High Voltage, High Current Darlington Transistor Arrays

The seven NPN Darlington connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 500 mA permit them to drive incandescent lamps.

The ULx2003A with a 2.7 k Ω series input resistor is well suited for systems utilizing a 5.0 V TTL or CMOS Logic.

Features

• These are Pb-Free Devices

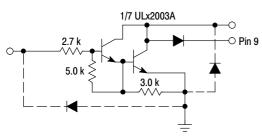


Figure 1. Representative Schematic Diagram

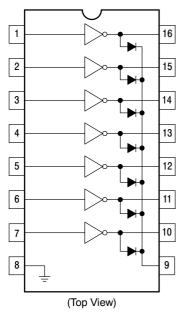
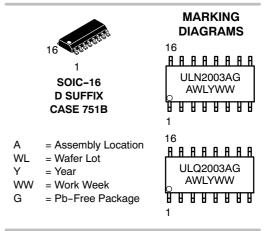



Figure 2. Pin Connections

ON Semiconductor®

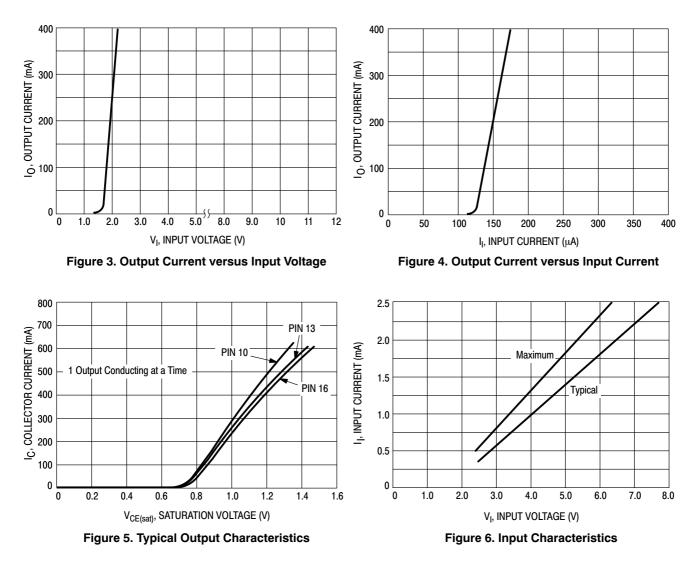
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
ULN2003ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
ULQ2003ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS (T_A = 25°C, and rating apply to any one device in the package, unless otherwise noted.)


Rating		Value	Unit
Output Voltage	Vo	50	V
Input Voltage	VI	30	V
Collector Current – Continuous	Ι _C	500	mA
Base Current - Continuous	Ι _Β	25	mA
Operating Ambient Temperature Range ULN2003A ULQ2003A	T _A	-20 to +85 -40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	TJ	150	°C
Thermal Resistance, Junction-to-Ambient Case 751B, D Suffix	$R_{\theta JA}$	100	°C/W
Thermal Resistance, Junction-to-Case Case 751B, D Suffix	R _{θJC}	20	°C/W
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) Charged Device Model (CDM)	ESD	2000 400 1500	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Characteristic		Min	Тур	Max	Unit
Output Leakage Current $(V_O = 50 \text{ V}, T_A = +85^{\circ}\text{C})$ $(V_O = 50 \text{ V}, T_A = +25^{\circ}\text{C})$	I _{CEX}		- -	100 50	μΑ
Collector-Emitter Saturation Voltage ($I_C = 350 \text{ mA}, I_B = 500 \mu \text{A}$) ($I_C = 200 \text{ mA}, I_B = 350 \mu \text{A}$) ($I_C = 100 \text{ mA}, I_B = 250 \mu \text{A}$)	V _{CE(sat)}	- - -	1.1 0.95 0.85	1.6 1.3 1.1	V
Input Current – On Condition (V _I = 3.85 V)	I _{I(on)}	-	0.93	1.35	mA
Input Voltage – On Condition $(V_{CE} = 2.0 \text{ V}, I_C = 200 \text{ mA})$ $(V_{CE} = 2.0 \text{ V}, I_C = 250 \text{ mA})$ $(V_{CE} = 2.0 \text{ V}, I_C = 300 \text{ mA})$	V _{I(on)}	- - -	- - -	2.4 2.7 3.0	V
Input Current – Off Condition (I _C = 500 μ A, T _A = 85°C)	I _{I(off)}	50	100	-	μΑ
DC Current Gain $(V_{CE} = 2.0 \text{ V}, I_C = 350 \text{ mA})$	h _{FE}	1000	-	-	-
Input Capacitance	Cl	-	15	30	pF
Turn-On Delay Time (50% E _I to 50% E _O)	t _{on}	-	0.25	1.0	μs
Turn-Off Delay Time (50% E _I to 50% E _O)	t _{off}	-	0.25	1.0	μs
	I _R		-	50 100	μΑ
Clamp Diode Forward Voltage (I _F = 350 mA)	V _F	-	1.5	2.0	V

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless otherwise noted)

TYPICAL PERFORMANCE CURVES – $T_A = 25^{\circ}C$

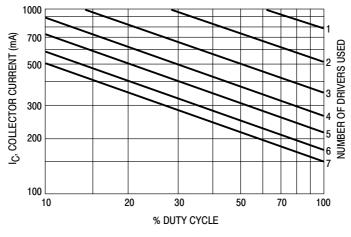


Figure 7. Maximum Collector Current versus Duty Cycle (and Number of Drivers in Use)

ONSEMI

SOIC-16 CASE 751B-05 ISSUE K

DESCRIPTION: SOIC-16 PAGE 1 OF 1
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>