EVALUATION KIT

+3.0V to +5.5V, 125Mbps to 266Mbps Limiting Amplifiers with Loss-of-Signal Detector

General Description

The MAX3969 is a recommended upgrade for the MAX3964 and MAX3968. The MAX3964A limiting amplifier, with 2mVP-P input sensitivity and PECL data outputs, is ideal for low-cost ATM, FDDI, and Fast Ethernet fiber optic applications.

The MAX3964A features an integrated power detector that senses the input-signal power. It provides a received-signal-strength indicator (RSSI), which is an analog indication of the power level and complementary PECL loss-of-signal (LOS) outputs, which indicate when the power level drops below a programmable threshold. The threshold can be adjusted to detect signal amplitudes as low as 2.7mVP-P. An optional squelch function disables switching of the data outputs by holding them at a known state during an LOS condition.

The MAX3968 provides the same functionality as the MAX3964A, but has data-output edge speed suitable for ESCON and 266Mbps fibre channel applications.

The MAX3964A/MAX3968 are available in die form, as tested wafers, and in 20-pin QSOP packages. The MAX3964AETP is available in a 20-pin thin QFN package.

Applications

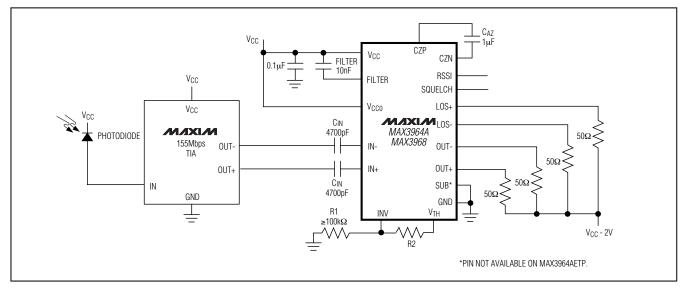
125Mbps FDDI Receivers 155Mbps LAN ATM Receivers Fast Ethernet Receivers ESCON Receivers 155Mbps FTTx Receivers

Features

- Single Supply: +3.0V to +5.5V
- 2mV_{P-P} Input Sensitivity
- ♦ 1.2ns Output Edge Speed
- Loss-of-Signal Detector with Programmable Threshold
- Analog Received-Signal-Strength Indicator
- Output Squelch Function
- Compatible with 4B/5B Data Coding

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3964AETP	-40°C to +85°C	20 Thin QFN**
MAX3964AETP+	-40°C to +85°C	20 Thin QFN**
MAX3964AC/D	-40°C to +85°C	Dice*
MAX3968CEP	0°C to +70°C	20 QSOP
MAX3968C/D	0°C to +70°C	Dice*


*Dice are designed to operate over a 0°C to +100°C junction temperature (Tj) range, but are tested and guaranteed only at $T_A = +25$ °C.

**Package Code: T2044-1

+Denotes lead-free package.

Pin Configurations and Selector Guide appear at end of data sheet.

Typical Operating Circuit

MIXXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(SUB, GND tied to ground)

V_{CC}, V_{CCO}.....-0.5V to +7.0V FILTER, RSSI, IN+, IN-, CZP, CZN, SQUELCH, LOS+, LOS-, INV, VTH, OUT+, OUT-....-0.5V to (V_{CC} + 0.5V) PECL Output Current (OUT+, OUT-, LOS+, LOS-)50mA Differential Voltage Between CZP and CZN......-1.5V to +1.5V

Differential Voltage Between IN+ and IN--1.5V to +1.5V

Continuous Power Dissipation ($T_A = +70^{\circ}C$)

20-Lead Thin QFN

(derate 16.9mW/°C above +70°C)	.1349mW
20-Pin QSOP (derate 6.7mW/°C above +70°C)	500mW
Operating Temperature Range40°C	to +85°C
Operating Junction Temperature Range (die)40°C to	o +150°C
Processing Temperature (die)	+400°C
Storage Temperature Range65°C to	⊃ +160°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-MAX3964ACEP/MAX3968CEP

 $(V_{CC} = +3.0V \text{ to } +5.5V, \text{PECL} \text{ outputs terminated with } 50\Omega \text{ to } (V_{CC} - 2V), T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

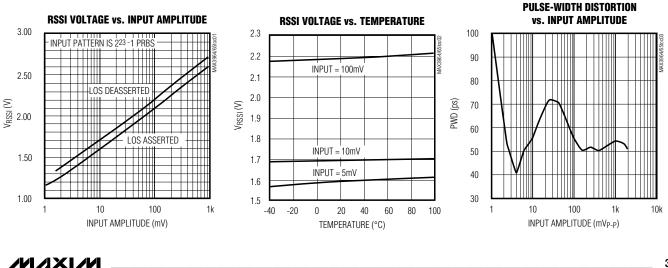
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc	PECL outputs open		22	40	mA
LOS Hysteresis		Input = 3.3mV _{P-P} to 90mV _{P-P} (Note 2)	3.8	5	8.0	dB
SQUELCH Input Current		$V_{SQUELCH} = V_{CC}, T_A = +25^{\circ}C$		27	100	μΑ
PECL Output Voltage High		(Note 3)	-1025		-880	mV
PECL Output Voltage Low		(Note 3)	-1810		-1620	mV
PECL LOS Output Voltage High		(Note 3)	-1035		-880	mV
PECL LOS Output Voltage Low		(Note 3)	-1810		-1620	mV
LOS Assert Accuracy		Input = $7mV_{P-P}$ or $90mV_{P-P}$	-2.5		+2.5	dB
Minimum LOS Assert Input					2.7	mV _{P-P}
Maximum LOS Deassert Input			143			mV _{P-P}
Input Sensitivity				2.0	3.3	mV _{P-P}
Input Overload			1.5			Vp-p
		20% to 80% transition time, MAX3964A	0.92	1.2	2.20	
Output Transition Time	tr, tf	MAX3968	0.4	0.8	1.2	ns
Pulse-Width Distortion		(Note 4)		50	200	ps

ELECTRICAL CHARACTERISTICS – MAX3964AETP

 $(V_{CC} = +3.0V \text{ to } +5.5V, \text{ PECL} \text{ outputs terminated with } 50\Omega \text{ to } (V_{CC} - 2V), T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values measured at $V_{CC} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.)

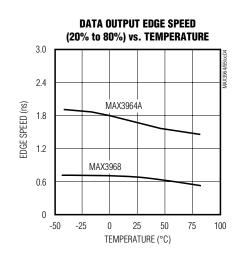
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc	PECL outputs open		22	45	mA
LOS Hysteresis		Input = 4.0mV_{P-P} (Note 2)	3.0	5	8.0	dB
SQUELCH Input Current				27	100	μA
PECL Output Voltage High		(Note 3)	-1.085		-0.880	V
PECL Output Voltage Low		(Note 3)	-1.830		-1.550	V
		Input = $7mV_{P-P}$ or $90mV_{P-P}$, $0^{\circ}C$ to $+85^{\circ}C$	-3		+3	٩D
LOS Assert Accuracy		Input = $7mV_{P-P}$ or $90mV_{P-P}$, $-40^{\circ}C$ to $0^{\circ}C$	-3.6		+3.6	dB
Minimum LOS Assert Input					2.7	mV _{P-P}
Maximum LOS Deassert Input			143			mV _{P-P}
Input Sensitivity				2	4	mV _{P-P}
Input Overload			1.5			V _{P-P}
Output Transition Time	t _r , t _f	20% to 80%		1.6	2.4	ns
Pulse-Width Distortion		(Note 4)		50	250	psp-p

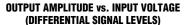
Note 1: Dice are tested and guaranteed at $T_A = +25^{\circ}C$ only.

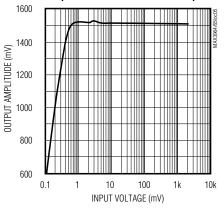

Note 2: LOS hysteresis = 20log(VLOS-DEASSERT / VLOS-ASSERT).

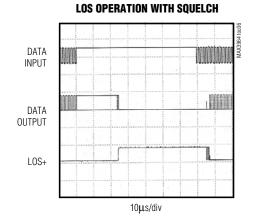
Note 3: Voltage measurements are relative to supply voltage (V_{CC}).

Note 4: PWD = [(width of wider pulse) - (width of narrower pulse)] / 2, measured with 100Mbps 1-0 pattern.

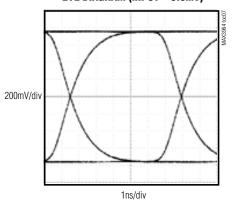

Typical Operating Characteristics


(MAX3964A EV kit, V_{CC} = +3.3V, decibels (dB) calculated as 20 log ΔV, PECL outputs terminated with 50Ω to (V_{CC} - 2V), T_A = +25°C, unless otherwise noted.)




Typical Operating Characteristics (continued)

(MAX3964A EV kit, V_{CC} = +3.3V, decibels (dB) calculated as 20 log ΔV , PECL outputs terminated with 50 Ω to (V_{CC} - 2V), T_A = +25°C, unless otherwise noted.)



MAX3964A EYE DIAGRAM (INPUT = 3.3mV)

_Pin Description

Р	IN		
QSOP	THIN QFN	NAME	FUNCTION
1	19	SQUELCH	Squelch Input. The squelch function disables the data outputs by forcing OUT- low and OUT+ high during a loss-of-signal condition. Connect to GND or leave unconnected to disable. Connect to V_{CC} to enable squelching.
2	20	V _{TH}	Output of Internal Op Amp that Sets Loss-of-Signal Threshold Voltage (Figure 1). Connect a resistor from V_{TH} to INV and from INV to ground (minimum resistance 100k Ω) to program the desired threshold voltage.
3	1	INV	Inverting Input of Internal Op Amp that Sets Loss-of-Signal Threshold Voltage (Figure 1). Connect a resistor from V _{TH} to INV and from INV to ground (minimum resistance 100k Ω) to program the desired threshold voltage.
4	2	FILTER	Filter Output of Full-Wave Logarithmic Detectors (FWDs). The FWD outputs are summed together at FILTER to generate the received-signal-strength indicator (RSSI). Connect a capacitor from FILTER to V_{CC} for proper operation.
5	3	RSSI	Received-Signal-Strength Indicator Output. The analog DC voltage at RSSI indicates the input signal power. The RSSI output is reduced approximately 120mV when LOS+ is asserted.
6	4	IN-	Inverting Data Input
7	5	IN+	Noninverting Data Input
8	_	SUB	Substrate. Connect to ground.
9, 10	6, 7, 8	GND	Ground
11	9	CZP	Auto-Zero Capacitor Input. Connect a capacitor between CZP and CZN to determine the offset- correction-loop bandwidth.
12	10	CZN	Auto-Zero Capacitor Input. Connect a capacitor between CZP and CZN to determine the offset- correction-loop bandwidth.
13	11	Vcco	Output Buffer Supply Voltage. Connect to the same potential as $V_{CC},$ but filter V_{CCO} and V_{CC} separately.
14	12	OUT+	Noninverting PECL Data Output. Terminate with 50 Ω to (V _{CC} - 2V).
15	13	OUT-	Inverting PECL Data Output. Terminate with 50 Ω to (V _{CC} - 2V).
16	14	LOS-	Inverting Loss-of-Signal Output. LOS- is asserted low when input power drops below the LOS threshold. This pin is PECL compatible and should be terminated with 50Ω to (V _{CC} - 2V).
17	15	LOS+	Noninverting Loss-of-Signal Output. LOS+ is asserted high when input power drops below the LOS threshold. This pin is PECL compatible and should be terminated with 50Ω to (V _{CC} - 2V).
18	16	Vcco	MAX3964A/MAX3968: This pin can be left open or connected to the positive supply.
19, 20	17, 18	V _{CC}	+3.0V to +5.5V Supply Voltage
	EP	Exposed Pad	Connect the exposed pad to board ground for optional electrical and thermal performance.

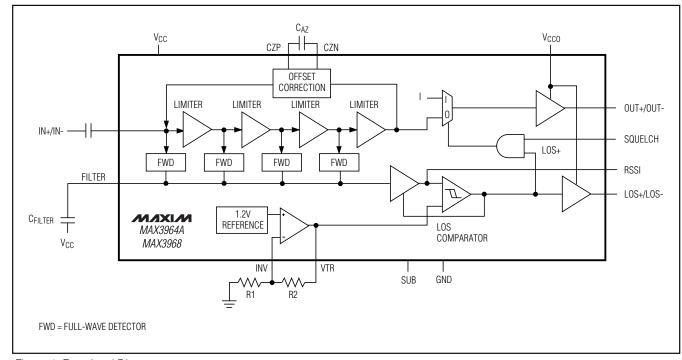


Figure 1. Functional Diagram

MAX3964A/MAX3968

Detailed Description

The MAX3964A contains a series of limiting amplifiers and power detectors, offset correction, data-squelch circuitry, and PECL output buffers for data and loss-of-signal (LOS) outputs. The MAX3968 provides PECL LOS outputs with data outputs suitable for 266Mbps. Figure 1 shows a functional diagram of the MAX3964A/MAX3968.

Limiting Amplifiers

A series of four limiting amplifiers provides gain of approximately 65dB.

Power Detector

Each amplifier stage contains a full-wave logarithmic detector (FWD), which indicates the RMS input signal power. The FWD outputs are summed together at the FILTER pin where the signal is filtered by an external capacitor (CFILTER) connected between FILTER and V_{CC}. The FILTER signal generates the RSSI output voltage, which is proportional to the input power in decibels. When LOS+ is low, V_{RSSI} is approximated by the following equation:

 $V_{RSSI}(V) = 1.2V + 0.5\log(V_{IN})$

where VIN is measured in mVP-P.

This relation translates to a 25mV increase in V_{RSSI} for every 1dB increase in V_{IN} (25mV/dB). The RSSI output is reduced approximately 120mV when LOS+ is asserted.

PECL Outputs

The data outputs (OUT+, OUT-) and the MAX3964A/ MAX3968 loss-of-signal outputs (LOS+, LOS-) are supply-referenced PECL outputs. Standard PECL termination at each output of 50Ω to (V_{CC} - 2V) is recommended for best performance.

Input Offset Correction

A low-frequency feedback loop around the limiting amplifier improves receiver sensitivity and powerdetector accuracy. The offset-correction loop's bandwidth is determined by an external capacitor (CAZ) connected between the CZP and CZN pins.

The offset correction is optimized for data streams with a 50% duty cycle. A different average duty cycle results in increased pulse-width distortion and loss of sensitivity. The offset-correction circuitry is less sensitive to variations of input duty cycle (for example, the 40% to 60% duty cycle encountered in 4B/5B coding) when the input is less than 30mVP-P.

Loss-of-Signal Comparator

The LOS comparator indicates when the input signal power is below the programmed LOS threshold. To ensure supply and temperature independence, VTH is generated by a 1.2V bandgap reference. The op amp's external gain-setting resistors (R1 and R2) can be chosen to set VTH between 1.2V and 2.4V. To ensure chatter-free operation, the LOS comparator is designed with approximately 5dB of hysteresis.

Squelch

The squelch function disables the data outputs by forcing OUT- low and OUT+ high during a LOS condition. This function ensures that when there is a loss of signal, the limiting amplifier (and all downstream devices) does not respond to input noise or corrupt data. Connect SQUELCH to GND or leave it unconnected to disable squelch. Connect SQUELCH to V_{CC} to enable data squelching.

Applications Information

Program the LOS Threshold

Figure 2 provides information for selecting the LOS threshold voltage (V_{TH}). If R1 is $100k\Omega$ and if the responsivities of the photodiode and preamplifier are known, then the value of R2 can be selected from Figure 2 to provide LOS assert at the desired input power.

Select Capacitors

A typical MAX3964A/MAX3968 implementation requires four external capacitors (C_{AZ}, C_{FILTER}, and two input coupling capacitors). For all applications up to 266Mbps, Maxim recommends the following:

 $C_{AZ} = 1 \mu F$ $C_{FILTER} = 10 n F$ $C_{IN} = 4700 p F$

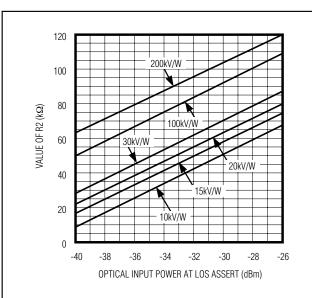
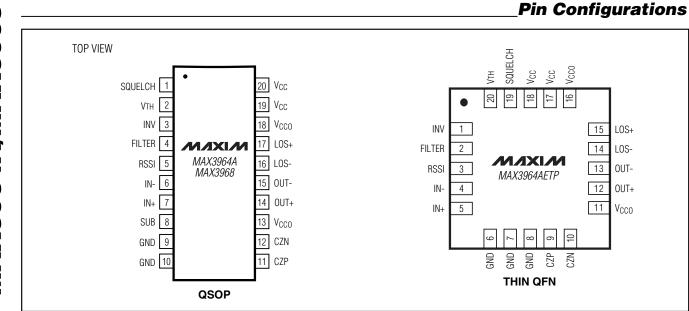
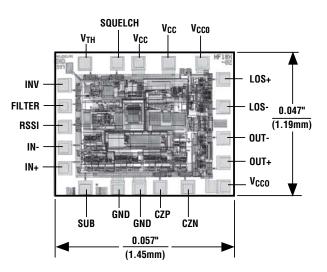



Figure 2. LOS Assert Programming Resistor vs. LOS Assert Power (for Various PIN-TIA Gains)

Wire Bonding

For high-current density and reliable operation, the MAX3964A series uses gold metalization. Diepad size is 4mils square with a 6mil pitch. Die thickness is 15mils.

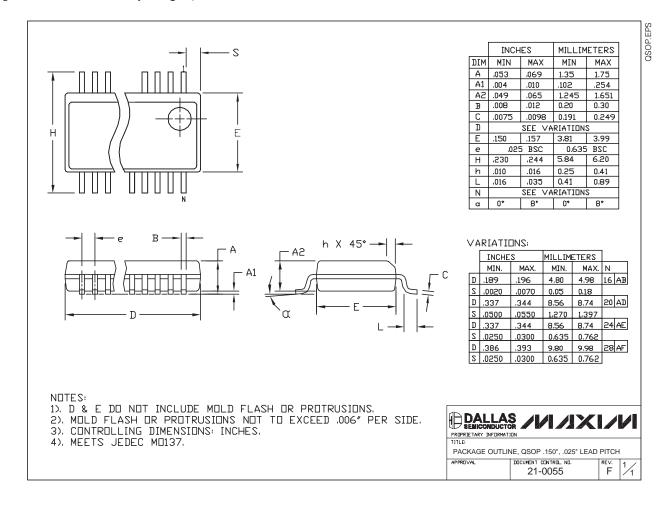

Selector Guide

PART	DATA RATE (Mbps)	LOS OUTPUTS
MAX3964A*	125 to 155	PECL
MAX3968	125 to 266	PECL

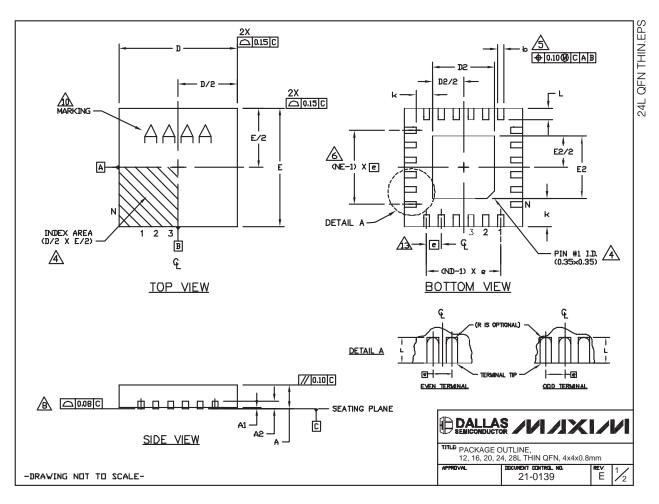
*The MAX3964A is functionally equivalent to MAX3964, but offers slightly improved ESD tolerance. The MAX3969 is a recommended upgrade for the MAX3964, MAX3964A, and MAX3968.

Chip Topography

MAX3964A MAX3968


TRANSISTOR COUNT: 915 SUBSTRATE CONNECTED TO SUB SUB CONNECTED TO GND ON MAX3964AETP

MAX3964A/MAX3968


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

				СПЫ	MDN	DIWF	II ZN	INS									Ŀ	XPU2	ED	PAD	VAR	21 A I I	UN2	
PKG	1	QL 4×	(4	16	L 4x	4	20	L 4x	4	2	4L 4×	4	2	8L 4×	<u>(4</u>		PKG.		D2			E2		DOWN BONDS
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MEN.	NDM.	MAX.		CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVED
A	0.70	0.75	0.80	0.70	0.75	0.90	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0,0	0.02	0.05	0.0	20.0	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2		0.20 RE	F	0	20 RE	F	0.	20 RE	F	0	.20 RE	F	<u> </u>).20 RE	F		T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25		T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90		4.10	3.90	4.00	4.10			4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e		0.80 BS	1	-	65 BS	<u>C.</u>		50 BS			0.50 BS			0.40 BS	ю.		T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
ĸ	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50		T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
N	-	12			16			20			24			28		l	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
ND	-	3			4			5			6		<u> </u>	7										
NE	-	3			4			5			6			7										
Jedec Var.		VGGB			WGGC			/GGD-1			WGGD-	2		WGGE										
2. 3.	dimens All di n is t	Sioning Mensio The Tot Erminal	ns are Tal nui	E IN M MENER (LUMETI DF TER	ERS. AN MINALS.	IGLES	ARE IN	DEGR	EES.	ON SHA	VL CO	NFORM	TO										
1. 2. 3.	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS	Mensio The Tot Erminal 35—1 S One Ind	NS ARE TAL NUI . #1 IC PP-012 DICATEC APPLIE	e in m Meier (Dentifie 2. deta). the	LUMETE DF TER TR AND ULS OF TERMIN	ERS, AM MINALS, TERMIN TERMIN IAL #1	NGLES NAL NL IAL #1 IDENTI	are in Imberii Identii Fier M	DEGR NG COI FIER AF AY BE	ees. Mentk Re opt Eithef	'IONAL, ₹AMO	BUT M LD OR	ust Bi Mark	e locat Ed fea	TED WITH TURE. 0.30 m									
1. 2. 3. (A) (A) (A)	Dimens All di N IS T The Te Jesd S The Zi Dimens Fron ND AN	Mensio The tot Erminal 95—1 S One Ind Sion 6	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MEBER (DENTIFIE 2. DETA 2. THE 2. THE 3. TO I 1. TO THE	LUMETE DF TERE TER AND NLS OF TERMIN METALLI	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE BER OF	NGLES NAL NL IAL #1 IDENTII RMINAL TERMIN	ARE IN IMBERII IDENTII FIER M. . AND WALS O	DEGR NG COM FIER AN AY BE IS MEA	ees. Nentk Re opt Eithef Sured	'IONAL, RAMO BETWE	BUT M LD OR EEN 0.3	UST BI MARK 25 mm	e locat Ed fea n AND	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD S THE ZO DIMENS FROM ND AN DEPOP	MENSIO THE TOT ERMINAL 35-1 S ONE IND SION 5 TERMIN ID NE F	NS ARE TAL NUT PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MBER (2. Deta 2. Deta 3. The 3. The 3. To 1 To The DSSIBLE	ILLIMETI DF TERI TERMIN METALLI E NUMB	ers. A minals. Termin termin Val #1 Zed te er of Symme	NGLES NAL NU IAL #1 IDENTII RMINAL TERMIN	ARE IN IMBERII IDENTII FIER M. . AND WALS O FASHK	DEGR NG CON FIER AN AY BE IS MEA IS MEA N EAC	ees. Nventik Re opt Eithef Sured H d a	NONAL, RAMO BETWE NDES	BUT M LD OR EEN 0.:	UST BI MARK 25 mm ESPECT	e locat Ed fea n AND 1VELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZI DIMENS FROM ND AN DEPOP COPLA	MENSIO THE TOT ERMINAL 35-1 S ONE INE SION B TERMIN D NE F ULATION	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE	E IN MI MBER (2. Deta 2. Deta 2. The 2. The 2. To The 2. To The 2. To The 2. To The 2. To T	ILLIMETI DF TERI REAND NLS OF TERMIN METALLI E NUMB E NUMB E IN A	ERS. AM MINALS. TERMIN TERMIN MAL #1 ZED TE ER OF SYMME POSED	NGLES NAL NL IAL ∯1 IDENTII RMINAL TERMIN TRICAL HEAT S	ARE IN Identii Fier M. . And VALS O FASHK SINK S	DEGR NG COM FIER AM AY BE IS MEA IS MEA N EAC DN.	ees. Nventik Re opt Eithef Sured H D A S Well	NDAL, RAMO BETWE NDES	BUT M LD OR EEN 0.1 SIDE RE	UST BI MARK 25 mm ESPECT MINALS	E LOCAT ED FEA n AND IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS FROM ND AN DEPOP COPLAI DRAWIN	MENSIO THE TOT ERMINAL 35-1 S ONE IND SION 6 TERMIN D NE F ULATION NARITY	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS	E IN M MBER (DENTIFIE 2. DETA 2. DETA 3. THE 25 TO 1 TO THE 2551BLE 5. TO 1 TO JE	ILLIMETE DF TER R AND NLS OF TERMIN METALLI E NUMB E IN A THE EX IDEC M	ERS. AM MINALS. TERMIN TERMIN MAL #1 ZED TE SER OF SYMME POSED 0220,	NGLES NAL NL IDENTII RMINAL TERMIN TRICAL HEAT S EXCEPT	ARE IN IDENTI TIER M. AND WALS O FASHK SINK S	DEGR NG COI FIER AF AY BE IS MEA N EAC DN. LUG AS T2444-	ees. Nventik Re opt Eithef Sured H D A S Well	NDAL, RAMO BETWE NDES	BUT M LD OR EEN 0.1 SIDE RE	UST BI MARK 25 mm ESPECT MINALS	E LOCAT ED FEA n AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 9.	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS FROM ND AN DEPOP COPLAI DRAWIP MARKING	MENSIO THE TOT ERMINAL 35-1 S DINE INI SION & TERMIN D NE F ULATION NARITY NG CON G IS FO	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC	E IN M MBER (XENTIFIE 2. DETA 2. DETA	ILLIMETE DF TER R AND NLS OF TERMIN METALLI IN METALLI IN METALLI IN A THE EXI IDEC M DRIENTA	ERS. AM MINALS. TERMIN TERMIN VAL #1 ZED TE BER OF SYMME POSED 0220, ATION R	NAL NIL IAL #1 IDENTII RMINAL TERMIN TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTI TIER M. AND WALS O FASHK SINK S	DEGR NG COI FIER AF AY BE IS MEA N EAC DN. LUG AS T2444-	ees. Nventik Re opt Eithef Sured H D A S Well	NDAL, RAMO BETWE NDES	BUT M LD OR EEN 0.1 SIDE RE	UST BI MARK 25 mm ESPECT MINALS	E LOCAT ED FEA n AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 9. 11.	DIMENS ALL DI N IS T THE TE JESD S THE ZO DIMENS FROM ND AN DEPOP COPLAN DRAWIN MARKING COPLAN	MENSIO THE TOT ERMINAL 35-1 S ONE INI SION & TERMIN ID NE F FULATION NARITY NG CON G IS FO ARITY S	NS ARE TAL NUI . #1 ID DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC SHALL 1	E IN M MBER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 3. TO I 5. TO I 5. TO I 5. TO I 6. TO JE KAGE (NOT EX	ILLIMETI DF TER R AND NLS OF TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ERS. AM MINALS. TERMIN TERMIN WAL #1 ZED TE ER OF SYMME POSED 10220, ATION R 0.08mm	NAL NIL IAL #1 IDENTII RMINAL TERMIN TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTI TIER M. AND WALS O FASHK SINK S	DEGR NG COI FIER AF AY BE IS MEA N EAC DN. LUG AS T2444-	ees. Nventik Re opt Eithef Sured H D A S Well	NDAL, RAMO BETWE NDES	BUT M LD OR EEN 0.1 SIDE RE	UST BI MARK 25 mm ESPECT MINALS	E LOCAT ED FEA n AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 11. 12.	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS FROM ND AN DEPOP GOPLAI DRAWIN MARKING COPLAN WARPAG	MENSIO THE TOT ERMINAL 350-1 S ONE INI SION & TERMIN ID NE F ULATION NARITY NG CON G IS FC ARITY S E SHAL	NS ARE TAL NUL AL TID APPLIE APPLIE APPLIE APPLIE IFORMS DR PAC SHALL NOT	E IN M MBER (DENTIFIE 2. DETA 2. THE 3. THE 3. TO I 5. TO I 5. TO I 5. TO I 6. TO JE KAGE (NOT EX EXCEE	ILLIMETI DF TERI R AND NLS OF TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ND 0.1	ERS. AMMINALS, TERMIN TERMIN TERMIN ZED TE BER OF SYMME POSED 0220, ATION R 0.08mm 0.08mm	NAL NL IAL #1 IDENTII RMINAL TERMIN TRICAL HEAT S EXCEPT	ARE IN IDENTI IDENTI FIER M. AND VALS O FASHK SINK S FOR ICE OF	DEGR NG CON FIER AN AY BE IS MEA IS MEA N EAC DN. LUG AS T2444-	EES. NVENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	10nal, R A Mo D BETWE ND E S AS TH 444-4	BUT M LD OR EN 0.3 SIDE RE HE TER AND 1	UST BI MARK 25 mm ESPECT MINALS 2844-	E LOCAT ED FEA N AND IVELY.	TURE.			DA					~	
1. 2. 3. 4. 7. 9. 11. 12. 12. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS FROM ND AN DEPOP GOPLAI DRAWIN MARKING COPLAN WARPAG LEAD C	MENSIO THE TOT ERMINAL 35-1 ST ONE INIT SION & TERMIN D NE F ULATION NARITY NG CON G IS FC ARITY S E SHAL ENTERLI	NS ARE TAL NUL PP-012 DICATED APPLIE APPLIE APPLIE IFORMS DR PAC SHALL NOT IN IS TO APPLIE IFORMS DR PAC	E IN M MBER (DENTIFIE 2. DETA 2. DETA 2. THE 2. TO THE 2. TO THE 2. STO T 3. TO JE KAGE (NOT EX EXCEE 2. BE A	ILLIMETI DF TERI TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AMMINALS, TERMIN TERMIN VAL #1 ZED TE BER OF SYMME POSED 0220, ATION R 0.08mm 0.08mm 0.08mm	NGLES NAL NUL IDENTII IDENTII RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTII TIER M. AND VALS O FASHIK SINK S FOR ICE ON	DEGR NG CON FIER AN AY BE IS MEA IS MEA N EAC DN. LUG AS T2444-	EES. NVENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	10nal, R A Mo D BETWE ND E S AS TH 444-4	BUT M LD OR EN 0.3 SIDE RE HE TER AND 1	UST BI MARK 25 mm ESPECT MINALS 2844-	E LOCAT ED FEA N AND IVELY.	TURE.					S			X	1/1
1. 2. 3. 4. 7. 9. 11. 12. 12. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENS ALL DI N IS T THE TE JESD S THE ZI DIMENS FROM ND AN DEPOP GOPLAI DRAWIN MARKING COPLAN WARPAG LEAD C	MENSIO THE TOT ERMINAL 350-1 S ONE INI SION & TERMIN ID NE F ULATION NARITY NG CON G IS FC ARITY S E SHAL	NS ARE TAL NUL PP-012 DICATED APPLIE APPLIE APPLIE IFORMS DR PAC SHALL NOT IN IS TO APPLIE IFORMS DR PAC	E IN M MBER (DENTIFIE 2. DETA 2. DETA 2. THE 2. TO THE 2. TO THE 2. STO T 3. TO JE KAGE (NOT EX EXCEE 2. BE A	ILLIMETI DF TERI TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AMMINALS, TERMIN TERMIN VAL #1 ZED TE BER OF SYMME POSED 0220, ATION R 0.08mm 0.08mm 0.08mm	NGLES NAL NUL IDENTII IDENTII RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTII TIER M. AND VALS O FASHIK SINK S FOR ICE ON	DEGR NG CON FIER AN AY BE IS MEA IS MEA N EAC DN. LUG AS T2444-	EES. NVENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	10nal, R A Mo D BETWE ND E S AS TH 444-4	BUT M LD OR EN 0.3 SIDE RE HE TER AND 1	UST BI MARK 25 mm ESPECT MINALS 2844-	E LOCAT ED FEA N AND IVELY.	TURE.			PAC	KAGE	OUTLI				

_Revision History

_ 11

Rev 0; 10/98: Initial data sheet release. Added MAX3964ETP. Rev 1; 10/02: Added package code for TQFN (page 1); updated package drawing (pages 11, 12). Rev 2; 5/03: 9/04: Added MAX3964A (pages 1 to 13). Rev 3: Rev 4: 2/06: Added lead-free package information to Ordering Information table (page 1). Removed references to MAX3964 and MAX3965, TTL Loss of Signal, GNDO; updated CAZ Rev 5: 8/06: value to 0.1µF and CIN from 10nF to 4700pF. Updated Typical Application Circuit.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2006 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.

٦

Г