Thermally-Enhanced High Power RF GaN on SiC HEMT 180 W, 50 V, 2700 – 3100 MHz

Description

The GTVA311801FA is a 180-watt GaN on SiC high electron mobility transistor (HEMT) for use in the 2700 to 3100 MHz frequecy band. It features input matching, high efficiency, and a thermally-enhanced package with earless flange.

Sheets describe products that are being considered by Wolfspeed for development and market introduction. The target performance shown in Advance Specifications is not final and should not be used for any design activity. Please contact Wolfspeed about the future availability of these products.

Advance Specification Data

Features

- GaN on SiC HEMT technology
- · Broadband internal input matching
- Typical pulsed CW performance (class AB), 2700 3100 MHz, 50 V, 300 μs pulse width, 10% duty cycle
 - Output power at P_{3dB} = 180 W
 - Drain efficiency = 70%
 - Gain $(P_{3dB}) = 15 dB$
- · Pb-free and RoHS compliant

GTVA311801FA Package H-37265J-2

Target RF Characteristics

Pulsed CW Specifications (tested in Wolfspeed class AB test fixture) $V_{DD} = 50 \text{ V}$, $I_{DQ} = 20 \text{ mA}$, $P_{OUT} = 180 \text{ W}$, f = 3100 MHz, pulse width = 300 μ s, duty cycle = 10%

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	_	15	_	dB
Drain Efficiency	η_{D}	_	70	_	%

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-source Breakdown Voltage	$V_{GS} = -8 \text{ V}, I_D = 21 \text{ mA}$	V _{(BR)DSS}	150	_	_	V
Drain-source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 50 \text{ V}$	I _{DSS}	_	_	5	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_D = 21 \text{ mA}$	V _{GS(th)}	-3.8	-3.0	-2.3	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Drain Operating Voltage		V_{DD}	0	_	55	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_D = 20 \text{ mA}$	$V_{GS(Q)}$	_	-3.17	_	V

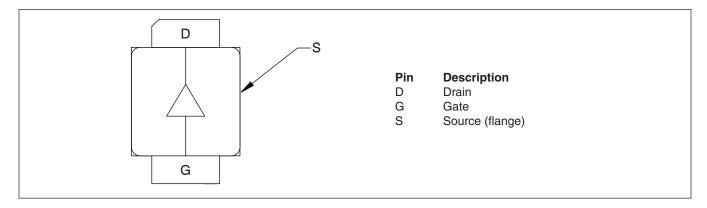
Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	125	V
Gate-source Voltage	V_{GS}	-10 to +2	V
Gate Current	I_{G}	20	mA
Drain Current	I _D	7.5	Α
Junction Temperature	TJ	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Chracteristics

Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	$R_{ hetaJC}$	TBD	°C/W	

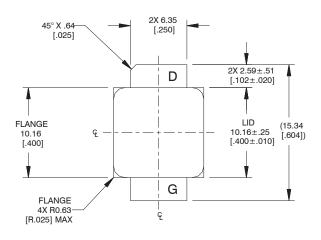

Ordering Information

Type and Version	Order Code	Package and ECCN	Shipping
GTVA311801FA V1 R0	TBD	H-37265J-2, 3A001.b.3a	Tape & Reel, 50 pcs
GTVA311801FA V1 R2	TBD	H-37265J-2, 3A001.b.3a	Tape & Reel, 250 pcs

Evaluation Board

Order Code	Frequency	Description	ECCN
LTN/GTVA311801FA V1	2700 – 3100 MHz	Class AB, RO4350B, 0.508 mm thick	3A001.b.3a

Pinout Diagram (top view)



See next page for package dimensions

3

Package Outline Specifications

Package H-37265J-2

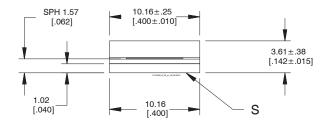


Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
- 2. Primary dimensions are mm; alternate dimensions are inches
- 3. All tolerances ± 0.127 [0.005]
- 4. Pins: G gate, D drain, S source
- 5. Lead thickness: 0.10 +0.051/-0.025 [0.004 +0.002/-0.001]
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

4

Revision History

Revision	Date	Data Sheet	Page	Subjects (major changes at each revision)
01	2017-01-26	Advance	all	Advance Specification provides target requirements for product development
01.1	2018-02-01	Advance	1	Updated pulsed CW performance and pulsed CW spec table
02	2018-05-01	Advance	All 2	Converted to Wolfspeed Data Sheet Updated DC Characteristics and max ratings table format

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com 919.407.7816

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

Copyright © 2018 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Wolfspeed™ and the Wolfspeed logo are trademarks of Cree, Inc.

Rev. 02, 2018-05-01 www.wolfspeed.com