
High power PLED

PLEDxUSxA Series - Unidirectional

Agency Approvals

Agency	Agency File Number
71	E133083

Schematic Symbol

Description

PLEDxUSxA open LED protectors provide an electronic switching shunt path when an LED in an LED string fails as an open circuit. This ensures that the remaining string of LEDs will continue to function if a single LED does not.

The components is designed to enable higher reliability in indoor LED lighting applications such as advertisement lighting and other applications.

This series is compatible with one, two and three watt LEDs that have a nominal 3V forward characteristic and is available in an SMB surface mount package. The DO-214AA (SMB) low profile package is ideal for dense board applications.

Features & Benefits

- Ideal for protecting high brightness LED with high operating current at specified condition.
- Fast switching
- Reverse Battery/Power
 Protection
- Low profile, small foot print standard DO-214AA package
- Compatible with industrial lighting environments
- IEC-61000-4-2 ESD 30kV (Air), 30kV (Contact)

 ESD protection of data lines in accordance with IEC 61000-4-2 (IEC801-2)

HF RoHS 91 63

- Compatible with PWM frequencies up to 30 kHz
- RoHS compliant and halogen-free
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin(Sn) (IPC/ JEDEC J-STD-609A.01)
- Recognized to UL 497B as an Isolated Loop Circuit Protector

Electrical Characteristics (All parameters are measured at T,=25°C unless otherwise noted) V_T @ I_T = 1 Amp Critical rate of V_{BR} breakdown v_{DRM} breakdown I_T@V_T $|_{0}^{1}$ I_H I, rise dV/dt Part Number Marking Volts Volts mAmps mAmps Amps Volts Amps Volts Min Min Max Min Max Max Max Max Max PL6U2 PLED6US2A 1.2 6 16 6 5 100 1.0 2 250V/µs PLED6US3A PL6U3 100 250V/ µs 6 16 6 5 1.0 1.2 3

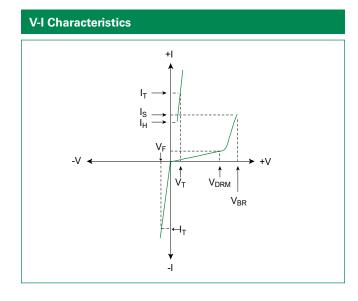
Notes:

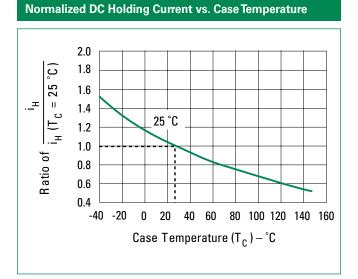
 ${\rm 1.~I_0}\mathchar`-$ Operation current tested @ aluminum boards, ambient temp $85^\circ {\rm C}$

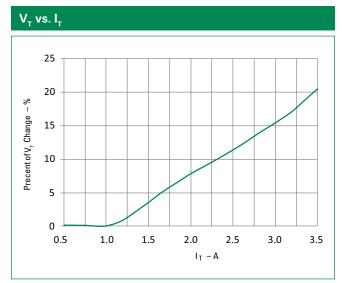
High power PLED

Thermal Considerations

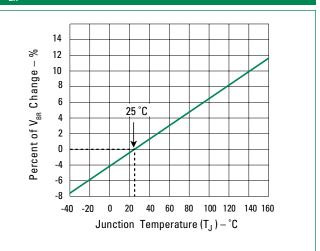
Symbol	Parameter	Value	Unit
TJ	Operating Junction Temperature Range	-40 to +150	°C
T _s	Storage Temperature Range	-65 to +150	°C
R _{eJA}	Thermal Resistance: Junction to Ambient	DO-214AA: 90 ¹ DO-214AA: 40 ²	°C/W

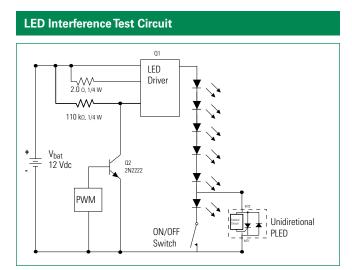

Notes:


1) Standard FR-4 PCB with Copper Pads (Recommended Size) 2) Aluminum PCB

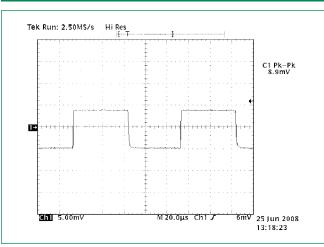

Thickness: 1.6mm Grade: 1-2 W/mK Thermal Conductivity

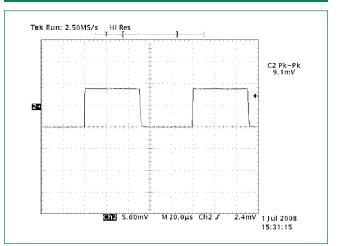
Trace thickness: 2 oz

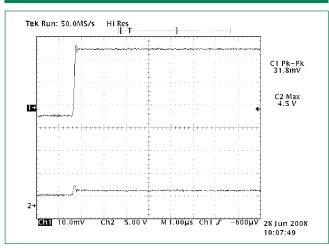

Insulation layer thickness: 215 um Solder Pad Dimensions: 2.0mm x 2.8mm (Recommended Size)



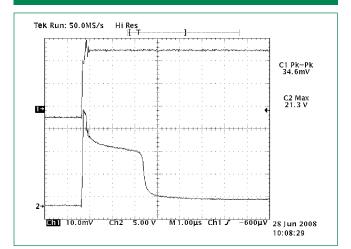
V_{RR} vs. Junction Temperature




High power PLED


6 LEDs in Series 50% Duty Cycle 10kHz

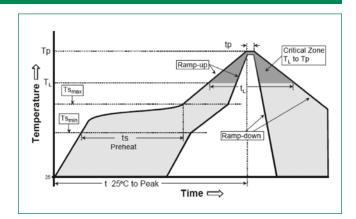
5 LEDs and 1 PLED in Series 50% Duty Cycle 10kHz


Note: These two graphs show the current magnitude through the LED string with and without the PLED included. There is no noticeable effect on the LED current magnitude when the PLED is included in the circuit as compared to the LED current magnitude when the PLED is not in the circuit. (The conversion factor for the test measurement in the graphs above is 10mA/mV for the Pearson coil measurement, therefore, the current magnitude in the first figure is 10mA*8.9 = 89mA, while the second figure is 91mA.)

PLED in the Off-State 10kHz

Channel 1: current through LEDs (318 mA) Channel 2: voltage across PLED component (4.5 V)

PLED component zeners and then turns fully on 10kHz



Channel 1: current through LEDs (346 mA) and PLED component once it is fully turned on 2.5 µsec later Channel 2: voltage across PLED component (21.3 V before PLED crowbars with 2 V drop)

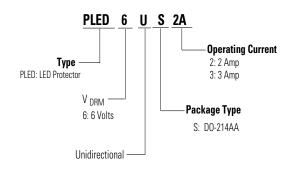
High power PLED

Soldering Parameters

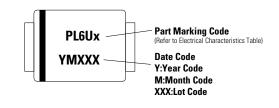
Reflow Condition		Pb – Free assembly	
Pre Heat	- Temperature Min (T _{s(min)})	150°C	
	- Temperature Max (T _{s(max)})	200°C	
	- Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp (T_L) to peak		3°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
	- Temperature (t _L)	60 – 150 seconds	
Peak Temperature (T _P)		260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t_p)		30 seconds	
Ramp-down Rate		6°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes max	
Do not exce	ed	260°C	

Environmental Specifications

High Temperature Voltage Blocking	MILSTD-750: Method 1040, Condition A 80% min V _{DRM} (VDC-peak), 150°C, 1008 hours
Temperature Cycling	MILSTD-750: Method 1051 -55°C to 150°C, 15-minute dwell, 1000 cycles
Biased Temperature &	EIA/JEDEC: JESD22-A101
Humidity	80%V _{DRM} , 85°C, 85%RH, 1008 hours
Resistance to	MIL-STD-750: Method 2031
Solder Heat	260°C, 10 seconds
Moisture Sensitivity	85%RH, +85°C, 168 hrs., 3 reflow cycles
Level	(+260°C Peak). JEDEC-J-STD-020, Level 1

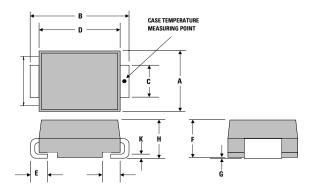

Physical Specifications

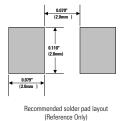
Terminal Material	Copper Alloy
Terminal Finish	100% Matte Tin Plated
Body Material	UL recognized compound meeting flammability classification V-0


Packaging

Package	Description	Packaging Quantity	Industry Standard
S	D O - 2 1 4 A A	2500	EIA-481-1

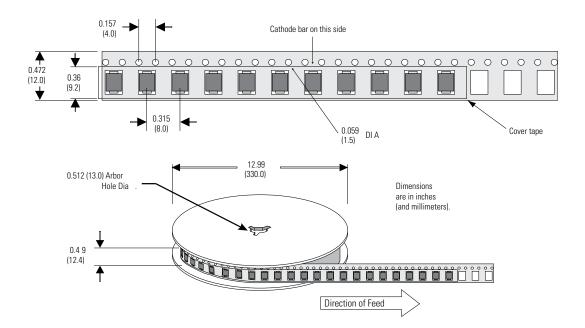
Part Numbering System


Part Marking System



High power PLED

Dimensions - DO-214 AA Package



Dimensions	Inches		Millimeters	
	Min	Max	Min	Мах
Α	0.130	0.156	3.30	3.95
В	0.201	0.220	5.10	5.60
С	0.077	0.087	1.95	2.20
D	0.159	0.181	4.05	4.60
E	0.030	0.063	0.75	1.60
F	0.075	0.096	1.90	2.45
G	0.002	0.008	0.05	0.20
Н	0.077	0.104	1.95	2.65
к	0.006	0.016	0.15	0.41

DO-214AA Embossed Carrier Reel Pack (RP)

Meets all EIA-481-1 Standards

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.