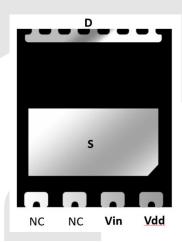
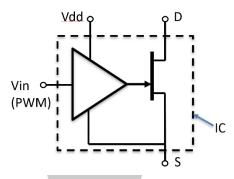


GPI65008DFIC

GaN Power IC in DFN5x6 Package

Preliminary Datasheet version: 2.0


Features


BV _{dss}	R _{dson}	l _{ds}	
650V	170 mΩ	7.5 A	

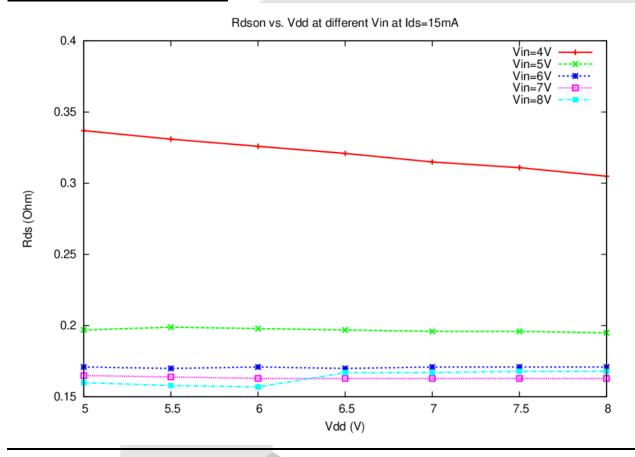
- Ultra-low Rps(on)
- Ultra-low quiescent leakage current extending batter life
- High dv/dt capability
- Extremely low input capacitance
- Fast switching
- Low Profile

Applications

- Switching Power Applications
- Power adapters and power delivery chargers

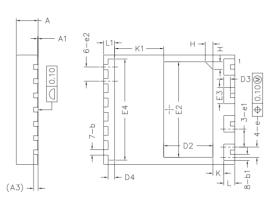
Description

These devices are power IC based on 650 V Power GaN HEMTs using proprietary E-mode GaN on silicon technology. The gate driver is integrated with the main power transistor resulting in fast switching, high system power density and low cost.


Device Characteristics

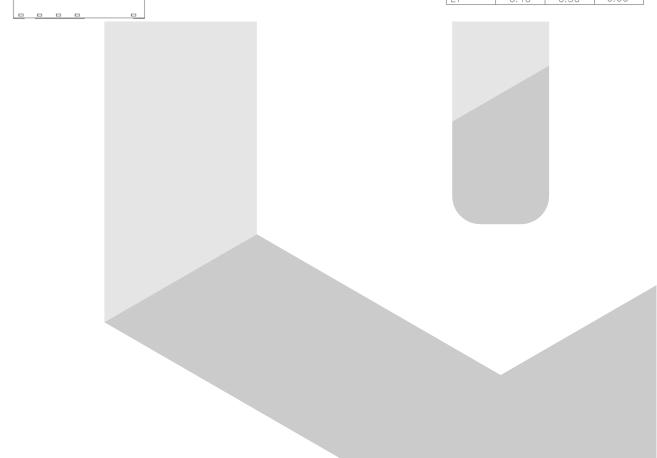
Basic Parameters				Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	BV _{dss}	Drain-Source breakdown voltage	V _{gs} =0V I _d =10uA		650		V
2	R _{dson}	Static drain-source on resistance, $T_C = 25^{\circ}C$	V _{gs} =6V I _d =1.8A	165	170	190	mΩ
3	Vdd	Drive supply voltage		5	6.5	8	
4	Vin	PWM input pin voltage		5	6.5	8	
5	Iddq	Drive supply (Vdd) quiescent leakage current	Vdd=6.5V			0.1	mA
Switching Performance			Test data				
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{d(on)}	Turn-on delay time	V _{ds} =350V		15		ns
2	t _r	Rise time	I _d =2.5A		10		ns
3	t _{d(off)}	Turn-off delay time	Vin=5V		10		ns
4	t _f	Fall time	V _{dd} =6.5V		10		ns

Electrical Performance



GaNPower International Inc.

WWW. IGANPOWER.COM 230 -3410 LOUGHEED HWY VANCOUVER, BC, V5M 2A4 CANADA


Package Information

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.00	0.02	0.05			
А3	0.203REF					
b	0.20	0.30				
b1	0.225	0.275	0.325			
D	5.90	6.00	6.10			
E	4.90	5.00	5.10			
D2	2.15	2.25	2.35			
E2	4.27	4.37	4.47			
D3	0.20	0.30	0.40			
E3	0.65	0.75	0.85			
D4	0.20	0.30	0.40			
E4	4.525	4.625	4.725			
е	0.375	0.475	0.575			
e1	0.725	0.825	0.925			
e2	0.55	0.65	0.75			
Н	0.35REF					
K	0.35	0.50	0.65			
K1	2.10	2.25	2.40			
L	0.40	0.50	0.60			
L1	0.40	0.50	0.60			

GaN HEMT Frequently Asked Questions

1 Q: Can we do pin to pin switch for silicon MOSFET or IGBT?	
A: The short answer is no. GaN HEMT power devices are far superior than the best silico	
devices such as super junction MOSFETs. However, due to different requirements of gat	e
driving voltage and extremely high dv/dt slew rate, special drivers and optimized PCB layout	S
are recommended to minimize the impact from circuit parasitics. Some packaging forms suc	h
as GaNPower's DFN packaged devices offer both sense and force for the source terminal. Also),
for traditional TO220 packages, please be advised that the pins are arranged as Gate – Source	e
-Drain, and the thermal pad is connected to the source instead of drain.	
2 Q: Are GaN power devices reliable?	
A: GaN power HEMTs have been tested by GaNPower and many other vendors, users an	d
testing facilities to be as reliable (if not better than) silicon counterparts.	
3 Q: How do GaN power devices compare with SiC?	
A: Currently GaN power HEMT devices are most suitable for low to medium voltage (≤1200\	')
and power (<20KW) applications. GaN is the ideal choice for high frequency applications. Si	С
devices are better choice for high voltage and high-power applications (>20KW).	
4 Q: Do we need to parallel an FRD for applications such as inverters?	
A: GaN devices are different from silicon MOSFET or IGBT in that they have no inherent Pl	N
junction diodes that cause reverse recovery issue. User do not need to parallel an FRD for th	e
purpose of suppressing the body diode reverse recovery effect, since GaN HEMT can operat	e
in both first and third quadrants. However, care should be taken for the dead time power los	S
since the Vsd voltage of GaN HEMT is usually close to 2V. This is especially true when a negative	e
gate voltage is applied.	
5 Q: Can we parallel GaN HEMT devices?	
A: Yes, GaN HEMT is ideal for paralleling, due to positive temperature coefficient of Rdson	
and slightly positive temperature coefficient of threshold voltage.	