

LXM1618-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

DESCRIPTION

The LXM1618-05-6x is a Single Output 6W Direct Drive™ CCFL (Cold range dimming, amplitude control results Cathode Fluorescent Lamp) Inverter in lower ripple on the input supply and Module specifically designed for driving reduced LCD backlight lamps. It is ideal for generation. Many STN type panels are driving typical 12.1" to 15" panels.

The maximum output current is amplitude dimming. externally programmable over a range of 5 to 8A in 1mA steps to allow the inverter to from the system battery or AC adapter properly match to a wide array of LCD panel lamp current specifications. The modules are include a dimming input that permits brightness control from either a available (LXM1618-12-6x). DC voltage source, a PWM signal or an external potentiometer.

LXM1618 modules unlike LXM1617 series does not provide wide range 'burst' mode dimming, rather the controller's high level of integration, dimming is provided by amplitude control of the output current waveform, this limits are stable fixed-frequency operation, the potential dim range to typically less secondary-side strike-voltage regulation than 5:1.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected By U.S. Patents: 5,923,129; 5,930,121; 6,198,234; Patents Pending

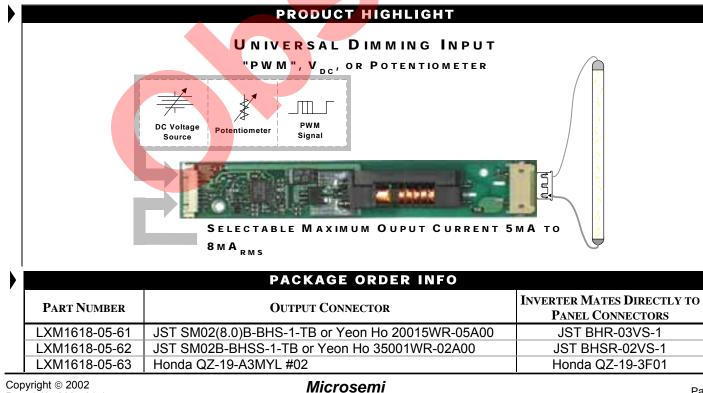
For applications not requiring wide potential transient noise particularly well suited for current

The modules convert a DC voltage directly to high frequency, high-voltage waves required to ignite and operate CCFL lamps. A 12V input inverter is also

The inverter's design is based on Microsemi's new LX1689 backlight the controller, which provides a number of cost and performance advantages due to

Other benefits of this new topology and both open and shorted lamp protection with fault timeout.

KEY FEATURES


- Externally Programmable Maximum Output Current
- Easy to Use Brightness Control
- **Output Short-Circuit** Protection and Automatic Strike-Voltage Regulation and Timeout
- Analog Current Amplitude **Dimming Method**
- **Fixed Frequency Operation**
- Rated From -20 to 70°C
- UL60950 E175910

APPLICATIONS

- Notebook Computers
- Portable Instrumentation
- Desktop Displays
- Industrial Display Controls

BENEFITS

- Compact, Low Profile Design .
- Mates to Wide Variety of
- LCD Panels
- Output Open Circuit Voltage Regulation Minimizes Corona Discharge For High Reliability

Integrated Products 11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570

Page 1

IM1618-05-6X

LXM1618-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Input Signal Voltage (V _{IN1})	-0.3V to 6.5V
Input Power	
Output Voltage, no load	Internally Limited to 1800V _{RMS}
Output Current	
Output Power	
Input Signal Voltage (SLEEP Input)	-0.3V to 5.5V
Input Signal Voltage (BRITE)	-0.3V to 5.5V
Ambient Operating Temperature, zero airflow	20°C to 70°C
Storage Temperature Range	

Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

RECOMMENDED OPERATING CONDITIONS (R.C.)

This module has been designed to operate over a wide range of input and output conditions. However, best efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, will not function optimally.

Parameter	Symbol	Recomme	nded Operating	Units	
i arameter	Gymbol	Min	R.C.	Max	Onits
Input Supply Voltage Range (Fully Regulated Lamp Current)	V _{IN1}	4.75	5	5.25	V
Input Supply Voltage Range (Functional)		4.5	5	5.5	
Output Power	Po			6.0	W
Linear BRITE Control Input Voltage Range	V _{BRT ADJ}	0.65		2.0	V
Lamp Operating Voltage	VLAMP	545	640	735*	V _{RMS}
Lamp Current (Full Brightness)	OLAMP	5		8	mA _{RMS}
Operating Ambient Temperature Range	T _A	-20		70	°C

¹ The minimum V_{BRT ADJ} voltage depends on the panel characteristics, depending on the panel it can vary from 0.65V to 0.9V

* Total output power must not exceed 6W. Higher voltage lamps may require maximum output current to be set lower than 8mARMS

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the recommended operating condition and ambient temperature of 25°C except where otherwise noted.

Parameter	Symbol Test Conditions		LXM1618-05-6x			Units
Farameter	Symbol	Test conditions	Min	Тур	Max	Units
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}, \overline{SLEEP} \ge 2.0V, V_{IN1} = 5V_{DC}$ $I_{SET1} = Ground, I_{SET2} = Ground$	4.4	5	5.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, SLEEP $\ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Open$	5.4	6	6.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Ground$	6.4	7	7.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Open$	7.4	8	8.6	mA _{RMS}
Min. Average Lamp Current	I _{L(MIN)}	$V_{BRT_{ADJ}}$ =0.65 V_{DC} , SLEEP \geq 2.0V, V_{IN1} = 5 V_{DC} I _{SET1} = I _{SET2} = Ground		1.5 *		mA _{RMS}
Lamp Start Voltage	V _{LS}	$-20^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C}, \text{ V}_{\text{IN1}} > 4.5\text{V}_{\text{DC}}$	1400	1650		V _{RMS}
Operating Frequency	fo	$V_{BRT_{ADJ}} = 2.5V_{DC}, \overline{SLEEP} \ge 2.0V, V_{IN1} = 5V$	57	60	63	kHz

* The inverter is capable of a lower output current than may be recommended by the panel manufacturer. It is the user's responsibility to set the minimum brightness (BRITE) input at or above the panel specification for minimum current.

LXM1618-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS (CONTINUED) Unless otherwise specified, the following specifications apply over the recommended operating condition and ambient temperature of 25°C except where otherwise noted. LXM1618-05-6x Parameter Symbol **Test Conditions** Units Max Min Тур **BRITE INPUT** $V_{BRT ADJ} = 0V_{DC}$ -300 μA_{DC} Input Current IBRT μA_{DC} $V_{BRT ADJ} = 3V_{DC}$ 50 I_{O(LAMP)} = Maximum Lamp Current V_{BRT_ADJ} Minimum Input for Max. Lamp Current 2.0 2.05 V_{DC} Minimum Input for Min. Lamp Current $V_{\text{BRT_ADJ}}$ I_{O(LAMP)} = Minimum Lamp Current 0.65* V_{DC} SLEEP INPUT $V_{\overline{\text{SLEEP}}}$ **RUN Mode** 2.0 V_{IN1} V_{DC} SLEEP Mode $V_{\overline{\text{SLEEP}}}$ V_{DC} -0.3 0.8 SET_{1,2} INPUT SET_{1.2} Low Threshold V_{L} 0.4 V $V_{SET} \le 0.4V$ -300 Input Current μA ISET POWER CHARACTERISTICS Sleep Current $V_{IN1} = 5V_{DC}, \overline{SLEEP} \le 0.8V$ 0.0 5 20 μA_{DC} I_{IN(MIN)} V_{IN1} = 5V_{DC}, SLEEP ≥ 2.0V, I_{SET1} = Open Run Current 1090 $\mathsf{mA}_{\mathsf{DC}}$ I_{RUN} I_{SET2} = Ground, V_{LAMP} = 640 V_{RMS} $V_{IN1} = 5V_{DC}, \ \overline{SLEEP} \ge 2.0V, I_{SET1} = Open$ Efficiency 85 % η $I_{SET2} = Ground, V_{LAMP} = 640V_{RMS}$

* The Inverter is capable of a lower output current than may be recommended by the panel manufacturer. It is the user's responsibility to set the minimum brightness (BRITE) input at or above the panel specification for minimum current. This is likely greater than the 0.65V minimum input.

FUNCTIONAL PIN DESCRIPTION						
CONN	PIN	DESCRIPTION				
CN1 (Mole>	x 53261-0890)	Mates with 51021-0800 housing, 50079-8100 pins. Mates with LX9501 input cable assembly				
CN1-1	V _{IN1}	Main Input Power Supply (4.75V \leq V _{IN1} \leq 5.25V)				
CN1-2	V IN I					
CN1-3	GND	Power Supply Return				
CN1-4	GILD					
CN1-5	SLE EP	ON/OFF Control. (0V < SLEEP < 0.8 = OFF, SLEEP >= 2.0V = ON				
CN1-6	BRITE	Brightness Control (0.65V to 2.0V _{DC}). 2.0V _{DC} gives maximum lamp current.				
CN1-7	SET ₁	SET ₁ MSB Connecting this pin to ground decreases the output current 2 mA (see Table 1)				
CN1-8	SET ₂	SET ₂ LSB Connecting this pin to ground decreases the output current 1 mA (see Table 1)				
	(M1618-05-61 (8.0)B-BHS-1-	and -62 TB Yeon Ho 20015WR-05A00 or SM02B-BHSS-1-TB Yeon Ho 35001WR-02A00)				
CN2-1	V _{HI}	High voltage connection to high Side of lamp. Connect to lamp terminal with shortest lead length. DO NOT connect to Ground.				
CN2-2	V _{LO}	Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to Ground				
CN2 for LXM1618-05-63 (Honda QZ-19-A3MYL#02)						
CN2-3	V _{HI}	High voltage connection to high side of lamp. Connect to lamp terminal with shortest lead length. DO NOT connect to Ground.				
CN2-1	V _{LO}	Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to Ground				

ELECTRICALS

LXM1618-05-6x

5V 6W CCFL Programmable Inverter Module

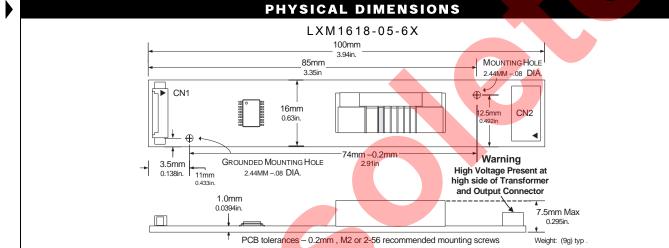
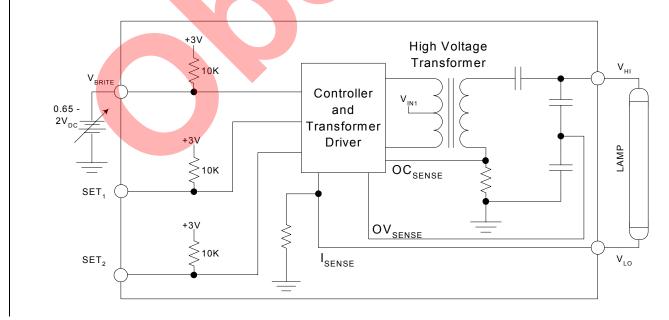

PRODUCTION DATASHEET

TABLE 1 SETTING OUTPUT CURRENT

OUTPUT CURRENT SETTINGS

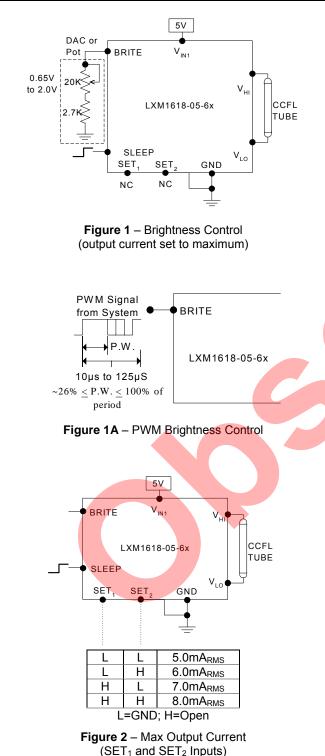

SET₁ (Pin 7)	SET ₂ (Pin 8)	Nominal Output Current
Open*	Open*	8.0mA
Open*	Ground	7.0mA
Ground	Open*	6.0mA
Ground	Ground	5.0mA

* If driven by a logic signal it should be open collector or open drain only, not a voltage source.

All dimensions are in millimeters, inches are reference only

SIMPLIFIED BLOCK DIAGRAM

PACKAGE DATA



LXM1618-05-6x

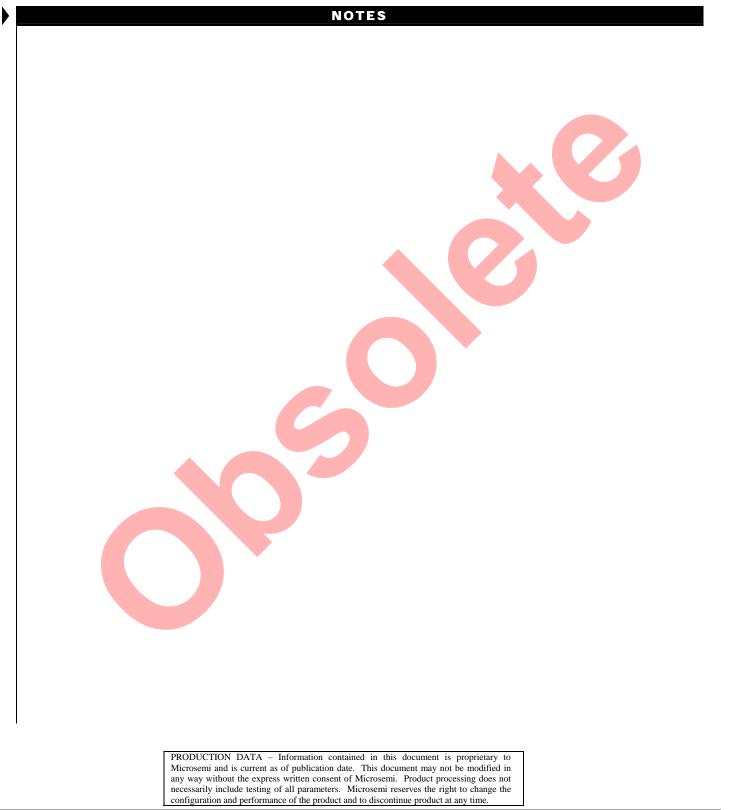
5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

TYPICAL APPLICATION

- The brightness control may be a voltage output DAC or other voltage source, a digital pot or 20K manual pot. The inverter contains an internal 10K pull-up to 3V to bias the pot add a 2.7K resistor to set the lower threshold voltage. A 3.3V Logic Level PWM signal from a micro-controller may also be used as shown in Figure 1A.
- If you need to turn the inverter ON/OFF remotely, connect to TTL logic signal to the SLEEP input.
- Connect V_{HI} to high voltage wire from the lamp. Connect V_{LO} to the low voltage wire (wire with thinner insulation). Never connect V_{LO} to circuit ground as this will defeat lamp current regulation. If both lamp wires have heavy high voltage insulation, connect the longest wire to V_{LO}. This wire is typically white.
- Use the SET₁ and SET₂ (see Figure 2) inputs to select the desired maximum output current. Using these two pins in combination allows the inverter to match a wide variety of panels from different manufactures. Generally the best lamp lifetime and efficiency correlates with driving the CCFL at the manufactures nominal current setting. However the SET₁ and SET₂ inputs allow the user the flexibility to adjust the current to the maximum allowable output current to increase panel brightness at the expense of some reduced lamp life.
- Although the SET pins are designed such that just leaving them open or grounding them is all that is needed to set the output current, they can also be actively set. Using a open collector or open drain logic signal will allow you to reduce the lamp current for situations where greater dim range is required, as an example in nighttime situations. In conjunction with a light sensor or other timer the panel could be set to higher brightness (maximum output current) for daytime illumination and lower brightness (minimum or typical output current) at nighttime. Since the dim ratio is a factor the peak output current, using this technique the effective dim ratio can be increased. Conversely the SET inputs could be used to overdrive the lamp temporarily to facilitate faster lamp warm up at initial lamp turn on. Of course any possible degradation on lamp life from such practices is the users responsibility as not all lamps are designed to be overdriven.
- The inverter has a built in fault timeout function. If the output is open (lamp disconnected or broken) or shorted the inverter will attempt to strike the lamp for several seconds. After about 2 to 4 seconds without success the inverter will shutdown. In order to restart the inverter it is necessary to toggle the sleep input or cycle the V_{IN1} input supply.

APPLICATION



LXM1618-05-6x

www.Microsemi.com

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

NOTES