

SiC Power MOSFET Module

1200 V, 40 mΩ, 27 A **H-Bridge Power Module**

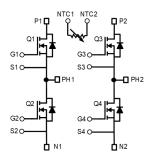
NVXK2TR40WXT

Features

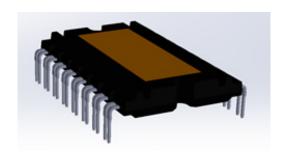
- DIP Silicon Carbide H-Bridge Power Module for On-board Charger (OBC) for xEV Applications
- Creepage and Clearance per IEC 60664–1, IEC 60950–1
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Lead Free, ROHS and UL94V-0 Compliant
- Automotive Qualified per AEC–Q101 and AQG324

Typical Applications

• DC-DC and On-Board Charger in xEV Applications


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V_{DSS}	1200	V
Gate-to-Source Voltage		V_{GS}	+25/–15	V
Recommended Operation Values of Gate-to-Source Voltage, T _J ≤ 175°C		V_{GSop}	+20/-5	٧
Continuous Drain Current (Notes 1, 2)	T _C = 25°C	I _D	27	Α
Power Dissipation (Note 1)		P _D	319	W
Pulsed Drain Current (Note 3)	T _C = 25°C	I _{DM}	240	Α
Single Pulse Surge Drain Current Capability	$T_{C} = 25^{\circ}C,$ $t_{p} = 10 \ \mu s,$ $R_{G} = 4.7 \ \Omega$	I _{DSC}	495	Α
Operating Junction and Storage Temperature		T _J , T _{stg}	–55 to 175	°C
Source Current (Body Diode) (Note 2)		I _S	27	Α
Single Pulse Drain-to-Source Avalanche Energy (Note 4)		E _{AS}	338	mJ


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Particular conditions specified determine thermal resistance values shown. Infinite heatsink with T_C^{\cdot} = 100°C for $R_{\theta JC}$. For $R_{\Psi JS}$ assembled to 3 mm thick aluminum heatsink with infinite cooling bottom surface at 85°C, through 38 μm thick TIM with 6.5 W/mK thermal conductivity.
- 2. Qualified per ECPE Guideline AQG 324.
- 3. Repetitive rating limited by maximum junction temperature and transconductance.
- 4. E_{AS} based on initial T_J = 25°C, L = 1 mH, I_{AS} = 26 A, V_{DD} = 120 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
1200 V	59 m Ω @ 20 V	27 A

SiC MOSFET H-Bridge Module

APM32

ORDERING INFORMATION

Device	Package	Shipping
NVXK2TR40WXT	APM32 (Pb-Free)	10 ea / Tube

THERMAL CHARACTERISTICS (Note 1)

Parameter	Symbol	Тур	Max	Unit
Thermal Resistance Junction-to-Case (Note 1)	$R_{ heta JC}$	0.37	0.47	°C/W
Thermal Resistance Junction-to-Sink (Note 1)	$R_{\Psi JS}$	0.84	0.95	°C/W

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise stated)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		1200			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 1 mA, referenced to 25°C			450		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V V _{DS} = 1200 V	$T_{J} = 25^{\circ}C$ $T_{J} = 175^{\circ}C$			100	μA mA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/–15 V				±1	μА
ON CHARACTERISTICS (Note 5)	-033	1 dS 1 = 5, 15 1	, 103		<u> </u>		po t
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D =$	10 mA	1.8	3	4.3	V
Recommended Gate Voltage	V _{GOP}	103 103,10		-5		+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D =	35 A. T. = 25°C		40	59	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	1	35 A, T _{.l} = 175°C		71		mΩ
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 35 A			20		S
CHARGES, CAPACITANCES & GATE RE		50 15			1		1
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V			1789		pF
Output Capacitance	C _{OSS}				139		
Reverse Transfer Capacitance	C _{RSS}				12.5		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V},$ $I_{D} = 47 \text{ A}$ $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$			106		nC
Threshold Gate Charge	Q _{G(TH)}				18		
Gate-to-Source Charge	Q _{GS}				34		
Gate-to-Drain Charge	Q_{GD}				26		
Gate-Resistance	R _G				2		Ω
INDUCTIVE SWITCHING CHARACTERIST	rics	•					
Turn-On Delay Time	t _{d(ON)}	V _{GS} = -5 / 20 V, V _{DS} = 800 V,			17		ns
Rise Time	t _r	I _D = 47 A, R _G = 4 Inductive load	.7 Ω,		20		
Turn-Off Delay Time	t _{d(OFF)}	maddive load			30		
Fall Time	t _f				9		1
Turn-On Switching Loss	E _{ON}				366		μJ
Turn-Off Switching Loss	E _{OFF}				200		μJ
Total Switching Loss	E _{tot}				566		μJ
DRAIN-SOURCE DIODE CHARACTERIS		•			•		
Continuous Drain-Source Diode Forward Current (Note 1)	I _{SD}	V _{GS} = -5 V, T _J =	25°C			27	А
Pulsed Drain-Source Diode Forward Current (Note 3)	I _{SDM}	$V_{GS} = -5 \text{ V}, T_{J} = 25^{\circ}\text{C}$				240	А
Forward Diode Voltage	V _{SD}	V _{GS} = -5 V, I _{SD} =	= 17.5 A,		3.7		V

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ stated) \ (continued)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	$V_{GS} = -5 \text{ V}, \text{ dI}_S/\text{dt} = 1000 \text{ A/}\mu\text{s}, \\ I_{SD} = 17.5 \text{ A}$		24		ns		
Peak Reverse Recovery Current	I _{RRM}			10.4		Α		
Charge Time	t _a			12.4		ns		
Discharge Time	t _b			11.6		ns		
Reverse Recovery Charge	Q _{RR}			125		nC		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse test: pulse width ≤300 µs, duty ratio ≤2%.

TYPICAL CHARACTERISTICS

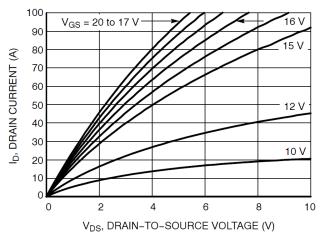


Figure 1. On-Region Characteristics

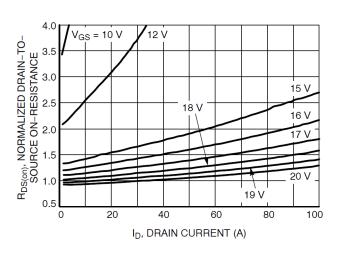


Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

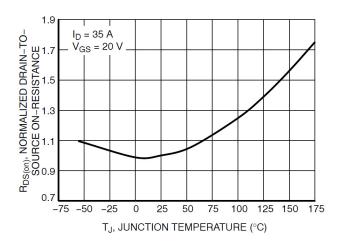


Figure 3. On–Resistance Variation with Temperature

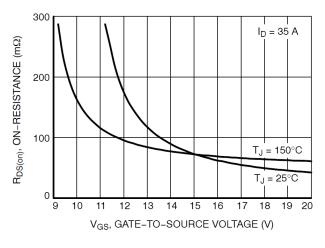


Figure 4. On-Resistance vs. Gate-to-Source Voltage

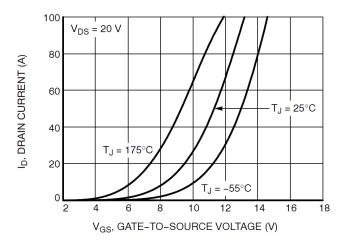


Figure 5. Transfer Characteristics

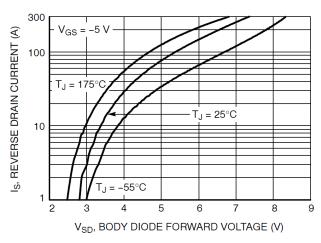


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS (CONTINUED)

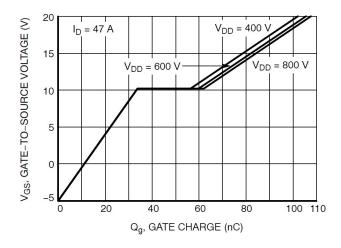


Figure 7. Gate-to-Source Voltage vs. Total Charge

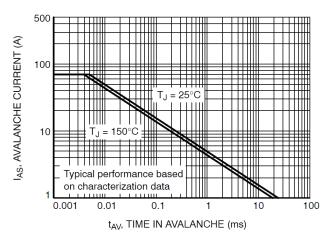


Figure 9. Unclamped Inductive Switching Capability

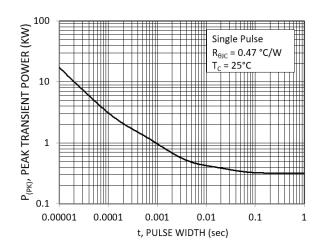


Figure 11. Single Pulse Maximum Power Dissipation

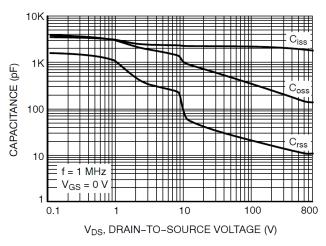


Figure 8. Capacitance vs. Drain-to-Source Voltage

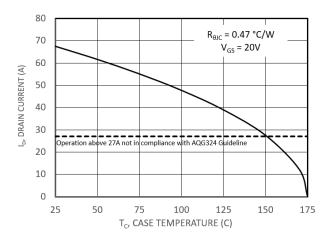


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

TYPICAL CHARACTERISTICS (CONTINUED)

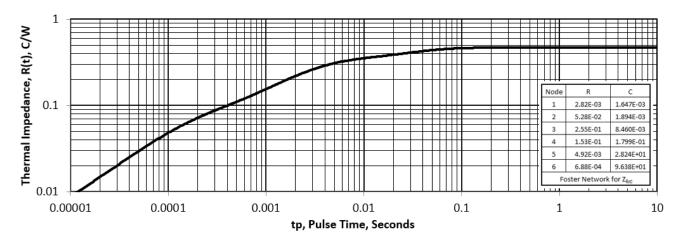


Figure 12. Thermal Response

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative