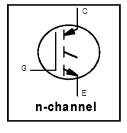
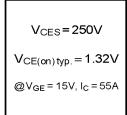
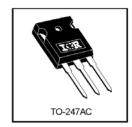
International Rectifier


INSULATED GATE BIPOLAR TRANSISTOR


Features

- Standard: Optimized for minimum saturation voltage and operating frequencies up to 10kHz
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-247AC package
- Lead-Free

Benefits


- Generation 4 IGBT's offer highest efficiency available
- IGBT's optimized for specified application conditions
- High Power density
- · Lower conduction losses than similarly rated MOSFET
- · Lower Gate Charge than equivalent MOSFET
- · Simple Gate Drive characteristics compared to Thyristors

Standard Speed IGBT

IRG4P254SPbF

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	250	V	
I _C @ T _C = 25°C	Continuous Collector Current	98*	Α	
I _C @ T _C = 100°C	Continuous Collector Current	55		
I _{CM}	Pulsed Collector Current ①	196		
I _{LM}	Clamped Inductive Load Current ②	196		
V _{GE}	Gate-to-Emitter Voltage	± 20	V	
EARV	Reverse Voltage Avalanche Energy ③	160	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	200	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	78	vv	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Typ.	Max.	Units
Rejc	Junction-to-Case		0.64	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
R _{0JA}	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6.0 (0.21)		g (oz)

^{*} Package limited to 70A

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	250	—	—	V	V_{GE} = 0V, I_{C} = 250 μ A	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18	_	_	٧	V_{GE} = 0V, I_{C} = 1.0A	
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage	_	0.33	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	1.32	1.5	V	I _C = 55A	V _{GE} = 15V
		_	1.69	_		I _C =98A	See Fig.2, 5
		_	1.31	_		I _C =55A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage	_	-12	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g fe	Forward Transconductance ®	43	63	_	S	$V_{CE} = 100V$, $I_{C} = 55A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 250V$	
		_	_	2.0		V_{GE} = 0V, V_{CE} = 10V, T	j = 25°C
		_	<u> </u>	1000	İ	$V_{GE} = 0V$, $V_{CE} = 250V$,	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	200	300		I _C =55A
Qge	Gate - Emitter Charge (turn-on)	_	29	44	nC	V _{CC} = 200V See Fig. 8
Q _{gc}	Gate - Collector Charge (turn-on)	_	66	99		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	40	_		
tr	Rise Time	_	44	_	ns	T _J = 25°C
t _{d(off)}	Turn-Off Delay Time	_	270	400	113	$I_{\rm C}$ = 55A, $V_{\rm CC}$ = 200V
t _f	Fall Time	_	510	760		V_{GE} = 15V, R_{G} = 5.0 Ω
E _{on}	Turn-On Switching Loss	_	0.38	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	3.50	_	mJ	See Fig. 9, 10, 14
Ets	Total Switching Loss	_	3.88	5.3		
t _{d(on)}	Turn-On Delay Time	_	38	_		T _J =150°C,
tr	Rise Time	_	45	_	ns	$I_{C} = 55A, V_{CC} = 200V$
t _{d(off)}	Turn-Off Delay Time	_	400	_	115	V_{GE} = 15V, R_{G} = 5.0 Ω
t _f	Fall Time	_	940	_		Energy losses include "tail"
Ets	Total Switching Loss	_	6.52	_	mJ	See Fig. 11, 14
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	4500	_		V _{GE} = 0V
Coes	Output Capacitance	_	510	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	100	_		f = 1.0 MHz

Notes:

2

- 1 Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- 2 V_{CC} = 80%(V_{\text{CES}}), V_{\text{GE}} = 20V, L = 10µH, R_G = 5.0 Ω , (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- 4 Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.
- ⑤ Pulse width 5.0µs, single shot.

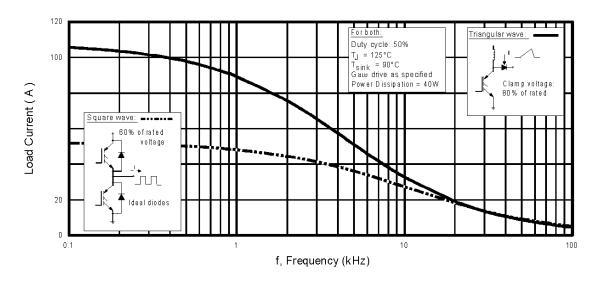


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

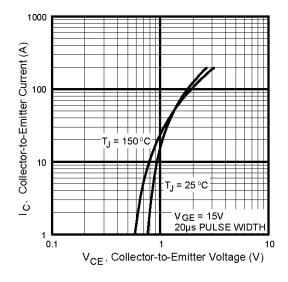


Fig. 2 - Typical Output Characteristics

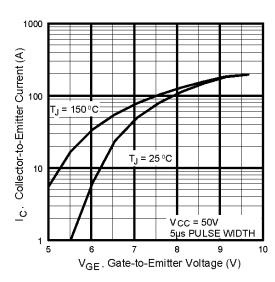
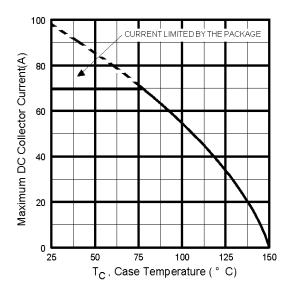



Fig. 3 - Typical Transfer Characteristics

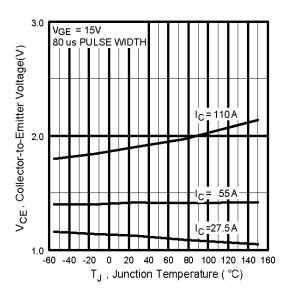


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. JunctionTemperature

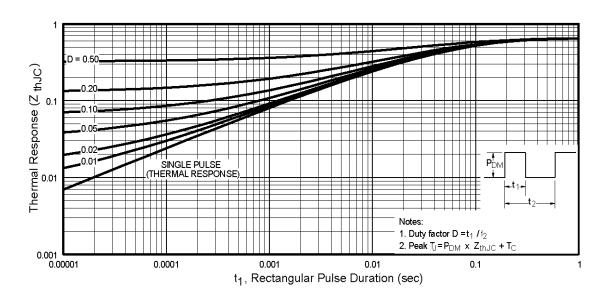
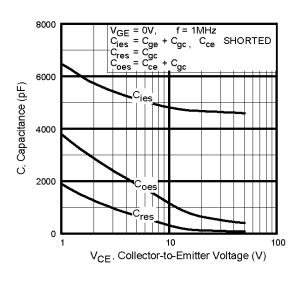
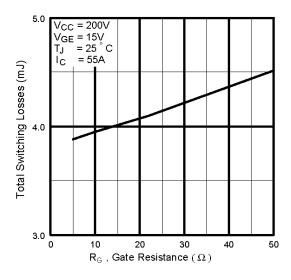




Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

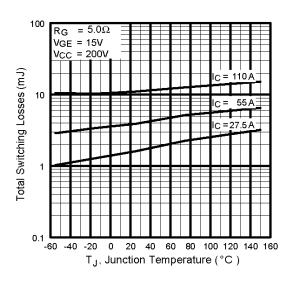


Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International TOR Rectifier

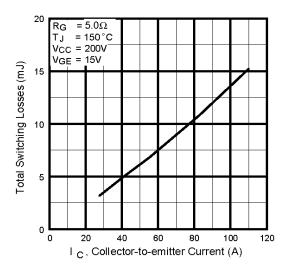


Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

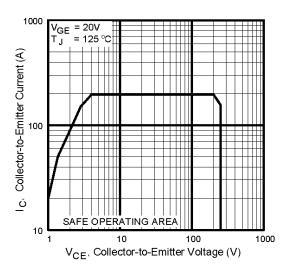
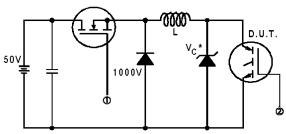



Fig. 12 - Turn-Off SOA

International TOR Rectifier

IRG4P254SPbF

* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

0 - 200V 480 UF 960 VF

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

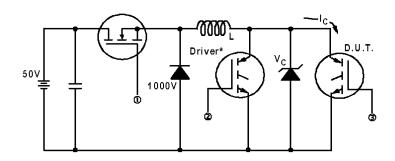


Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 200V

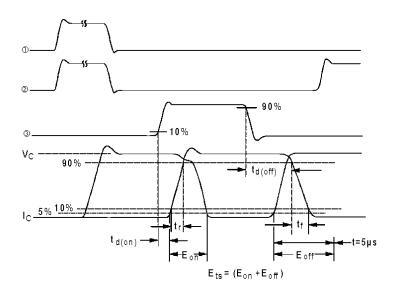
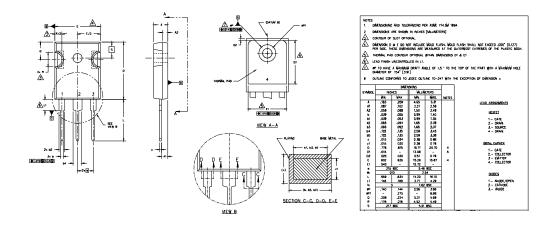
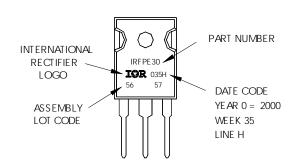



Fig. 14b - Switching Loss Waveforms

International Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/04

www.irf.com

8

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/