

26 GHz Medium Power AlGaAs/InGaAs pHEMT

Features:

- 28 dBm of typical Output Power at 12 GHz
- 13 dB typical Small Signal Gain at 12 GHz
- 45% typical PAE at 12 GHz
- 0.25 x 750 Micron Refractory Metal/Gold Gate
- Excellent for Power, Gain, and High Power Added Efficiency Applications
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 485 x 315 microns Chip Thickness: 100 microns

Description:

The MwT-PH9F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 750 micron gate width make it ideally suited for applications requiring high-gain and power up to 18 GHz frequency range with power outputs ranging from 400 to 500 milli-watts. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

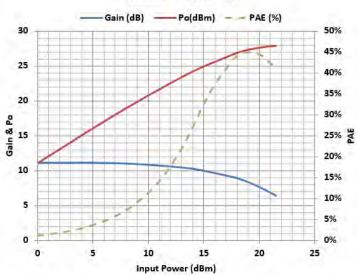
Electrical Specifications: • at Ta= 25° C

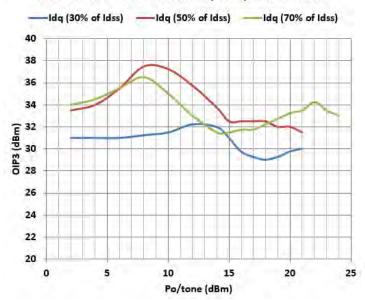
PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8.0V lds=0.7xldss	P1dB	12 GHz	dBm		25.0
Saturated Power Vds=8.0V lds=0.7xldss	Psat	12 GHz	dBm		28.0
Output Third Order Intercept Point Vds=8.0V lds=0.7xldss	OIP3	12 GHz	dBm		34.0
Small Signal Gain Vds=8.0V lds=0.7xldss	SSG	12 GHz	dB		13.0
Power Added Efficiency Vds=8.0V lds=0.7xldss	PAE	12 GHz	%		45

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

DC Specifications: • at Ta= 25 ℃


PARAMETERS	& CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 4.0 V Vgs= 0.0 V	IDSS	mA	180		220	
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		270		
Pinch-off Voltage Vds= 3.0 V lds= 5.0 mA	Vp	V		-0.8		
Gate-to-Source Breakdown lgs= -1.0 mA	BVGSO	V		-17.0		
Gate-to-Drain Breakdown \ Igd= -1.0 mA	BVGDO	V		-18.0		
Chip Thermal Resistance	MwT-PH7F Chip & 70 pkg 71 pkg & 73 pkg		C/W		60 175*	


* Overall Rth depends on case mounting


MwT-PH9F

26 GHz Medium Power AlGaAs/InGaAs pHEMT

MwT-PH9F, OIP3 at different Idq vs Po/tone at 12GHz

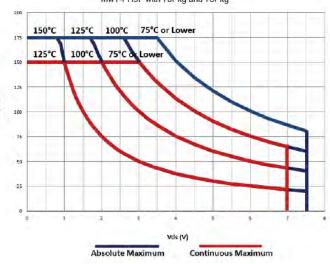
MwT-PH9F, Load Pull data for Power, Vds=8V, Idq=0.7xIdss

mining the contract of the con								
Eron	7	<u>'</u> s	7	<u>L</u>	P _{sat}			
Freq (GHz) Mag phase ma		mag	phase	dBm				
2	0.60	95.0	0.13	162.3	28.3			
4	0.75	135.0	0.23	129.0	27.9			
6	0.85	155.0	0.31	121.2	27.4			
8	0.90	172.1	0.36	134.2	27.5			
10	0.87	175.0	0.42	140.0	27.1			
12	0.80	180.0	0.48	143.0	27.1			

The load pull data is based on nonlinear model provided by the foundry that processes the device.

MwT-PH9F

26 GHz Medium Power AlGaAs/InGaAs pHEMT


MwT-PH9F DUAL BIAS Output Reference Plane 50 Ω Output Microstrip 18 Mils Long Copper heat sink 5 Mils below Level of Microstrip 7 Mils Long 2 mils Gold block -10x10x5 mils (2 each) All bond wires Plane Plane All bond wires are 1.0 mil

MwT-PH9F OPTIONAL BONDING Output Reference Plane 50 Ω Output Microstrip 2 mils Copper heat sink 5 Mils below Level of Microstrip 7 Mils Long 2 mils Gast block 10 to find for 50 pF cape for single bias 2 pF cape for single bias 10 pF cape for single bias 2 mils 18 Mils Long 19 MwT PH0F 20 mils 10 pF cape for single bias 2 pF cape for single bias 2 pF cape for single bias 2 pF cape for single bias 3 pF cape for single bias 4 pF cape for sing

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH9F Chip and Pkg

150°C 125°C 100°C 75°C or Lower 125°C 100°C 75°C or Lower 250 200 150 100 50 0 1 2 3 4 5 5 7 Vds.(V) Absolute Maximum Continuous Maximum

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH9F with 70Pkg and 73Pkg

MAXIMUM RATINGS AT Ta = 25 °C

Symbol	Parameter	Units	Cont Max1	Absolute Max2
VDS	Drainto Source Volt.	٧	7.5	8.0
Tch	Channel Temperature	°C	+150	+175
Tst	StorageTemperature	°C	-65 to +160	+180
Pin	RF Input Power	mW	240	360
Pt	Total Power Dissipation	mW	2700	3300

Notes:

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.

26 GHz Medium Power AlGaAs/InGaAs pHEMT

S-PARAMETER Vds=7V Ids= 0.7 x Idss

S-PARAMETER Vds=7V, Ids= 0.7 x Idss										
Freq.	S	11	S2	21	S12		S22		K	GMAX
GHz	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)		dB
1	-0.806	-71.750	23.199	136.917	-31.422	55.413	-5.558	-29.458	0.160	27.311
2	-1.428	-113.508	20.042	112.384	-28.699	36.975	-7.682	-43.305	0.293	24.370
3	-1.757	-136.906	17.341	97.338	-27.887	31.296	-8.921	-51.462	0.423	22.614
4	-1.860	-152.417	15.171	86.096	-27.483	28.246	-9.550	-58.012	0.541	21.327
5	-1.934	-162.460	13.371	77.508	-27.441	27.615	-9.931	-64.349	0.690	20.406
6	-1.942	-171.023	11.954	70.007	-27.175	29.236	-9.980	-69.027	0.785	19.564
7	-1.925	-179.511	10.671	62.660	-26.964	30.240	-10.032	-75.342	0.882	18.818
8	-1.909	175.764	9.576	56.000	-26.819	32.373	-9.621	-84.018	0.957	18.197
9	-1.885	170.112	8.262	49.092	-26.727	36.176	-9.671	-92.272	1.114	15.441
10	-1.820	165.491	7.498	42.655	-26.162	37.670	-9.026	-98.865	1.064	15.289
11	-1.582	160.382	6.663	35.535	-25.749	41.269	-8.922	-106.277	0.978	16.206
12	-1.533	156.232	5.820	29.863	-25.115	42.802	-8.386	-113.358	0.949	15.467
13	-1.526	152.474	5.030	23.894	-24.580	45.652	-7.964	-120.820	0.970	14.805
14	-1.483	149.390	4.113	18.616	-23.921	48.373	-7.400	-128.071	0.957	14.017
15	-1.290	145.289	3.553	12.522	-23.108	49.400	-6.988	-134.137	0.786	13.330
16	-1.325	142.208	2.865	7.577	-22.361	49.584	-6.479	-140.954	0.786	12.613
17	-1.321	139.098	2.139	2.504	-21.684	49.431	-6.004	-147.257	0.770	11.912
18	-1.203	136.345	1.341	-2.284	-20.936	49.960	-5.502	-153.462	0.685	11.138
19	-1.110	134.426	0.696	-7.179	-20.259	48.203	-5.204	-158.917	0.601	10.477
20	-1.015	130.322	0.104	-12.077	-19.532	47.955	-4.738	-164.296	0.524	9.818
21	-1.017	128.019	-0.694	-18.027	-19.029	46.172	-4.320	-169.566	0.501	9.168
22	-1.028	125.679	-1.301	-21.732	-18.364	44.550	-3.915	-174.790	0.478	8.531
23	-0.837	123.850	-1.988	-26.246	-17.859	43.259	-3.662	179.806	0.371	7.936
24	-0.809	120.967	-2.790	-30.342	-17.310	41.366	-3.505	174.907	0.370	7.260
25	-0.988	118.586	-3.456	-33.601	-16.813	38.750	-3.008	169.245	0.434	6.678
26	-0.904	116.448	-4.198	-37.050	-16.373	37.589	-2.742	165.270	0.389	6.087
27	-0.838	113.305	-4.755	-40.152	-15.900	35.040	-2.580	161.352	0.356	5.572
28	-0.756	112.364	-5.522	-43.301	-15.525	31.987	-2.309	156.386	0.293	5.002
29	-0.799	109.303	-6.298	-45.678	-15.102	30.263	-2.175	153.018	0.336	4.402
30	-0.774	107.505	-6.888	-48.115	-14.632	27.968	-1.933	149.162	0.304	3.872

ORDERING INFORMATION:

When placing order or inquiring, please specify BIN range, wafer number, if known, and visual screening level required. For details of BIN Selection and Safe Handling Procedure please see supplementary information in available PDF on our website www.mwtinc.com.

Available Packaging: 70 Package - MwT-PH9F70 71 Package - MwT-PH9F71 73 Package - MwT-PH9F73