

February 1994 Revised February 2001

74LCX240

Low Voltage Octal Buffer/Line Driver with 5V Tolerant Inputs and Outputs

General Description

The LCX240 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver. The device is designed for low voltage (2.5V or 3.3V) $V_{\rm CC}$ applications with capability of interfacing to a 5V signal environment.

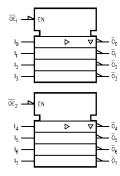
The LCX240 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

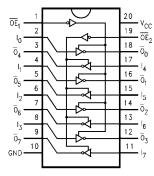
- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- \blacksquare 6.5 ns t_{PD} max (V $_{CC}$ = 3.3V), 10 μA I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive ($V_{CC} = 3.0V$)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V

Machine model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:


Order Number	Package Number	Package Description		
74LCX240WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide		
74LCX240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
74LCX240MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide		
74LCX240MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ -I ₇	Inputs
\overline{O}_0 – \overline{O}_7	Outputs

Truth Tables

Inp	uts	Outputs
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	Н
L	Н	L
Н	Х	Z

Inp	uts	Outputs
OE ₂	I _n	(Pins 3, 5, 7, 9)
L	L	Н
L	Н	L
Н	X	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 2) Symbol Parameter Value Units Conditions ٧ Supply Voltage -0.5 to +7.0 V_{CC} ٧ DC Input Voltage -0.5 to +7.0 V_{I} DC Output Voltage ٧ Vo -0.5 to +7.0 Output in 3-STATE Output in HIGH or LOW State (Note 3) -0.5 to $V_{CC} + 0.5$ ٧ DC Input Diode Current -50 V_I < GND mΑ I_{IK} DC Output Diode Current -50 V_O < GND I_{OK} mΑ +50 $V_O > V_{CC}$ DC Output Source/Sink Current ±50 mΑ I_{O} I_{CC} DC Supply Current per Supply Pin ±100 mΑ DC Ground Current per Ground Pin ±100 mΑ I_{GND} Storage Temperature -65 to +150

Recommended Operating Conditions (Note 4)

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

 $\mathsf{T}_{\mathsf{STG}}$

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
J,b01		Conditions	(V)	Min	Max	Onits
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100\mu A$	2.3 – 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		,
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		,
V _{OL}	LOW Level Output Voltage	I _{OL} = 100μA	2.3 – 3.6		0.2	
		I _{OL} = 8mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 – 3.6		±5.0	μΑ
I _{OFF}	Power-Off Leakage Current	V_I or $V_O = 5.5V$			10	μΑ
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		10	μА
		$3.6V \le V_1, V_0 \le 5.5V \text{ (Note 5)}$	2.3 – 3.6		±10	
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} = 0.6V$	2.3 – 3.6		500	μΑ

DC Electrical Characteristics (Continued) Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40$ °C to $+85$ °C, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.3	3V ± 0.3V	V _{CC} =	= 2.7V	$V_{CC}=2.$	5V ± 0.2V	Units
Symbol	Faiametei	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PLH}		1.5	6.5	1.5	7.5	1.5	7.8	115
t _{PZL}	Output Enable Time	1.5	8.0	1.5	9.0	1.5	10.0	ns
t _{PZH}		1.5	8.0	1.5	9.0	1.5	10.0	115
t _{PLZ}	Output Disable Time	1.5	7.0	1.5	8.0	1.5	8.4	ns
t _{PHZ}		1.5	7.0	1.5	8.0	1.5	8.4	113
t _{OSHL}	Output to Output Skew (Note 6)		1.0					ns
t _{OSLH}			1.0					113

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C	Units
Cymbol			(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{V, } V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , $f = 10$ MHz	25	pF

AC Loading and Waveforms Generic for LCX Family

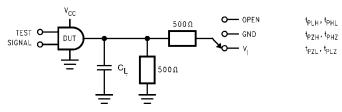
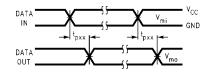
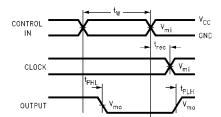
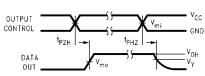
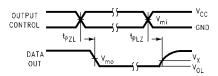
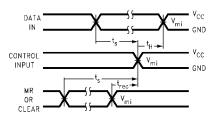




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t _{PZH} ,t _{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


Propagation Delay, Pulse Width and t_{rec} Waveforms

3-STATE Output High Enable and Disable Times for Logic

3-STATE Output Low Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

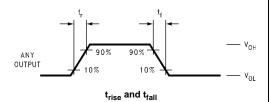
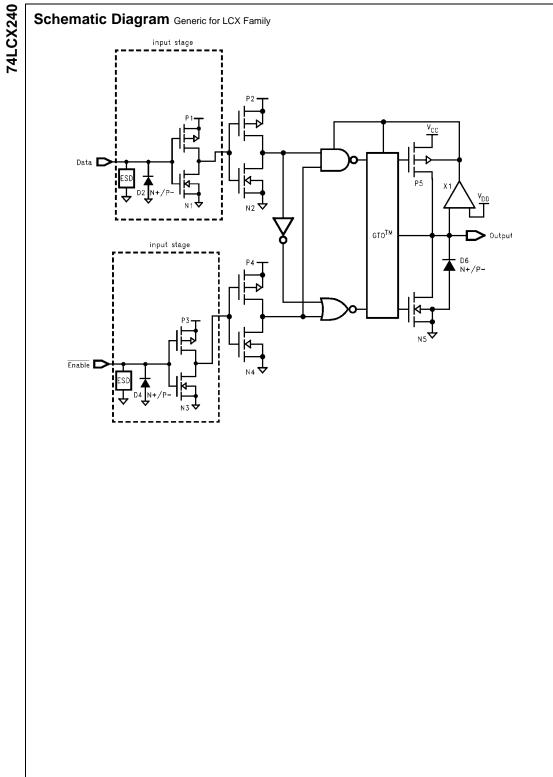
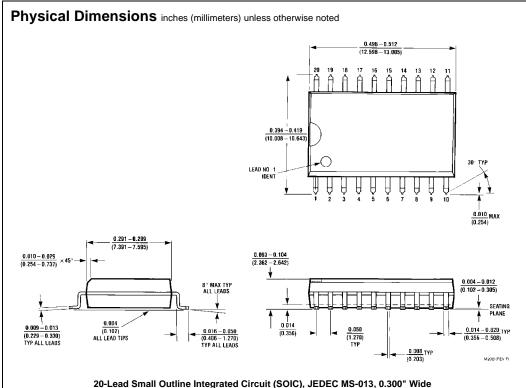
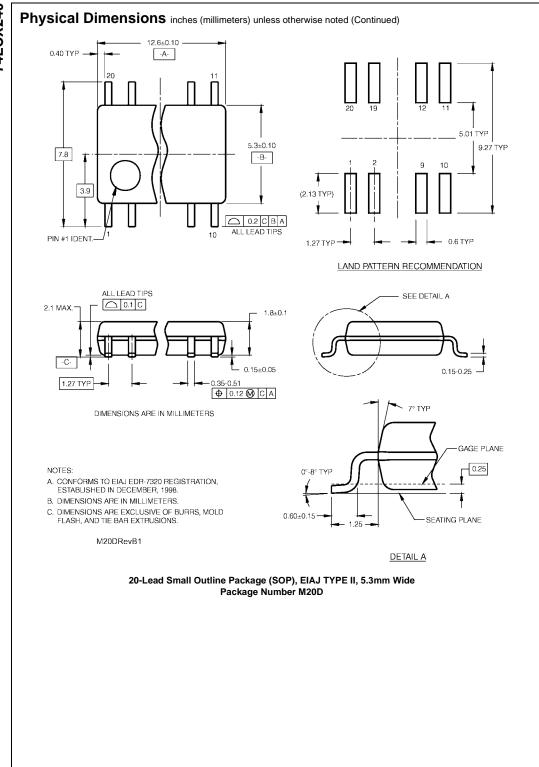
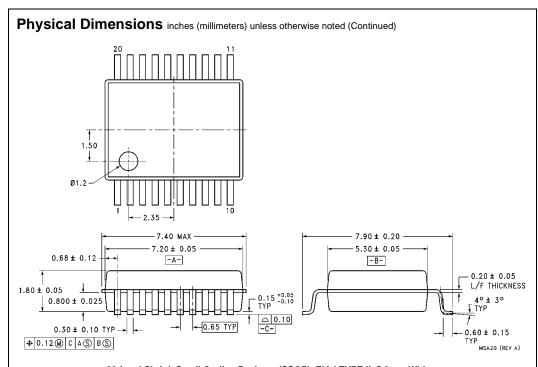
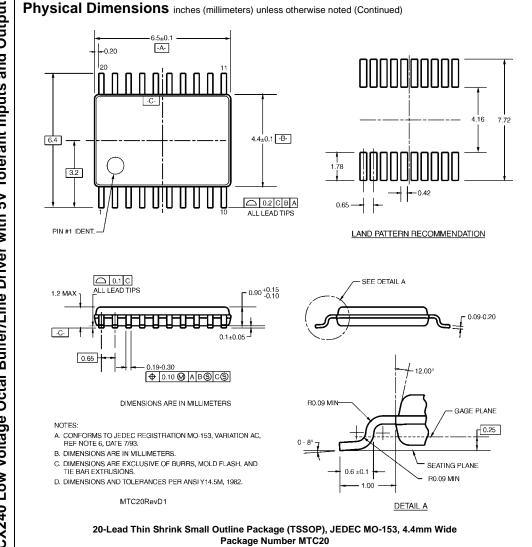




FIGURE 2. Waveforms


(Input Pulse Characteristics; f = 1MHz, $t_r = t_f = 3ns$)


Symbol	V _{CC}				
Gyillboi	3.3V ± 0.3V	2.7V	2.5V ± 0.2V		
V _{mi}	1.5V	1.5V	V _{CC} /2		
V_{mo}	1.5V	1.5V	V _{CC} /2		
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V		
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V		



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and

Fairchild reserves the right at any time without notice to change said circuitry and specifications.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.