

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SPD5807 thru SPD5811 SPD5807SMS thru SPD5811SMS

6.0 AMPS 50 — 150 VOLTS 40 ns HYPERFAST RECOVERY

RECTIFIER

Designer's Data Sheet

Part Number/Ordering Information ^{1/}
SPD

L Screening 2/ = Not Screened TX = TX Level TXV = TXV Level S = S Level

L Package Type

__ = Axial Leaded SMS = Surface Mount Square Tab ASMS = SMS with .240" max Body Length

Voltage/Family

5807 = 50V 5809 = 100V 5811 = 150V

FEATURES:

- Hyper Fast Reverse Recovery: 40ns Maximum 4/
- PIV to 150 Volts (Voltages Up To 300V Available)
- Hermetically Sealed
- Low Forward Voltage Drop
- Void Free Chip Construction
- For High Efficiency Applications
- Available in Axial & Square Tab Versions
- TX, TXV, and S-Level Screening Available ^{2/}
- Replacement for: 1N5807, US thru 1N5811, US


MAXIMUM RATINGS 3/							
RATING			SYMBOL	VALUE	UNIT		
Peak Repetitive Reverse And DC Blocking Voltag	•	SPD5807 SPD5809 SPD5811	$egin{array}{c} V_{RRM} \ V_{RWM} \ V_{R} \end{array}$	50 100 150	Volts		
Average Rectified Forward Current (Resistive Load, 60Hz, Sine Wave, TA = 25°C)			lo	6.0	Amps		
Peak Surge Current (8.3 ms pulse, half sine wave, superimposed on Io, allow junction to reach equilibrium between pulses, T _A = 25°C)			I _{FSM}	125	Amps		
Operating & Storage Temperature		T _J and T _{STG}	-65 to +175	°C			
Thermal Resistance	Junction to Lead for Axial, L =.375" Junction to End Tab for Surface Mount		$R_{ heta JL} \ R_{ heta JE}$	20 12	°C/W		

NOTES:

- 1/ For ordering Information, price, operating curves, and availability- Contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @25°C.
- $\underline{4}$ / $I_F = 500$ mA, $I_R = 1$ A, $I_{RR} = 250$ mA, $T_A = 25$ °C.

Axial Leaded

SMS

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: RC0108E

DOC

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SPD5807 thru SPD5811 SPD5807SMS thru SPD5811SMS

ELECTRICAL CHARACTERISTICS 3/				
CHARACTERISTICS		SYMBOL	VALUE	UNIT
			MAX	
Instantaneous Forward Voltage Drop I _F = 6.0 Adc, 300µs pulse	T _A = +25°C T _A = -55°C	$oldsymbol{V_{F1}}{oldsymbol{V_{F2}}}$	0.975 1.08	Vdc
Reverse Leakage Current Rated V _R , 300µs pulse min	T _A = +25°C T _A =+100°C	I _{R1} I _{R2}	20 1	μA mA
Junction Capacitance $V_R = 10 \text{ Vdc}, f = 1 \text{MHz}, T_A = 25 ^{\circ}\text{C}$		Сл	100	pF
Reverse Recovery Time $I_F = 500$ mA, $I_R = 1$ A, $I_{RR} = 250$ mA, $T_A = 25$ °C		t _{rr}	40	ns

Package Outlines:

DIMENSIONS (inches)			DIMENSIONS (inches)			
DIM.	Minimum	Maximum	DIM.	Minimum	Maximum	
Α	.130	.170	Α	.172	.180	
В		.240	В	.200	.290 (SMS)	
С	.038	.042	В	.200	.240 (ASMS)	
D	1.000		С	.020	.035	
			D	.002		
AXIAL		SMS				
$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\$				─B─ 	-A-	
				C		

NOTES:

- 1/2 For Ordering Information, Price, Operating Curves, and Availability- Contact Factory.2/2 Screening Based on MIL-PRF-19500. Screening Flows Available on Request.
- 3/ Unless Otherwise Specified, All Electrical Characteristics @25°C.
- $\underline{4}$ / I_F = 500mA, I_R = 1A, I_{RR} = 250mA, T_A = 25°C.