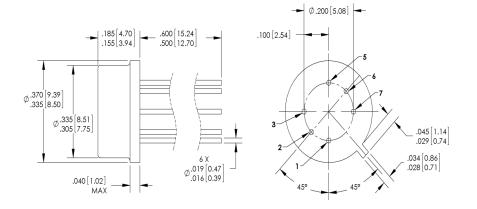
JAN/JANTX/JANTXV 4N22, 4N23, 4N24 [A]

Features:

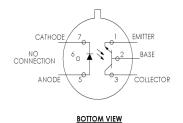
- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- JAN, JANTX and JANTXV devices processed to MIL-PRF-19500
- Patent No. 4124860

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.


The JAN / JANTX / JANTX V 4N22, 4N22A, 4N23, 4N23A, 4N24, and 4N24A devices are processed to MIL-PRF-19500/486. This series of 4N products are JEDEC registered, DSCC qualified.

Please contact your local representative for more information.


Form # 500-1080-001 Rev - 06/2019

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

DIMENSIONS ARE IN INCHES [MIM]

Pin #	Function	Pin #	Function
3	Collector	5	Anode
2	Base	6	Open
1	Emitter	7	Cathode

Rev J 08/2019 Page 1

General Note

© TT electronics plc

TT Electronics | OPTEK Technology
TT Electronics | OPTEK Technology
TT Electronics | OPTEK Technology
TO Electronics reserves the right to make changes in product specification without
notice or liability. All information is subject to TT Electronics' own data and is
considered accurate at time of going to print.

TT Electronics | OPTEK Technology
1645 Wallace Drive, Carrollton, TX 75006 | Ph: +1 972 323 2200
www.ttelectronics.com | sensors@ttelectronics.com

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range	-65°C to 150°C
Operating Temperature Range	-55°C to +125°C
Input-to-Output Isolation Voltage	± 1.00 kVDC ⁽¹⁾
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 seconds with soldering iron]	260°C ⁽²⁾
ESD Class	1C
Input Diode	
Forward DC Current (65°C or below)	40 mA
Reverse Voltage	2 V
Peak Forward Current (1 μs pulse width, 300 pps)	1 A
Power Dissipation	60 mW ⁽³⁾
Output Sensor:	
Continuous Collector Current	50 mA
Collector-Emitter Voltage	40 V
Collector-Base Voltage	45 V
Emitter-Base Voltage	4 V
Power Dissipation	300 mW ⁽⁴⁾

Notes:

- 1. Measured with input leads shorted together and output leads shorted together.
- RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- 3. Derate linearly 1.0 mW/° C above 65° C.
- 4. Derate linearly 3.0 mW/° C above 25° C.

Ordering Information						
Part Number	.,,(V _{CE} (Volts) Max	Processing MIL-PRF- 195000		
JAN4N22 or JAN4N22A						
JANTX4N22 or JANTX4N22A						
JANTXV4N22 or JANTXV4N22A						
JAN4N23 or JAN4N23A						
JANTX4N23 or JANTX4N23A	1	10 / 40	40	486		
JANTXV4N23 or JANTXV4N23A						
JAN4N24 or JAN4N24A						
JANTX4N24 or JANTX4N24A						
JANTXV4N24 or JANTXV4N24A						

Rev J 08/2019 Page 2

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS		
Input Diode								
V_{F}	Forward Voltage	0.80 1.00 0.70	- - -	1.50 1.70 1.30	V	$I_F = 10.0 \text{ mA}$ $I_F = 10.0 \text{ mA}, T_A = -55^{\circ} C^{(1)}$ $I_F = 10.0 \text{ mA}, T_A = +100^{\circ} C^{(1)}$		
I _R	Reverse Current	-	-	100	μΑ	V _R = 2.0 V		
Output Pl	hototransistor							
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	40	-	-	V	I _C = 1.0 mA, I _B = 0, I _F = 0		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	45	-	-	V	I _C = 100 μA, I _B = 0, I _F = 0		
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	7	-	-	V	I _E = 100 μA, I _C = 0, I _F = 0		
I _{C(OFF)}	Collector-Emitter Dark Current	-	-	100 100	nA μA	$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0$ $V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0, T_A = 100^{\circ}\text{C}$		
I _{CB(OFF)}	Collector-Base Dark Current	-	-	100	nA	$V_{CB} = 20 \text{ V}, I_E = 0, I_F = 0$		
Coupled								
	On-State Collector Current JAN / JANTX / JANTXV 4N22 [A]	0.15 2.50 1.00 1.00	- - -	- - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
I _{C(ON)}	JAN / JANTX / JANTXV 4N23 [A]	0.20 6.00 2.50 2.50	- - -	- - -	mA	$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
	JAN / JANTX / JANTXV 4N24 [A]	0.40 10.0 4.00 4.00	- - -	- - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
V _{CE(SAT)}	Collector-Emitter Saturation Voltage JAN / JANTX / JANTXV 4N22 [A] JAN / JANTX / JANTXV 4N23 [A] JAN / JANTX / JANTXV 4N24 [A]		- - -	0.30 0.30 0.30	V	I _F = 20 mA , I _C = 2.5 mA, I _B = 0 I _F = 20 mA , I _C = 5.0 mA, I _B = 0 I _F = 20 mA , I _C = 10.0 mA, I _B = 0		
H_FE	DC Current Gain	100	-	-	V	$V_{CE} = 5.0 \text{ V}$, $I_C = 10.0 \text{ mA}$, $I_F = 0 \text{ mA}$		
R _{IO}	Resistance (Input-to-Output)	10 ¹¹	-	-	Ω	$V_{10} = \pm 1.0 \text{ VDC}^{(3)}$		
		1						

Notes:

 C_{IO}

 T_R, T_F

1. Guaranteed but not tested.

Capacitance (Input-to-Output)

Output Rise and Fall Time

- 2. Sample tested, LTPD = 10.
- 3. Measured with input leads shorted together and output leads shorted together.

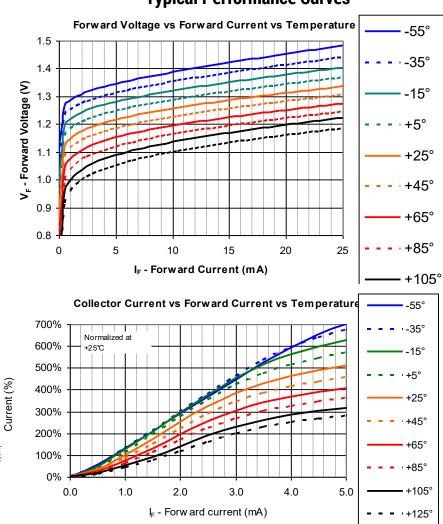
General Note

Rev J 08/2019 Page 3

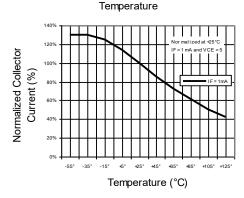
 V_{CC} = 10.0 V , I_F = 10.0 mA, R_L = 100 Ω

 $V_{I-O} = 0 V$, $f = 1.0 MHz^{(3)}$

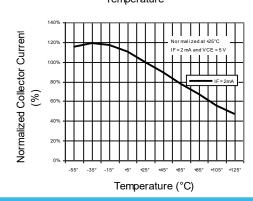
pF


5

20.0



Typical Performance Curves



Normalized Collector Current Vs

l_{C(ON)} - Normalized Collector

Normalized Collector Current Vs Temperature

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.