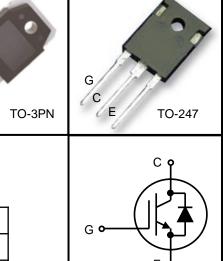


600V 40A High Speed IGBT

G

С

Е


FEATURES

- 600V Field Stop technology
- Low saturation voltage
- High switching frequency
- Very soft , fast recovery anti-parallel diode

APPLICATIONS

- Welding converters
- Uninterruptible Power Supply
- Converters with high switching frequency

Ordering Information				
Device Package Marking				
TGW40N60A	TO-247	TGW40N60A		
TGV40N60A	TO-3PN	TGV40N60A		

Absolute Maximum Ratings $T_c = 25^{\circ}C$, unless otherwise noted							
Parameter	Symbol	Value	Unit				
Collector-Emitter Voltage	V _{CES}	600	V				
Continuous Collector Current $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	I _C	 80 40	A				
Pulsed Collector Current (note)	I _{Cpulse}	160	A				
Gate-Emitter Voltage	V _{GES}	±20	V				
Short Circuit Withstand Time $V_{GE} = 15V, V_{CC} = 400V, T_C \le 125^{\circ}C$	t _{sc}	5	μs				
Power Dissipation ($T_c = 25^{\circ}C$)	P _D	290	W				
Operating Junction and Storage Temperature Range	TJ	-55~+150	°C				
Maximum Soldering Temperature, 1/8"from Case for 5s		300	°C				

 $\ensuremath{\textbf{Note}}$: Pulse width limited by maximum junction temperature

Thermal Resistance						
Parameter	Symbol	Value	Unit			
IGBT Thermal Resistance, Junction-to-Case	R _{thJC}	0.43	K/W			
Thermal Resistance, Junction-to-Ambient	R _{thJA}	40				

Specifications T _J = 25°C, unl	ess otherwis	se noted				
Parameter		Test Conditions	Value			
	Symbol		Min.	Тур.	Max.	Unit
Static						
Collector-Emitter Breakdown Voltage	V _{(BR)CES}	$V_{GE} = 0V, I_{C} = 250 \mu A$	600			V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$V_{GE} = 15V, I_C = 40A,$ $T_J = 25^{\circ}C,$ $T_J = 125^{\circ}C$		2.0 2.2	2.5 	V
Gate-Emitter Threshold Voltage	V _{GE(th)}	I_{C} = 0.5mA, V_{CE} = V_{GE}	4.0	5.0	6.5	V
Zero Gate Voltage Collector Current	I _{CES}	$V_{CE} = 600V, V_{GE} = 0V,$ $T_J = 25^{\circ}C$			40.0	μA
Gate-Emitter Leakage Current	I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
Dynamic						
Input Capacitance	C _{iss}	V _{CF} = 30V,		4450		
Output Capacitance	C _{oss}	$V_{GE} = 0V,$ f = 1MHz		255		pF
Reverse Transfer Capacitance	C _{rss}			55		
Gate Charge	Qg	$V_{CC} = 480V,$ $I_C = 40A,$ $V_{GE} = 15V$		130		
Gate-Emitter Charge	Q _{ge}			25		nC
Gate-Collector Charge	Q _{gc}			50		

Switching Characteristic $T_J = 25$	o₀C					
Parameter	Symbol	Conditions	Value			
			Min.	Тур.	Max.	Unit
IGBT Characteristic				-	-	
Turn-on Delay Time	t _{d(on)}			267		mJ
Rise Time	t _r			150		
Turn-off Delay Time	t _{d(off)}	$T_{\rm J} = 25^{\rm o} {\rm C},$		175		
Fall Time	t _f	$V_{\rm CC} = 400$ V, $I_{\rm C} = 40$ A,		67		
Turn-on Energy	E _{on}	$V_{GE} = 15V, R_G = 10\Omega,$ Inductive load		0.72		
Turn-off Energy	E _{off}			0.65		
Total Switching Energy	E _{ts}			1.37		
Anti-Parallel Diode Characteristic	•			-		
Diode Reverse Recovery Time	t _{rr}	$T_{J} = 25^{\circ}C,$ $V_{R} = 300V, I_{F} = 10A,$ $di_{F}/dt = 200A/\mu s$		103		ns
Diode Reverse Recovery Charge	Q _{rr}			220		nC
Diode Peak Reverse Recovery Current	I _{rrm}			4		А
Diode Forward Voltage	V _{FM}	IF=15A		1.5		V

Switching Characteristic	T _J = 125°C					
Parameter	0. maked	Conditions	Value			
	Symbol		Min.	Тур.	Max.	- Unit
IGBT Characteristic					-	
Turn-on Delay Time	t _{d(on)}	$T_{J} = 125^{\circ}C,$ $V_{CC} = 600V, I_{C} = 40A,$ $V_{GE} = 15V, R_{G} = 10\Omega,$ Inductive load		275		- ns
Rise Time	t _r			155		
Turn-off Delay Time	t _{d(off)}			196		
Fall Time	t _f			75		
Turn-on Energy	E _{on}			0.87		mJ
Turn-off Energy	E _{off}			0.90		
Total Switching Energy	E _{ts}			1.77		

E

Wuxi Unigroup Microelectronics Company

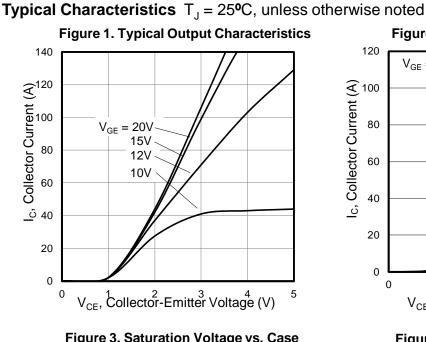
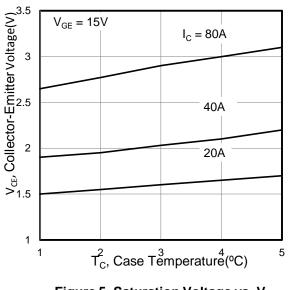
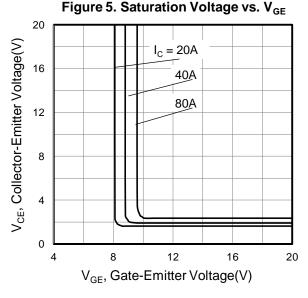
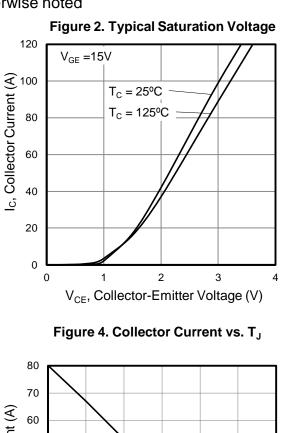
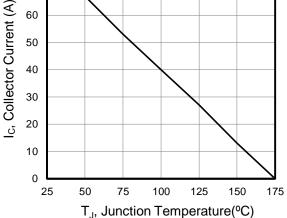
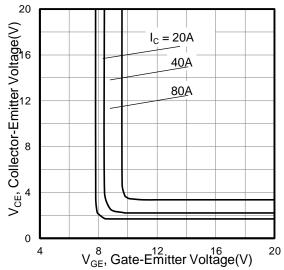
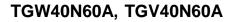
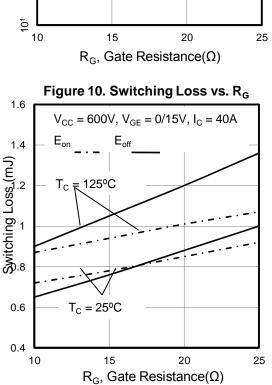
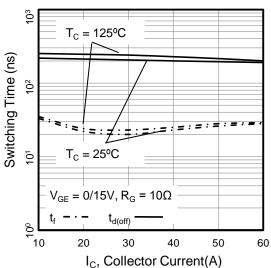





Figure 3. Saturation Voltage vs. Case Temperature at Variant Current Level



Figure 6. Saturation Voltage vs. V_{GE}



 $T_{\rm C} = 25^{\circ}{\rm C}$

Figure 12. Turn-Off Characteristics vs. I_c

 R_G , Gate Resistance(Ω)

20

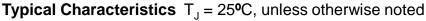
25

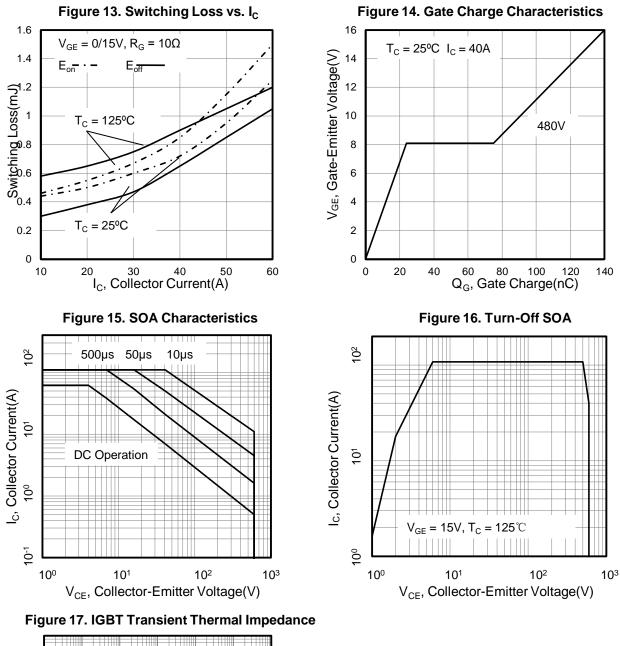
 $V_{CC} = 600V, V_{GE} = 0/15V, I_{C} = 40A$

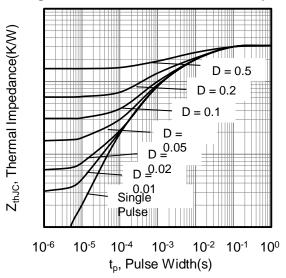
: = : Ξ

 $t_{d(off)}$

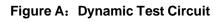
15

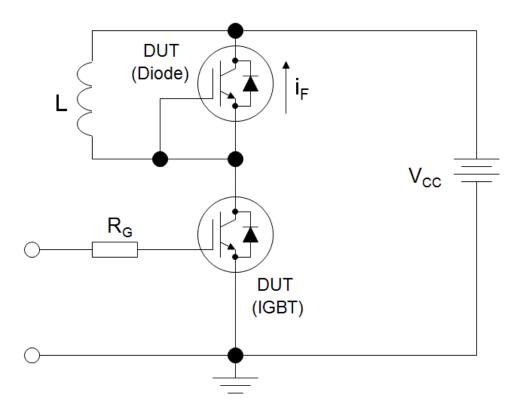

t_f _ . _

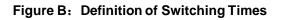

10

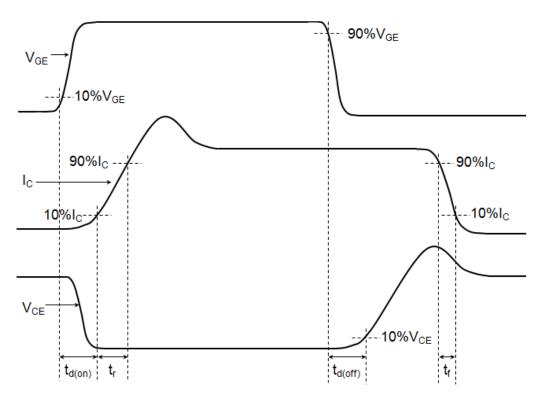

10

102 $V_{GE} = 0/15V, R_{G} = 10\Omega$ t_{d(on)} Switching Time (ns) T_C = 125°C 101 $T_{\rm C} = 25^{\circ}{\rm C}$ 100 I_{C}^{0} , Collector Current(A) 10 20 60





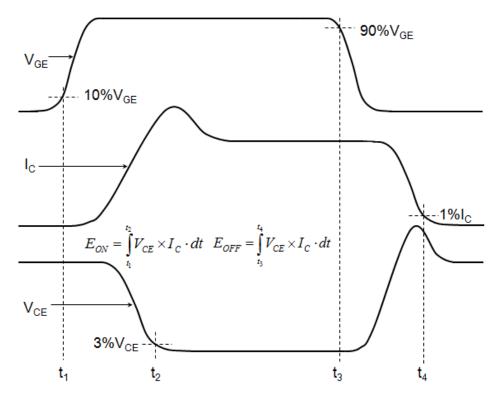

V 3.0


E

Wuxi Unigroup Microelectronics Company

E

Wuxi Unigroup Microelectronics Company



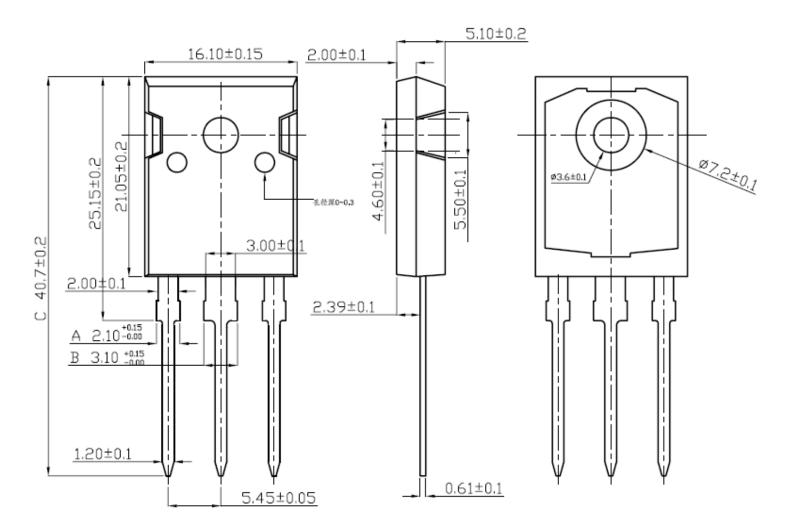
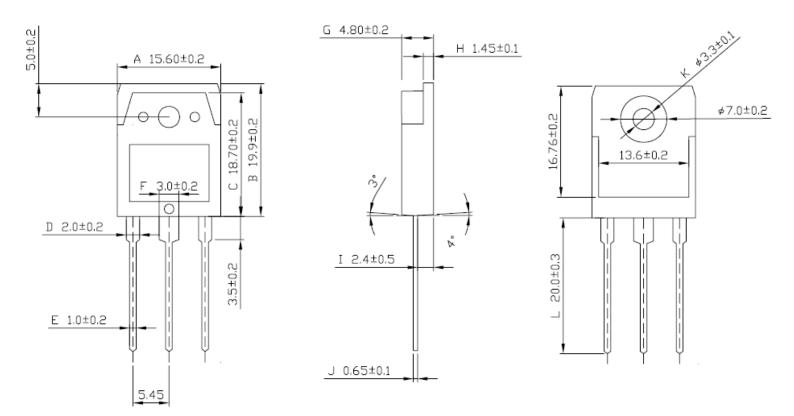


Figure C. Definition of Switching Losses

Figure D. Definition of Diodes Reverse Recovery Characteristics



TO-247

TO-3PN

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Wuxi Unigroup does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Wuxi Unigroup.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Wuxi Unigroup products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Wuxi Unigroup for any damages arising or resulting from such use or sale.

Wuxi Unigroup disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Wuxi Unigroup's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Wuxi Unigroup Microelectronics CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Wuxi Unigroup products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only. It is not guaranteed for volume production. Wuxi Unigroup believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.