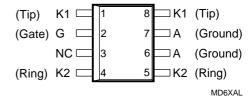
PROGRAMMABLE SLIC OVERVOLTAGE PROTECTION

- Dual Voltage-Programmable Protectors.
 - Wide 0 to -80 V Programming Range
 - Low 5 mA max. Triggering Current
 - High 150 mA min. Holding Current

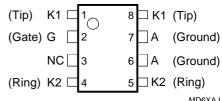
Rated for International Surge Wave Shapes

VOLTAGE WAVE SHAPE	STANDARD	I _{TSP} A
2/10 µs	TR-NWT-001089	170
1.2/50 µs	ETS 300 047-1	90
0.5/700 μs	RLM88/I3124	40
10/700 μs	K17, K20, K21	40
10/1000 µs	TR-NWT-001089	30

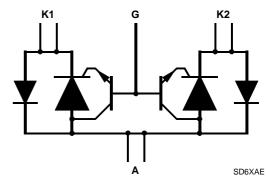

Functional Replacements for

DEVICE TYPE	PACKAGE TYPE	FUNCTIONAL REPLACEMENT
LCP1511,		TISP61511D
LCP1511D,	8-pin Small-Outline	or order as
ATTL7591AS,	o-pin Smail-Outline	TISP61511DR
MGSS150-1		for Taped and Reeled
LCP1512,		
LCP1512D,	9 nin Plantia DID	TISP61512P
ATTL7591AB,	8-pin Plastic DIP	1137013127
MGSS150-2		

description


The TISP61511D and TISP61512P are dual forward-conducting buffered p-gate overvoltage protectors. They are designed to protect monolithic Subscriber Line Interface Circuits, SLICs, against overvoltages on the telephone line caused by lightning, ac power contact and induction. The TISP61511D and TISP61512P limit voltages that exceed the SLIC supply rail voltage.

'61511D PACKAGE (TOP VIEW)


NC - No internal connection Terminal typical application names shown in parenthesis

'61512P PACKAGE (TOP VIEW)

NC - No internal connection
Terminal typical application names shown in parenthesis

device symbol

Terminals K1, K2 and A correspond to the alternative line designators of T, R and G or A, B and C. The negative protection voltage is controlled by the voltage, $V_{\rm GG}$ applied to the G terminal.

The SLIC line driver section is typically powered

from 0 V (ground) and a negative voltage in the region of -10 V to -70 V. The protector gate is connected to this negative supply. This references the protection (clipping) voltage to the negative supply voltage. As the protection voltage will track the negative supply voltage the overvoltage stress on the SLIC is minimised.

Positive overvoltages are clipped to ground by diode forward conduction. Negative overvoltages are initially clipped close to the SLIC negative supply rail value. If sufficient current is available from the overvoltage, then the protector will crowbar into a low voltage on-state condition. As the current subsides the high holding current of the crowbar prevents d.c. latchup.

These monolithic protection devices are fabricated in ion-implanted planar vertical power structures for high reliability and in normal system operation they are virtually transparent. The buffered gate design reduces the loading on the SLIC supply during overvoltages caused by power cross and induction.

JULY 1995 - REVISED SEPTEMBER 1997

absolute maximum ratings

RATING	SYMBOL	VALUE	UNIT		
Repetitive peak off-state voltage, $I_G = 0$, $-40^{\circ}C \le T_J \le 85^{\circ}C$	V _{DRM} -100				
Repetitive peak gate-cathode voltage, $V_{KA} = 0$, $-40^{\circ}C \le T_{J} \le 85^{\circ}C$		V_{GKRM}	-85	V	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)					
10/1000 μs			30		
5/310 μs			40		
0.2/310 μs		I_{TSP}	40	Α	
1/20 µs			90		
2/10 μs	$T_J = -40$ °C		120		
	$T_J = -40$ °C $T_J = 25, 85$ °C		170		
Non-repetitive peak on-state current, 50 Hz (see Notes 1 and 2)					
full-sine-wave, 20 ms		I_{TSM}	5	Α	
1 s			3.5		
Non-repetitive peak gate current, half-sine-wave, 10 ms (see Notes 1 and 2)		I _{GSM}	2	Α	
Junction temperature		TJ	-55 to +150	°C	
Storage temperature range		T _{stg}	-55 to +150	°C	

- NOTES: 1. Initially the protector must be in thermal equilibrium with -40°C \leq T_J \leq 85°C, unless otherwise specified. The surge may be repeated after the device returns to its initial conditions. See the applications section for the details of the impulse generators.
 - 2. The rated current values may be applied to either the R-G or T-G terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the G terminal current will be twice the rated current value of an individual terminal pair). Above 85°C, derate linearly to zero at 150°C lead temperature.

recommended operating conditions

		MIN	TYP	MAX	UNIT
C_G	Gate decoupling capacitor		220		nF

electrical characteristics, T_{.I} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
I_	Off-state current	V _D = -85 V, V _{GK} = 0 V	T _J = 25°C			5	μΑ
I _D	On-State current	VD = -000 V, VGK = 0 V	$T_J = 70$ °C			50	μΑ
V _(BO)	Breakover voltage	I_T = 30 A, 10/1000 μs, 1 kV, R_S = 33 Ω, di/dt _(i) =	8 A/µs (see Note 3)			-58	V
	Gate-cathode voltage	I_T = 30 A, 10/700 μs, 1.5 kV, R_S = 10 Ω , di/dt _(i) =				10	
V _{GK(BO)}	at breakover	I_T = 30 A, 1.2/50 μs, 1.5 kV, R_S = 10 Ω, di/dt _(i) =				20	V
	at breakover	$I_T = 38 \text{ A}, 2/10 \mu\text{s}, 2.5 \text{ kV}, R_S = 61 \Omega, \text{ di/dt}_{(i)} = 4$	0 A/µs (see Note 3)			25	
V _T	On-state voltage	$I_T = 0.5 \text{ A}, t_w = 500 \mu\text{s}$				3	V
VΤ	On-state voltage	$I_T = 3 \text{ A}, t_w = 500 \mu\text{s}$				4	V
V _F	Forward voltage	$I_F = 5 \text{ A}, t_W = 500 \mu\text{s}$				3	٧
		I_F = 30 A, 10/1000 μs, 1 kV, R_S = 33 $Ω$, di/dt _(i) =	= 8 A/µs (see Note 3)			5	
V	Peak forward recovery	I_T = 30 A, 10/700 μs, 1.5 kV, R_S = 10 Ω, di/dt _(i) = 14 A/μs (see Note 3)				5	V
V _{FRM}	voltage	I_T = 30 A, 1.2/50 μs, 1.5 kV, R_S = 10 Ω , di/dt _(i) =	70 A/µs (see Note 3)			7	V
		I_T = 38 A, 2/10 μs, 2.5 kV, R_S = 61 Ω, di/dt _(i) = 40 A/μs (see Note 3)				12	
I _H	Holding current	$I_T = 1 \text{ A, di/dt} = -1 \text{A/ms, V}_{GG} = -48 \text{ V}$		150			mA
1	Gate reverse current	V = 75 V K and A terminals connected	$T_J = 25^{\circ}C$			5	μΑ
I _{GAS}	Gale reverse current	V _{GG} = -75 V, K and A terminals connected	T _J = 70°C			50	μA
I _{GT}	Gate trigger current	$I_T = 3 \text{ A, } t_{p(g)} \ge 20 \mu\text{s, } V_{GG} = -48 V$		0.2		5	mA
V _{GT}	Gate trigger voltage	$I_T = 3 \text{ A}, t_{p(g)} \ge 20 \text{ µs}, V_{GG} = -48 \text{ V}$				2.5	V

NOTE 3: All tests have $C_G = 220$ nF and $V_{GG} = -48$ V. R_S is the current limiting resistor between the output of the impulse generator and the R or T terminal. See the applications section for the details of the impulse generators.

electrical characteristics, $T_J = 25$ °C (unless otherwise noted) (Continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Anode-cathode off-	f = 1 MHz, V _d = 1 V, I _G = 0, (see Note 4)	$V_D = -3 V$			100	pF
~	YAK state capacitance		$V_{D} = -48 \text{ V}$			50	pF

NOTE 4: These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The unmeasured device terminals are a.c. connected to the guard terminal of the bridge.

thermal characteristics

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
R	Junction to free air thermal resistance	$P_{tot} = 0.8 \text{ W}, T_A = 25^{\circ}\text{C}$	D Package			170	°C/W
™ ₀ JA	$R_{\theta JA}$ Junction to free air thermal resistance	5 cm ² , FR4 PCB	P Package			125	0/ **

PARAMETER MEASUREMENT INFORMATION

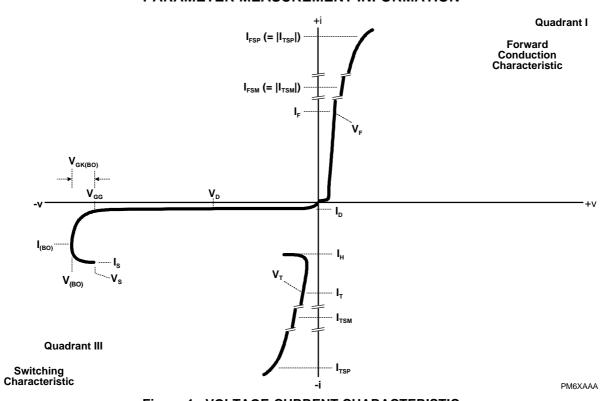


Figure 1. VOLTAGE-CURRENT CHARACTERISTIC

THERMAL INFORMATION

MAXIMUM NON-RECURRING 50 Hz CURRENT

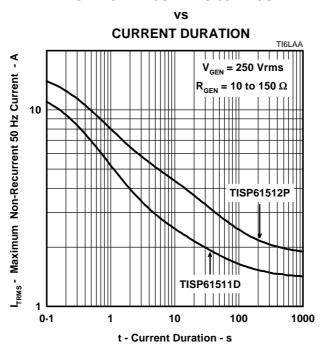


Figure 2.

DEVICE PARAMETERS

general

Thyristor based overvoltage protectors, for telecommunications equipment, became popular in the late 1970s. These were fixed voltage breakover triggered devices, likened to solid state gas discharge tubes. As these were new forms of thyristor, the existing thyristor terminology did not cover their special characteristics. This resulted in the invention of new terms based on the application usage and device characteristic. Initially, there was a wide diversity of terms to describe the same thing, but today the number of terms have reduced and stabilised.

Programmable, (gated), overvoltage protectors are relatively new and require additional parameters to specify their operation. Similarly to the fixed voltage protectors, the introduction of these devices has resulted in a wide diversity of terms to describe the same thing. To help promote an understanding of the terms and their alternatives, this section has a list of alternative terms and the parameter definitions used for this data sheet. In general, the Texas Instruments approach is to use terms related to the device internal structure, rather than its application usage as a single device may have many applications each using a different terminology for circuit connection.

alternative symbol cross-reference guide

This guide is intended to help the translation of alternative symbols to those used in this data sheet. As in some cases the alternative symbols have no substance in international standards and are not fully defined by the originators, users must confirm symbol equivalence. No liability will be assumed from the use of this guide.

JULY 1995 - REVISED SEPTEMBER 1997

TISP61511D, TISP61512P PARAMETER	DATA SHEET SYMBOL	ALTERNATIVE SYMBOL	ALTERNATIVE PARAMETER
Non-repetitive peak on-state pulse current	I _{TSP}	I _{PP}	Peak pulse current
Off-state current	I _D	I _R I _{RM}	Reverse leakage current LINE/GND
Gate reverse current (with A and K terminals connected)	I _{GAS}	I _{RG}	Reverse leakage current GATE/LINE
Off-state voltage	V _D	V _R V _{RM}	Reverse voltage LINE/GND
Peak forward recovery voltage	V _{FRM}	V _{FP}	Peak forward voltage LINE/GND
Breakover voltage	V _(BO)	V _{SGL}	Dynamic switching voltage GND/LINE
Gate voltage, (V_{GG} is gate supply voltage referenced to the A terminal)	V _G	V _{gate} V _{GATE} V _S	GATE/GND voltage
Repetitive peak off-state voltage	V_{DRM}	V_{MLG}	Maximum voltage LINE/GND
Repetitive peak gate-cathode voltage	V _{GKM}	V_{MGL}	Maximum voltage GATE/LINE
Gate-cathode voltage	V_{GK}	V_{GL}	GATE/LINE voltage
Gate-cathode voltage at breakover	V _{GK(BO)}	V_{DGL}	Dynamic switching voltage GATE/LINE
Cathode-anode voltage	V _K	V _{LG} V _{GND/LINE}	LINE/GND voltage
Anode-cathode capacitance	C _{AK}	C _{off}	Off-state capacitance LINE/GND
Cathode 1 terminal	K1	Tip	Tip terminal
Cathode 2 terminal	K2	Ring	Ring terminal
Anode terminal	Α	GND	Ground terminal
Gate terminal	G	Gate	Gate terminal
Thermal Resistance, junction to ambient	$R_{\theta JA}$	R _{th} (j-a)	Thermal Resistance, junction to ambient

APPLICATIONS INFORMATION

electrical characteristics

The electrical characteristics of a thyristor overvoltage protector are strongly dependent on junction temperature, T_J . Hence a characteristic value will depend on the junction temperature at the instant of measurement. The values given in this data sheet were measured on commercial testers, which generally minimise the temperature rise caused by testing.

application circuit

Figure 3 shows a typical TISP6151xx SLIC card protection circuit. The incoming line wires, R and T, connect to the relay matrix via the series over-current protection. Fusible resistors, fuses and positive temperature coefficient (PTC) resistors can be used for over-current protection. Resistors will reduce the prospective current from the surge generator for both the TISP6151xx and the ring/test protector. The TISP7xxxF3 protector has the same protection voltage for any terminal pair. This protector is used when the ring generator configuration maybe ground or battery-backed. For dedicated ground-backed ringing generators, the TISP3xxxF3 gives better protection as its inter-wire protection voltage is twice the wire to ground value.

Relay contacts 3a and 3b connect the line wires to the SLIC via the TISP6151xx protector. The protector gate reference voltage comes from the SLIC negative supply (V_{BAT}). A 220 nF gate capacitor sources the high gate current pulses caused by fast rising impulses.

JULY 1995 - REVISED SEPTEMBER 1997

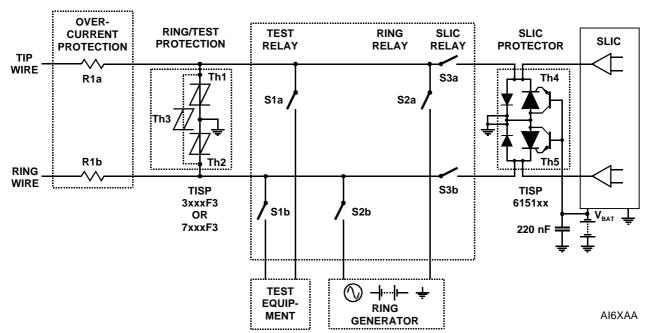


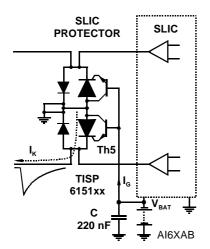
Figure 3. TYPICAL APPLICATION CIRCUIT

impulse conditions

Most lightning tests, used for equipment verification, specify a unidirectional sawtooth waveform which has an exponential rise and an exponential decay. Wave shapes are classified in terms of Peak Amplitude (voltage or current), rise time and a decay time to 50% of the maximum amplitude. The notation used for the wave shape is *amplitude*, *rise time/decay time*. A 38 A, $5/310 \, \mu s$ wave shape would have a peak current value of 38 A, a rise time of 5 μs and a decay time of 310 μs .

There are three categories of surge generator type, single wave shape, combination wave shape and circuit defined. Single wave shape generators have essentially the same waveshape for the open circuit voltage and short circuit current (e.g. $10/1000~\mu s$ open circuit voltage and short circuit current). Combination generators have two wave shapes, one for the open circuit voltage and the other for the short circuit current (e.g. $1.2/50~\mu s$ open circuit voltage and $8/20~\mu s$ short circuit current). Circuit specified generators usually equate to a combination generator, although typically only the open circuit voltage waveshape is referenced (e.g. a $10/700~\mu s$ open circuit voltage generator typically produces a $5/310~\mu s$ short circuit current). If the combination or circuit defined generators operate into a finite resistance the wave shape produced is intermediate between the open circuit and short circuit values.

When the TISP switches into the on-state it has a very low impedance. As a result, although the surge wave shape may be defined in terms of open circuit voltage, it is the current waveshape that must be used to assess the TISP surge requirement. As an example, the CCITT IX K17 1.5 kV, $10/700 \, \mu s$ surge is changed to a 38 A 5/310 μs waveshape when driving into a short circuit. The impulse generators used for rated values are tabulated below


IMPULSE GENERATORS USED FOR RATED VALUES

	PEAK	VOLTAGE	GENERATOR	EXTERNAL	PEAK	CURRENT
CTANDADD	VOLTAGE	OLTAGE WAVE FICTIVE SOURC		SERIES	CURRENT	WAVE
STANDARD	SETTING	FORM	IMPEDANCE	RESISTANCE		FORM
	V	μs	Ω	Ω	Α	μs
TR-NWT-001089	2500	2/10	5	10	170	2/10

IMPULSE GENERATORS USED FOR RATED VALUES

STANDARD	PEAK VOLTAGE SETTING	VOLTAGE WAVE FORM	GENERATOR FICTIVE SOURCE IMPEDANCE	EXTERNAL SERIES RESISTANCE	PEAK CURRENT	CURRENT WAVE FORM
	V	μs	Ω	Ω	Α	μs
ETS 300 047-1	3000	1.2/50	38	0	80	0.6/18
RLM88/I3124	1600	0.5/700	40	0	40	0.2/310
K17, K20, K21	1600	10/700	40	0	40	5/310
TR-NWT-001089	1000	10/1000	10	23	30	10/1000

Figure 4. and 5. show how the TISP6151xx limits negative and positive over-voltages. Negative overvoltages (Figure 4.) are initially clipped close to the SLIC negative supply rail value (V_{BAT}). If sufficient current is available from the overvoltage, then the protector (Th5) will crowbar into a low voltage on-state condition. As the overvoltage subsides the high holding current of the crowbar prevents dc latchup. The protection voltage will be the sum of the gate supply (V_{BAT}) and the peak gate-cathode voltage ($V_{GK(BO)}$). The protection voltage will be increased if there is a long connection between the gate decoupling capacitor, C, and the gate terminal. During the initial rise of a fast impulse, the gate current (I_G) is the same as the cathode current (I_K). Rates of 70 A/ μ s can cause inductive voltages of 0.7 V in 2.5 cm of printed wiring track. To minimise this inductive voltage increase of protection voltage, the length of the capacitor to gate terminal tracking should be minimised. Inductive voltages in the protector cathode wiring can increase the protection voltage. These voltages can be minimised by routing the SLIC connection through the protector as shown in Figure 3.

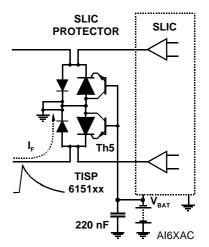


Figure 4. NEGATIVE OVERVOLTAGE CONDITION

Figure 5. POSITIVE OVERVOLTAGE CONDITION

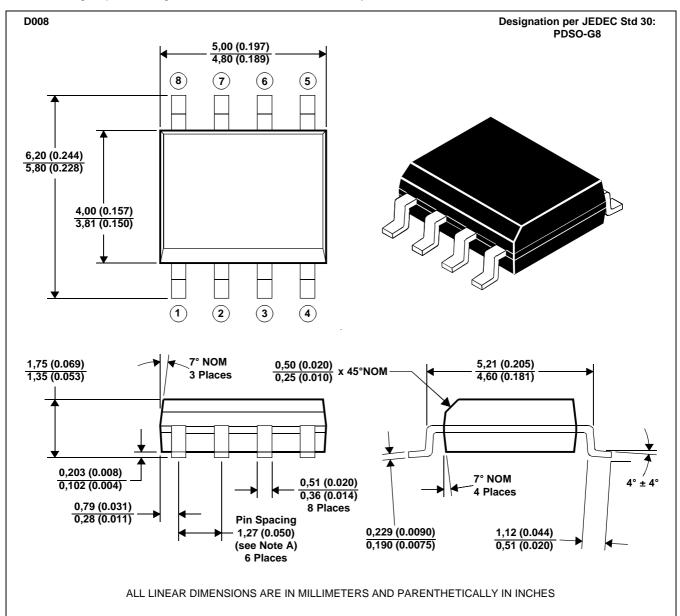
Positive overvoltages (Figure 5.) are clipped to ground by forward conduction of the diode section in protector (Th5). Fast rising impulses will cause short term overshoots in forward voltage (V_{FRM}).

The thyristor protection voltage, $(V_{(BO)})$ increases under lightning surge conditions due to thyristor regeneration time. This increase is dependent on the rate of current rise, di/dt, when the TISP is clamping the voltage in its breakdown region. The diode protection voltage, known as the forward recovery voltage, (V_{FRM}) is dependent on the rate of current rise, di/dt. An estimate of the circuit di/dt can be made from the surge

JULY 1995 - REVISED SEPTEMBER 1997

generator voltage rate of rise, dv/dt, and the circuit resistance. The impulse generators used for characterising the protection voltages are tabulated below

IMPULSE GENERATORS USED FOR ELECTRICAL CHARACTERISTIC VALUES


STANDARD	PEAK VOLTAGE SETTING V	VOLTAGE WAVE FORM µs	GENERATOR FICTIVE SOURCE IMPEDANCE Ω	EXTERNAL SERIES RESISTANCE	PEAK CURRENT A	di/dt _(i) INITIAL RATE OF RISE A/µs	CURRENT WAVE FORM µs
TR-NWT-001089	2500	2/10	5	61	38	40	2/10
ETS 300 047-1	1500	1.2/50	38	12	30	70	0.6/21
K17, K20, K21	1500	10/700	40	10	30	14	5/350
TR-NWT-001089	1000	10/1000	10	23	30	8	10/1000

MECHANICAL DATA

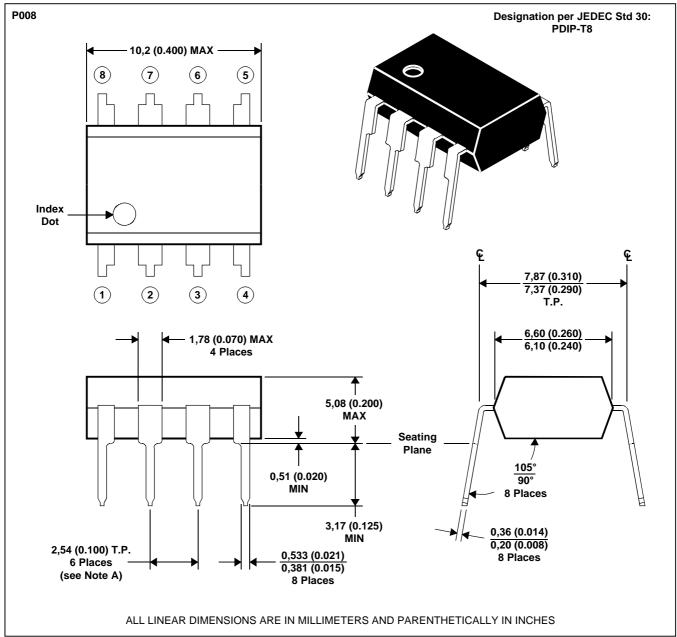
D008

plastic small-outline package

This small-outline package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

MDXXAA

- NOTES: A. Leads are within 0,25 (0.010) radius of true position at maximum material condition.
 - B. Body dimensions do not include mold flash or protrusion.
 - C. Mold flash or protrusion shall not exceed 0,15 (0.006).
 - D. Lead tips to be planar within $\pm 0,051$ (0.002).



MECHANICAL DATA

P008

plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position

MDXXABA

JULY 1995 - REVISED SEPTEMBER 1997

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.