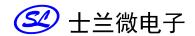

内置高精度振荡的I/O型低压低功耗MCU

描述

SC51P03B04是一款3V的I/O型低功耗8位MCU。它采用SC51核,内嵌4K字节OTP和128字节RAM。1.8V~3.6V的工作电压范围、超低停机电流和低频下低工作电流等特点,使其特别适合电池供电应用系统。4K程序容量、丰富的定时器功能和相当于8位PWM的载波发生器,也使SC51P03B04适合于各种小家电控制应用。

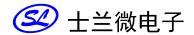

应用

- ◆ 遥控器
- ◆ 电源管理
- 小家电控制
- ◆ 电机控制

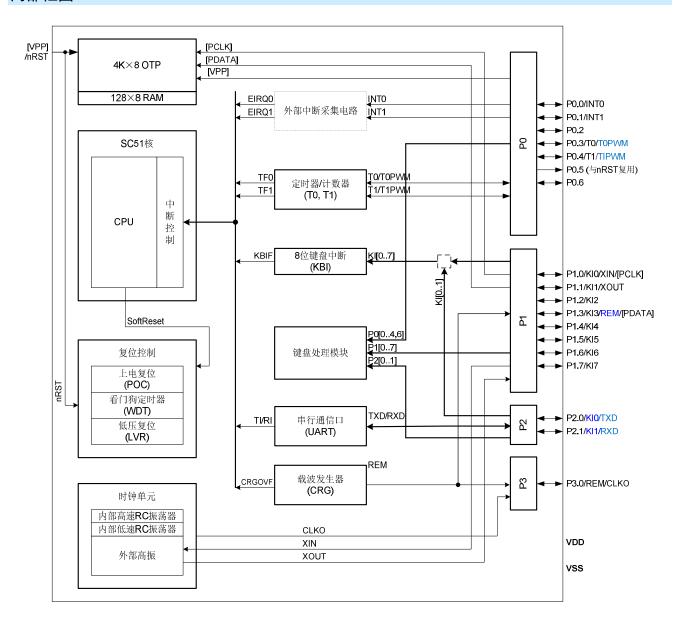
主要特点

- ◆ 8 位 SC51 CPU
 - 兼容 MCS51 指令集;双 DPTR;增加软件陷阱指令。
 - 改进的指令架构,90%的指令执行时间为两至四个系统时钟周期。
- 片上存储器
 - 4K 字节 OTP,数据保持时间大于 10 年。
 - 128 字节 RAM。
 - 支持在系统编程(ISP),仅需 5个管脚(包括 VDD 和 VSS 在内)。
 - 支持多次烧录(MTP): 4次,每次1K字节。
 - 支持 OTP 分页加密,页大小: 1K 字节。
- ◆ 电源和复位
 - 内置上电复位电路(POR)。
 - 内置低压复位电路(LVR), 2 个复位点可选: 1.63V, 1.7V。
 - ◆ 内置低压检测电路(LVD),8 个检测点可选:2.0V,2.1V,2.2V,2.3V,2.4V,2.5V,2.7V,3.0V。
 - 内置看门狗定时器 (WDT)。
- ◆ 时钟系统
 - 内置 20KHz 低频 RC 振荡。
 - 外接高频晶振 1~8MHz。
 - 内置 8MHz 高精度 RCH, 2 分频后(即 4MHz)作为系统时钟源。
 - 系统时钟分频系数 1/2/8/64。
- ◆ 输入/输出
 - 最大支持 18 个 IO
 - 内置大电流输出管,驱动能力两档可设,I_{OL}=200/250mA@V_{OL}=0.3V,V_{DD}=3V。
 - P1口(8个脚)具有键盘中断唤醒功能;中断极性可设。

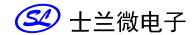
- 2路外部中断,中断极性可设。
- ◆ 外围设备
 - 2个 16 位标准定时器(T0, T1), T0 支持方波输出, T1 支持 PWM 输出。
 - 内置载波发生器(CRG),可实现载波调制,CRG时钟源可配置为8MHzRCH。
- 内置看门狗定时器 (WDT)。
 - 1路 UART 通讯口,可配置高精度波特率。
- ◆ 工作模式
 - 正常工作模式。
 - 休眠 (IDLE) 模式。
 - 停机 (STOP) 模式。
- ◆ 封装形式
 - 20 脚 TSSOP
 - 16 脚 SOP。


产品规格分类

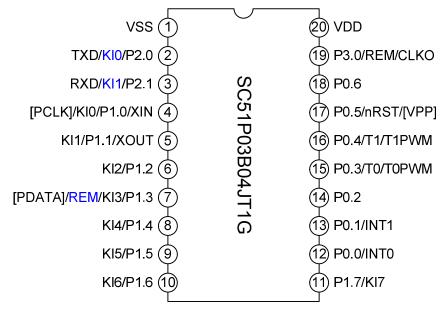
产品名称	封装形式	打印名称	环保等级	包装	备注	
SC51P03B04SC1G	000 40 005 4 07	00545005040040		料管	常用	
SC51P03B04SC1GTR	SOP-16-225-1.27	SC51P03B04SC1G	T L	编带		
SC51P03B04JT1G	T000D 00 005 0 05	000041740	无卤	料管	2K-177	
SC51P03B04JT1GTR	TSSOP-20-225-0.65	03B04JT1G		编带	常用	


资源信息

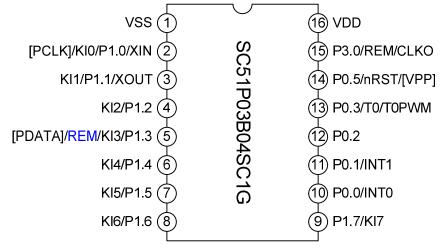
	_					
资源	SC51P03B04SC1G	SC51P03B04JT1G				
封装	SOP-16	TSSOP-20				
ОТР	4K*8					
RAM	128*8					
I/O	14	18				
EINT	2	2				
ТО	有	有				
T1	有	有				
CRG	有	有				
КВІ	8	8				
UART	-	有				


版本号: 1.1 共 24 页第 2 页

内部框图



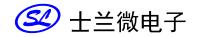
版本号: 1.1 共 24 页第 3 页


管脚分配图

TSSOP-20:

注1:[]内管脚可用于烧录。

SOP-6:

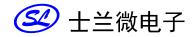


注1:[]内管脚可用于烧录。

管脚复用

	5 節	管脚号		T.C	LI → 17 _ L 10/2*	÷	Ath the Lake		14: =
I/O	管脚结构	-JT1	-SC1	系统	外部中断	定时器	键盘中断	串口	烧录
P0.0	В	12	10		INT0				
P0.1	В	13	11	1	INT1		-	1	1
P0.2	В	14	12	1			-	1	1
P0.3	В	15	13	1		T0/T0PWM	-	1	1
P0.4	В	16	-	-		T1/T1PWM		-	

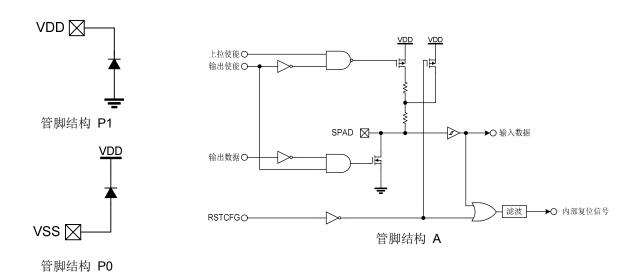
版本号: 1.1

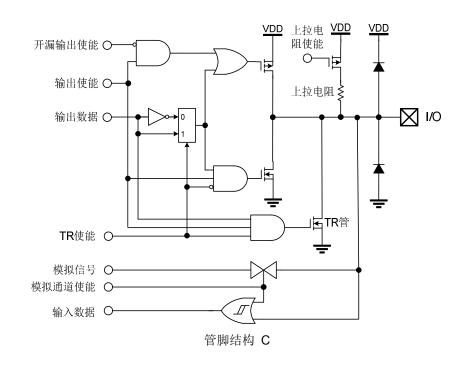


P0.5	Α	17	14	nRST	 			[VPP]
P0.6	В	18			 			
P1.0	В	4	2	XIN	 	KI0		[PCLK]
P1.1	В	5	3	XOUT	 	KI1		
P1.2	В	6	4		 	KI2		
P1.3	В	7	5		 REM	KI3		[PDATA]
P1.4	В	8	6		 	KI4		
P1.5	В	9	7		 	KI5		
P1.6	В	10	8		 	KI6		
P1.7	В	11	9		 	KI7		
P2.0	В	2	-		 	KI0	TXD	
P2.1	В	3	-		 	KI1	RXD	
P3.0	С	19	15	CLKO	 REM			
VDD	P1	20	16		 			
VSS	P0	1	1		 			

管脚描述

	tA \ tA	47 H1014 47
I/O	输入输出	管脚描述
PORT		
P0.0-P0.6	I/O	7 位双向口,可位操作
P1.0-P1.7	I/O	8 位双向口,可位操作
P2.0-P2.1	I/O	2 位双向口,可位操作
P3.0	I/O	1 位双向口,可位操作
PROGRAM		
[PCLK]	I	烧录时钟
[PDATA]	I/O	烧录数据
[VPP]	Ι	高压脚
SYSTEM		
nRST	Ι	外部复位,低电平有效
CLKO	0	时钟输出
XIN	I	外部晶振输入脚
XOUT	Ι	外部晶振输出脚
INT0~INT1	I/O	外部中断 0/1
TIMER		
T0		T0 外部时钟输入
T1	I	T1 外部时钟输入
TOPWM	0	T0 方波输出
T1PWM	0	T1 PWM 输出
REM	0	载波输出
KBI		


版本号: 1.1 共 24 页第 5 页



I/O	输入输出	管脚描述
KI0~KI7	I	8 位键盘中断输入
UART		
RXD	I	数据输入
TXD	0	数据输出
POWER		
VDD	Р	电源电压
VSS	Р	地

注: 管脚类型这一列中,P 表示电源管脚,I/O 表示通用输入/输出脚,I 表示输入脚,O 表示输出脚。

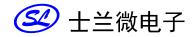
管脚结构图

极限参数

如果器件工作条件超过"绝对最大值",就可能会对器件造成永久性损坏。这些值仅为运行条件极大值,我们建议不要使器件在该规范规定的范围以外运行。器件长时间工作在最大值条件下,其可靠性会受到影响。

1. 电压特性

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压	V_{DD}	-	-0.3	ı	5.5	
炒)由厅	V	P0.5	-0.3	-	6.75	V
输入电压	V _{IN}	除 P0.5 外的其它 IO	-0.3	-	V _{DD} +0.3	


注: 所有电压都以 Vss 为参考。

2. 电流特性

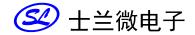
参数	符号	测试条件	最小值	典型值	最大值	单位
流入 V _{DD} 的总电流	I_{VDD}	-	ı	ı	80	
流出 Vss 的总电流	I _{VSS}	不包括内置 TR 管	-	-	80	
管脚注入电流		$V_{IN} > V_{DD}$ 或 $V_{IN} < V_{SS}$	-4	-	4	mA
自网在八电机	I _{INJ}	$V_O > V_{DD}$ 或 $V_O < V_{SS}$	-4	-	4	
总注入电流	Σ I _{INJ}	-	-20	-	20	

3. 热特性

参数	符号	测试条件	最小值	典型值	最大值	单位
环境温度	T _A	-	-40	1	85	°C

参数	符号	测试条件	最小值	典型值	最大值	单位
存储温度	T _{STG}	-	-55	-	125	
结温	TJ	-	-	-	150	
热阻	0	TSSOP20	-	91	-	
3//YPH	θ_{JA}	SOP16	-	125	-	°C /W
总功耗	P _D	1	-	-	500	mW

注: 热阻和封装形式、PCB 板设计、产品工作环境风速、产品工作功率都有关系。


4. ESD 保护和 Latch-up 免疫特性

参数	符号	测证	最小值	典型值	最大值	单位	
НВМ	V_{HBM}	MIL-STD-883H		±2000	-	-	V
Latch-up 触发电流	I _{LAT}	JEDEC star	JEDEC standard NO.78D		-	-	mA
V _{DD} 过压	V_{LAT}	2011.11		5.4	-	-	V

推荐工作条件

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	V_{DD}	-	1.8	3.3	3.6	V
CPU 时钟频率	F _{CPU}	-	-	4	-	MHz
上电复位重新激活电压	V_{PORR}	-	-	0.2	-	V
上电复位延迟时间	t _{PWRT}	-	-	20	-	ms
VDD 上升速率	S _{VDD}	确保能够产生内部上电复位信号	0.1	-	-	V/ms
RAM 保持电压	V_{DR}	T _A =-40~85°C	0.8	ı	-	V

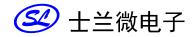
杭州士兰微电子股份有限公司 http://www.silan.com.cn

直流电气参数(除非特别指定, V_{DD}=3V, T_{AMB}=25°C)

1. 电流特性

测量电流时遵循下列条件:

- 所有 IO 设置成输入模式且固定为 V_{DD} 或 V_{SS} (或者设置成输出低电平),无负载;
- 所有外设都关闭(外设时钟也通过门控关闭),除非明确提到;


参数	符号	测试条件		最小值	典型值	最大值	单位
		内部高精度 RCH,	V _{DD} =3.0	-	1.32	1.6	mA
		F _{MCLK} = 4MHz					
工 作由法		内部高精度 RCH,	V _{DD} =3.0		0.4	0.6	
工作电流	I _{DD}	F _{MCLK} = 500KHz		-			
		外部 4MHz 晶振	V _{DD} =3.0	-	1.4	1.7	
		F _{MCLK} = 4MHz					
待机电流		内部高精度 RCH,			300	400	
		F _{MCLK} = 4MHz	V _{DD} =3.0	-			
		内部高精度 RCH,	\/ 0.0				
	I _{IDLE}	F _{MCLK} = 500KHz	V _{DD} =3.0	-	170	250	μA
		外部 4MHz 晶振,	V -2.0	-	470	600	
		F _{MCLK} = 4MHz	V _{DD} =3.0				
停机电流	I _{STOP}	RCL 开启	V _{DD} =3.0	_	1.5	2.5	
		RCL 关闭	V _{DD} =3.0	-	0.2	1.0	μΑ

注: 典型值都是抽样特征值, 不在生产中测试。

2. IO 特性

参数	符号	测试条件		最小值	典型值	最大值	单位
输入高电压	V _{IH}	-		0.7V _{DD}	ı	V_{DD}	V
炒)加出厅	V _{IL}	除 P0.5 用作 nRST 外的其它 IO		0	ı	0.3V _{DD}	V
输入低电压		P0.5 用作 nRST 时		0	ı	0.2V _{DD}	V
输入迟滞	V _{HYS} (IO)	-		-	40	-	mV
输入漏泄电流	I _{IL}	V _{SS} <v<sub>PIN<v<sub>DD</v<sub></v<sub>	除 P0.5 外的所有 IO	-	-	±1	uA
		T _A =85°C	P0.5	-	-	±1	
上拉电阻	R _{PU}	V _{IN} =0V	-	100	135	180	
下拉电阻	R _{DN}	V _{IN} =3V	除 P0.5 外的所有 IO	30	70	100	kΩ
输出高电压	V _{OH}	I _{OH} =10mA,P3.0		V _{DD} -0.5V	-	-	
		I _{OH} =4mA,除 P3.0和 P0.5外的其它 IO		V _{DD} -0.5V	-	-	V
输出低电压	V _{OL}	I _{OL} =6mA, P0.5		-	-	0.5	.,
		I _{OL} =8mA,除 P0.5 外的其它 IO		-	-	0.5	V
TR 输出低电压	V _{OL}	I _{OL} =200mA,P3.0(低档位)		-		0.4	V

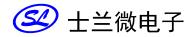
版本号: 1.1 共 24 页第 9 页

参数	符号	测试条件	最小值	典型值	最大值	单位
		I _{OL} =250mA,P3.0(高档位)	-	-	0.4	
外部复位滤波宽度*	T _{PW} (IO)	P0.5	-	2	4	μs

注: *和典型值都是抽样特征值,不在生产中测试。

3. 电源管理特性

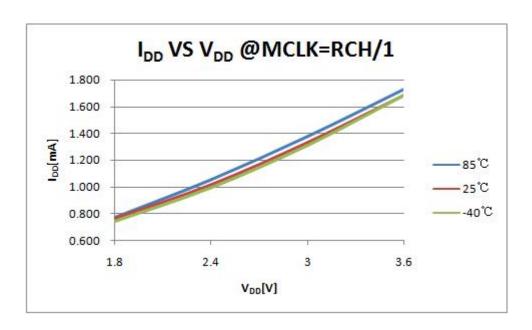
参数	符号	测试条件		最小值	典型值	最大值	单位
LVR 复位电压	V _{LVR}	LVRS=0	T _A =-40~85°C	1.55	1.63	1.75	V
		LVRS=1		1.6	1.7	1.8	
LVR 迟滞 [*]	V _{HYS} (LVR)	-		-	10	ı	mV
LVR 模块工作电流 [*]	I _{LVR}	-		-	3.5	ı	μΑ
		LVDS=000	- T _A =-40~85°C	1.95	2.0	2.05	V
	V_{LVD}	LVDS=001		2.05	2.1	2.15	
		LVDS=010		2.15	2.2	2.25	
LVD 检测电压		LVDS=011		2.25	2.3	2.35	
LVD 巡例电压		LVDS=100		2.35	2.4	2.45	
		LVDS=101		2.45	2.5	2.55	
		LVDS=110		2.62	2.7	2.78	
		LVDS=111		2.92	3.0	3.08	
LVD 迟滞 [*]	V _{HYS} (LVD)	-		-	40	ı	mV
LVD 电流 [*]	I _{LVD}	含 VBG 模块电流	T _A =-40~85°C	-	23	40	μΑ

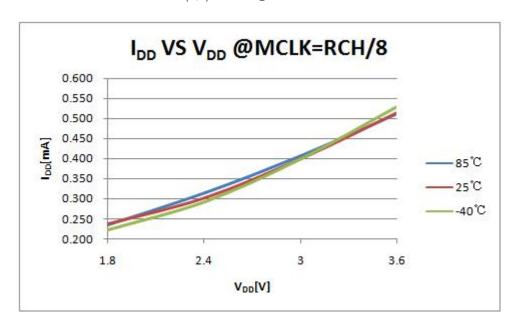

注: *和典型值都是抽样测试结果,不在生产中测试。

4. 振荡特性

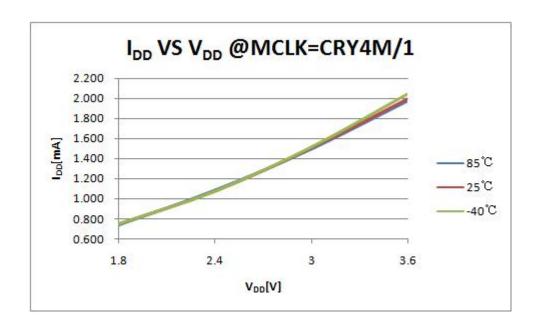
参数	符号	测试条件	最小值	典型值	最大值	单位	
		V _{DD} =1.8~3.6V,T _A =-10∼50°C	7.92	8.0	8.08		
经过校准的 RCH 频率	F _{RCH}	V_{DD} =1.8~3.6V, T_{A} =-20~70°C	7.80	8.0	8.20	MHz	
		V _{DD} =1.8~3.6V,T _A =-40~85°C	7.60	8.0	8.40		
RCH 启动时间*	T _{RCHSTR}	-	-	64	-	μs	
RCH 稳定延时计数周期	T _{DRCH}	-	-	512	-	Cycles	
RCH 工作电流*	I _{RCH}	-	-	100	-	μΑ	
RCL 频率	F_{RCL}	1.8~3.6V, -40∼85°C	6	20	40	KHz	
RCL 工作电流	I _{RCL}	-	-	0.2	1.0	μΑ	

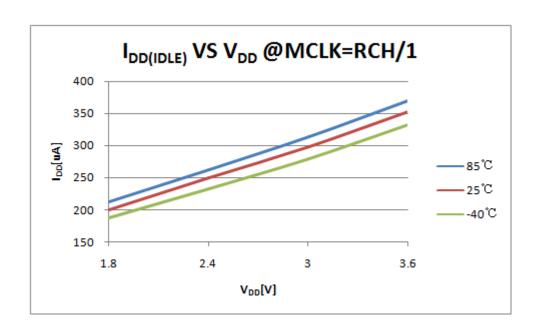
注: *和典型值都是抽样特征值,不在生产中测试。

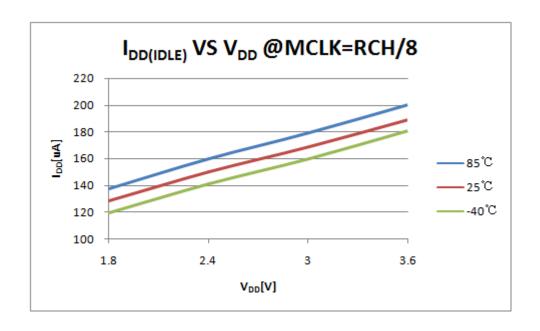

版本号: 1.1 共 24 页第 10 页

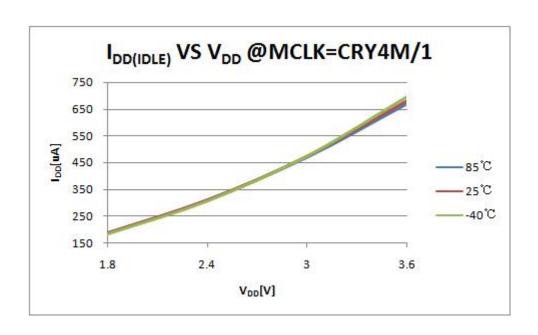

直流和交流特性图表

注:以下图表都是根据样品测试结果得出的,除 RCH 精度是 100 颗样品外,其它参数是 5 颗样品。

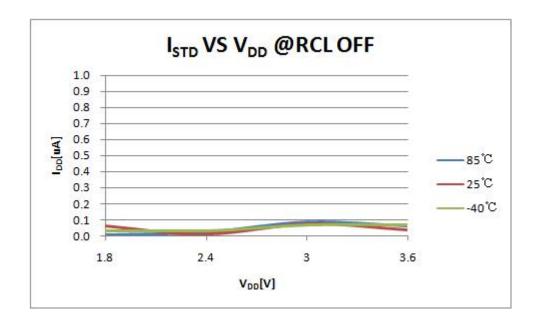


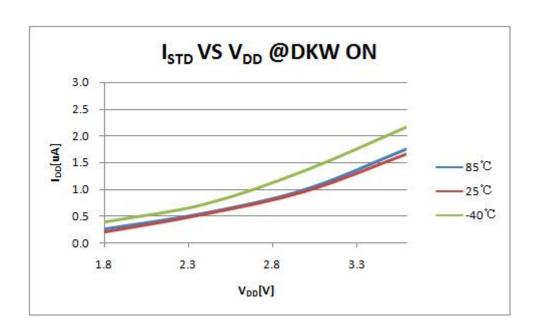

 $I_{DD(RUN)}$ vs. V_{DD} @MCLK=RCH/8

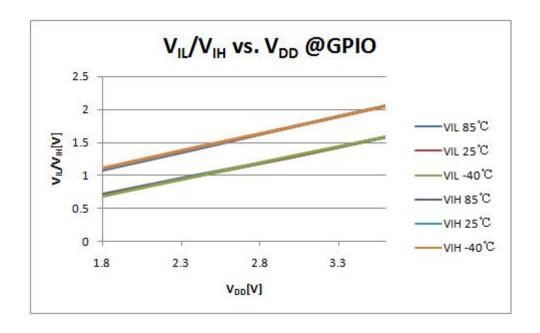

 $I_{\text{DD(RUN)}}$ vs. V_{DD} @MCLK=CRYH(4M)/1

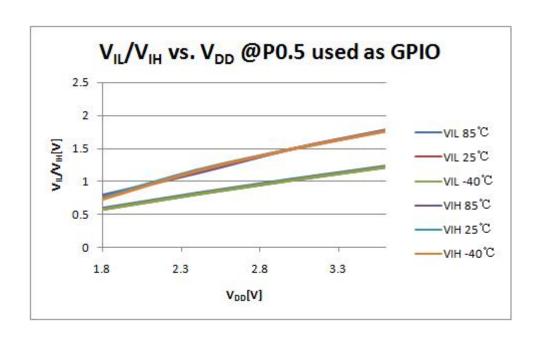

 $I_{DD(IDLE)}$ vs. V_{DD} @MCLK=RCH/1

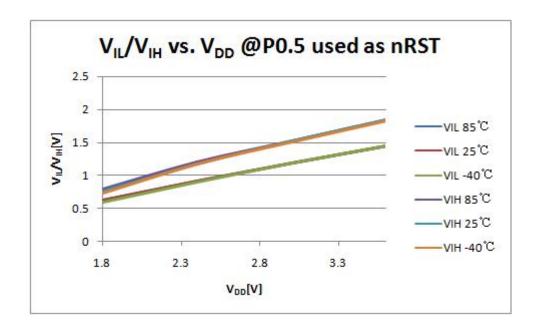


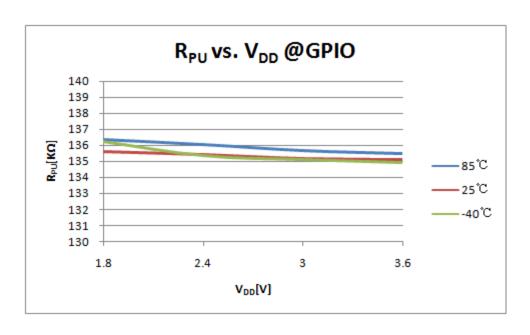


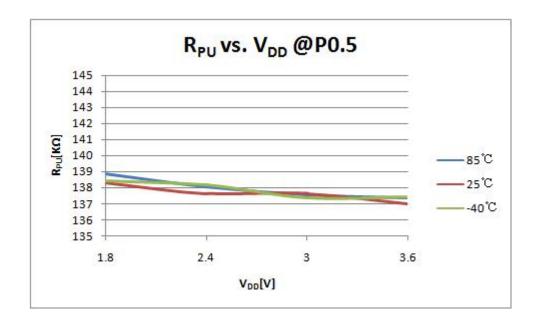

 $I_{\text{DD(IDLE)}}$ vs. V_{DD} @MCLK=CRY4M/1

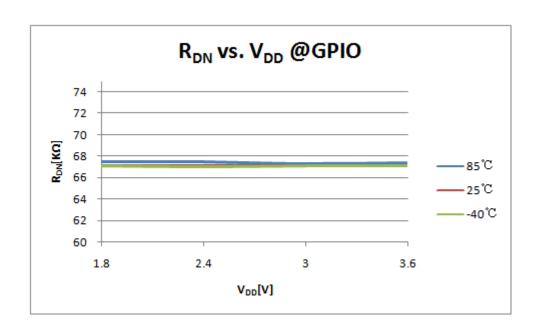


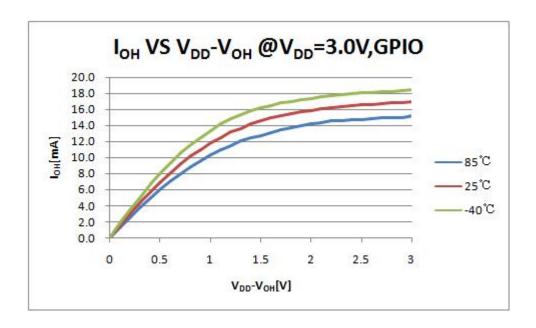

I_{DD(STOP)} vs. V_{DD}键盘处理模块开启

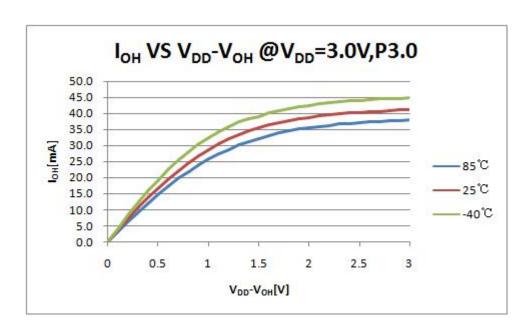

 V_{IL}/V_{IH} vs. V_{DD} @GPIO

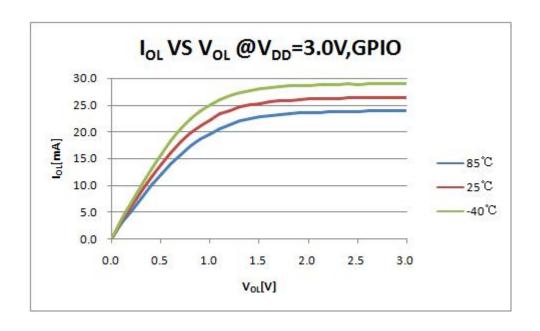

 V_{IL}/V_{IH} vs. V_{DD} @P0.5 用作 GPIO

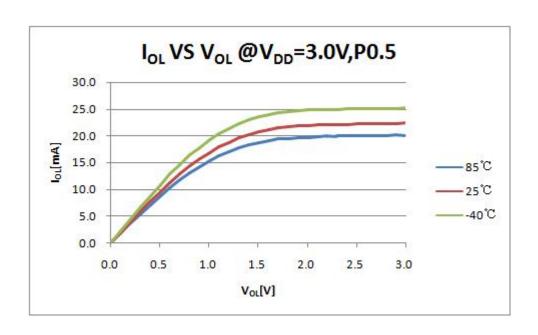

 V_{IL}/V_{IH} vs. V_{DD} @P0.5 用作 nRST

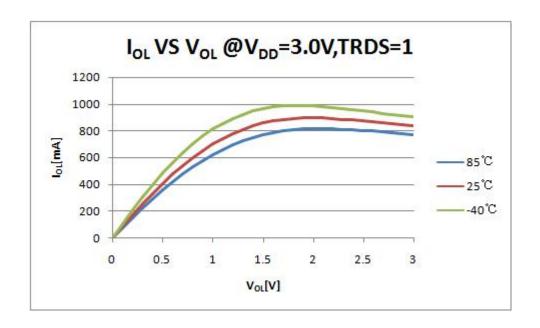

 R_{PU} vs. V_{DD} @GPIO except P0.5 & P3.0

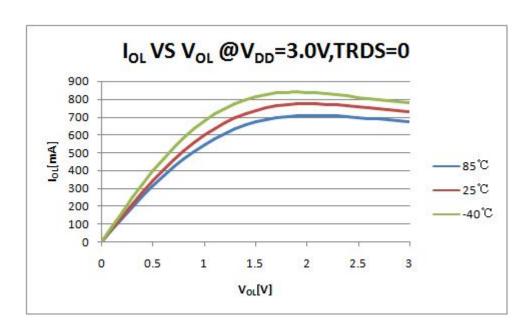

 R_{PU} vs. V_{DD} @ $P0.5\,$

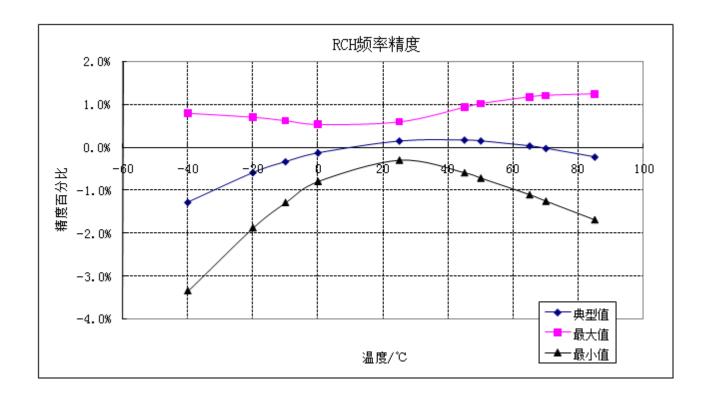

 R_{PD} vs. V_{DD} @ GPIO

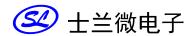



 I_{OH} vs. $V_{DD} - V_{OH}$ @ P3.0

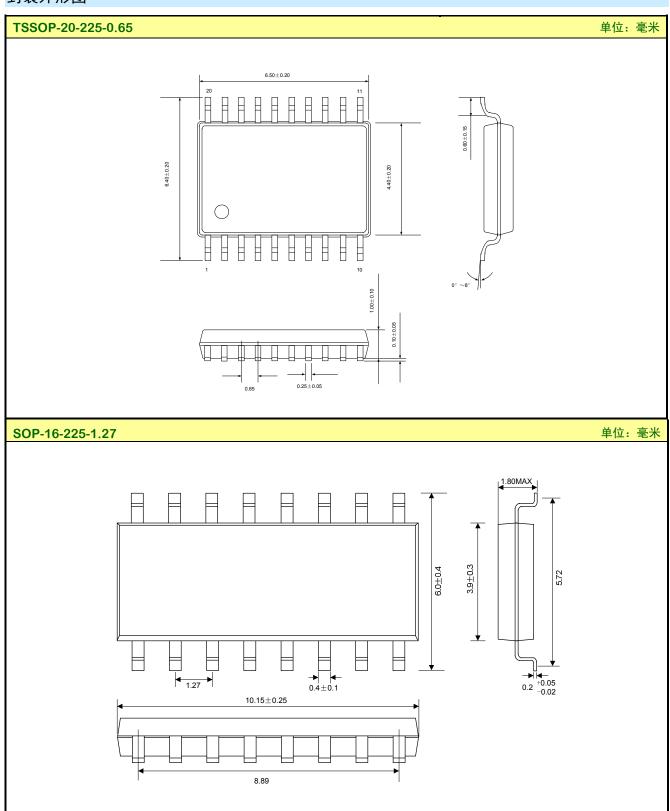


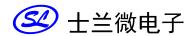

 I_{OL} vs. V_{OL} @ P0.5



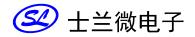


 I_{OL} vs. V_{OL} @ TR, TRDS=0




RCH 精度 vs. 温度

封装外形图


MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- ◆ 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

SC51P03B04 说明书

产品名称: SC51P03B04 文档类型: 说明书

版权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 增加直流和交流特性图表

版 本: 1.0

修改记录:

1. 正式版本发布