VS-MB High Voltage Series

Vishay Semiconductors

Single Phase Bridge Rectifier, 25 A, 35 A

GBPC...A

GBPC...W

PRIMARY CHARACTERISTICS			
I _O	25 A, 35 A		
V _{RRM}	1400 V to 1600 V		
Package	GBPCA, GBPCW		
Circuit configuration	Single phase bridge		

FEATURES

 Universal, 3 way terminals: push-on, wrap around or solder

High thermal conductivity package, electrically insulated case

- · Center hole fixing
- Excellent power/volume ratio
- Nickel plated terminals solderable using lead (Pb)-free solder; solder alloy Sn/Ag/Cu (SAC305); solder temperature 260 °C to 275 °C
- UL E300359 approved
- Designed and qualified for industrial and consumer level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

A range of extremely compact, encapsulated single phase bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and instrumentation applications.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES 26MBA	VALUES 36MBA	UNITS	
		25	35	A	
IO	T _C	70	55	°C	
I _{FSM}	50 Hz	400	475	Δ.	
	60 Hz	420	500	- A	
l ² t	50 Hz	790	1130	A ² s	
I ⁻ t	60 Hz	725	1030	4 A-S	
V _{RRM}	Range	1400 to 1600		V	
TJ		-55 to	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS					
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J MAXIMUM mA	
26MBA	140	1400	1500	2	
36MBA	160	1600	1700	2	

VS-MB High Voltage Series

Vishay Semiconductors

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES 26MBA	VALUES 36MBA	UNITS	
Mariana DC autout assurant	Io	Resistive or inductive load		25	35	Α	
Maximum DC output current at case temperature		Capacitive load		20	28		
ar succ temperature					65	60	°C
		t = 10 ms	No voltage		400	475	A
Maximum peak, one cycle	leo.	t = 8.3 ms	reapplied	Initial	420	500	
non-repetitive forward current	I _{FSM}	t = 10 ms	100 % V _{RRM}		335	400	
		t = 8.3 ms	reapplied		350	420	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage	$T_J = T_J$ maximum	790	1130	- A ² s
		t = 8.3 ms	reapplied		725	1030	
		t = 10 ms	100 % V _{RRM}		560	800	
		t = 8.3 ms	reapplied		512	730	
Maximum I ² √t for fusing	I²√t	$I^{2}t$ for time $t_{x} = I^{2}\sqrt{t} \times \sqrt{t_{x}}$; $0.1 \le t_{x} \le 10$ ms, $V_{RRM} = 0$ V		5.6	11.3	kA²√s	
Low level of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), I_{J} maximum		0.70	0.74	V	
High level of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$, T_J maximum		0.75	0.79		
Low level forward slope resistance	r _{t1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J maximum		7.0	5.5	mΩ	
High level forward slope resistance	r _{t2}	$(I > \pi \times I_{F(AV)})$, T_J maximum		6.4	5.2		
Maximum forward voltage drop	V _{FM}	T_J = 25 °C, t_p = 400 μ s, I_{FM} = 40 A_{pk} (26MB), I_{FM} = 55 A_{pk} (36MB)		1.25	1.3	V	
Maximum DC reverse current per diode	I _{RRM}	T _J = 25 °C, at V _{RRM}		10	10	μΑ	
RMS isolation voltage base plate	V_{ISOL}	f = 50 Hz, t = 1 s 2700 2700		V			

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES 26MB-A	VALUES 36MB-A	UNITS
Junction and storage temperature range	T _J , T _{Stg}		-55 to	o 150	°C
Maximum thermal resistance, junction to case per bridge	R _{thJC}		1.7	1.35	K/W
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat, and greased	0.2		IV/VV
Mounting torque ± 10 %		Bridge to heatsink	2	.0	Nm
Approximate weight			2	0	g

www.vishay.com Vishay Semiconductors

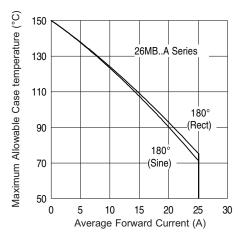


Fig. 1 - Current Ratings Characteristics

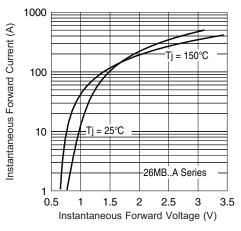


Fig. 2 - Forward Voltage Drop Characteristics

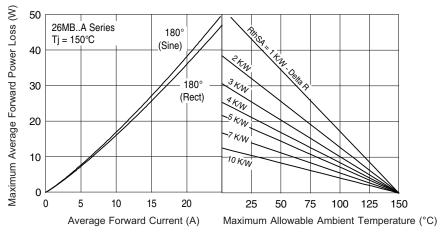


Fig. 3 - Total Power Loss Characteristics

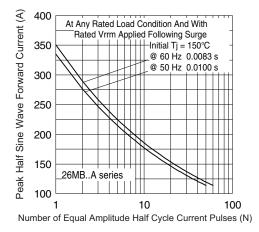


Fig. 4 - Maximum Non-Repetitive Surge Current

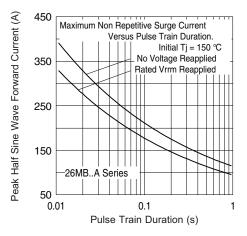


Fig. 5 - Maximum Non-Repetitive Surge Current

Vishay Semiconductors

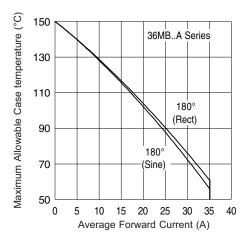


Fig. 6 - Current Ratings Characteristics

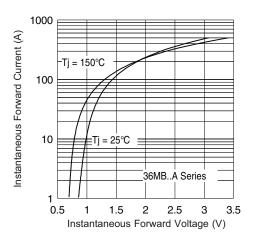


Fig. 7 - Forward Voltage Drop Characteristics

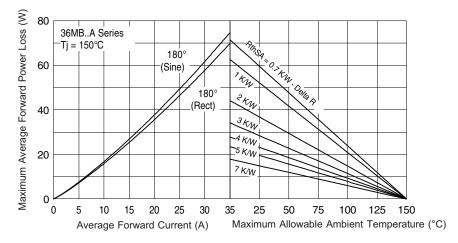


Fig. 8 - Total Power Loss Characteristics

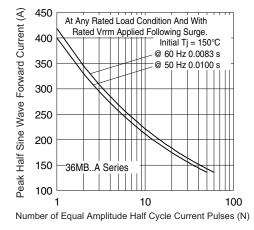
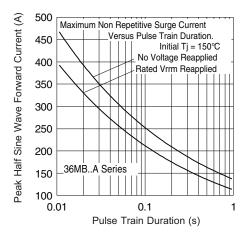
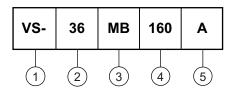


Fig. 9 - Maximum Non-Repetitive Surge Current




Fig. 10 - Maximum Non-Repetitive Surge Current

VS-MB High Voltage Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

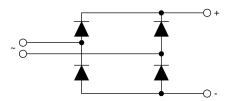
Device code

Vishay Semiconductors product

- Current rating code

26 = 25 A (average) 36 = 35 A (average)

Circuit configuration:

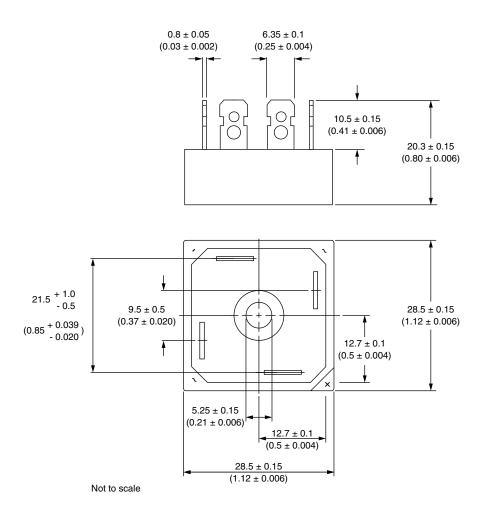

MB = Single phase european coding

Voltage code x 10 = V_{RRM}

Diode bridge rectifier:

A = 26 MB, 36 MB series

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95326	

Vishay Semiconductors

D-34

DIMENSIONS in millimeters (inches)

Suggested plugging force: 200 N max; axially applied to fast-on terminals

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.