

ACPL-267xL, ACPL-268KL, ACPL-560xL, ACPL-563xL, ACPL-665xL, and 5962-08242¹ Hermetically Sealed, 3.3V High-Speed, **High CMR, Logic Gate Optocouplers**

Description

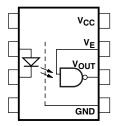
The Broadcom® ACPL-267xL, ACPL-268KL, ACPL-560xL, ACPL-563xL, ACPL-665xL, and 5962-08242 units are single, dual, and quad channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either standard commercial product or with full MIL-PRF-38534 Class Level H or K testing or from DLA Standard Microcircuit Drawing (SMD) 5962-08242. All devices are manufactured and tested on a MIL-PRF-38534 certified line and are included in the DLA Qualified Manufacturers List QML-38534 for Hybrid Microcircuits.

CAUTION

It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Features

- Low power consumption
- 3.3V supply voltages
- Dual marked with device part number and DLA Standard Microcircuit Drawing (SMD)
- Manufactured and tested on a MIL-PRF-38534 Certified Line
- QML-38534, Class H and K
- Four hermetically sealed package configurations
- Performance guaranteed over full military temperature range: -55°C to +125°C
- High speed: 10 Mbd typical
- CMR: >10,000 V/µs typical
- 1500 Vdc withstand test voltage
- TTL circuit compatibility
- HCPL-260L/060L/263L/063L function compatibility


Applications

- Military and aerospace
- High reliability systems
- Transportation, medical, and life critical systems
- Line receiver
- Voltage level shifting
- Isolated input line receiver
- Isolated output line driver
- Logic ground isolation
- Harsh industrial environments
- Isolation for computer, communication, and test equipment systems

^{1.} See Selection Guide - Package Styles and Lead Configuration Options for available extensions.

Functional Diagram

Multiple channel devices available.

NOTE: An external 0.01-μF to 0.1-μF bypass capacitor must be connected as close as possible between

pin V_{CC} and GND.

Truth Tables

(Positive Logic)

Multichannel Devices

Input	Output
On (H)	L
Off (L)	Н

Single-Channel DIP

Input	Enable	Output
On (H)	Н	L
Off (L)	Н	Н
On (H)	L	Н
Off (L)	L	Н

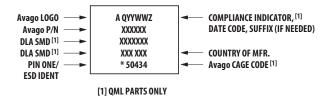
Each channel contains a GaAsP light emitting diode that is optically coupled to an integrated high-speed photon detector. The output of the detector is an open collector Schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of 1000 V/µs. Package styles for these parts are 8- and 16-pin DIP through hole (case outlines P and E respectively), and 16-pin surface mount DIP flat pack (case outline F). Devices may be purchased with a variety of lead bend and plating options. See Selection Guide – Package Styles and Lead Configuration Options for details. Standard Microcircuit Drawing (SMD) parts are available for each package and lead style.

Because the same electrical die (emitters and detectors) are used for each channel of each device listed in this data sheet, absolute maximum ratings, recommended operating conditions, electrical specifications, and performance characteristics shown in the figures are identical for all parts. Occasional exceptions exist due to package variations and limitations, and are as noted. Additionally, the same package assembly processes and materials are used in all devices.

Selection Guide – Package Styles and Lead Configuration Options

Package	16-Pin DIP	8-Pin DIP	8-Pin DIP	16-Pin Flat Pack
Lead Style	Through Hole	Through Hole	Through Hole	Unformed leads
Channels	2	1	2	4
Common Channel Wiring	VCC, GND	None	VCC, GND	VCC, GND
Withstand Test Voltage	1500 Vdc	1500 Vdc	1500 Vdc	1500 Vdc
Part Number and Options		·	·	,
Standard Commercial	ACPL-2670L	ACPL-5600L	ACPL-5630L	ACPL-6650L
MIL-PRF-38534, Class H	ACPL-2672L	ACPL-5601L	ACPL-5631L	ACPL-6651L
MIL-PRF-38534, Class K	ACPL-268KL	ACPL-560KL	ACPL-563KL	ACPL-665KL
Standard Lead Finish ^a	Gold Plate	Gold Plate	Gold Plate	Gold Plate
Solder Dipped ^b	Option -200	Option -200	Option -200	
Butt Cut/Gold Plate ^a	Option -100	Option -100	Option -100	
Gull Wing/Soldered ^b	Option -300	Option -300	Option -300	
Class H SMD Part Number	, , , , , , , , , , , , , , , , , , ,	1	,	1
Prescript for all below	5962-	5962-	5962-	
Gold Plate ^a	0824203HEC	0824201HPC	0824202HPC	
Solder Dipped ^b	0824203HEA	0824201HPA	0824202HPA	
Butt Cut/Gold Plate ^a	0824203HUC	0824201HYC	0824202HYC	
Butt Cut/Soldered ^b	0824203HUA	0824201HYA	0824202HYA	
Gull Wing/Soldered ^b	0824203HTA	0824201HXA	0824202HXA	
Class K SMD Part Number				
Prescript for all below	5962-	5962-	5962-	
Gold Plate ^a	0824203KEC	0824201KPC	0824202KPC	
Solder Dipped ^b	0824203KEA	0824201KPA	0824202KPA	
Butt Cut/Gold Plate ^a	0824203KUC	0824201KYC	0824202KYC	
Butt Cut/Soldered ^b	0824203KUA	0824201KYA	0824202KYA	
Gull Wing/Soldered ^b	0824203KTA	0824201KXA	0824202KXA	

a. Gold Plate lead finish: Maximum gold thickness of leads is <100 micro inches. Typical is 60 to 90 micro inches.

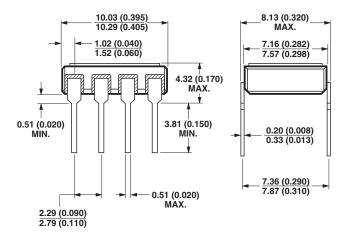

b. Solder lead finish: Sn63/Pb37.

Functional Diagrams

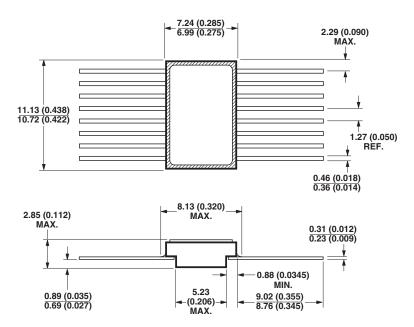
16-Pin DIP	8-Pin DIP	8-Pin DIP	16-Pin Flat Pack
Through Hole	Through Hole	Through Hole	Unformed Leads
2 Channels	1 Channel	2 Channels	4 Channels
1 16 2 Vcc 15 3 Vcc 15 3 Vcc 15 4 14 4 13 5 Vo2 12 6 11 7 GND 10 8 9	1	1 V _{CC} 8 2 V ₀₁ 7 3 V ₀₂ 6 4 GND 5	16 2 V _{CC} 15 3 V _{CC} 14 4 V _{O1} 13 5 V _{O2} 12 6 V _{O4} 11 7 GND 9


NOTE: All DIP and flat pack devices have common V_{CC} and ground. Single-channel DIP has an enable pin 7.

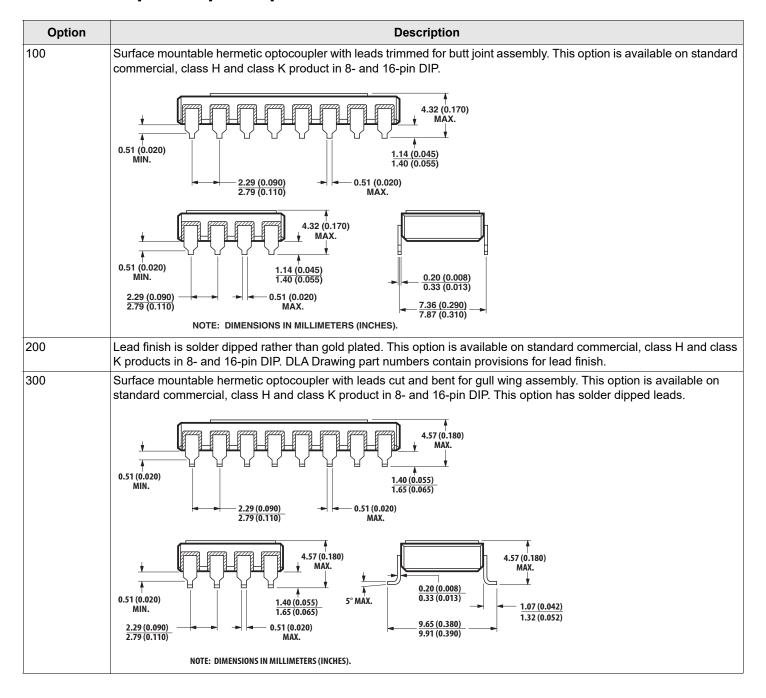
Device Marking


Outline Drawings

16-Pin DIP Through Hole, 2 Channels


NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

8-Pin DIP Through Hole, 1 and 2 Channels

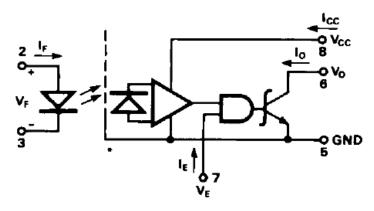

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

16-Pin Flat Pack, 4 Channels

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

Hermetic Optocoupler Options

Absolute Maximum Ratings


No derating required up to +125°C.

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	T _S	-65	+150	°C
Operating Temperature	T _A	-55	+125	°C
Case Temperature	T _C	_	+170	°C
Junction Temperature	T _J	_	+175	°C
Lead Solder Temperature		_	260 for 10 sec	°C
Peak Forward Input Current (each channel, ≤1 ms duration)	I _{F(PEAK)}	_	40	mA
Average Input Forward Current (each channel)	I _{F(AVG)}	_	20	mA
Input Power Dissipation (each channel)		_	35	mW
Reverse Input Voltage (each channel)	V_{R}	_	5	V
Supply Voltage (1 minute maximum)	V _{CC}	_	7.0	V
Output Current (each channel)	I _O	_	25	mA
Output Voltage (each channel)	Vo	_	7	V
Output Power Dissipation (each channel)	Po	_	40	mW
Package Power Dissipation (each channel)	P_{D}	_	200	mW

Single-Channel Product Only

Parameter	Symbol	Min.	Max.	Unit
Enable Input Voltage	V _E		3.6	V

8-Pin Ceramic DIP Single-Channel Schematic

NOTE: Note enable pin 7.

AV02-1327EN Broadcom

ESD Classification

MIL-PRF-38534 and MIL-STD-883, Method 3015

ACPL-5600L/01L/0KL, 5962-0824201	▲B, Class 1B
ACPL-5630L/31L/3KL, ACPL-6650L/51L/5KL, 5962-0824202	▲▲A, Class 3A
ACPL-2670L/72L/268KL, 5962-0824203	▲▲, Class 2

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Input Current, Low Level, Each Channel	I _{FL}	0	250	μΑ
Input Current, High Level, Each Channel	I _{FH}	10	20	mA
Supply Voltage, Output	V _{CC}	3.0	3.6	V
Fan Out (TTL Load) Each Channel	N	_	6	

Single-Channel Product Only

Parameter	Symbol	Min.	Max.	Unit
High-Level Enable Voltage	V _{EH}	2.0	V _{CC}	V
Low-Level Enable Voltage	V _{EL}	0	0.8	V

Electrical Characteristics

 $T_A = -55$ °C to +125°C, unless otherwise specified.

Parameter Syn				Group A ^a	Limits					
		Symbol	Test Conditions	Subgroups	Min.	Typ.b	Max.	Unit	Fig.	Note
High-Level Output Current		I _{OH}	$V_{CC} = 3.3V, V_{O} = 3.3V,$ $I_{F} = 250 \mu A$	1, 2, 3	_	6	250	μΑ	1	С
Low-Level Output Voltage		V _{OL}	V_{CC} = 3.3V, I_F = 10 mA, I_{OL} (Sinking) = 10 mA	1, 2, 3	_	0.3	0.6	V	2	c, d
Current Transfer Ratio		h _F CTR	$V_O = 0.6V$, $I_F = 10 \text{ mA}$, $V_{CC} = 3.3V$	1, 2, 3	100	_	_	%		С
Logic High Supply Current	Single Channel	I _{CCH}	$V_{CC} = 3.3V, I_F = 0 \text{ mA}$	1, 2, 3	_	5	11	mA		С
	Dual Channel		$V_{CC} = 3.3V$, $I_{F1} = I_{F2} = 0$ mA		_	10	22	mA		
	Quad Channel		$V_{CC} = 3.3V$, $I_{F1} = I_{F2} = I_{F3} = I_{F4} = 0 \text{ mA}$		_	17	44	mA		

				Group A ^a		Limits				
Parameter		Symbol	Test Conditions	Subgroups	Min.	Typ.b	Max.	Unit	Fig.	Note
Logic Low Supply	Single Channel	I _{CCL}	V_{CC} = 3.3V, I_F = 20 mA	1, 2, 3	_	6	15	mA		С
Current	Dual Channel		$V_{CC} = 3.3V$, $I_{F1} = I_{F2} = 20 \text{ mA}$		_	12	30	mA		
	Quad Channel		$V_{CC} = 3.3 \text{ V},$ $I_{F1} = I_{F2} = I_{F3} = I_{F4} = 20 \text{ mA}$		_	22	60	mA		
Input Forw	ard Voltage	V _F	I _F = 20 mA	1, 2		1.55	1.75	V	3	С
				3	_	_	1.85			
Input Reve Breakdowr		BV _R	I _R = 10 μA	1, 2, 3	5	_	_	V		С
Input-Outp Current	ut Leakage	I _{I-O}	RH ≤ 65%, T _A = 25°C, t = 5s, V _{I-O} = 1500 Vdc	1	_	_	1.0	μA		e, f
Capacitano Input/Outp	ce Between ut	C _{I-O}	f = 1 MHz, T _C = 25°C	4	_	1.0	4.0	pF		c, g, j
	n Delay Time	t _{PLH}	$V_{CC} = 3.3V, R_L = 510\Omega,$	9	_	43	100	ns	4, 5, 6	c, h
to High Ou	tput Level		$C_L = 50 \text{ pF}, I_F = 13 \text{ mA}$	10, 11	_	_	140			
	n Delay Time	t _{PHL}	_	9	_	54	100	ns		
to Low Out	put Level			10, 11	_	_	120			
Output Ris	e Time	t_{LH}	$R_L = 510\Omega, C_L = 50 pF,$	9, 10, 11	_	20	90	ns		С
Output Fall	Time	t _{HL}	I _F = 13 mA		_	8	40			
	lode Transient t High Output	CM _H	V_{CM} = 50V (PEAK), V_{CC} = 3.3V, V_{O} (min.) = 2V, R_{L} = 510 Ω , I_{F} = 0 mA	9, 10, 11	1000	>10000	_	V/µs	7	c, i, j
	lode Transient t Low Output	CM _L	$V_{CM} = 50V \text{ (PEAK)},$ $V_{CC} = 3.3V,$ $V_{O} \text{ (max.)} = 0.8V,$ $R_{L} = 510\Omega, I_{F} = 10 \text{ mA}$	9, 10, 11	1000	>10000	_	V/µs	7	c, i, j

- a. Standard commercial parts receive 100% testing at 25°C (Subgroups 1 and 9). Class H and K parts receive 100% testing at 25°C, 125°C, and –55°C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
- b. All typical values are at V_{CC} = 3.3V, T_A = 25°C.
- c. Each channel.
- d. It is essential that a bypass capacitor (0.01 μF to 0.1 μF , ceramic) be connected as close as possible from pin V_{CC} to ground.
- e. All devices are considered two-terminal devices; I_{I-O} is measured between all input leads or terminals shorted together and all output leads or terminals shorted together.
- f. This is a momentary withstand test, not an operating condition.
- g. Measured between each input pair shorted together and all output connections for that channel shorted together.
- h. t_{PHL} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.5V point on the leading edge of the output pulse. The t_{PLH} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.
- i. CM_L is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O < 0.8V$). CM_H is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ($V_O > 2.0V$).
- j. Parameters are tested as part of device initial characterization and after design and process changes. Parameters are guaranteed to limits specified for all lots not specifically tested.

Single-Channel Product Only

			Group A ^a	Limits					
Parameter	Symbol	Test Conditions	Subgroups	Min.	Typ. ^b	Max.	Unit	Fig.	Note
Low-Level Enable Current	I _{EL}	$V_{CC} = 3.3V, V_{E} = 0.5V$	1, 2, 3	-2.0	-0.54	_	mA		
High-Level Enable Voltage	V _{EH}		1, 2, 3	2.0	_		V		С
Low-Level Enable Voltage	V _{EL}		1, 2, 3	_		0.8	V		

- a. Standard commercial parts receive 100% testing at 25°C (Subgroups 1 and 9). Class H and K parts receive 100% testing at 25°C, 125°C, and -55°C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
- b. All typical values are at V_{CC} = 3.3V, T_A = 25°C.
- c. No external pull-up is required for a high logic state on the enable input.

Typical Characteristics

 $T_A = 25$ °C, $V_{CC} = 3.3$ V.

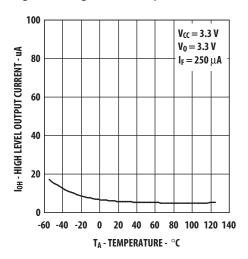
Parameter	Sym.	Тур.	Unit	Test Conditions	Fig.	Note
Input Capacitance	C _{IN}	60	pF	V _F = 0V, f = 1 MHz		а
Input Diode Temperature Coefficient	ΔV_{F}	-1.5	mV/°C	I _F = 20 mA		а
	ΔT_A					
Resistance (Input-Output)	R _{I-O}	10 ¹²	Ω	V _{I-O} = 500V		b

- a. Each channel.
- b. All devices are considered two-terminal devices; I_{I-O} is measured between all input leads or terminals shorted together and all output leads or terminals shorted together.

Single-Channel Product Only

Parameter	Sym.	Тур.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time of Enable from V_{EH} to V_{EL}	t _{ELH}	32	ns	$R_L = 510\Omega$, $C_L = 50$ pF, $I_F = 13$ mA, $V_{EH} = 3V$,	8, 9	a, b
Propagation Delay Time of Enable from V_{EL} to V_{EH}	t _{EHL}	28	ns	V _{EL} = 0V		a, c

- a. Each channel.
- b. The t_{ELH} enable propagation delay is measured from the 1.5V point on the trailing edge of the enable input pulse to the 1.5V point on the trailing edge of the output pulse.
- c. The t_{EHL} enable propagation delay is measured from the 1.5V point on the leading edge of the enable input pulse to the 1.5V point on the leading edge of the output pulse.


Dual and Quad Channel Product Only

Parameter	Sym.	Тур.	Unit	Test Conditions	Fig.	Note
Input-Input Leakage Current	I _{I-I}	0.5	nA	Relative Humidity ≤ 65%, V _{I-I} = 500V, t = 5s		а
Resistance (Input-Input)	R _{I-I}	10 ¹²	Ω	V _{I-I} = 500V		а
Capacitance (Input-Input)	C _{I-I}	0.55	pF	f = 1 MHz		а

a. Measured between adjacent input pairs shorted together for each multichannel device.

AV02-1327EN Broadcom

Figure 1: High-Level Output Current vs. Temperature

Figure 3: Input Diode Forward Characteristics

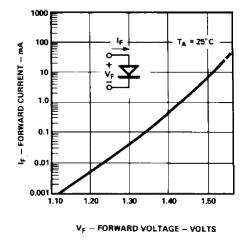


Figure 2: Input-Output Characteristics

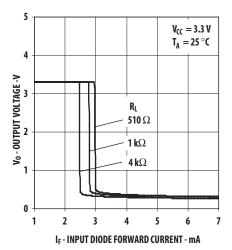
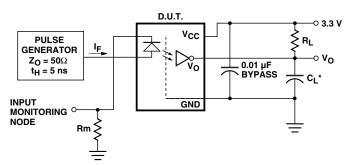



Figure 4: Test Circuit for t_{PHL} and t_{PLH}

 * C_LINCLUDES PROBE AND STRAY WIRING CAPACITANCE.

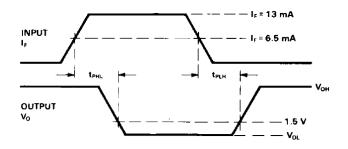


Figure 5: Propagation Delay, t_{PHL} and t_{PLH} vs. Pulse Input Current, I_{FH}

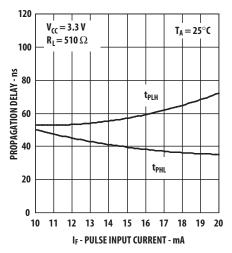
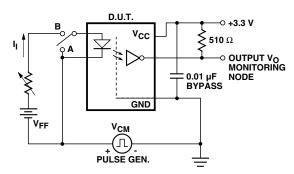



Figure 7: Test Circuit for Common Mode Transient Immunity and Typical Waveforms

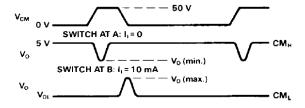


Figure 6: Propagation Delay vs. Temperature

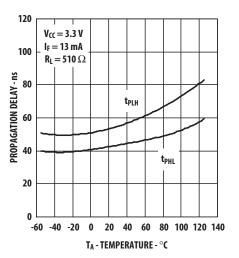
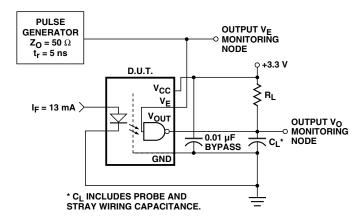



Figure 8: Test Circuit for t_{EHL} and t_{ELH}

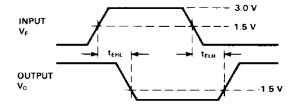


Figure 9: Enable Propagation Delay vs. Temperature

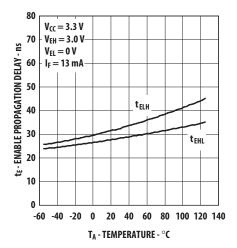
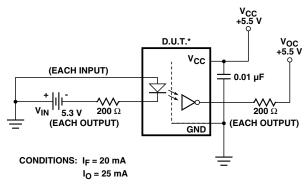



Figure 10: Operating Circuit for Burn-In and Steady State Life Tests

T_A = +125 °C

* ALL CHANNELS TESTED SIMULTANEOUSLY.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2005-2018 by Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

