

# LM26NV SOT-23, ±3°C Accurate, Factory Preset Thermostat (LM26 without V<sub>TEMP</sub> output)

Check for Samples: LM26NV

#### **FEATURES**

- Internal Comparator with Pin Programmable 2°C or 10°C Hysteresis
- No External Components Required
- Open Drain or Push-Pull Digital Output; Supports CMOS Logic Levels
- Internal Temperature Sensor
- Internal Voltage Reference and DAC for Trip-Point Setting
- Currently Available in 5-Pin SOT-23 Plastic Package
- Excellent Power Supply Noise Rejection

#### **APPLICATIONS**

- Microprocessor Thermal Management
- Appliances
- Portable Battery Powered Systems
- Fan Control
- Industrial Process Control
- HVAC Systems
- Remote Temperature Sensing
- Electronic System Protection

#### **KEY SPECIFICATIONS**

- Power Supply Voltage: 2.7V to 5.5 V
- Power Supply Current:
  - $-40\mu A(max)$
  - 20µA(typ)
- Hysteresis Temperature: 2°C or 10°C(typ)

#### DESCRIPTION

The LM26NV is a precision, single digital-output, lowpower thermostat comprised of an internal reference, DAC, temperature sensor and comparator. Utilizing factory programming, it can be manufactured with different trip points as well as different digital output functionality. The trip point (T<sub>OS</sub>) can be preset at the factory to any temperature in the range of -55°C to +110°C in 1°C increments. The LM26NV has one digital output (OS/OS/US/US) and one digital input (HYST). The digital output stage can be preset as either open-drain or push-pull. In addition, it can be factory programmed to be active HIGH or LOW. The digital output can be factory programmed to indicate an over temperature shutdown event (OS or  $\overline{OS}$ ) or an under temperature shutdown event (US or US). When preset as an overtemperature shutdown (OS), it will go LOW to indicate that the die temperature is over the internally preset Tos and go HIGH when the temperature goes below ( $T_{\text{OS}}$ - $T_{\text{HYST}}$ ). Similarly, when preprogrammed as an undertemperature shutdown (US) it will go HIGH to indicate that the temperature is below T<sub>US</sub> and go LOW when the temperature is above (T<sub>US</sub>+T<sub>HYST</sub>). The typical hysteresis, T<sub>HYST</sub>, can be set to 2°C or 10°C and is controlled by the state of the HYST pin.

Available parts are detailed in the ordering information. For other part options, contact a Texas Instruments Distributor or Sales Representative for information on minimum order qualification. The LM26NV is currently available in a 5-lead SOT-23 package.

Table 1. Temperature Trip Point Accuracy

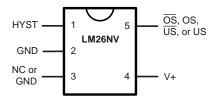
| Temperature Range | LM26NV     |
|-------------------|------------|
| -55°C to +110°C   | ±3°C (max) |
| +120°C            | ±4°C (max) |

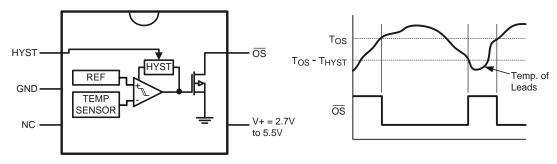
M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



#### **Connection Diagram**





Figure 1. 5-Lead SOT-23 See DBV Package

#### **PIN DESCRIPTIONS**

| Pin<br>Number    | Pin<br>Name                                                                 | Function                                                                          | Connection                                                                                                        |  |  |  |
|------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                | HYST                                                                        | Hysteresis control, digital input                                                 | GND for 10°C or V <sup>+</sup> for 2°C                                                                            |  |  |  |
| 2                | GND                                                                         | GND Ground, connected to the back side of the die through lead frame.  System GND |                                                                                                                   |  |  |  |
| 3                | NC                                                                          | Not Connected Inside Part                                                         | Ground or No Connect                                                                                              |  |  |  |
| 4                | V <sup>+</sup>                                                              | Supply input                                                                      | 2.7V to 5.5V with a 0.1µF bypass capacitor. For PSRR information see <i>Section Titled NOISE CONSIDERATIONS</i> . |  |  |  |
| 5 <sup>(1)</sup> | ŌS                                                                          | Overtemperature Shutdown open-drain active low thermostat digital output          | Controller interrupt, system or power supply shutdown; pull-up resistor $\geq 10 k\Omega$                         |  |  |  |
|                  | os                                                                          | Overtemperature Shutdown push-pull active high thermostat digital output          | Controller interrupt, system or power supply shutdown                                                             |  |  |  |
|                  | Undertemperature Shutdown open-drain active S low thermostat digital output |                                                                                   | System or power supply shutdown; pull-up resistor ≥ 10kΩ                                                          |  |  |  |
|                  | US                                                                          | Undertemperature Shutdown push-pull active high thermostat digital output         | System or power supply shutdown                                                                                   |  |  |  |

(1) Pin 5 functionality and trip point setting are programmed during LM26NV manufacture.

## LM26CIM5-YPE Simplified Block Diagram and Connection Diagram



HYST = GND for 10℃ Hysteresis HYST = V+ for 2℃ Hysteresis

The LM26CIM5-YPE has a fixed trip point of 115°C. For other trip point and output function availability, please see ordering information or contact Texas Instruments.

Figure 2.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

### Absolute Maximum Ratings (1)

| Input Voltage                                               | 6.0V                     |                  |
|-------------------------------------------------------------|--------------------------|------------------|
| Input Current at any pin (2)                                | 5mA                      |                  |
| Package Input Current <sup>(2)</sup>                        |                          | 20mA             |
| Package Dissipation at T <sub>A</sub> = 25°C <sup>(3)</sup> | 500mW                    |                  |
| Soldering Information (4)                                   |                          |                  |
| SOT-23 Package                                              | Vapor Phase (60 seconds) | 215°C            |
|                                                             | Infrared (15 seconds)    | 220°C            |
| Storage Temperature                                         |                          | −65°C to + 150°C |
| ESD Susceptibility (5)                                      | Human Body Model         | 2500V            |
|                                                             | Machine Model            | 250V             |

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) When the input voltage (V<sub>I</sub>) at any pin exceeds the power supply (V<sub>I</sub> < GND or V<sub>I</sub> > V<sup>+</sup>), the current at that pin should be limited to 5mA. The 20mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5mA to four. Under normal operating conditions the maximum current that pins 2, 4 or 5 can handle is limited to 5mA each.
- (3) The maximum power dissipation must be derated at elevated temperatures and is dictated by T<sub>Jmax</sub> (maximum junction temperature), θ<sub>JA</sub> (junction to ambient thermal resistance) and T<sub>A</sub> (ambient temperature). The maximum allowable power dissipation at any temperature is P<sub>D</sub> = (T<sub>Jmax</sub>-T<sub>A</sub>)/θ<sub>JA</sub> or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, T<sub>Jmax</sub> = 150°C. For this device the typical thermal resistance (θ<sub>JA</sub>) of the different package types when board mounted follow:
- (4) See the URL "http://www.ti.com/packaging" for other recommendations and methods of soldering surface mount devices.
- (5) The human body model is a 100pF capacitor discharge through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

## Operating Ratings (1)

| -                                         |                                 |
|-------------------------------------------|---------------------------------|
| Specified Temperature Range               | $T_{MIN} \le T_A \le T_{MAX}$   |
| LM26NV                                    | -55°C ≤ T <sub>A</sub> ≤ +125°C |
| Positive Supply Voltage (V <sup>+</sup> ) | +2.7V to +5.5V                  |
| Maximum V <sub>OUT</sub>                  | +5.5V                           |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Product Folder Links: LM26NV



#### **LM26NV Electrical Characteristics**

The following specifications apply for  $V^+ = 2.7 V_{DC}$  to  $5.5 V_{DC}$ , and  $V_{TEMP}$  load current =  $0\mu A$  unless otherwise specified. **Boldface limits apply for T<sub>A</sub> = T<sub>J</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>**; all other limits T<sub>A</sub> = T<sub>J</sub> =  $25^{\circ}$ C unless otherwise specified.

| Symbol                | Parameter                                              | Conditions                                                                                         | Typical <sup>(1)</sup> | LM26NV Limits        | Units (Limits)       |
|-----------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------|
| Temperature           | Sensor                                                 |                                                                                                    | L                      |                      |                      |
|                       | Trip Point Accuracy (Includes V <sub>REF</sub> , DAC,  | -55°C ≤ T <sub>A</sub> ≤ +110°C                                                                    |                        | ±3                   | °C (max)             |
|                       | Comparator Offset, and Temperature Sensitivity errors) | +120°C                                                                                             |                        | ±4                   | °C (max)             |
|                       | Trip Point Hysteresis                                  | HYST = GND                                                                                         | 11                     |                      | °C                   |
|                       |                                                        | HYST = V <sup>+</sup>                                                                              | 2                      |                      | °C                   |
| I <sub>S</sub>        | Supply Current                                         |                                                                                                    | 16                     | 20<br><b>40</b>      | μΑ (max)<br>μΑ (max) |
| Digital Outpo         | ut and Input                                           |                                                                                                    |                        |                      |                      |
| I <sub>OUT("1")</sub> | Logical "1" Output Leakage Current (3)                 | V <sup>+</sup> = +5.0V                                                                             | 0.001                  | 1                    | μA (max)             |
| V <sub>OUT("0")</sub> | Logical "0" Output Voltage                             | $I_{OUT}$ = +1.2mA and $V^{+} \ge 2.7V$ ; $I_{OUT}$ = +3.2mA and $V^{+} \ge 4.5V$ ; <sup>(4)</sup> |                        | 0.4                  | V (max)              |
| V <sub>OUT("1")</sub> | Logical "1" Push-Pull Output Voltage                   | I <sub>SOURCE</sub> = 500μA, V <sup>+</sup> ≥ 2.7V                                                 |                        | 0.8 × V <sup>+</sup> | V (min)              |
|                       |                                                        | I <sub>SOURCE</sub> = 800μA, V <sup>+</sup> ≥4.5V                                                  |                        | V <sup>+</sup> - 1.5 | V (min)              |
| V <sub>IH</sub>       | HYST Input Logical "1" Threshold Voltage               |                                                                                                    |                        | 0.8 × V <sup>+</sup> | V (min)              |
| $V_{IL}$              | HYST Input Logical "0" Threshold Voltage               |                                                                                                    |                        | 0.2 × V <sup>+</sup> | V (max)              |

- (1) Typicals are at  $T_J = T_A = 25^{\circ}\text{C}$  and represent most likely parametric norm.
- (2) Limits are ensured to AOQL (Average Outgoing Quality Level).
- (3) The 1µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the current for every 15°C increase in temperature. For example, the 1nA typical current at 25°C would increase to 16nA at 85°C.
   (4) Care should be taken to include the effects of self heating when setting the maximum output load current. The power dissipation of the
- (4) Care should be taken to include the effects of self heating when setting the maximum output load current. The power dissipation of the LM26NV would increase by 1.28mW when I<sub>OUT</sub>=3.2mA and V<sub>OUT</sub>=0.4V. With a thermal resistance of 250°C/W, this power dissipation would cause an increase in the die temperature of about 0.32°C due to self heating. Self heating is not included in the trip point accuracy specification.

| Package Type | $\theta_{JA}$ |
|--------------|---------------|
| SOT-23, DBV  | 250°C/W       |

#### **Part Number Template**

The series of characters labeled "xyz" in the part number LM26CIM5-xyz, describe the set point value and the function of the output. The character at "x" and "y" define the set point temperature (at which the digital output will go active). The "z" character defines the type and function of the digital output. These place holders are defined in the following tables.

The place holders xy describe the set point temperature as shown in the following table.

| x (10x) | y (1x) | Temperature (°C) |
|---------|--------|------------------|
| Α       | -      | <del>-</del> 5   |
| В       | -      | -4               |
| С       | -      | -3               |
| D       | -      | -2               |
| E       | -      | -1               |
| F       | -      | -0               |
| Н       | Н      | 0                |
| J       | J      | 1                |
| К       | К      | 2                |
| L       | L      | 3                |

Product Folder Links: LM26NV



www.ti.com

| x (10x) | y (1x) | Temperature (°C) |
|---------|--------|------------------|
| N       | N      | 4                |
| Р       | Р      | 5                |
| R       | R      | 6                |
| S       | S      | 7                |
| Т       | Т      | 8                |
| V       | V      | 9                |
| Х       | -      | 10               |
| Y       | -      | 11               |
| Z       | -      | 12               |

The value of z describes the assignment/function of the output as shown in the following table:

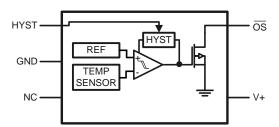
| Active-Low/High | Open-Drain/ Push-<br>Pull | OS/US | Value of z | Digital Output Function           |
|-----------------|---------------------------|-------|------------|-----------------------------------|
| 0               | 0                         | 0     | E          | Active-Low, Open-Drain, OS output |
| 0               | 0                         | 1     | F          | Active-Low, Open-Drain, US output |
| 1               | 1                         | 0     | G          | Active-High, Push-Pull, OS output |
| 1               | 1                         | 1     | Н          | Active-High, Push-Pull, US output |

#### **EXAMPLE:**

• The part number LM26CIM5-YPE has  $T_{OS} = 115^{\circ}C$ , and has an active-low open-drain overtemperature shutdown output. The "Y" represents the tens value "11", the "P" represents the ones value "5", and the "E" means that the output will be an active-low, open-drain, over-temperature output.

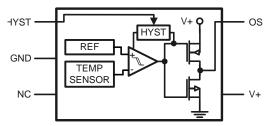
Many active-high open-drain and active-low push-pull options are available, please contact Texas Instruments for more information.

Copyright © 2008–2013, Texas Instruments Incorporated




#### **FUNCTIONAL DESCRIPTION**

#### **LM26NV OPTIONS**


The LM26NV can be factory programmed to have a trip point anywhere in the range of −55°C to +110°C. It is also available in any of four output options, as indicated by the last letter in the part number.

#### **Output Pin Options Block Diagrams**



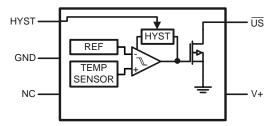

The "E" in "LM26CIM5 - \_ \_ E " indicates that the digital output is Active-Low Open-Drain and will trip as temperature is rising (OS)

Figure 3. LM26CIM5 - \_ \_ E



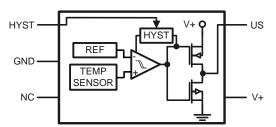

The "G" in "LM26CIM5 - \_ \_G " indicates that the digital output is Active-High Push-Pull and will trip as temperature is rising (OS)

Figure 5. LM26CIM5 - \_ \_G



The "F" in "LM26CIM5 - \_ \_ F " indicates that the digital output is Active-Low Open-Drain and will trip as temperature is falling (US)

Figure 4. LM26CIM5 - \_ \_ F



The "H" in "LM26CIM5 - \_ \_H" indicates that the digital output is Active-High Push-Pull and will trip as temperature is falling (US)

Figure 6. LM26CIM5 - H

#### **Applications Hints**

#### **NOISE CONSIDERATIONS**

The LM26NV has excellent power supply noise rejection. Listed below is a variety of signals used to test the LM26NV power supply rejection. False triggering of the output was not observed when these signals where coupled into the V+ pin of the LM26NV.

- Square Wave 400kHz, 1Vp-p
- Square Wave 2kHz, 200mVp-p
- Sine Wave 100Hz to 1MHz, 200mVp-p

Testing was done while maintaining the temperature of the LM26NV one degree centigrade way from the trip point with the output not activated.



#### **MOUNTING CONSIDERATIONS**

The LM26NV can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperature that the LM26NV is sensing will be within about +0.06°C of the surface temperature to which the LM26NV's leads are attached to.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would be at an intermediate temperature between the surface temperature and the air temperature.

To ensure good thermal conductivity, the backside of the LM26NV die is directly attached to the GND pin (pin 2). The temperatures of the lands and traces to the other leads of the LM26NV will also affect the temperature that is being sensed.

Alternatively, the LM26NV can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM26NV and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM26NV or its connections.

The junction to ambient thermal resistance ( $\theta_{JA}$ ) is the parameter used to calculate the rise of a part's junction temperature due to its power dissipation. For the LM26NV the equation used to calculate the rise in the die junction temperature is as follows:

$$T_{J} = T_{A} + \Theta_{JA}(V^{\dagger}I_{Q} + V_{DO}I_{DO})$$

#### where

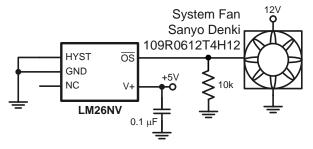

- T<sub>A</sub> is the ambient temperature
- V<sup>+</sup> is the power supply voltage
- I<sub>O</sub> is the quiescent current
- V<sub>DO</sub> is the voltage on the digital output
- I<sub>DO</sub> is the load current on the digital output

Table 2 summarizes the thermal resistance for different conditions and the rise in die temperature of the LM26NV and a 10k pull-up resistor on an open-drain digital output with a 5.5V power supply.

Table 2. Thermal resistance ( $\theta_{JA}$ ) and temperature rise due to self heating ( $T_J - T_A$ )

|            | •                                                     | •                |                           | •   |  |
|------------|-------------------------------------------------------|------------------|---------------------------|-----|--|
|            |                                                       | T-23<br>eat sink | SOT-23<br>small heat sink |     |  |
|            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                  |                           |     |  |
| Still Air  | 250                                                   | 0.11             | TBD                       | TBD |  |
| Moving Air | TBD                                                   | TBD              | TBD                       | TBD |  |

## **Typical Applications**



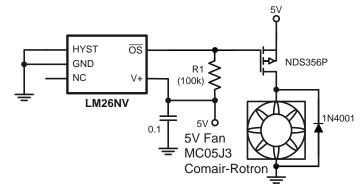
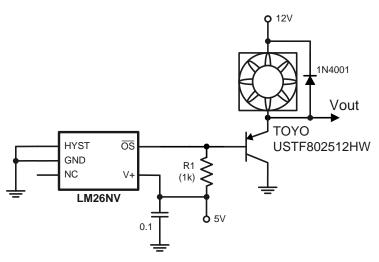

The fan's control pin has an internal pull-up. The 10 kOhm pull-down sets a slow fan speed. When the output of the LM26NV goes low, the fan will speed up.

Figure 7. Two Speed Fan Speed Control

Submit Documentation Feedback


(1)





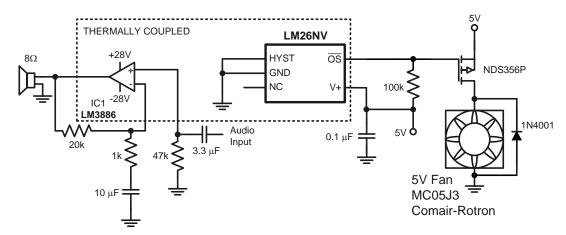
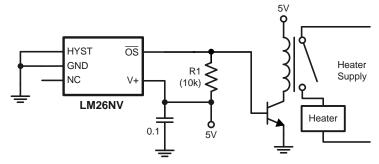

The LM26NV switches the fan on when the measured temperature exceeds the trip temperature.

Figure 8. Fan High Side Drive



The LM26LV sinks causes the switch to sink the fan current when the measured temperature exceeds the trip temperature.


Figure 9. Fan Low Side Drive



By thermally coupling the LM26NV to the audio power amplifier, the LM26NV safeguards the amplifier from overheating, turning on the fan when it temperature exceeds the trip temperature.

Figure 10. Audio Power Amplifier Thermal Protection





When the measured temperature is below the trip temperature of the LM26NV, the  $\overline{OS}$  output will be high, causing the switch and relay to close. When the temperature exceeds the trip point,  $\overline{OS}$  goes low and shuts off the relay and heater.

Figure 11. Simple Thermostat



## **REVISION HISTORY**

| Cł | hanges from Revision A (March 2013) to Revision B  | Page |
|----|----------------------------------------------------|------|
| •  | Changed layout of National Data Sheet to TI format | 9    |



## PACKAGE OPTION ADDENDUM

5-Feb-2014

#### PACKAGING INFORMATION

| Orderable Device   | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|--------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|----------------|---------|
| LM26CIM5-YPE/NOPB  | ACTIVE | SOT-23       | DBV                | 5    | 1000           | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM | -55 to 125   | TYPE           | Samples |
| LM26CIM5X-YPE/NOPB | ACTIVE | SOT-23       | DBV                | 5    | 3000           | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM | -55 to 125   | TYPE           | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

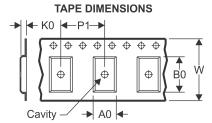
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



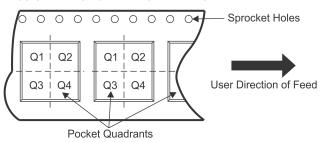
## **PACKAGE OPTION ADDENDUM**

5-Feb-2014


| In no event shall TI's liabilit | ty arising out of such information | exceed the total purchase price | ce of the TI part(s) at issue in th | is document sold by TI to Cu | stomer on an annual basis. |
|---------------------------------|------------------------------------|---------------------------------|-------------------------------------|------------------------------|----------------------------|
|                                 |                                    |                                 |                                     |                              |                            |

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


## TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

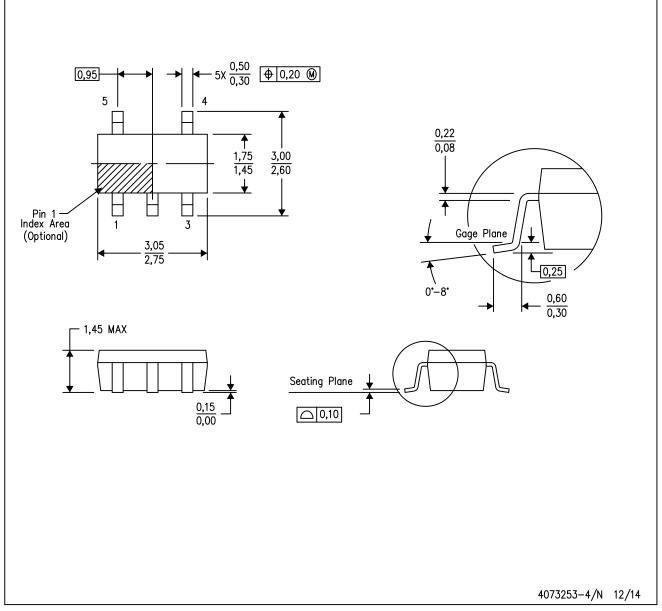
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device             | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| LM26CIM5-YPE/NOPB  | SOT-23          | DBV                | 5 | 1000 | 179.0                    | 8.4                      | 3.2        | 3.2        | 1.4        | 4.0        | 8.0       | Q3               |
| LM26CIM5X-YPE/NOPB | SOT-23          | DBV                | 5 | 3000 | 179.0                    | 8.4                      | 3.2        | 3.2        | 1.4        | 4.0        | 8.0       | Q3               |

www.ti.com 3-Aug-2017



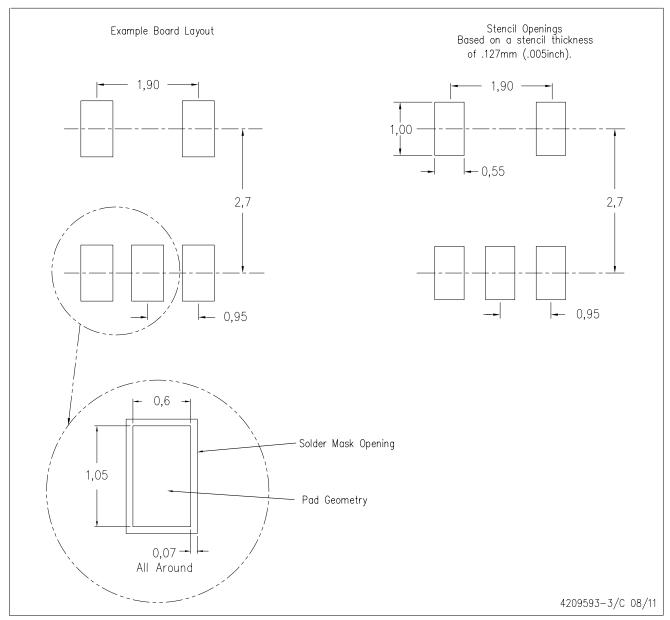

#### \*All dimensions are nominal

| Device             | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LM26CIM5-YPE/NOPB  | SOT-23       | DBV             | 5    | 1000 | 203.0       | 203.0      | 35.0        |
| LM26CIM5X-YPE/NOPB | SOT-23       | DBV             | 5    | 3000 | 203.0       | 203.0      | 35.0        |

DBV (R-PDSO-G5)

## PLASTIC SMALL-OUTLINE PACKAGE




NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.



## DBV (R-PDSO-G5)

## PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.