4 — Dimensions in Millimeters (Inches)

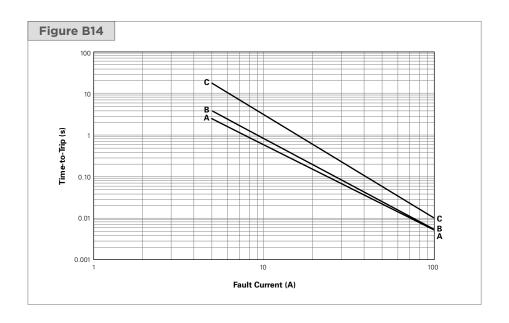
Part		Α	E	В	(0)	1	E	1	F	(G	F-
Number	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure
85°C Typical / VLR	Activation	1													
VLR170F	20.8	23.2	3.5	3.9	_	0.8	4.5	6.5	4.5	6.5	2.4	2.6	_	_	В3
	(0.832)	(0.928)	(0.140)	(0.156)	_	(0.032)	(0.180)	(0.260)	(0.180)	(0.260)	(0.096)	(0.104)	_	_	
VLR175F	23.0	24.5	2.9	3.3	0.5	0.8	4.7	7.2	3.8	5.4	2.4	2.6	_	_	В3
	(0.920)	(0.980)	(0.116)	(0.132)	(0.020)	(0.032)	(0.188)	(0.288)	(0.152)	(0.216)	(0.096)	(0.104)	_	_	
VLR175LF	29.3	31.7	2.9	3.3		0.8	5.2	6.8	10	12.5	2.4	2.6		_	В3
	(1.172)	(1.268)	(0.116)	(0.132)	_	(0.032)	(0.208)	(0.272)	(0.400)	(0.500)	(0.096)	(0.104)	_	_	
VLR230F	20.9	23.1	4.9	5.3	_	0.8	4.1	5.8	4.1	5.8	3.9	4.1		_	ВЗ
	(0.836)	(0.924)	(0.196)	(0.212)	_	(0.032)	(0.164)	(0.232)	(0.164)	(0.232)	(0.156)	(0.164)	_	_	
90°C Typical A	Activation	l													
VLP120UF	10.9	11.8	4.4	4.6	_	0.7	5.5	6.5	1.65	1.9	2.3	2.5	_	_	B5
	(0.430)	(0.460)	(0.170)	(0.180)	_	(0.028)	(0.220)	(0.260)	(0.065)	(0.075)	(0.091)	(0.098)	_	_	
VLP175UAF	23.6	25.6	2.7	2.9	_	0.7	7.0	8.0	7.0	8.0	2.3	2.5		_	B5
	(0.944)	(1.024)	(0.108)	(0.116)	_	(0.028)	(0.280)	(0.320)	(0.280)	(0.320)	(0.092)	(0.100)	_	_	
VLP210F	15.4	17.5	6.9	7.3	0.6	0.8	4.0	6.2	4.0	6.2	3.9	4.1		_	B2
	(0.616)	(0.700)	(0.276)	(0.292)	(0.024)	(0.032)	(0.160)	(0.248)	(0.160)	(0.248)	(0.156)	(0.164)	_	_	
VLP220F	21.1	23.3	3.5	3.9	0.6	0.8	5.1	6.8	5.1	6.8	2.9	3.1	_	_	В3
	(0.844)	(0.932)	(0.140)	(0.156)	(0.024)	(0.032)	(0.204)	(0.272)	(0.204)	(0.272)	(0.116)	(0.124)	_	_	
VLP270F	20.9	23.1	4.9	5.3	0.6	0.8	4.1	5.8	4.1	5.8	3.9	4.1	_	_	В3
	(0.836)	(0.924)	(0.196)	(0.212)	(0.024)	(0.032)	(0.164)	(0.232)	(0.164)	(0.232)	(0.156)	(0.164)	_	_	

Table B4 — Dimensions in Millimeters (Inches)

(Cont'd)

Part Number VTP VTP110F VTP170F VTP170F VTP175F VTP175F VTP210GF	23.6 (0.944) 15.4 (0.616) 20.9 (0.836) 21.2	25.6 (1.024) 17.5 (0.700)	Min 2.7 (0.108)	Max 2.9	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Figure
VTP VTP110F VTP170F VTP170XSF VTP175F VTP175LF	23.6 (0.944) 15.4 (0.616) 20.9 (0.836)	25.6 (1.024) 17.5	2.7												
VTP110F VTP170F VTP170XSF VTP175F VTP175LF	(0.944) 15.4 (0.616) 20.9 (0.836)	(1.024) 17.5		2.0											
VTP170F VTP170XSF VTP175F VTP175LF	(0.944) 15.4 (0.616) 20.9 (0.836)	(1.024) 17.5				0.7	7.0	8.0	7.0	8.0	2.3	2.5			B5
VTP170XSF VTP175F VTP175LF	15.4 (0.616) 20.9 (0.836)	17.5	(0.108)												DO
VTP170XSF VTP175F VTP175LF	(0.616) 20.9 (0.836)		7.0	(0.116)		(0.028)	(0.280)	(0.320)	(0.280)	(0.320)	(0.092)	(0.100)			DO
VTP175F VTP175LF	20.9 (0.836)	(0.700)	7.0	7.4	0.5	0.8	4.0	6.2	4.0	6.2	3.9	4.1	_	_	B2
VTP175F VTP175LF	(0.836)	00.0	(0.280)	(0.296)	(0.020)	(0.032)	(0.160)	(0.248)	(0.160)	(0.248)	(0.156)	(0.164)			D.4
VTP175LF		22.9	4.9	5.3	0.5	0.8	6.0	8.6	6.0	8.6	3.9	4.1	_	_	B4
VTP175LF	21.2	(0.916)	(0.196)	(0.212)	(0.020)	(0.032)	(0.240)	(0.344)	(0.240)	(0.344)	(0.156)	(0.164)			
		23.2	3.5	3.9	_	0.8	4.6	6.6	4.6	6.6	2.9	3.1	_	_	В3
	(0.848)	(0.928)	(0.140)	(0.156)		(0.032)	(0.184)	(0.264)	(0.184)	(0.264)	(0.116)	(0.124)			
\/TD2100E	25.8	28.2	3.5	3.9	_	0.8	5.7	7.3	8.7	10.3	2.4	2.6	_	_	В3
\/TD2100E	(1.032)	(1.128)	(0.140)	(0.156)		(0.032)	(0.228)	(0.292)	(0.348)	(0.412)	(0.096)	(0.104)			
VIFZIUUF	20.9	23.1	4.9	5.3	_	0.8	4.1	5.8	4.1	5.8	3.9	4.1	_	_	В3
	(0.836)	(0.924)	(0.196)	(0.212)		(0.032)	(0.164)	(0.232)	(0.164)	(0.232)	(0.156)	(0.164)			
VTP210SF	20.9	23.1	4.9	5.3	0.6	0.8	4.1	5.8	4.1	5.8	3.9	4.1	_	_	B4
	(0.836)	(0.924)	(0.196)	(0.212)	(0.024)	(0.032)	(0.164)	(0.232)	(0.164)	(0.232)	(0.156)	(0.164)			
120°C Typical A	Activatio	n													
MXP180	9.4	10.0	2.3	2.6	0.7	1.1	1.9	2.1	_	_	_	_	_	_	B10
	(0.37)	(0.39)	(0.09)	(0.10)	(0.02)	(0.04)	(0.07)	(0.08)	_	_	_	_	_	_	
MXP190BB	9.2	10.8	2.96	3.26	0.7	1.1	1.6	3.1	1.6	3.1	2.2	2.4	_	_	В9
	(0.36)	(0.43)	(0.12)	(0.13)	(0.03)	(0.04)	(0.06)	(0.12)	(0.06)	(0.12)	(0.09)	(0.10)	_	_	
MXP250K	11.75	12.35	2.3	2.7	0.7	1.1	2.4	2.6	_	_		_	_	_	B10
	(0.46)	(0.49)	(0.09)	(0.11)	(0.03)	(0.04)	(0.09)	(0.10)	_	_	_	_	_	_	
MXP270	10.3	11.5	2.3	2.7	0.7	1.1	2.1	_	2.1	_	1.9	2.1	_	_	B9
	(0.40)	(0.45)	(0.09)	(0.10)	(0.02)	(0.04)	(0.08)	_	(0.08)	_	(0.07)	(0.08)	_	_	
MXP310	14.5	16.5	2.96	3.26	0.65	0.95	4.6		4.6		2.2	2.4			B9
	(0.57)	(0.65)	(0.11)	(0.13)	(0.03)	(0.04)	(0.18)	_	(0.18)	_	(0.09)	(0.10)	_	_	20
MXP370BD	10.5	11.3	2.96	3.26	0.7	1.1	2.0		2.0		2.2	2.4			B9
	(0.41)	(0.44)	(0.11)	(0.12)	(0.02)	(0.04)	(0.07)	_	(0.07)	_	(0.08)	0.09)	_	_	20
120°C Typical		(0.11)	(0.11)	(0.12)	(0.02)	(0.01)	(0.07)		(0.07)		(0.00)	0.007			
MGP	-ctivatio														
MGP450	13.0	14.0	2.96	3.26	_	0.95	3.0	_	3.0	_	2.2	2.4	_	_	B11
	(0.51)	(0.55)	(0.12)	(0.13)	_	(0.04)	(0.12)	_	(0.12)	_	(0.09)	(0.09)	_	_	
MGP500	14.5	15.5	2.96	3.26	_	0.95	5.5	7.0	2.0	_	2.3	2.5	3.95	4.05	B12
	(0.57)	(0.61)	(0.12)	(0.13)	_	(0.04)	(0.22)	(0.28)	(0.08)	_	(0.09)	(0.10)	(0.16)	(0.16)	
125°C Typical RSD	Activatio	n													•
RSD310	9.7	10.3	2.65	2.95		0.65	1.9	2.1							B13
N3D3 10					_				_	_	_	_	_	_	DIS
DCD070	(0.382)	(0.406)	(0.106)	(0.114)		(0.024)	(0.075)	(0.083)							D10
RSD370	9.7	10.3	2.65	2.95	_	0.65	1.9	2.1	_	_	_	_	_	_	B13
DOD 400		(0.406)	(0.106)	(0.114)		(0.024)	(0.075)								D40
RSD420	9.7	10.3	2.65	2.95	_	0.65	1.9	2.1		_		_	_	_	B13
		(0.406)	(0.106)	(0.114)		(0.024)	(0.075)	(0.083)							
125°C Typical SRP	Activatio	n													
SRP120F	19.9	22.1	4.9	5.2	0.6	1.0	5.5	7.5	5.5	7.5	3.9	4.1	_	_	В6
	(0.796)	(0.884)	(0.196)	(0.208)	(0.024)	(0.040)	(0.220)	(0.300)	(0.220)	(0.300)	(0.156)	(0.164)	_	_	
SRP175F	20.9	23.1	4.9	5.2	0.6	1.0	4.1	5.5	4.1	5.5	3.9	4.1	_	_	В6
	(0.836)	(0.924)	(0.196)	(0.208)	(0.024)	(0.040)	(0.164)	(0.220)	(0.164)	(0.220)	(0.156)	(0.164)	_	_	
SRP200F	21.3	23.4	10.2	11.0	0.5	1.1	5.0	7.6	5.0	7.6	4.8	5.4	_	_	В6
		(0.936)	(0.408)	(0.440)	(0.020)	(0.044)	(0.200)	(0.304)	(0.200)	(0.304)	(0.192)		_	_	
SRP350F	28.4	31.8	13.0	13.5	0.5	1.1	6.3	8.9	6.3	8.9	6.0	6.6	_	_	B6
	(1.136)	(1.272)	(0.520)	(0.540)		(0.044)	(0.252)	(0.356)	(0.252)	(0.356)	(0.240)		_	_	
SRP420F	30.6	32.4	12.9	13.6	0.5	1.1	5.0	7.5	5.0	7.5	6.0	6.7			B6
	(1.224)			(0.544)		(0.044)		(0.300)		(0.300)		(0.268)		_	20

Table B4 — Dimensions in Millimeters (Inches)

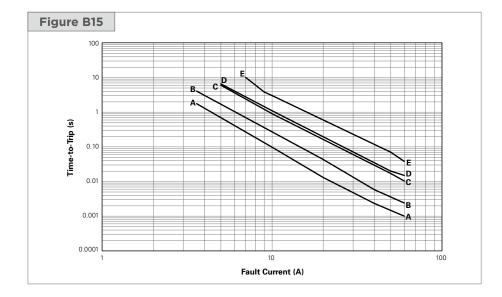

(Cont'd)

Part	-	A	E	3	(С	1)	1	E	1	F		G	
Number	Min	Max	Min	Max	Figure										
LR4															
LR4-190F	19.9	22.1	4.9	5.5	0.6	1.0	5.5	7.5	5.5	7.5	3.9	4.1	_	_	В7
	(0.796)	(0.884)	(0.196)	(0.220)	(0.024)	(0.040)	(0.220)	(0.300)	(0.220)	(0.300)	(0.156)	(0.164)	_	_	
LR4-260F	20.9	23.1	4.9	5.5	0.6	1.0	4.1	5.5	4.1	5.5	3.9	4.1	_	_	В7
	(0.836)	(0.924)	(0.196)	(0.220)	(0.024)	(0.040)	(0.164)	(0.220)	(0.164)	(0.220)	(0.156)	(0.164)	_	_	
LR4-380F	24.0	26.0	6.9	7.5	0.6	1.0	4.1	5.5	4.1	5.5	4.9	5.1	_	_	В7
	(0.960)	(1.040)	(0.276)	(0.300)	(0.024)	(0.040)	(0.164)	(0.220)	(0.164)	(0.220)	(0.196)	(0.204)	_	_	
LR4-380XF	32.2	35.8	4.9	5.5	0.6	1.0	5.5	7.5	5.5	7.5	3.9	4.1	_	_	В7
	(1.288)	(1.432)	(0.196)	(0.220)	(0.024)	(0.040)	(0.220)	(0.300)	(0.220)	(0.300)	(0.156)	(0.164)	_	_	
LR4-450F	24.0	26	9.9	10.5	0.6	1.0	5.3	6.7	5.3	6.7	5.9	6.1	_	_	В7
	(0.960)	(1.040)	(0.396)	(0.420)	(0.024)	(0.040)	(0.212)	(0.268)	(0.212)	(0.268)	(0.236)	(0.244)	_	_	
LR4-550F	35.0	37.0	6.9	7.5	0.6	1.0	5.3	6.7	5.3	6.7	4.9	5.1	_	_	В7
	(1.400)	(1.480)	(0.276)	(0.300)	(0.024)	(0.040)	(0.212)	(0.268)	(0.212)	(0.268)	(0.196)	(0.204)	_	_	
LR4-600F	24.0	26.0	13.9	14.5	0.6	1.0	4.1	5.5	4.1	5.5	5.9	6.1	_	_	B7
	(0.960)	(1.040)	(0.556)	(0.580)	(0.024)	(0.040)	(0.164)	(0.220)	(0.164)	(0.220)	(0.236)	(0.244)	_	_	
LR4-600XF	40.5	42.7	6.9	7.5	0.6	1.0	5.2	6.8	5.2	6.8	4.9	5.1	_	_	В7
	(1.620)	(1.708)	(0.276)	(0.300)	(0.024)	(0.040)	(0.208)	(0.272)	(0.208)	(0.272)	(0.196)	(0.204)	_	_	
LR4-730F	27.1	29.1	13.9	14.5	0.6	1.0	4.1	5.5	4.1	5.5	5.9	6.1	_	_	В7
	(1.084)	(1.164)	(0.556)	(0.580)	(0.024)	(0.040)	(0.164)	(0.220)	(0.164)	(0.220)	(0.236)	(0.244)	_	_	
LR4-900F	45.4	47.6	7.9	8.5	0.9	1.3	4.6	6.2	4.6	6.2	5.9	6.1	_	_	В7
	(1.816)	(1.904)	(0.316)	(0.340)	(0.036)	(0.052)	(0.184)	(0.248)	(0.184)	(0.248)	(0.236)	(0.244)	_	_	
LR4-1300SSF	61.5	66.5	9.4	10.0	0.9	1.3	5.0	7.5	5.0	7.5	5.9	6.1	_	_	B8
	(2.460)	(2.660)	(0.376)	(0.400)	(0.036)	(0.052)	(0.200)	(0.300)	(0.200)	(0.300)	(0.236)	(0.244)	_	_	

Figures B14-B20 — Typical Time-to-Trip Curve at 20°C

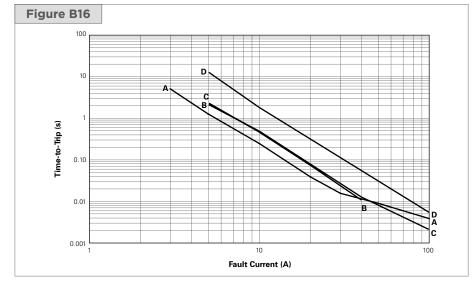
VLR (data at 25°C)

A = VLR170F B = VLR175F C = VLR230F

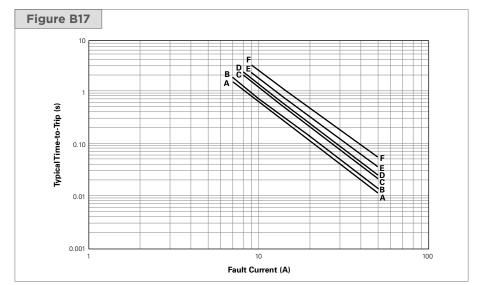


Figures B14-B20 — Typical Time-to-Trip Curve at 20°C

(Cont'd)


VLP (data at 25°C)

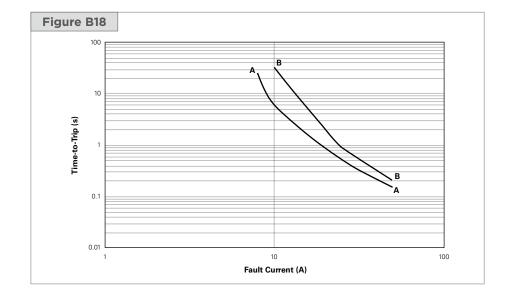
A = VLP120UF B = VLP175UAF C = VLP210F D = VLP220F E = VLP270F


VTP (data at 25°C)

A = VTP110F B = VTP170F C = VTP175F D = VTP210GF

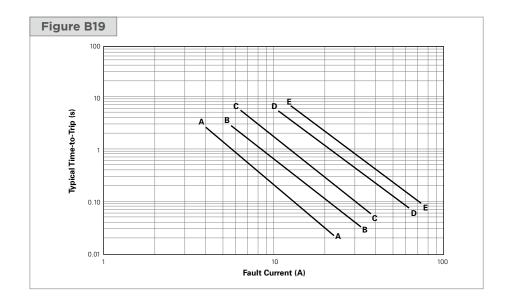
MXP (data at 25°C)

A = MXP180 B = MXP190BB C = MXP250K D = MXP270 E = MXP310 F = MXP370BD



Figures B14-B20 — Typical Time-to-Trip Curve at 20°C

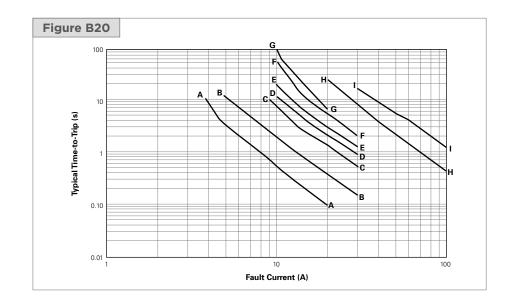
(Cont'd)


MGP

A = MGP450B = MGP500

SRP

A = SRP120FB = SRP175FSRP200F = SRP350F SRP420F



Figures B14-B20 — Typical Time-to-Trip Curve at 20°C

(Cont'd)

LR4

A = LR4-190F B = LR4-260F C = LR4-380F D = LR4-450F E = LR4-550F F = LR4-600F G = LR4-730F H = LR4-900F I = LR4-1300SSF

Table B5 — Physical Characteristics and Environmental Specifications

VLR			
Physical Characte	ristics		
Lead Material	0.125mm Nominal Thickness, Quart	er-hard Nickel	
Tape Material	Polyester		
Environmental Sp	ecifications		
Test	Conditions	Resistance Change	
Passive Aging	-40°C, 1000 hrs	±5% typ	
	60°C, 1000 hrs	±20% typ	
Humidity Aging	60°C/95% RH, 1000 hrs	±30% typ	
Thermal Shock	85°C, -40°C (10 Times)	±5% typ	
Vibration	MIL-STD-883D, Method 2026	No Change	

VLP and VTP		
Physical Characte	ristics	
Lead Material	0.125mm Nominal Thickness, Quart	er-hard Nickel
Tape Material	Polyester	
Environmental Sp	ecifications	
Test	Conditions	Resistance Change
Passive Aging	-40°C, 1000 hrs	±5% typ
	60°C, 1000 hrs	±10% typ
Humidity Aging	60°C/95% RH, 1000 hrs	±10% typ
Thermal Shock	85°C, -40°C (10 Times)	±5% typ
Vibration	MIL-STD-883D, Method 2026	No Change

Note: Storage conditions: 40°C max., 70% RH max.; devices should remain in original sealed bags prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Table B5 — Physical Characteristics and Environmental Specifications

(Cont'd)

MXP and MGP			
Physical Character	istics		
Lead Material	0.1mm Nominal Thickness, Half-hard	Nickel	
Coating Material	Ероху		
Environmental Spe	cifications		
Test	Conditions	Resistance Change	
Passive Aging	-40°C, 1000 hrs	±5% typ	
	60°C, 1000 hrs	±20% typ	
Humidity Aging	60°C/95% RH, 1000 hrs	±30% typ	
Thermal Shock	85°C, -40°C (10 Times)	±5% typ	
Vibration	MIL-STD-883D, Method 2026	No Change	

Physical Characteristics

Lead Material 0.1mm nominal thickness, half-hard nickel

Environmental Specifications

Test	Conditions	Resistance Change
Passive Aging	-40°C, 1000 hrs	±5% typ
	60°C, 1000 hrs	±10% typ
Humidity Aging	60°C/95% RH, 1000 hrs	±10% typ
Thermal Shock	85°C, -40°C (10 Times)	±5% typ
Vibration	MIL-STD-883D, Method 2026	No Change

SRP			
Physical Characte	ristics		
Lead Material	0.125mm Nominal Thickness, Quarte	-hard Nickel	
Tape Material	Polyester		
Environmental Sp	ecifications		
Test	Conditions	Resistance Change	
Passive Aging	70°C, 1000 hrs	±10% typ	
Humidity Aging	85°C/85% RH, 7 Days	±5% typ	
Vibration	MII-STD-883C Test Condition A	No Change	

LR4

Physical Characteristics

Lead Material 0.125mm Nominal Thickness, Quarter-hard Nickel

Tape Material Polyester

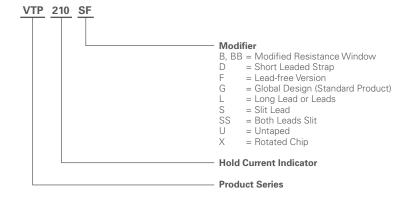
Environmental Specifications

Test	Conditions	Resistance Change	
Passive Aging	70°C, 1000 hrs	±10% typ	
Humidity Aging	85°C/85% RH, 7 Days	±5% typ	
Vibration	MIL-STD-883D, Method 2026	No Change	

Note: Storage conditions: 40°C max., 70% RH max.; devices should remain in original sealed bags prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Table B6 — Packaging and Marking Information/Agency Recognition

Part Number	Bag Quantity	Tape and Reel Quantity	Standard Package Quantity	Part Marking	Agency Recognition
85°C Typical Activation VLR					
VLR170F	1,000	_	10,000	R17	UL, CSA,TÜV
VLR175F	1,000	_	10,000	R1X	UL, CSA,TÜV
VLR175LF	1,000	_	10,000	R1X	UL, CSA,TÜV
VLR230F	1,000	_	10,000	R23	UL, CSA,TÜV
90°C Typical Activation VLP					
VLP120UF	1,000		10,000		UL, CSA, TÜV
VLP175UAF	1,000		10,000	_	UL, CSA, TÜV
VLP210F	1,000		10,000	W21	UL, CSA, TÜV
VLP220F	1,000		10,000	W22	UL, CSA, TÜV
VLP270F	1,000		10,000	W27	UL, CSA, TÜV
VTP	.,000		10,000	****	02,00,,100
VTP110F	1,000		10,000		UL, CSA, TÜV
VTP170F	1,000		10,000	V17	UL, CSA, TÜV
VTP170XSF	1,000		10,000	V17	UL, CSA, TÜV
VTP175F	1,000		10,000	V1X	UL, CSA, TÜV
VTP175LF	1,000		10,000	V1X	UL, CSA, TÜV
VTP210GF	1,000		10,000	V21	UL, CSA, TÜV
VTP210SF	1,000		10,000	V21	UL, CSA, TÜV
120°C Typical Activation	1,000		10,000	VZI	OL, CSA, TOV
MXP					
MXP180	2,000	_	48,000	_	UL, CSA, TÜV
MXP190BB	2,000		48,000		UL, CSA, TÜV
MXP250K	2,000		48,000		UL, CSA, TÜV
MXP270	2,000		48,000		UL
MXP310	2,000		48,000	_	UL
MXP370BD	2,000		48,000		UL, CSA, TÜV
120°C Typical Activation MGP					
MGP450	2,000	_	48,000	_	_
MGP500	2,000	_	48,000	_	UL, TÜV
125°C Typical Activation RSD					
RSD310		6,000	30,000	_	UL
RSD370	_	6,000	30,000	_	UL
RSD420		6,000	30,000	_	UL
125°C Typical Activation SRP					-
SRP120F	1,000	_	10,000	120	UL, CSA, TÜV
SRP175F	2,000		10,000	175	UL, CSA, TÜV
SRP200F	1,000	_	10,000	200	UL, CSA, TÜV
SRP350F	500		10,000	350	UL, CSA, TÜV
SRP420F	500		10,000	420	UL, CSA, TÜV
LR4			10,000	420	OL, CSA, TOV
LR4-190F	2,000		10,000	E19	UL, CSA, TÜV
LR4-260F			<u>_</u>	E26	UL, CSA, TÜV
LR4-260F LR4-380F	1,000	_	10,000		UL, CSA, TÜV
	1,000		10,000	E38	
LR4-380XF	1,000		10,000	E38	UL, CSA, TÜV
LR4-450F	1,000		10,000	E45	UL, CSA, TÜV
LR4-550F	1,000		10,000	E55	UL, CSA, TÜV
LR4-600F	1,000	_	10,000	E60	UL, CSA, TÜV
LR4-600XF	1,000		10,000	E60	UL, CSA, TÜV
LR4-730F	1,000		10,000	E73	UL, CSA, TÜV
LR4-900F	500		10,000	E90	UL, CSA, TÜV
LR4-1300SSF	250		10,000	EX3	UL, CSA, TÜV


Agency Recognition

UL	File # E74889
CSA	File # 78165C
TÜV	Certificate Number Available on Request

Installation Guidelines for the Strap Family

- PPTC devices operate by thermal expansion of the conductive polymer. If devices are placed under pressure or installed in spaces that would prevent thermal expansion, they may not properly protect against damage caused by fault conditions. Designs must be selected in such a manner that adequate space is maintained over the life of the product.
- Twisting, bending, or placing the PPTC device in tension will decrease the ability of the device to protect against damage caused by electrical faults. No residual force should remain on device after installation. Mechanical damage to the PPTC device may affect device performance and should be avoided.
- Chemical contamination of PPTC devices should be avoided. Certain greases, solvents, hydraulic fluids, fuels, industrial cleaning agents, volatile components of adhesives, silicones, and electrolytes can have an adverse effect on device performance.
- PPTC strap devices are intended to be resistance welded to battery cells or to pack interconnect straps, yet some precautions must be taken when doing so. In order for the PPTC device to exhibit its specified performance, weld placement should be a minimum of 2mm from the edge of the PPTC device, weld splatter must not touch the PPTC device, and welding conditions must not heat the PPTC device above its maximum operating temperature.
- PPTC strap devices are not intended for applications where reflow onto flex circuits or rigid circuit boards is required.
- The polyester tape on PPTC strap devices is intended for marking and identification purposes only, not for electrical insulation.
- The coating on MXP and MGP devices is intended to prevent oxidization/aging of the devices. Damaging the coating or causing the coating to delaminate can have negative effects on device performance and should be avoided.
- MXP and MGP devices have a small PPTC chip size and therefore have weaker peel strength between the polymer and Ni-foil of the chip. Excessive mechanical force to the device may cause delamination of Ni-foil from the polymer.

Part Numbering System


Warning:

- · Users should independently evaluate the suitability of and test each product selected for their own application.
- Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- . These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

POLYSWITCH RESETTABLE DEVICES

Telecommunications and Networking Devices

The PolySwitch families of telecommunications and networking devices help meet the growing demand for resettable overcurrent protection. These product families help provide protection against damage caused by power cross and power induction surges as defined in ITU, Telcordia GR1089 and UL60950. Available in chip, surface-mount and radial-leaded configurations, TE's PolySwitch devices help improve the reliability of customer premise and network equipment worldwide.

BENEFITS

- Choice of many product options helps engineers by improving design flexibility
- Compatible with high-volume electronics assembly
- Assist in meeting regulatory equipment requirements
- · Help improve line balance
- Applicable for legacy POTS and modern digital communications equipment

FEATURES

- · RoHS compliant
- Resettable overcurrent protection
- Surface-mount, radial-leaded and chip form factors
- Fast time-to-trip
- Agency recognition: UL, CSA, TÜV
- Resistance-sorted and matched devices available
- Low parasitic capacitance/flat impedance with frequency

APPLICATIONS

- Modems
- Phone sets
- Fax machines
- · Phone wall outlets
- · Alarm systems
- PBX systems
- MDF modules
- · Analog and digital line cards
- T1/E1 equipment
- xDSL modems and splitters
- Powered ethernet systems
- VoIP (Voice over Internet Protocol) equipment
- · LAN, WAN equipment
- Customer premise equipment
- Access network hardware

Application Guide for Telecommunications and Networking Devices*

To use this guide, follow the steps below:

- 1. Select your equipment type from the guide below.
- 2. Select the type of protection depending on the agency and regional specifications in the second column.
- 3. Select the form factor for your application.
- 4. Use the Agency Specification/ PolySwitch Device Selection Guide on the next page to select a specific part number for each application based on the agency requirements.
- 5. Parts with fast time-to-trip or low resistance are available. Please consult a TE Circuit Protection representative.

		Overcurrent Protection				
	Region/	Form Factor				
Application	Specification	Radial-leaded	Surface-mount	Chip		
ustomer Premise equipment	North America	TRF600-150	TS600-170F			
F equipment Inalog Modems, V.90 Modems,	TIA-968-A,	TR600-150F-EX	TS600-200F			
SDN Moderns, xDSL Moderns,	UL 60950,	TRF600-160	TSM600-250F			
ADSL Splitters, Phone Sets, Fax Machines,	GR1089 Port Type 3 [‡]	TRF600-250	TSM600-400F			
Answering Machines, Caller ID, Internet Appliances, PBX Systems, POS Terminals,		TRF-600-400				
Vall Plugs	Europe/Asia/	TRF250-120	TS250-130F	TCF250-120		
	South America	TRF250-120T	TSV250-130F	TCF250-145		
	ITU K.21	TRF250-120U	TSV250-184F	TCF250-180T		
		TRF250-120UT	TSL250-130F			
		TRF250-145				
		TRF250-145T				
		TRF250-145U				
		TRF250-183				
		TRF250-183U				
		TRF250-184				
Access network equipment (†)	North America	TRF600-160	TS600-170F			
Remote Terminals, Line Repeaters,	GR1089 Port Type 5 [‡]	TRF600-250	TS600-200F			
Multiplexers, Cross-Connects, VAN Equipment		TRF600-400	TS600-400F			
VIV Equipmont			TSM600-250F			
			TSM600-400F			
	Europe/Asia/	TRF250-120	TS250-130F	TCF250-120		
	South America	TRF250-120T	TSV250-130F	TCF250-145		
	ITU K.45	TRF250-120U	TSV250-184F	TCF250-180T		
		TRF250-120UT	TSL250-130F			
		TRF250-145				
		TRF250-145T				
		TRF250-145U				
		TRF250-183				
		TRF250-183U				
		TRF250-184				
Central office switching equipment (†)	North America	TRF600-160	TS600-170F			
Analog/POTS Linecards, ISDN Linecards,	GR1089 Port Type 1 [‡]	TRF600-250	TS600-200F			
DSL Modems, ADSL/VDSL Splitters, T1/E1 Linecards, Multiplexers,		TRF600-400	TS600-400F			
CSU/DSU, Servers			TSM600-250F			
			TSM600-400F			
	Europe/Asia/	TRF250-120	TS250-130F	TCF250-120		
	South America	TRF250-120T	TSV250-130F	TCF250-145		
	ITU K.20	TRF250-120U	TSV250-184F	TCF250-180T		
		TRF250-120UT	TSL250-130F			
		TRF250-145				
		TRF250-145T				
		TRF250-145U				
		TRF250-183				
		TRF250-183U				
		TRF250-184				

Application Guide for Telecommunications and Networking Devices*

(Cont'd)

		Overcurrent Protec	tion		
	Region/	Form Factor			
Application	Specification	Radial-leaded	Surface-mount	Chip	
Primary protection modules (†)	North America	TRF250-183	TSV250-184F		
MDF modules, Network Interface	Telcordia GR-974	TRF250-184			
Devices (NID)	Europe/Asia/	TRF250-055T	TSL250-080F	TCF250-100T	
	South America	TRF250-055UT	TS250-130F	TCF250-120	
	ITU K.20	TRF250-080T	TSV250-130F	TCF250-120T	
		TRF250-080U	TSV250-184F	TCF250-145	
		TRF250-110U	TSL250-130F	TCF250-145T	
		TRF250-120	102200 1001	TCF250-180T	
		TRF250-120T		101 200 1001	
		TRF250-120U			
		TRF250-120UT			
		TRF250-145			
		TRF250-145T			
		TRF250-145U			
		TRF250-183			
		TRF250-183U			
		TRF250-184			
Short-haul/intrabuilding communications	North America	TRF250-080T	TSL250-080F	TCF250-120	
equipment (†) LAN Equipment, VoIP Cards, Cable	GR1089 Port Type 2 [‡]	TRF250-080U	TS250-130F	TCF250-145	
Telephony NIUs, Wireless Local Loop	GR1089 Port Type 4 [‡]	TRF250-120	TSV250-130F	TCF250-180T	
Handsets		TRF250-120T	TSV250-184F		
		TRF250-120U	TSL250-130F		
		TRF250-120UT			
		TRF250-145			
		TRF250-145T			
		TRF250-145U			
		TRF250-183			
		TRF250-183U			
		TRF250-184			
	Europe/Asia/	TRF250-120	TS250-130F	TCF250-120	
	South America	TRF250-120T	TSV250-130F	TCF250-125	
	ITU K.21				
	110 K.21	TRF250-120U	TSV250-184F	TCF250-180T	
		TRF250-120UT	TSL250-130F		
		TRF250-145			
		TRF250-145T			
		TRF250-145U			
		TRF250-183			
		TRF250-183U			
		TSV250-184			
LAN Intrabuilding Power Cross Protection	North America	TRF250-080T	TSL250-080F	TCF250-120	
LAN Equipment, VoIP Cards, IP Phones	GR1089 Port Type 4 [‡]	TRF250-080U	TS250-130F	TCF250-145	
		TRF250-120	TSV250-130F	TCF250-180T	
		TRF250-120T	TSV250-184F		
		TRF250-120U	TSL250-130F		
		TRF250-120UT			
		TRF250-145			
		TRF250-145T			
		TRF250-145U			
		TRF250-183			
		TRF250-183U			
		TRF250-184			

Powered Ethernet Switches and Terminals, IP phones, Wireless LAN Base Stations, Microcellular Base Stations, VoIP Cards

This list is not exhaustive. TE Circuit Protection welcomes our customers' input for additional application ideas for PolySwitch resettable devices.

For improved line balance in these applications, resistance-matched parts are recommended.

May require additional impedance or coordination with primary protector.

[#] May require additional impedance or coordination with printing process.

** For details on decaSMDC050F/60-2, see surface-mount devices section.

Agency Specification/Selection Guide

Use the guide below to select the PolySwitch devices which are typically used in your application. The following pages contain the specifications for the part numbers recommended below. PolySwitch devices assist telecommunication equipment in meeting the applicable protection requirements of these industry specifications. Refer to individual agency specifications for test procedures and circuit schematics. Users should independently evaluate the suitability of and test each product for their application.

Family	Product*	Lightning	Power Cross/Contact/Induction
TCF250	TCF250-100T	ITU K.20 – 1.0kV 10/700μs	PRC YD/T694
		GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 - 0.2A ² s
			ITU K.20/21/45 - 1A ² s [†]
			GR-1089 Port Type 4 – 120V _{AC} , 25Asc
	TCF250-120	ITU K.20/21/45 - 1.5kV 10/700μs	ITU K.20/21/45 – 230 V_{AC} , 10 Ω
	TCF250-120T	ITU K.20/21/45 – 4.0kV 10/700μs [†]	ITU K.20/21/45 - 0.2A ² s
	TCF250-145	GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 - 1A ² s ⁺
	TCF250-145T		ITU K.20/21/45 - 10A ² s [†]
	TCF250-180T		GR-1089 Port Type 4 - 120V _{AC} , 25Asc
TRF250	TRF250-055T	ITU K.20 - 1.0kV 10/700μs	ITU K.20 – 230V _{AC} , 10Ω
	TRF250-055UT	GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20 - 0.2A2s
	TRF250-080T		ITU K.20 - 1A ² s [†]
	TRF250-080U		GR-1089 Port Type 4 - 120V _{AC} , 25Asc
	TRF250-110U	ITU K.20/21/45 – 1.5kV 10/700μs	ITU K.20/21/45 – 230V _{AC} , 10Ω
	TRF250-120	ITU K.20/21/45 - 4.0kV 10/700µs ⁺	ITU K.20/21/45 - 0.2A ² s
	TRF250-120T	GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 – 1A ² s [†]
	TRF250-120U	**	ITU K.20/21/45 – 10A ² s [†]
	TRF250-120UT		GR-1089 Port Type 4 – 120V _{AC} , 25Asc
	TRF250-145		,,
	TRF250-145T		
	TRF250-145U		
	TRF250-183		
	TRF250-183U		
	TRF250-184	ITU K.20/21/45 – 1.5kV 10/700μs	ITU K.20/21/45 – 230V _{AC} , 10Ω**
		ITU K.20/21/45 – 4.0kV 10/700µs‡	ITU K.20/21/45 – 0.2A ² s
		GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 – 1A ² s‡
			ITU K.20/21/45 – 10A ² s [‡]
			GR-1089 Port Type 4 – 120V _{AC} , 25Asc
TS250/TSV250	TSV250-130F	ITU K.20/21/45 – 1.5kV 10/700μs	ITU K.20/21/45 – 230V _{AC} , 10Ω
	TS250-130F	ITU K.20/21/45 – 4.0kV 10/700µs†	ITU K.20/21/45 – 0.2A ² s
	TSL250-130F	GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 – 1A ² s [†]
	102200 1001	arr 1000 Fore Typos 2 and 1 Fore 20101	ITU K.20/21/45 – 10A ² s†
			GR-1089 Port Type 4 – 120V _{AC} , 25Asc
	TS250-130F-RB	ITU K.20/21/45 – 1.5kV 10/700μs	ITU K.20/21/45 – 230V _{AC} , 10 Ω
	10230-1301-110	ITU K.20/21/45 – 4.0kV 10/700µs‡	ITU K.20/21/45 – $230V_{AC}$, 1082
		GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 – 0.2A-s
		3.1 1000 1 01t 1ype3 2 and 4 - 13t Level	ITU K.20/21/45 – 10A ² s [‡]
			GR-1089 Port Type 4 − 120V _{ΔC} , 25Asc
	TSV250-184F	ITLLK 20/21/45 - 1 5kV 10/700uc	71 707
	137230-1846	ITU K.20/21/45 – 1.5kV 10/700µs	ITU K.20/21/45 – 230V _{AC} , 10Ω**
		ITU K.20/21/45 – 4.0kV 10/700µs‡	ITU K.20/21/45 – 0.2A ² s
		GR-1089 Port Types 2 and 4 – 1st Level	ITU K.20/21/45 – 1A ² s [‡]
			ITU K.20/21/45 – 10A ² s [‡]
	WOLDS:	00.4000 0 . 7	GR-1089 Port Type 4 – 120V _{AC} , 25Asc
TSL250	TSL250-080F	GR-1089 Port Types 2 and 4 – 1st Level	GR-1089 Port Type 4 – 120V _{AC} , 25Asc
		ITU K.20 – 1.0kV 10/700μs	ITU K.20/21/45 – 230V _{AC} , 10Ω
			ITU K.20/21/45 – 0.2A ² s
			ITU K.20/21/45 - 1A ² s [†]

Agency Specification/Selection Guide

(Cont'd)

Family	Product*	Lightning	Power Cross/Contact/Induction
TRF600	TRF600-150	TIA-968-A Types A & B	UL60950 - 600V _{AC} , 40Asc
	TR600-150F-EX	GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level ^{††}	UL60950 - 600V _{AC} , 40Asc
	TRF600-160	GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level ^{††}	Telcordia GR-1089 – 600V _{AC} , 60Asc
	TRF600-250	GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level ^{††}	Telcordia GR-1089 – 600V _{AC} , 60Asc
	TRF600-400	GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level	Telcordia GR-1089 – 600V _{AC} , 60Asc
TS600	TS600-170F	TIA-968-A Types A & B	UL60950 - 600V _{AC} , 40Asc
	TS600-200F	GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level ^{††}	Telcordia GR-1089 – 600V _{AC} , 60Asc
	TS600-400F		
TSM600	TSM600-250F	TIA-968-A Types A & B	UL60950 - 600V _{AC} , 40Asc
		GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level ^{††}	Telcordia GR-1089 – 600V _{AC} , 60Asc
	TSM600-400F	TIA-968-A Types A & B	UL60950 - 600V _{AC} , 40Asc
		GR-1089 Port Types 1, 3 and 5 – 1st and 2nd Level	Telcordia GR-1089 – 600V _{AC} , 60Asc

Notes:

- Applies to all products that share the same prefix.
- Tested with 230V gas discharge tube primary protector.
- Tested with 350V gas discharge tube primary protector.
- ** See SCD for additional application fault ratings.
- †† May require additional series resistor to help telecommunication equipment pass Surge 3 (1kV, 10/1000µs).

Table T1 — Product Series: Size, Current Rating, Voltage Rating, Typical Resistance

	TCF250	TRF250	TS250	TSV250	TSL250	TS600 TSM600	TRF600
V _{MAX} Interrupt (V _{AC})*	250	250	250	250	250	600	600
Specification	ITU GR-1089 Ports 2 and 4	GR-1089 Ports 2 and 4	UL60950 GR-1089 Ports 1, 3 and 5	UL60950 GR-1089 Ports 1, 3 and 5			
Hold Current (A)							
0.055	_	20.0Ω	_	_	_	_	_
0.080	_	17.0Ω	_	_	8.0Ω	_	_
0.100	11.0Ω	_	_	_	_	_	_
0.110	_	7.0Ω	_	_	_	_	_
0.120	10.5Ω	8.0Ω	_	_	_	_	_
0.130	_	_	9.0Ω	5.5Ω	5.5Ω	_	_
0.145	7.0Ω	4.5Ω	_	_	_	_	_
0.150	_	_	_	_	_	_	8.0Ω
0.160	_	_	_	_	_	_	6.0Ω
0.170	_	_	_	_	_	11.0Ω	_
0.183	_	1.3Ω	_	_	_	_	_
0.184	_	1.9Ω	_	1.6Ω	_	_	_
0.200	_	_	_	_	_	8.5Ω	_
0.250	_	_	_	_	_	3.5Ω	3.0Ω
0.400	_	_	_	_	_	1.2Ω	1.2Ω

Voltage Ratings for Telecommunications and Networking Devices

For circuit protection telecommunications devices there are two applicable voltage ratings. These are V_{MAX} Operating and V_{MAX} Interrupt. To help understand the nature of these two different voltage ratings, the following definitions are provided:

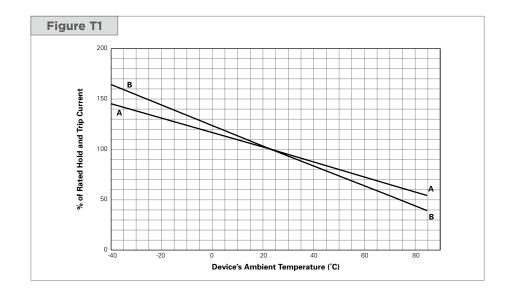
V_{MAX} Operating: For telecommunications devices, this is the voltage used to obtain component recognition under UL1434. Most circuit protection devices are certified at 60V but can withstand higher V_{MAX} Interrupt conditions. See Table T3 for its V_{MAX} Operating.

*V_{MAX} Interrupt: Under specified conditions, this is the highest voltage that can be applied to the device at the maximum current. Devices may trip safely under higher power level cross conditions, as listed above, to assist equipment in meeting the appropriate industry conditions.

Table T2 — Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part				Maximu	m Ambient Ten	perature			
Number**	-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C	85°C
Chip* - 250V _{AC} TCF250									
TCF250-100T	0.155	0.138	0.119	0.100	0.083	0.073	0.064	0.055	0.042
TCF250-120	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TCF250-120T	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TCF250-145	0.225	0.199	0.172	0.145	0.119	0.106	0.093	0.080	0.060
TCF250-145T	0.225	0.199	0.172	0.145	0.119	0.106	0.093	0.080	0.060
TCF250-180T	0.269	0.240	0.211	0.180	0.153	0.138	0.123	0.109	0.087
Radial-leaded* - 25 TRF250	0V _{AC}								
TRF250-055T	0.085	0.076	0.065	0.055	0.045	0.041	0.035	0.030	0.023
TRF250-055UT	0.085	0.076	0.065	0.055	0.045	0.041	0.035	0.030	0.023
TRF250-080T	0.124	0.110	0.095	0.080	0.066	0.059	0.051	0.044	0.033
TRF250-080U	0.124	0.110	0.095	0.080	0.066	0.059	0.051	0.044	0.033
TRF250-110U	0.171	0.151	0.131	0.110	0.091	0.081	0.071	0.061	0.046
TRF250-120	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TRF250-120T	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TRF250-120U	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TRF250-120UT	0.186	0.165	0.143	0.120	0.099	0.088	0.077	0.066	0.050
TRF250-145	0.225	0.199	0.172	0.145	0.119	0.106	0.093	0.080	0.060
TRF250-145T	0.225	0.199	0.172	0.145	0.119	0.106	0.093	0.080	0.060
TRF250-145U	0.225	0.199	0.172	0.145	0.119	0.106	0.093	0.080	0.060
TRF250-183‡	0.284	0.251	0.217	0.183	0.149	0.133	0.117	0.101	0.075
TRF250-183U‡	0.284	0.251	0.217	0.183	0.149	0.133	0.117	0.101	0.075
TRF250-184‡	0.286	0.252	0.218	0.184	0.150	0.134	0.118	0.102	0.075
Surface-mount* — 2 TS250/TSL250/TSV2									
TSL250-080F	0.124	0.110	0.095	0.080	0.066	0.059	0.051	0.044	0.033
TSL250-130F	0.208	0.182	0.156	0.130	0.104	0.091	0.078	0.065	0.045
TS250-130F	0.208	0.182	0.156	0.130	0.104	0.091	0.078	0.065	0.045
TSV250-130F	0.208	0.182	0.156	0.130	0.104	0.091	0.078	0.065	0.045
TSV250-184F	0.286	0.252	0.218	0.184	0.150	0.134	0.118	0.102	0.075
Radial-leaded† – 600 TRF600	OV _{AC}								
TRF600-150	0.239	0.209	0.180	0.150	0.121	0.107	0.093	0.079	0.057
TR600-150F-EX	0.239	0.209	0.180	0.150	0.121	0.107	0.093	0.079	0.057
TRF600-160	0.255	0.223	0.192	0.160	0.129	0.114	0.099	0.084	0.061
TRF600-250	0.400	0.350	0.300	0.250	0.198	0.170	0.140	0.117	0.083
TRF600-400	0.640	0.560	0.480	0.400	0.320	0.270	0.230	0.190	0.130
Surface-mount [†] — 60 TS600/TSM600	00V _{AC}								
TS600-170F	0.264	0.230	0.200	0.170	0.140	0.125	0.109	0.094	0.070
TS600-200F	0.310	0.275	0.238	0.200	0.165	0.147	0.128	0.110	0.083
TS600-400F	0.640	0.560	0.480	0.400	0.320	0.270	0.230	0.190	0.130
TSM600-250F	0.400	0.350	0.300	0.250	0.198	0.170	0.140	0.117	0.083
TSM600-400F	0.640	0.560	0.480	0.400	0.320	0.270	0.230	0.190	0.130

^{* 250}V_{AC} interrupt products may help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements.


^{**} Applies to all products which share the same prefix.

^{† 600}V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.

[‡] Product is not currently available in a resistance matched or sorted option.

Figure T1 — Thermal Derating Curve

TCF250-180T All other TCF, TRF, **TSM Series Devices**

Table T3 — Electrical Characteristics

			V _{IV}	IAX	I _{MAX} *†						
Part	I _H	I _T	Operating	Interrupt	Interrupt	$P_{D Typ}$	Typical Tir	ne-to-trip	R_{MIN}	R_{MAX}	R_{1MAX}
Number	(A)	(A)	(V _{DC})	(V _{RMS})	(A)	(W)	(A)	(s)	(Ω)	(Ω)	(Ω)
Chip* - 250V _{AC} TCF250											
TCF250-100T-RB	0.090	0.150	60	250	3.0	0.6	1.0	0.2	15.4	18.0	24.0
TCF250-120	0.120	0.240	60	250	3.0	0.8	1.0	0.9	5.0	9.0	14.0
TCF250-120T	0.120	0.240	60	250	3.0	0.8	1.0	0.6	6.3	12.0	18.0
TCF250-145	0.145	0.290	60	250	3.0	1.0	1.0	2.5	3.0	6.0	14.0
TCF250-145T	0.145	0.290	60	250	3.0	1.0	1.0	1.0	5.0	9.0	14.0
TCF250-180T‡	0.180	0.380	60	250	3.0	0.8	1.0	3.4	1.9	3.0	4.2
Radial-leaded* - 250V _{AC} TRF250											
TRF250-055T	0.055	0.170	60	250	3.0	0.6	0.28	3.5	15.0	25.0	35.0
TRF250-055UT	0.055	0.170	60	250	3.0	0.6	0.28	3.0	15.0	25.0	35.0
TRF250-080T	0.080	0.160	60	250	3.0	0.6	0.35	4.0	15.0	22.0	33.0
TRF250-080U	0.080	0.160	60	250	3.0	0.6	0.35	2.5	14.0	20.0	33.0
TRF250-110U	0.110	0.220	60	250	3.0	0.6	1.00	0.8	5.0	9.0	16.0
TRF250-120	0.120	0.240	60	250	3.0	0.8	1.00	1.5	4.0	8.0	16.0
TRF250-120T	0.120	0.240	60	250	3.0	0.8	1.00	0.7	7.0	12.0	16.0
TRF250-120T-RA	0.120	0.240	60	250	3.0	0.8	1.00	1.2	7.0	9.0	16.0
TRF250-120T-RC	0.130	0.260	60	250	3.0	0.8	1.00	3.0	5.4	7.5	14.0
TRF250-120T-RF	0.120	0.240	60	250	3.0	0.8	1.00	0.9	6.0	10.5	16.0
TRF250-120T-RH	0.120	0.240	60	250	3.0	0.8	1.00	0.7	9.0	11.0	16.0
TRF250-120T-R1	0.120	0.240	60	250	3.0	0.8	1.00	0.7	6.0	9.0	16.0
TRF250-120T-R2	0.120	0.240	60	250	3.0	0.8	1.00	0.8	8.0	10.5	16.0
TRF250-120U	0.120	0.240	60	250	3.0	0.7	1.00	1.0	6.0	10.0	16.0
TRF250-120UT	0.120	0.240	60	250	3.0	0.7	1.00	0.7	7.0	12.0	16.0
TRF250-145	0.145	0.290	60	250	3.0	0.8	1.00	2.5	3.0	6.0	14.0

^{* 250}V_{AC} interrupt products may help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements.

^{† 600}V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.

[‡] Product is not currently available in a resistance matched or sorted option.

Table T3 — Electrical Characteristics

(Cont'd)

			V _N		I _{MAX} *†	В	TunicalTi	4. 4	D	В	В
Part Number	I _H (A)	I _T (A)	Operating (V _{DC})	(V _{RMS})	Interrupt (A)	P _{D Typ} (W)	(A)	me-to-trip (s)	R_{MIN} (Ω)	R_{MAX} (Ω)	R_{1MAX} (Ω)
Radial-leaded* - 250V _{AC} TRF250	(24)	(24)	(• DC)	(RIMS)	(24)	(55)	(74)		(22)	(55)	(22)
TRF250-145-RA	0.145	0.290	60	250	3.0	0.8	1.00	2.5	3.0	6.0	12.0
TRF250-145T	0.145	0.290	60	250	3.0	0.8	1.00	1.5	5.4	7.5	14.0
TRF250-145U	0.145	0.290	60	250	3.0	0.7	1.00	2.0	3.5	6.5	14.0
TRF250-183 [‡]	0.183	0.685	100	250	10.0	0.9	3.00	0.6	0.8	2.0	3.4
TRF250-183U‡	0.183	0.685	100	250	10.0	0.9	3.00	0.6	0.8	2.0	3.4
TRF250-184 [‡]	0.184	1.000	100	250	10.0	0.9	3.00	0.5	1.2	2.4	3.1
Surface-mount* - 250V _{AC} TS250/TSL250/TSV250											
TSL250-080F	0.080	0.240	80	250	3.0	1.2	1.0	0.8	5.0	11.0	20.0**
TSL250-130F	0.130	0.260	60	250	3.0	1.5	1.0	2.0	4.0	8.0	12.0**
TS250-130F	0.130	0.260	60	250	3.0	1.1	1.0	0.9	6.5	12.0	20.0**
	_	_	60	600	1.0	_	_	_	_	_	_
TS250-130F-RA	0.130	0.260	60	250	3.0	1.1	1.0	1.4	6.5	9.0	15.0**
	_	_	60	600	1.0	_	_	_	_	_	_
TS250-130F-RB	0.130	0.260	60	250	3.0	1.1	1.0	0.7	9.0	12.0	20.0**
	_	_	60	600	1.0	_	_	_	_	_	_
TS250-130F-RC	0.130	0.260	60	250	3.0	1.1	1.0	1.1	7.0	10.0	17.0**
	_	_	60	600	1.0	_	_	_	_	_	_
TSV250-130F	0.130	0.260	60	250	3.0	1.5	1.0	2.0	4.0	7.0	12.0**
TSV250-184F	0.184	0.690	100	250	10.0	0.9	3.0	0.5	1.2	3.0	4.0**
$\begin{array}{l} {\rm Radialleaded^{\dagger}-600V_{AC}} \\ {\rm TRF600} \end{array}$											
TRF600-150	0.150	0.300	250	600	3.0	1.4	1.0	1.4	6.0	10.0	17.0
TRF600-150-RB	0.150	0.300	250	600	3.0	1.4	1.0	1.0	9.0	12.0	22.0
TRF600-150-R2	0.150	0.300	250	600	3.0	1.4	1.0	1.3	7.0	10.0	17.0
TR600-150F-EX	0.150	0.300	250	600	3.0	1.4	1.0	5.0	6.0	12.0	22.0
TR600-150F-EX-RB	0.150	0.300	250	600	3.0	1.4	1.0	5.0	9.0	12.0	22.0
TRF600-160	0.160	0.320	250	600	3.0	1.7	1.0	7.5	4.0	10.0	18.0
TRF600-160-RA	0.160	0.320	250	600	3.0	1.7	1.0	9.5	4.0	7.0	16.0
TRF600-250	0.250	0.850	250	600	3.0	2.0	3.0	1.0	1.0	4.3	7.0
TRF600-400	0.400	1.000	60	600	3.0	2.4	3.0	4.0	0.95	1.45	1.90
$\begin{array}{l} Surface\text{-}mount^{\dagger}-600V_{AC} \\ TS600/TSM600 \end{array}$											
TS600-170F	0.170	0.400	60	600	3.0	2.5	1.0	10.0	4.0	9.0	18.0
TS600-200F-RA-B-0.5	0.200	0.400	60	600	3.0	2.5	1.0	12.0	4.0	7.5	13.5
TS600-400F	0.400	1.000	60	600	3.0	2.0	3.0	5.0	0.5	1.1	2.0
TSM600-250F	0.250	0.860	250	600	3.0	2.0	3.0	0.8	1.0	3.5	7.0
TSM600-250F-RA	0.250	0.860	250	600	3.0	2.0	3.0	1.0	1.0	3.0	5.0
TSM600-400F	0.400	1.000	250	600	3.0	2.0	3.0	5.0	0.5	1.1	2.0

Notes:

: Hold current; maximum current device will pass without interruption in 20°C still air.

Trip current: minimum current that will switch the device from low resistance to high resistance in 20°C still air.

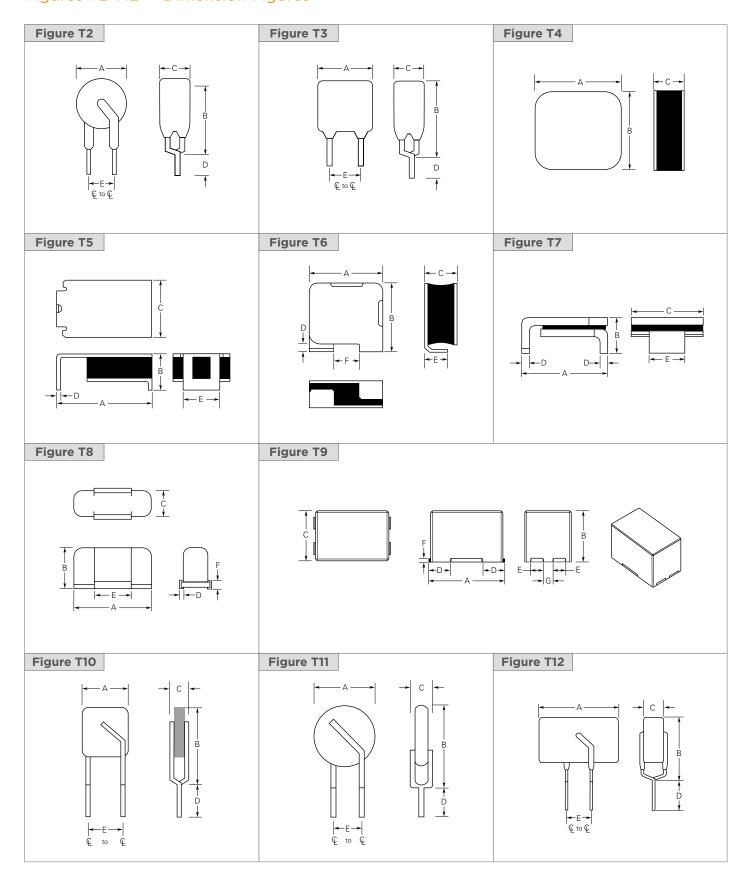
V_{MAX} Operating: Maximum continuous voltage device can withstand without damage at rated current. This voltage is used for component recognition under UL1434.

V_{MAX} Interrupt: Maximum voltage that can be safely placed across a device in its tripped state. Devices may trip safely under higher level power cross conditions to assist equipment in meeting the appropriate ITU, UL60950 or GR1089 industry requirements.

I_{MAX} Interrupt: Maximum fault current device can withstand without damage at rated operating voltage. This current is used for component recognition under UL1434.

Devices may trip safely under higher level power cross conditions to assist equipment in meeting the appropriate ITU, UL60950 or GR1089 industry requirements.

P_D R_{MIN} Power dissipated from device when in the tripped state in 20°C still air. Minimum resistance of device as supplied at 20°C unless otherwise specified : Maximum resistance of device as supplied at 20°C unless otherwise specified. : Maximum resistance measured one hour post-trip or post-reflow at 20°C. R_{1MAX}


^{* 250}V_{AC} interrupt products may help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements.

⁶⁰⁰V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.

Product is not currently available in a resistance matched or sorted option.

^{**} R_{1MAX} measured 1 hour post-trip or 24 hours post-reflow at 20°C.

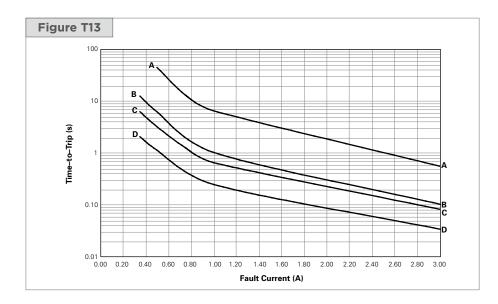
Figures T2-T12 — Dimension Figures

Table T4 — Dimensions & Weights

			Dimensions in Millimeters (Inches)												Device Mass (g)	
Part		A		В		С		D		Ε		F		G	Figure	(Only for Reference
Number**	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
TCF-250V*																
TCF250-100T	4.6	4.9	4.6	4.9	2.0	2.3	_	_	_	_	_	_	_	_	T4	0.24
	(0.18)	(0.19)	(0.18)	(0.19)	(0.08)	(0.09)										
TCF250-120	5.4	5.6	5.4	5.6	2.0	2.3	_	_	_	_	_	_	_	_	T4	0.28
	(0.21)	(0.22)	(0.21)	(0.22)	(0.08)	(0.09)										
TCF250-120T	5.4	5.6	5.4	5.6	2.0	2.3	_	_	_	_		_	_	_	T4	0.28
	(0.21)	(0.22)	(0.21)	(0.22)	(0.08)	(0.09)										
TCF250-145	5.4	5.6	5.4	5.6	2.0	2.5	_	_	_	_		_	_	_	T4	0.28
	(0.21)	(0.22)	(0.21)	(0.22)	(0.08)	(0.10)										
TCF250-145T	5.4	5.6	5.4	5.6	2.0	2.5									T4	0.28
	(0.21)			(0.22)	(0.08)											
TCF250-180T	6.9	7.1	6.9	7.1	1.3	1.6									T4	0.35
101250-1601															14	0.35
TDF2E0 2E0\/*	(0.27)	(0.28)	(0.27)	(0.28)	(0.05)	(0.06)										
TRF250-250V*		E O		0.0		4.0	4 7		F 04						T0	0.00
TRF250-055T	_	5.8	_	9.9	_	4.6	4.7	_	5.0‡						T2	0.28
		(0.23)		(0.39)		(0.18)	(0.19)		(0.20)							
TRF250-055UT	_	4.8	_	9.3	_	3.8	4.7	_	5.0‡	_	_	_	_	_	T11	0.13
		(0.19)		(0.37)		(0.15)	(0.19)		(0.20)							
TRF250-080T	_	5.8	_	9.9	_	4.6	4.7	_	5.0 [‡]	_	_	_	_	_	T2	0.28
		(0.23)		(0.39)		(0.18)	(0.19)		(0.20)							
TRF250-080U	_	4.8	_	9.3	_	3.8	4.7	_	5.0 [‡]	_	_	_	_	_	T11	0.13
		(0.19)		(0.37)		(0.15)	(0.19)		(0.20)							
TRF250-110U	_	5.3	_	9.4	_	3.8	4.7	_	5.0‡	_	_	_	_	_	T11	0.13
		(0.21)		(0.37)		(0.15)	(0.19)		(0.20)							
TRF250-120		6.5		11.0		4.6	4.7	_	5.0‡	_		_		_	Т3	0.38
		(0.26)		(0.43)		(0.18)	(0.19)		(0.20)							
TRF250-120T	_	6.5		11.0		4.6	4.7		5.0 [‡]			7.0			T3	0.38
		(0.26)		(0.43)		(0.18)	(0.19)		(0.20)			(0.28)				
TRF250-120U		6.0		10.0		3.8	4.7		5.0 [‡]			6.0			T10	0.19
7717 200 7200		(0.24)		(0.39)		(0.15)	(0.19)		(0.20)			(0.24)			110	0.10
TRF250-120UT		6.0		10.0		3.8	4.7		5.0‡			6.0			T10	0.19
1111 250-12001		(0.24)				(0.15)									110	0.19
TDE0E0 14E				(0.39)			(0.19)		(0.20)			(0.24)			T0	0.00
TRF250-145	_	6.5	_	11.0	_	4.6	4.7	_	5.0‡	_	_	7.0	_	_	Т3	0.38
		(0.26)		(0.43)		(0.18)	(0.19)		(0.20)			(0.28)				
TRF250-145T		6.5	_	11.0	_	4.6	4.7	_	5.0‡	_	_	7.0	_	_	Т3	0.38
		(0.26)		(0.43)	-	(0.18)	(0.19)		(0.20)			(0.28)				
TRF250-145U	_	6.0	_	10.0	_	3.8	4.7	_	5.0‡	_	_	6.0	_	_	T10	0.19
		(0.24)		(0.39)		(0.15)	(0.19)		(0.20)			(0.24)				
TRF250-183	_	7.5	_	10.5	_	3.8	4.7	_	5.0‡	_	_	_	_	_	T2	0.30
		(0.29)		(0.41)		(0.15)	(0.19)		(0.20)							
TRF250-183U		6.5		10.0		3.0	4.7		5.0 [‡]						T11	0.16
		(0.26)		(0.39)		(0.12)	(0.19)		(0.20)							
TRF250-184	_	7.7	_	10.5		4.6	4.7		5.0‡	_	_	_	_	_	T2	0.32
		(0.30)		(0.41)		(0.18)	(0.19)		(0.20)							
TS250/TSL250/	TSV250	-250V*														
TSL250-080F	6.7	7.9	2.7	3.7	4.8	5.3	0.2	0.4	2.5	3.1	_	_	_	_	T7	2.80
	(0.27)			(0.15)		(0.21)		(0.02)		(0.12)						
TSL250-130F	6.7	7.9	2.7	3.7	4.8	5.3	0.2	0.4	2.5	3.1					T7	2.80
	(0.27)			(0.15)		(0.21)	(0.01)			(0.12)					. ,	2.00
TS250-130F	8.5	9.4	(0.11)	3.4		7.4	0.3‡	(0.02)	3.8‡	10.14					T5	3.60
10200-100F			_		_			_		_	_	_	_	_	10	3.00
	(0.34)	(0.37)		(0.14)		(0.29)	(0.01)		(0.15)							

Table T4 — Dimensions & Weights

(Cont'd)


						Dimensi	ons in Mi	llimete	rs (Inche	s)						
Part		Д		В		С	I)		E		F		G	Figure	Device Mass (g) (Only for Reference)
Number**	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		(0, 10,
TS250/TSL250/	TSV250-	-250V*														
TSV250-130F	_	6.10	_	6.90	_	3.20	0.56	_	_	1.90	1.60	2.30	_	_	T6	2.80
		(0.24)		(0.27)		(0.13)	(0.02)			(80.0)	(0.07)	(0.09)				
TSV250-184F	_	6.10	_	6.90	_	3.20	0.56	_	_	1.90	1.60	2.30	_	_	T6	2.80
		(0.24)		(0.27)		(0.13)	(0.02)			(80.0)	(0.07)	(0.09)				
TRF600-600V [†]																
TRF600-150	_	9.0	_	12.5		4.6	4.7	_	5.0	_	_	9.0		_	T3	0.37
		(0.35)		(0.49)		(0.18)	(0.19)		(0.20)			(0.35)				
TR600-150F-EX	_	13.5	_	12.6		6.0	4.7	_	5.0	_	_	_		_	T12	0.80
		(0.53)		(0.50)		(0.18)	(0.19)		(0.20)							
TRF600-160		16.0		12.6		6.0	4.7	_	5.0‡		_	10.0		_	T13	0.90
		(0.63)		(0.50)		(0.24)	(0.19)		(0.20)			(0.39)				
TRF600-250	_	15.0		14.5		4.6	4.7		5.0‡	_		10.0		_	T3	0.87
		(0.59)		(0.57)		(0.18)	(0.19)		(0.20)			(0.39)				
TRF600-400	_	14.8	_	13.1	_	4.6	6.0	_	5.0‡	_	_	_	_	_	T12	0.85
		(0.58)		(0.52)		(0.18)	(0.27)		(0.20)							
TS600/TSM600	-600V†															
TS600-170F	18.3	19.4	11.6	12.3	7.2	8.3	1.7	2.4	9.9	10.4	1.5	2.3	_	_	T8	23.6
	(0.72)	(0.77)	(0.46)	(0.49)	(0.29)	(0.33)	(0.07)	(0.10)	(0.39)	(0.41)	(0.06)	(0.09)				
TS600-200F	18.3	19.4	11.6	12.3	7.2	8.3	1.7	2.4	9.9	10.4	1.5	2.3	_	_	Т8	23.6
	(0.72)	(0.77)	(0.46)	(0.49)	(0.29)	(0.33)	(0.07)	(0.10)	(0.39)	(0.41)	(0.06)	(0.09)				
TS600-400F	18.3	19.4	11.6	12.3	7.2	8.3	1.7	2.4	9.9	10.4	1.5	2.3	_	_	Т8	19.8
	(0.72)	(0.77)	(0.46)	(0.49)	(0.29)	(0.33)	(0.07)	(0.10)	(0.39)	(0.41)	(0.06)	(0.09)				
TSM600-250F	17.0	17.60	11.20	11.70	10.40	11.20	4.80	5.20	2.50	2.80	0.60	1.0	2.2	3.1	Т9	31.2
	(0.67)	(0.69)	(0.44)	(0.46)	(0.41)	(0.44)	(0.19)	(0.20)	(0.10)	(0.11)	(0.02)	(0.04)	(0.09)	(0.12)		
TSM600-400F	17.0	17.60	11.20	11.70	10.40	11.20	4.80	5.20	2.50	2.80	0.60	1.0	2.2	3.1	Т9	31.2
	(0.67)	(0.69)	(0.44)	(0.46)	(0.41)	(0.44)	(0.19)	(0.20)	(0.10)	(0.11)	(0.02)	(0.04)	(0.09)	(0.12)		

^{* 250}V_{AC} interrupt products may help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements.

Figures T13-T16 — Typical Time-to-Trip Curves at 20°C

TCF250

A = TCF250-180T B = TCF250-145/145T C = TCF250-120/120T D = TCF250-100T

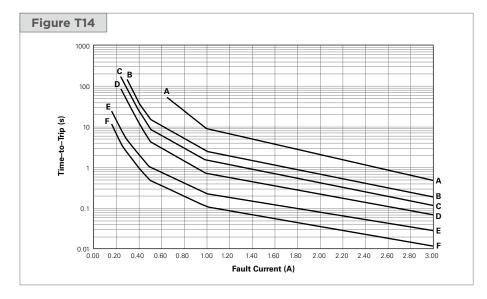
^{**} Applies to all products which share the same prefix.

^{† 600}V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.

[‡] Indicates dimension is typical, not minimum.

Figures T13-T16 — Typical Time-to-Trip Curves at 20°C

(Cont'd)

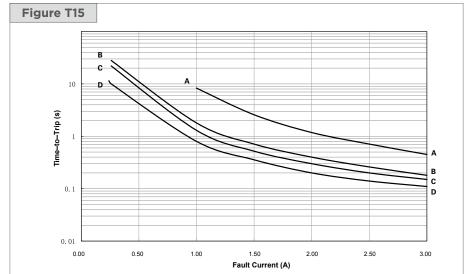

A = TRF250-183/183U/184B = TRF250-145/145U/145T

C = TRF250-120/120U

D = TRF250-110U/120UT/120T

E = TRF250-080T/080U

F = TRF250-055T/055UT


TS250/TSV250/TSL250

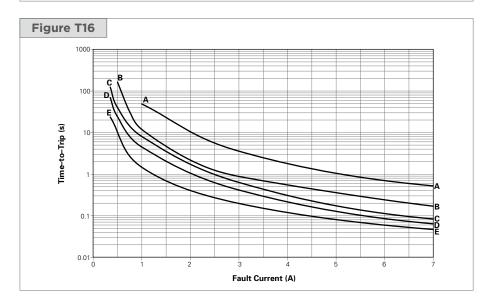
A = TSV250-184F

B = TSV250-130F/TSL250-130F

C = TS250-130F

D = TSL250-080F

TRF600/TS600/TSM600


A = TRF600-400/TS600-400/TSM600-400F

B = TRF600-250/TSM600-250F/TS600-170F/200F

C = TRF600-160

D = TR600-150F-EX

E = TRF600-150

Table T5 — Physical Characteristics and Environmental Specifications

Operating temperature range for all listed products is -40°C to 85°C, except for TRF250-080T and TRF250-184 (0°C to 85°C)

TCF250*		
Physical Characterist	tics	
Terminal Material	Nickel-plated Copper Foil	
Environmental Speci	ifications	
Test	Conditions	
Passive Aging	60°C, 1000 hrs	
	85°C, 1000 hrs	
Humidity Aging	85°C, 85% RH, 1000 hrs	
Thermal Shock	125°C, -55°C (10 Times)	_
Solvent Resistance	MIL-STD-202, Method 215F	

Note: Storage conditions: 40°C (max), 70% RH (max), devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

TRF250*	
Physical Characteristics	
Lead Material	Tin-plated Copper, 22AWG
Insulating Material	Cured Epoxy Polymer
Flammability	Per IEC 695-2-2 Needle Flame Test for 20 s
Soldering Characteristics	ANSI/J-STD-002, Category 3
Solder Heat Withstand	IEC-STD 68-2-20, Test Tb, Section 5 Method 1A, Condition B: Can Withstand 10s at 260°C±5°C

Note: Devices are not intended to be placed through a reflow process.

Environmental Specifications						
Test	Conditions					
Passive Aging	60°C, 1000 hrs					
	85°C, 1000 hrs					
Humidity Aging	85°C, 85% RH, 1000 hrs					
Thermal Shock	125°C, -55°C (10 Times)					
Solvent Resistance	MIL-STD-202, Method 215F					

Note: Storage conditions: 40°C (max), 70% RH (max), devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

TS250/TSV250/TSL250*									
Physical Characteristics	Physical Characteristics								
Terminal Material	Tin-plated Brass, Nickel Under-plating								
Soldering Characteristics	EIC 60068-2-58								
Environmental Specificat	tions								
Test	Conditions								
Passive Aging	60°C, 1000 hrs								
	85°C, 1000 hrs								
Humidity Aging	85°C, 85% RH, 500 hrs								
Thermal Shock	125°C, -55°C (10 Times)								
Solvent Resistance	MIL-STD-202, Method 215F								

Note: Storage conditions: 40°C (max), 70% RH (max), devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Table T5 — Physical Characteristics and Environmental Specifications

(Cont'd)

Operating temperature range for all listed products is -40°C to 85°C, except for TRF250-080T and TRF250-184 (0°C to 85°C)

TRF600 [†]	
Physical Characteristics	
Lead Material	Tin-plated Copper, 22AWG
Insulating Material	Cured Epoxy Polymer [‡]
Flammability	Per IEC 695-2-2 Needle Flame Test for 20s
Soldering Characteristics	ANSI/J-STD-002, Category 3
Solder Heat Withstand	IEC-STD 68-2-20, Test Tb, Section 5 Method 1A, Condition B: Can Withstand 10 s at 260°C±5°C

Note: Devices are not intended to be placed through a reflow process.

Environmental Specifications				
Test	Conditions			
Passive Aging	60°C, 1000 hrs			
	85°C, 1000 hrs			
Humidity Aging	85°C, 85% RH, 1000 hrs‡			
Thermal Shock	125°C, -55°C (10 Times)			
Solvent Resistance	MIL-STD-202, Method 215F			

Note: Storage conditions: 40°C (max), 70% RH (max) devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

TS600 [†]	
Physical Characteristics	
Terminal Material	Tin-plated Brass
Insulating Material	Nylon Resin (UL94V-0), 1000V Dielectric Rating
Flammability	IEC 695-2-2 Needle Flame Test for 20 s
Soldering Characteristics	ANSI/J-STD-002, Category 3
Solder Heat Withstand	IEC-STD 68-2-20, Test Tb, Section 5 Method 1A
Environmental Specifica	ations
Test	Conditions
Passive Aging	60°C, 1000 hrs
	85°C, 1000 hrs
Humidity Aging	85°C, 85% RH, 1000 hrs
Thermal Shock	125°C, -55°C (10 Times)
Solvent Resistance	MIL-STD-202, Method 215F

Note: Storage conditions: 40°C (max), 70% RH (max), devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

 ^{* 250}V_{AC} interrupt products may help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements.
 † 600V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.
 ‡ Excluding TRF600-150 and TRF600-400, which have a coating that is not rated for dielectric withstand and can withstand 500h at 85°C/85% RH or 1000h at 60°C/90% RH.

Table T5 — Physical Characteristics and Environmental Specifications

(Cont'd)

Operating temperature range for all listed products is -40°C to 85°C, except for TRF250-080T and TRF250-184 (0°C to 85°C)

TSM600 [†]	
Physical Characteristics	s
Terminal Material	Tin-plated Brass
Insulating Material	Nylon Resin (UL94V-0), 1000V Dielectric Rating
Flammability	IEC 695-2-2 Needle Flame Test for 20 s
Soldering Characteristics	EIC60068-2-58, Method 7
Solder Heat Withstand	IEC-STD 68-2-20, Test Tb, Section 5 Method 1A
Environmental Specific	ations
Test	Conditions
Passive Aging	60°C, 1000 hrs
	85°C, 1000 hrs
Humidity Aging	85°C, 85% RH, 1000 hrs
Storage Humidity	Per IPC/JEDEC J-STD-020A Level 2a
Thermal Shock	125°C, -55°C (10 Times)
Solvent Resistance	MIL-STD-202, Method 215J

Note: Storage conditions: 40°C (max), 70% RH (max) devices should remain in original sealed bag prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Table T6 — Packaging and Marking Information

Part Number**	Bag Quantity	Tape and Reel Quantity	Standard Package Quantity	Part Marking	Agency Recognition
Chip* - 250V _{AC} TCF250					
TCF250-100T	2,500	_	10,000	_	_
TCF250-120	2,500	_	10,000	_	_
TCF250-120T	2,500	_	10,000	_	_
TCF250-145	2,500	_	10,000	_	UL
TCF250-145T	2,500	_	10,000	_	UL
TCF250-180T	2,500	_	10,000	_	UL
Radial-leaded* - 250V _{AC} TRF250					
TRF250-055T	500	_	10,000	_	_
TRF250-055UT	500	_	10,000	_	_
TRF250-080U	500	_	10,000	_	UL, CSA, TÜV
TRF250-080T	500	_	10,000	08F	UL, CSA, TÜV
TRF250-110U	500	_	10,000	_	UL, CSA, TÜV
TRF250-120	500	_	10,000	20F	UL, CSA, TÜV
TRF250-120-2	_	1,500	7,500	20F	UL, CSA, TÜV
TRF250-120T	500	_	10,000	20F	UL, CSA, TÜV
TRF250-120T-2	_	1,500	7,500	20F	UL, CSA, TÜV
TRF250-120U	500	_	10,000	20F	UL, CSA, TÜV
TRF250-120U-2	_	1,500	7,500	20F	UL, CSA, TÜV
TRF250-120UT	500	_	10,000	20F	UL, CSA, TÜV

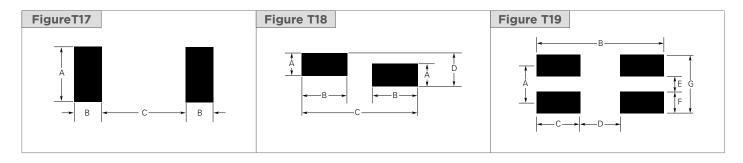
^{† 600}V_{AC} interrupt products may help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.

Table T6 — Packaging and Marking Information

(Cont'd)

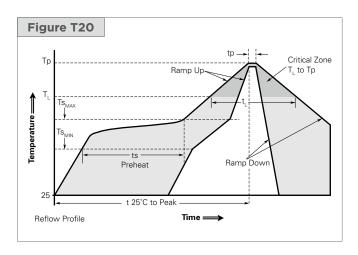
Part Number**	Bag Quantity	Tape and Reel Quantity	Standard Package Quantity	Part Marking	Agency Recognition
Radial-leaded* - 250V _{AC} TRF250					
TRF250-145	500	_	10,000	45F	UL, CSA, TÜV
TRF250-145-2	_	1,500	7,500	45F	UL, CSA, TÜV
TRF250-145T	500	_	10,000	45F	UL, CSA, TÜV
TRF250-145T-2	_	1,500	7,500	45F	UL, CSA, TÜV
TRF250-145U	500	_	10,000	45F	UL, CSA, TÜV
TRF250-145U-2	_	1,500	7,500	45F	UL, CSA, TÜV
TRF250-183	500	_	10,000	83F	UL, CSA, TÜV
TRF250-183-2	_	1,500	7,500	83F	UL, CSA, TÜV
TRF250-183U	500	_	10,000	_	UL, CSA, TÜV
TRF250-184	500	_	10,000	84F	UL, CSA, TÜV
Surface-mount* - 250V _{AC} TS250/TSL250/TSV250					
TSL250-080F-2	_	1,500	7,500	T08	UL, CSA,TÜV
TSL250-130F-2	_	1,500	7,500	T13	_
TS250-130F-2	_	1,500	7,500	T13	UL, CSA, TÜV
TSV250-130F	2500	_	10,000	T13V	UL, CSA, TÜV
TSV250-130F-2	_	1,200	6,000	T13V	UL, CSA, TÜV
TSV250-184F	2500	_	10,000	T18V	UL
Radial-leaded $^{\dagger}-600V_{AC}$ TRF600					
TRF600-150	500	_	10,000	150F	UL, CSA, TÜV
TRF600-150-2	_	1,500	7,500	150F	UL, CSA, TÜV
TR600-150F-EX	500	_	10,000	150F	UL, CSA
TR600-150F-EX-2	_	600	3,000	150F	UL, CSA
TRF600-160	500	_	10,000	160F	UL, CSA, TÜV
TRF600-160-2	_	600	3,000	160F	UL, CSA, TÜV
TRF600-250	500	_	10,000	250F	UL, CSA, TÜV
TRF600-400	500	_	10,000	400F	UL, CSA, TÜV
Surface-mount [†] - 600V _{AC} TS600/TSM600					
TS600-170F-2		300	900	T20	UL, CSA
TS600-200F-RA-2	_	300	900	T20	UL, CSA
TS600-400F-2	_	300	900	T40	UL, CSA
TSM600-250F-2	_	200	600	TSM600	UL, CSA
TSM600-250F-RA-2	_	200	600	TSM600	UL, CSA
TSM600-400F-2	_	200	600	TSM600-4	UL

Agency Recognition


UL	File # E74889	
CSA	File # 78165C	
TÜV	Per IEC60730-1	Certificate # for individual products available upon request.

^{* 250}V_{AC} interrupt products are designed to help equipment pass ITU K.20, K.21 and K.45 recommendations and Telcordia GR-1089 Port Type 2 and 4 requirements. ** Applies to all products which share the same prefix.

^{† 600}V_{AC} interrupt products are designed to help equipment pass UL60950, TIA-968-A and GR1089 Port Type 1, 3 and 5 requirements.


Table T7 — Recommended Pad Layouts for Surface-mount PolySwitch Telecommunications and Networking Devices in Millimeters (Inches) Nominal

Device	Α	В	С	D	E	F	G	Figure
TS250 (AII)	4.60	1.80	6.10	_	_	_	_	T17
	(0.180)	(0.070)	(0.240)	_	_	_	_	
TSV250 (AII)	2.29	2.41	6.35	3.43	_	_	_	T18
	(0.090)	(0.095)	(0.250)	(0.135)	_	_	_	
TSL250 (AII)	3.60	1.80	5.50	_	_	_	_	T17
	(0.140)	(0.070)	(0.220)	_	_	_	_	
TS600 (AII)	10.42	3.30	3.35	_	_	_	_	T17
	(0.410)	(0.130)	(0.132)	_	_	_	_	
TSM600 (AII)	5.20	17.80	5.54	6.75	2.08	3.12	8.39	T19
	(0.205)	(0.701)	(0.218)	(0.266)	(0.082)	(0.123)	(0.331)	

Solder Reflow and Rework Recommendations for PolySwitch Telecommunications Surface-Mount Devices

Profile Feature	Pb-Free Assembly
Average ramp up rate (Ts _{MAX} to Tp)	3°C/s max
Preheat	
• Temperature min (Ts _{MIN})	150°C
• Temperature max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-180 s
Time maintained above:	
• Temperature (T _L)	217°C
• Time (t _L)	60-150 s
Peak/Classification temperature (Tp)	260°C
Time within 5°C of actual peak temperature	
Time (tp)	20-40 s
Ramp down rate	6°C/s max
Time 25°C to peak temperature	8min max

 $\textbf{Note:} \ \textbf{All temperatures refer to topside of the package, measured on the package body surface.}$

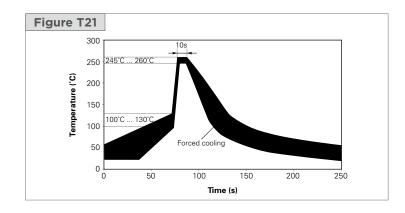
Solder Reflow

- Recommended reflow method: IR, vapor phase oven, hot air oven.
- Surface-mount devices are not intended to be wave soldered to the bottom side of the board.
- Recommended maximum paste thickness of 0.25mm (0.010in).
- Devices can be cleaned using standard industry methods and solvents.

Rework

• If a device is removed from the board, it should be discarded and replaced with a new device.

Wave Soldering and Rework Recommendations for PolySwitch Telecommunications Radial-Leaded Devices


Recommended Wave Soldering

• Soldering temperature profile

Temperature characteristic at component terminal with dual wave soldering

Rework

 If a device is removed from the board, it should be discarded and replaced with a new device

Table T8 — TRF250/TRF600 Tape and Reel Specifications

TRF250/TRF600 devices are available in tape and reel packaging per EIA 468-B standard. See Figures T22 and T23 for details.

Dimension Description	EIA Mark	IEC Mark	Dimension (mm)	Tolerance
Carrier Tape Width	W	W	18	-0.5/+1.0
Hold Down Tape Width	W_4	W ₀	5	Min
Top Distance between Tape Edges	W ₆	W_2	3	Max
Sprocket Hole Position	W_5	VV ₁	9	-0.5/+0.75
Sprocket Hole Diameter	D ₀	D ₀	4	±0.2
Abcissa to Plane (Straight Lead)	Н	Н	18.5	±3.0
Abcissa to Plane (Kinked Lead)*	H ₀	H ₀	16	-0.5/+0.6
Abcissa to Top	H ₁	H ₁	32.2	Max
Overall Width with Lead Protrusion	_	C_1	43.2	Max
Overall Width without Lead Protrusion	_	C_2	42.5	Max
Lead Protrusion	L ₁	I ₁	1.0	Max
Protrusion of Cut-out	L	L	11	Max
Protrusion beyond Hold Down Tape	I_2	I_2	Not Specified	_
Sprocket Hole Pitch	P ₀	P ₀	12.7	±0.3
Device Pitch (TRF250 and TRF600-150)	_	_	12.7	_
Device Pitch (TRF600-160 - TRF600-400)	_	_	25.4	_
Pitch Tolerance	_	_	20 Consecutive	±1
Tape Thickness	t	t	0.9	Max
Tape Thickness with Splice*	t ₁	_	2.0	Max
Splice Sprocket Hole Alignment	_	_	0	±0.3
Body Lateral Deviation	Δh	Δh	0	±1.0
Body Tape Plane Deviation	Δρ	Δρ	0	±1.3
Lead Spacing Plane Deviation	ΔP_1	P ₁	0	±0.7
Lead Spacing*	F	F	5.08	±0.6
Reel Width	W ₂	W	56	Max
Reel Diameter	а	d	370	Max
Space between Flanges Less Device	W ₁	_	4.75	±3.25
Arbor Hole Diameter	С	f	26	±12.0
Core Diameter	n	h	80	Max
Вох	_	_	56/372/372	Max
Consecutive Missing Pieces*	_	_	3 Max	_
Empty Places per Reel*	_	_	Not Specified	

^{*} Differs from EIA specification.

Figure T22 — EIA Referenced Taped Component Dimensions for PolySwitch Telecommunications Radial-Leaded Devices

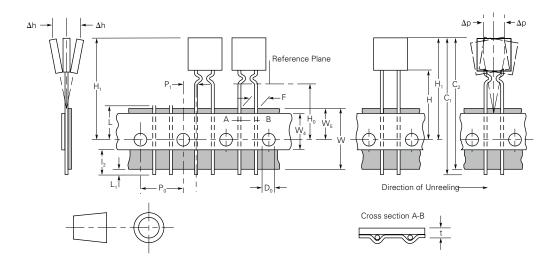
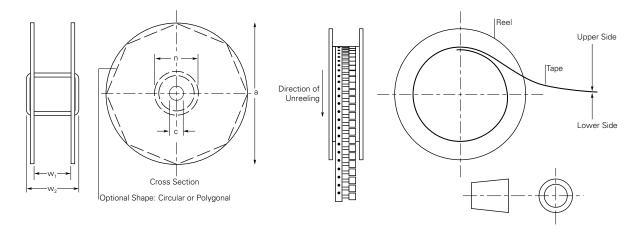



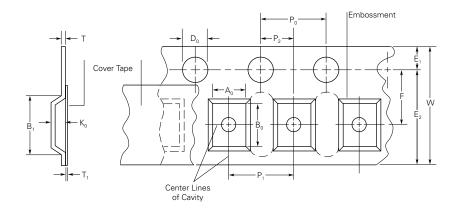
Figure T23 — Reel Dimensions for PolySwitch Telecommunications Radial-Leaded Devices

Table T9 - TS Tape and Reel Specifications

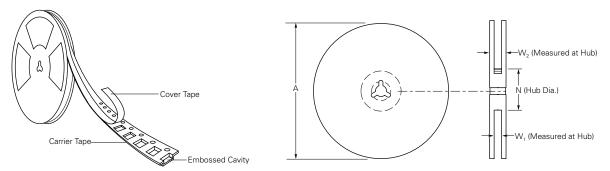
TS devices are packaged per EIA 481 and EIA 481-2 standards. See Figures T24 and T25 for details.

TS250/TSL250/TSV2	50							
Dimension	-	TS250		TSV	TSV250		TSL250	
Description	EIA Mark	Dimension (mm	Tolerance (mm)	Dimension (mm)	Tolerance (mm)	Dimension (mm)	Tolerance (mm)	
Carrier Tape Width	W	16	±0.30	16.0	±0.30	16	±0.30	
Sprocket Hole Pitch	P ₀	4.0	±0.10	4.0	±0.10	4.0	±0.10	
	P ₁	12.0	±0.10	8.0	±0.10	8.0	±0.10	
	P ₂	2.0	±0.10	2.0	±0.10	2.0	±0.10	
	A_0	6.9	±0.23	5.5	±0.10	5.5	±0.10	
	B ₀	9.6	±0.15	6.2	±0.10	7.9	±0.10	
	B ₁ max	12.1	_	8.0	_	9.2	_	
Sprocket Hole Diameter	D ₀	1.5	-0/+0.1	1.55	±0.05	1.55	±0.05	
	F	7.5	±0.10	7.5	±0.10	7.5	±0.10	
	E ₁	1.75	±0.10	1.75	±0.10	1.75	±0.10	
	E ₂ min	14.25	_	_	_	_	_	
Tape Thickness	T max	0.4	_	0.45	_	0.35	_	
Tape Thickness With	T ₁ max	0.1	_	0.1	_	0.1	_	
Splice Cover Tape Thickness	K ₀	3.4	±0.15	7.0	±0.10	3.70	±0.10	
	Leader min	300	_	390	_	390	_	
	Trailer min	300	_	160	_	160	_	
Reel Dimensions								
Reel Diameter	A max	340	_	340	_	340	_	
Core Diameter	N min	50	_	50	_	50		
Space between Flanges-less Devi	ice W ₁	16.4	-0/+2.0	16.4	-0/+2.0	16.4	-0/+2.0	
Reel Width	W ₂ max	22.4	_	22.4	_	22.4	_	

Dimension			
Description	EIA Mark	Dimension (mm)	Tolerance (mm)
Carrier Tape Width	W	32	±0.3
Sprocket Hole Pitch	P_0	4.0	±0.1
	P ₁	16	±0.1
	P ₂	2.0	±0.1
	A_0	10	±0.1
	B ₀	19.2	±0.1
	B ₁ max	21.6	
Sprocket Hole Diameter	D_0	1.5	-0/+1.0
	F	14.2	±0.1
	E ₁	1.75	±0.1
	E ₂ min	28.4	±0.1
Tape Thickness	T max	0.50	±0.5
Tape Thickness with Splice	T ₁ max	0.1	
	K ₀	13.2	±0.1
	Leader min	390	
	Trailer min	160	
Reel Dimensions			
Reel Diameter	A max	360	
Core Diameter	N min	50	
Space between Flanges-less Device	W_1	32.4	-0/+2.0
Reel Width	W ₂ max	40	


Table T9 - TS Tape and Reel Specifications

(Cont'd)


TS devices are packaged per EIA 481 and EIA 481-2 standards. See Figures T24 and T25 for details.

TSM600			
Dimension Description	EIA Mark	Dimension (mm)	Tolerance (mm)
Carrier Tape Width	W	32	±0.3
Sprocket Hole Pitch	Po	4.0	±0.1
	P ₁	24	±0.1
	P ₂	2.0	±0.1
	A_0	11.2	±0.1
	B ₀	17.8	±0.1
	B ₁ max	23.45	
Sprocket Hole Diameter	D	1.5	-0/+1.0
	F	14.2	±0.1
	E ₁	1.74	±0.1
	E ₂ max	28.4	±0.1
Tape Thickness	T max	0.5	±0.5
Tape Thickness with Splice	T ₁ max	0.1	
	K ₀	11.9	±0.1
	Leader min	390	
	Trailer min	160	
Reel Dimensions			
Reel Diameter	A max	360	
Core Diameter	N min	50	
Space between Flanges-less Device	W_1	32.4	-0/+2.0
Reel Width	W ₂ max	40	

Figure T24 — EIA Referenced Taped Component Dimensions for PolySwitch Telecommunications and Networking Devices

Figure T25 — EIA Referenced Reel Dimensions for PolySwitch Telecommunications and Networking Devices

PolySwitch Telecommunications and Networking Resistance-Sorted and Resistance-Matched Devices

Most TCF, TRF and TS devices are available in resistance-sorted and/or resistance-matched versions.

Resistance-sorted Devices

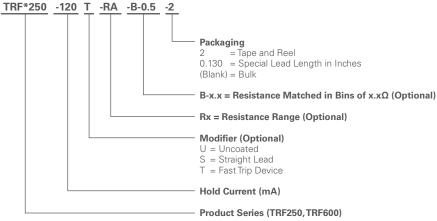
Resistance-sorted devices (part number suffix "Rx", where x = 1, 2, A, B, C, F, etc.) are supplied with resistance values that are within specified segments of the device's full range of resistance.

Feature

Narrow resistance range.

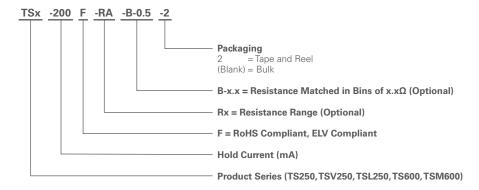
- Can help provide greater flexibility for design engineers.
- Lower resistance devices can help provide increased loop length on line card designs.
- · Higher resistance devices may help provide greater protection by offering faster time-to-trip.

Resistance-matched Devices

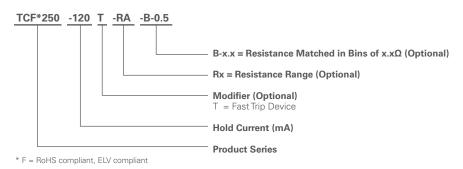

Resistance-matched devices are supplied such that all parts in one particular package (or reel) are within 0.5Ω of each other (1.0Ω) for TRF250-080T devices). Individual matched packages are supplied from the full resistance range of the specified device.

Feature

• Tighter resistance balance between any two parts in a package.


Resistance-matched devices may help reduce the tip-ring resistance differential, reducing the possibility of line imbalance.

Part Numbering System for PolySwitch Radial-Leaded Telecommunications and **Networking Devices**



* F = RoHS compliant, ELV compliant

Part Numbering System for PolySwitch Surface-mount Telecommunications and **Networking Devices**

Part Numbering System for Chip PolySwitch Telecommunications and **Networking Devices**

Warning:

- · Users should independently evaluate the suitability of and test each product selected for their own application.
- · Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- . These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- · Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

LET'S CONNECT

Our company's long-standing commitment to innovation and engineering excellence helps our customers solve the need for more energy efficiency, always-on communications and ever-increasing productivity. With nearly 75,000 employees, including 7,300 engineers around the global. TE Connectivity makes connections the world relies on to work flawlessly every day.

TECHNICAL SUPPORT

te.com/support-center

Brazil

Tel: 55-21-3958-0955

Email: Genaro.Maldonado@te.com

UK / Ireland / Benelux /
Netherlands /South Africa /
France / Italy / Spain / Portugal /
Greece / Turkey / Tunisia / Israel

Tel: 33-1-34208455 Fax: 33-1-34208479

Email: contact_emea_cpd@te.com

Germany / Austria / Switzerland / Eastern Europe / Russia / Nordic / Baltic / Others

Tel: 49-89-6089485 Fax: 49-89-6089394

Email: contact_emea_cpd@te.com

India

Tel: 91-80-6702-2540 Mobile: 91-77-6051-3140 Email: haribabu@te.com

Taiwan

Tel: 886-2-2171-5213 Fax: 886-2-8768-1277 Email: monica.chen@te.com

China, Hong Kong

Tel: 852-2738-8181 Fax: 852-2735-1625 Email: yimmui.lo@te.com

China, Beijing

Tel: 86-21-6106-7597 Fax: 86-21-6485-3255 Email: kiko.long@te.com

China, Shanghai

Tel: 86-21-6106-7379 Fax: 86-21-6485-3255 Email: vivian.xu@te.com

China, Shenzhen / Guangzhou

Tel: 86-755-2515-4780 Fax: 86-755-2598-0419 Email: sammi.zhao@te.com

Japan

Tel: 81-44-844-8194 Fax: 81-44-844-8040 Email: jpnpoly@te.com

Korea

Tel: 82-2-3415-4654 Fax: 82-2-3486-1786 Email: zokim@te.com

Thailand / Malaysia / Vietnam Singapore / Indonesia / Australia / New Zealand / Philippines

Tel: 60-4-810-2112 Mobile: 60-19-472-5628 Fax: 60-4-6433288 Email: patrick.wong@te.com

te.com

2Pro, microSMD, miniSMD, nanoSMD, PolySwitch, PolyZen, TE Connectivity, TE Connectivity (logo) and Every Connection Counts are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

1-1773716-7 09/15

CATALOG

Contact us

TE Circuit Protection 306 Constitution Drive Menlo Park, CA USA 94025-1164

Tel: (800) 227-7040 (650) 361-6900 Fax: (650) 361-4600

www.circuitprotection.com www.circuitprotection.com.cn (Chinese) www.te.com/jpn-ja/products/circuit-protection.html (Japanese)

