Features

- HIGH DENSITY PROGRAMMABLE LOGIC
- 4000 PLD Gates
- 48 I/O Pins, Two Dedicated Inputs
- 144 Registers
- High Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- NEW FEATURES
- 100\% IEEE 1149.1 Boundary Scan Testable
— ispJTAG ${ }^{\text {TM }}$ In-System Programmable via IEEE 1149.1 (JTAG) Test Access Port
- User Selectable 3.3V or 5V I/O Supports MixedVoltage Systems (Vccıo Pin)
- Open-Drain Output Option
- HIGH PERFORMANCE E²CMOS ${ }^{\circledR}$ TECHNOLOGY
- $\mathrm{fmax}=\mathbf{2 0 0} \mathrm{MHz}$ Maximum Operating Frequency
- tpd = 4.5 ns Propagation Delay
- TTL Compatible Inputs and Outputs
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100\% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- IN-SYSTEM PROGRAMMABLE
- Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality
- Reprogram Soldered Devices for Faster Prototyping
- OFFERS THE EASE OF USE AND FAST SYSTEM

SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS

- Complete Programmable Device Can Combine Glue Logic and Structured Designs
- Enhanced Pin Locking Capability
- Four Dedicated Clock Input Pins
- Synchronous and Asynchronous Clocks
- Programmable Output Slew Rate Control to Minimize Switching Noise
- Flexible Pin Placement
- Optimized Global Routing Pool Provides Global Interconnectivity
- ispDesignEXPERT ${ }^{\text {TM }}$ - LOGIC COMPILER AND COMPLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
- Superior Quality of Results
- Tightly Integrated with Leading CAE Vendor Tools
- Productivity Enhancing Timing Analyzer, Explore Tools, Timing Simulator and ispANALYZER ${ }^{\text {TM }}$
- PC and UNIX Platforms

Functional Block Diagram

Description

The ispLSI 1024EA is a High Density Programmable Logic Device containing 144 Registers, 48 Universal I/O pins, two Dedicated Input pins, four Dedicated Clock Input pins and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 1024EA features 5 V in-system diagnostic capabilities via IEEE 1149.1 Test Access Port. The ispLSI 1024EA device offers non-volatile reprogrammability of the logic, as well as the interconnects to provide truly reconfigurable systems. A functional superset of the ispLSI 1024 architecture, the ispLSI 1024EA device adds user selectable 3.3 V or 5 V I/O and open-drain output options.

The basic unit of logic on the ispLSI 1024EA device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1...D7 (Figure 1). There are a total of 24 GLBs in the ispLSI 1024EA device. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any other GLB on the device.

[^0]
Functional Block Diagram

Figure 1. ispLSI 1024EA Functional Block Diagram

The device also has 48 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, registered input, latched input, output or bi-directional I/O pin with 3 -state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA . Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise. By connecting the VCCIO pin to a common 5 V or 3.3 V power supply, I/O output levels can be matched to 5 V or 3.3 V -compatible voltages.

Eight GLBs, 16 I/O cells, dedicated inputs (if available) and one ORP are connected together to make a Megablock (Figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. Each ispLSI 1024EA device contains three Megablocks.

The GRP has, as its inputs, the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.

Clocks in the ispLSI 1024EA device are selected using the Clock Distribution Network. Four dedicated clock pins (Y0, Y1, Y2 and Y3) are brought into the distribution network, and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0 and IOCLK 1) are provided to route clocks to the GLBs and I/O cells. The Clock Distribution Network can also be driven from a special clock GLB (CO on the ispLSI 1024EA device). The logic of this GLB allows the user to create an internal clock from a combination of internal signals within the device.

Programmable Open-Drain Outputs

In addition to the standard output configuration, the outputs of the ispLSI 1024EA are individually programmable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a programmable fuse. The default configuration when the device is in bulk erased state is totem-pole configuration. The open-drain/totem-pole option is selectable through the ispDesignEXPERT software tools.

Boundary Scan

Figure 2. Boundary Scan Waveforms and Timing Specifications

Symbol	Parameter	Min	Max	Units
$\mathrm{t}_{\text {btcp }}$	TCK [BSCAN test] clock pulse width	100	-	ns
$\mathrm{t}_{\mathrm{b} \text { tch }}$	TCK [BSCAN test] pulse width high	50	-	ns
$\mathrm{t}_{\text {btcl }}$	TCK [BSCAN test] pulse width low	50	-	ns
$\mathrm{t}_{\text {btsu }}$	TCK [BSCAN test] setup time	20	-	ns
$\mathrm{t}_{\text {bth }}$	TCK [BSCAN test] hold time	25	-	ns
t_{ff}	TCK [BSCAN test] rise and fall time	50	-	$\mathrm{mV} / \mathrm{ns}$
$\mathrm{t}_{\text {btco }}$	TAP controller falling edge of clock to valid output	-	25	ns
$\mathrm{t}_{\text {btoz }}$	TAP controller falling edge of clock to data output disable	-	25	ns
$\mathrm{t}_{\text {btvo }}$	TAP controller falling edge of clock to data output enable	-	25	ns
$\mathrm{t}_{\text {btcpsu }}$	BSCAN test Capture register setup time	40	-	ns
$\mathrm{t}_{\text {btcph }}$	BSCAN test Capture register hold time	25	-	ns
$\mathrm{t}_{\text {btuco }}$	BSCAN test Update reg, falling edge of clock to valid output	-	50	ns
$\mathrm{t}_{\text {btuoz }}$	BSCAN test Update reg, falling edge of clock to output disable	-	50	ns
$\mathrm{t}_{\text {btuov }}$	BSCAN test Update reg, falling edge of clock to output enable	-	50	ns

Specifications ispLSI 1024EA

Absolute Maximum Ratings ${ }^{1}$

Supply Voltage $\mathrm{V}_{\mathrm{Cc}} \ldots . ~-~ 0.5 ~ t o ~+7.0 V ~$
Input Voltage Applied....................... -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Off-State Output Voltage Applied -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Storage Temperature 65 to $150^{\circ} \mathrm{C}$
Case Temp. with Power Applied \qquad
Max. Junction Temp. (T_{J}) with Power Applied ... $150^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC Recommended Operating Conditions

SYMBOL	PARAMETER		MIN.	MAX.	UNITS
VCC	Supply Voltage	Commercial $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75	5.25	V
VCCIO	Supply Voltage: Output Drivers	5 V	4.75	5.25	V
		3.3V	3.0	3.6	V
VIL	Input Low Voltage		0	0.8	V
VIH	Input High Voltage		2.0	$\mathrm{V}_{\mathrm{cc}}+1$	V

Table 2-0005/1024EA

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
\mathbf{C}_{1}	Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance (Commercial/Industrial)	8	pf	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN }}=2.0 \mathrm{~V}$
\mathbf{C}_{2}	Y0 Clock Capacitance	10	pf	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN }}=2.0 \mathrm{~V}$

Erase/Reprogram Specifications

PARAMETER	MINIMUM	MAXIMUM	UNITS
Erase/Reprogram Cycles	10000	-	Cycles

Switching Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Time 10\% to 90%	1.5 ns
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure 3
3-state levels are measured 0.5 V from steady-state active level.	Table 2-0003/1024EA

Output Load Conditions (see Figure 3)

TEST CONDITION		R1	R2	CL	
A		470Ω	390Ω	35 pF	
B	Active High	∞	390Ω	35 pF	
	Active Low	470Ω	390Ω	35 pF	
C	Active High to at $V_{\text {OH }}-0.5 \mathrm{~V}$	∞	390Ω	5 pF	
	Active Low to Z at $V_{\mathrm{OL}}+0.5 \mathrm{~V}$	470Ω	390Ω	5 pF	
	Table 2-0004/1024EA				

Figure 3. Test Load

${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes Test Fixture and Probe Capacitance.

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VOL	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCIO}}=3.0 \mathrm{~V}$	2.4	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CCIO}}=4.75 \mathrm{~V}$	2.4	-	-	V
IIL	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (Max.)	-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$\left(\mathrm{V}_{\text {CCIO }}-0.2\right) \mathrm{V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CCIO }}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CCIO }} \leq \mathrm{V}_{\text {IN }} \leq 5.25 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IIL-PU	I/O Active Pull-Up Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$	-	-	-200	$\mu \mathrm{A}$
IOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{V}_{\text {CCIO }}=5.0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$	-	-	-240	mA
ICC ${ }^{2,4,5}$	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ & \mathrm{f}_{\text {TOGGLE }}=1 \mathrm{MHz} \end{aligned}$	-	152	-	mA

1. One output at a time for a maximum duration of one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested.
2. Measured using eight 16 -bit counters.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. Unused inputs held at 0.0 V .
5. Maximum I Icc varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and the Thermal Management section of the Lattice Semiconductor Data Book CD-ROM to estimate maximum Icc.

External Timing Parameters

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST }{ }^{4} \\ & \text { COND. } \end{aligned}$	$\#^{2}$	DESCRIPTION ${ }^{1}$	-200		-125		-100		UNITS
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tpd1	A	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	-	4.5	-	7.5	-	10.0	ns
tpd2	A	2	Data Propagation Delay, Worst Case Path	-	6.0	-	10.0	-	12.5	ns
fmax (lnt.)	A	3	Clock Frequency with Internal Feedback ${ }^{3}$	200	-	125	-	100	-	MHz
fmax (Ext.)	-	4	Clock Frequency with External Feedback ($\frac{1}{\text { tsu2 }+ \text { tco1 }}$)	143	-	100	-	77	-	MHz
fmax (Tog.)	-	5	Clock Frequency, Max. Toggle ($\frac{1}{\mathrm{twh}+\mathrm{twl}}$)	250	-	167	-	125	-	MHz
tsu1	-	6	GLB Reg. Setup Time before Clock,4 PT Bypass	3.0	-	4.5	-	6.0	-	ns
tcol	A	7	GLB Reg. Clock to Output Delay, ORP Bypass	-	3.5	-	4.5	-	6.0	ns
th1	-	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0	-	0.0	-	0.0	-	ns
tsu2	-	9	GLB Reg. Setup Time before Clock	3.5	-	5.5	-	7.0	-	ns
tco2	-	10	GLB Reg. Clock to Output Delay	-	4.0	-	5.5	-	7.0	ns
th2	-	11	GLB Reg. Hold Time after Clock	0.0	-	0.0	-	0.0	-	ns
tr1	A	12	Ext. Reset Pin to Output Delay	-	5.5	-	10.0	-	13.5	ns
trw1	-	13	Ext. Reset Pulse Duration	3.5	-	5.0	-	6.5	-	ns
tptoeen	B	14	Input to Output Enable	-	7.0	-	12.0	-	15.0	ns
tptoedis	C	15	Input to Output Disable	-	7.0	-	12.0	-	15.0	ns
tgoeen	B	16	Global OE Output Enable	-	4.5	-	7.0	-	9.0	ns
tgoedis	C	17	Global OE Output Disable	-	4.5	-	7.0	-	9.0	ns
twh	-	18	External Synchronous Clock Pulse Duration, High	2.0	-	3.0	-	4.0	-	ns
twl	-	19	External Synchronous Clock Pulse Duration, Low	2.0	-	3.0	-	4.0	-	ns
tsu3	-	20	I/O Reg. Setup Time before Ext. Sync Clock (Y2, Y3)	3.0	-	3.0	-	3.5	-	ns
th3	-	21	I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3)	0.0	-	0.0	-	0.0	-	ns

1. Unless noted otherwise, all parameters use a GRP load of four GLBs, 20 PTXOR path, ORP and Y0 clock. Table 2-0030A/1024EA
2. Refer to Timing Model in this data sheet for further details.
3. Standard 16-bit counter using GRP feedback.
4. Reference Switching Test Conditions section.

Internal Timing Parameters ${ }^{1}$

PARAM.	\# ${ }^{2}$	DESCRIPTION	-200		-125		-100		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Inputs									
tiobp	22	I/O Register Bypass	-	0.3	-	0.3	-	0.4	ns
tiolat	23	I/O Latch Delay	-	4.0	-	4.0	-	4.0	ns
tiosu	24	I/O Register Setup Time before Clock	3.0	-	3.0	-	3.4	-	ns
tioh	25	I/O Register Hold Time after Clock	0.0	-	0.0	-	0.0	-	ns
tioco	26	I/O Register Clock to Out Delay	-	4.0	-	4.6	-	5.0	ns
tior	27	I/O Register Reset to Out Delay	-	4.0	-	4.6	-	5.0	ns
tdin	28	Dedicated Input Delay	-	1.1	-	1.9	-	2.2	ns
GRP									
tgrp1	29	GRP Delay, 1 GLB Load	-	1.3	-	1.7	-	2.1	ns
tgrp4	30	GRP Delay, 4 GLB Loads	-	1.5	-	1.9	-	2.3	ns
tgrp8	31	GRP Delay, 8 GLB Loads	-	1.7	-	2.1	-	2.5	ns
tgrp16	32	GRP Delay, 16 GLB Loads	-	2.1	-	2.5	-	2.9	ns
tgrp24	33	GRP Delay, 24 GLB Loads	-	2.5	-	2.9	-	3.3	ns
GLB									
t4ptbpc	34	4 ProductTerm Bypass Path Delay (Combinatorial)	-	1.7	-	3.4	-	4.9	ns
t4ptbpr	35	4 Product Term Bypass Path Delay (Registered)	-	1.8	-	3.1	-	3.8	ns
t1ptxor	36	1 ProductTerm/XOR Path Delay	-	1.9	-	3.6	-	4.3	ns
t20ptxor	37	20 Product Term/XOR Path Delay	-	1.9	-	3.6	-	4.3	ns
txoradj	38	XOR Adjacent Path Delay ${ }^{3}$	-	1.9	-	3.6	-	4.3	ns
tgbp	39	GLB Register Bypass Delay	-	0.6	-	1.2	-	2.1	ns
tgsu	40	GLB Register Setup Time before Clock	0.2	-	0.3	-	1.4	-	ns
tgh	41	GLB Register Hold Time after Clock	1.0	-	3.5	-	4.0	-	ns
tgco	42	GLB Register Clock to Output Delay	-	1.4	-	1.4	-	1.7	ns
tgro	43	GLB Register Reset to Output Delay	-	3.8	-	4.9	-	5.0	ns
tptre	44	GLB Product Term Reset to Register Delay	-	2.5	-	3.8	-	4.5	ns
tptoe	45	GLB Product Term Output Enable to I/O Cell Delay	-	2.1	-	5.7	-	7.2	ns
tptck	46	GLB Product Term Clock Delay	1.5	2.5	2.8	3.9	3.5	4.7	ns
tgfb	47	GLB Feedback Delay	-	0.0	-	0.3	-	0.3	ns
ORP									
torp	48	ORP Delay	-	0.8	-	1.3	-	1.4	ns
torpbp	49	ORP Bypass Delay	-	0.1	-	0.2	-	0.4	ns
1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 3. The XOR adjacent path can only be used by hard macros.									

Specifications ispLSI 1024EA

Internal Timing Parameters ${ }^{1}$

PARAM.	\#	DESCRIPTION	-200		-125		-100		UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Outputs									
tob	50	Output Buffer Delay	-	0.9	-	1.7	-	2.0	ns
tsl	51	Output Buffer Delay, Slew Limited Adder	-	5.0	-	5.0	-	5.0	ns
toen	52	I/O Cell OE to Output Enabled	-	3.1	-	4.0	-	5.1	ns
todis	53	I/O Cell OE to Output Disabled	-	3.1	-	4.0	-	5.1	ns
tgoe	54	Global OE	-	1.4	-	3.0	-	3.9	ns
Clocks									
tgy0	55	Clock Delay, Y0 to Global GLB Clock Line (Ref. clk)	0.9	0.9	1.1	1.1	1.9	1.9	ns
tgy 1/2	56	Clock Delay, Y1 or Y2 to Global GLB Clock Line	0.9	0.9	0.9	0.9	1.5	1.5	ns
tgcp	57	Clock Delay, Clock GLB to Global GLB Clock Line	0.8	1.8	0.8	1.8	0.8	1.8	ns
tioy2/3	58	Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line	0.0	0.0	0.0	0.0	0.0	0.0	ns
tiocp	59	Clock Delay, Clock GLB to I/O Cell Global Clock Line	0.8	2.8	0.8	2.8	0.8	2.8	ns
Global Reset									
tgr	60	Global Reset to GLB and I/O Registers	-	0.0	-	2.1	-	5.1	ns

1. Internal Timing Parameters are not tested and are for reference only.

ispLSI 1024EA Timing Model

Derivations of tsu, th and tco from the Product Term Clock ${ }^{1}$

tsu $\quad=$ Logic + Reg su - Clock (min)
$=($ tiobp $+\mathbf{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})+(\mathbf{t g s u})-(\mathbf{t i o b p}+\mathbf{t g r p} 4+\mathbf{t p t c k}(\min))$
$=(\# 22+\# 30+\# 37)+(\# 40)-(\# 22+\# 30+\# 46)$ $0.6=(0.3+1.5+1.9)+(0.2)-(0.3+1.5+1.5)$
th $\quad=$ Clock (max) + Reg h - Logic
$=($ tiobp $+\mathbf{t g r p} 4+\mathbf{t p t c k}(\max))+(\mathbf{t g h})-($ tiobp $+\mathbf{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})$
$=(\# 22+\# 30+\# 46)+(\# 41)-(\# 22+\# 30+\# 37)$
$1.6=(0.3+1.5+2.5)+(1.0)-(0.3+1.5+1.9)$
tco $=$ Clock (max) + Reg co + Output
$=($ tiobp $+\boldsymbol{t g r p} 4+\mathbf{t p t c k}($ max $))+($ tgco $)+($ torp $+\mathbf{t o b})$
$=(\# 22+\# 30+\# 46)+(\# 42)+(\# 48+\# 50)$
$7.4=(0.3+1.5+2.5)+(1.4)+(0.8+0.9)$

Derivations of tsu, th and tco from the Clock GLB 1

tsu $=$ Logic + Reg (setup) - Clock (min)
$=($ tiobp $+\boldsymbol{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})+(\boldsymbol{t g s u})-(\boldsymbol{t g y} 0(\min)+\mathbf{t g c o}+\boldsymbol{t g c p}(\mathbf{m i n}))$
$=(\# 22+\# 30+\# 37)+(\# 40)-(\# 55+\# 42+\# 57)$
$0.8=(0.3+1.5+1.9)+(0.2)-(0.9+1.4+0.8)$
th $\quad=$ Clock (max) + Reg (hold) - Logic
$=(\boldsymbol{t g y} 0(\max)+\boldsymbol{\operatorname { t g }} \mathbf{c}+\boldsymbol{\operatorname { t g c p }}(\max))+(\boldsymbol{t g h})-(\mathbf{t i o b p}+\boldsymbol{t g r p} 4+\mathbf{t} 20 \mathrm{ptxor})$
$=(\# 55+\# 42+\# 57)+(\# 41)-(\# 22+\# 30+\# 37)$
$1.4=(0.9+1.4+1.8)+(1.0)-(0.3+1.5+1.9)$
tco $=$ Clock (max) + Reg (clock-to-out) + Output
$=(\mathbf{t g y} 0(\max)+\mathbf{t g c o}+\mathbf{t g c p}(\max))+(\mathbf{t g c o})+(\mathbf{t o r p}+\mathbf{t o b})$
$=(\# 55+\# 42+\# 57)+(\# 42)+(\# 48+\# 50)$
$7.2=(0.9+1.4+1.8)+(1.4)+(0.8+0.9)$

1. Calculations are based upon timing specifications for the ispLSI 1024EA-200.

Maximum GRP Delay vs GLB Loads

Power Consumption

Power consumption in the ispLSI 1024EA device de- used. Figure 4 shows the relationship between power pends on two primary factors: the speed at which the and operating speed. device is operating, and the number of product terms

Figure 4. Typical Device Power Consumption vs fmax

Notes: Configuration of eight 16-bit counters
Typical current at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Icc can be estimated for the ispLSI 1024EA using the following equation:
Icc $=17 \mathrm{~mA}+(\#$ of PTs *.726 $)+(\#$ of nets * Max Freq *.0043 $)$
Where:
\# of PTs = Number of Product Terms used in design
\# of nets = Number of Signals used in device
Max freq = Highest Clock Frequency to the device (in MHz)
The Icc estimate is based on typical conditions (Vcc $=5.0 \mathrm{~V}$, room temperature) and an assumption of four GLB loads on average exists. These values are for estimates only. Since the value of Icc is sensitive to operating conditions and the program in the device, the actual Icc should be verified.

Pin Description

NAME	TQFP PIN NUMBERS	DESCRIPTION
I/O 0 - I/O 3 I/O 4 - I/O 7 I/O 8 - I/O 11 I/O 12 - I/O 15 I/O 16 - I/O 19 I/O 20 - I/O 23 I/O 24 - I/O 27 I/O 28 - I/O 31 I/O 32 - I/O 35 I/O 36 - I/O 39 I/O 40 - I/O 43 I/O 44 - I/O 47	19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 69, 70, 71, 72, 73, 78, 79, 80, 81, 82, 83, 84, 92, 93, 94, 95, 96, 97, 98, 3, 4, 5, 6, 7	Input/Output Pins - These are the general purpose I/O pins used by the logic array.
$\begin{aligned} & \text { GOE 0/IN } 4^{1} \\ & \text { GOE } 1 / I N 5^{1} \end{aligned}$	91 8	This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin. This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin.
TDI TMS TDO TCK	18 68 35 58	Input - Functions as an input pin to load programming data into the device and also used as one of the two control pins for the ispJTAG state machine. Input - Controls the operation of the ISP state machine. Output - Functions as an output pin to read serial shift register data. Input - Functions as a clock pin for the Serial Shift Register.
$\overline{\text { RESET }}$ YO Y1 Y2 Y3	17 9 67 60 59	Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device. Dedicated Clock input. This clock input is connected to one of the clock inputs of all of the GLBs on the device. Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB on the device. Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB and/or any I/O cell on the device. Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any I/O cell on the device.
GND VCC	$\begin{array}{llll} 14, & 15, & 36, & 37, \\ 61, & 62, & 89, & 90 \\ 10, & 11, & 40, & 41, \\ 65, & 66, & 85, & 86 \end{array}$	Ground (GND) Vcc
VCCIO	16	Supply voltage for output drivers, 5 V or 3.3 V .
$N C^{2}$	1, 2, 12, 13, 24, 25, 26, 27, 38, 39, 49, 50, 51, 52, 63, 64, 74, 75, 76, 77, 87, 88, 99, 100	No Connect

1. Pins have dual function capability which is software selectable.

Table 2-0002A/1024EA
2. NC pins are not to be connected to any active signals, Vcc or GND.

Pin Configurations

ispLSI 1024EA 100-Pin TQFP Pinout Diagram

1. Pins have dual function capability which is software selectable.
2. NC pins are not to be connected to any active signal, VCC or GND.

Specifications ispLSI 1024EA

Part Number Description

ispLSI 1024EA Ordering Information

COMMERCIAL

FAMILY	$\mathbf{f m a x}(\mathrm{MHz})$	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	200	4.5	ispLSI 1024EA-200LT100	100-Pin TQFP
	125	7.5	ispLSI 1024EA-125LT100	100-Pin TQFP
	100	10	ispLSI 1024EA-100LT100	100-Pin TQFP

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: Copyright ©2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

