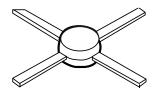


Cascadable Silicon Bipolar MMIC Amplifier

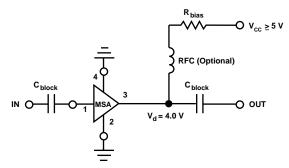
Technical Data

MSA-0785

Features


- Cascadable 50 Ω Gain Block
- Low Operating Voltage: 4.0 V Typical V_d
- **3 dB Bandwidth:** DC to 2.0 GHz
- 12.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Plastic Package

Description


The MSA-0785 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

85 Plastic Package

Typical Biasing Configuration

MSA-0785 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Current	60 mA		
Power Dissipation ^[2,3]	275 mW		
RF Input Power	+13dBm		
Junction Temperature	150°C		
Storage Temperature	-65 to 150°C		

Thermal Resistance^[2,4]: $\theta_{jc} = 110^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE} = 25^{\circ}C.$

3. Derate at 9.1 mW/°C for $T_C > 120$ °C.

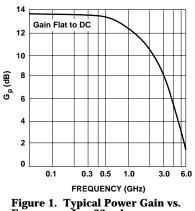
4. See MEASUREMENTS section "Thermal Resistance" for more information.

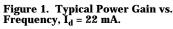
Symbol	Parameters and Test Conditions: I_d = 22 mA, Z_0 = 50 Ω		Units	Min.	Тур.	Max.
GP	PowerGain($ S_{21} ^2$)	f = 0.1 GHz f = 1.0 GHz	dB	10.5	13.5 12.5	
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB	10.5	± 0.7	
f_{3dB}	3 dB Bandwidth		GHz		2.0	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.4:1	
	Output VSWR	f = 0.1 to 2.5 GHz			1.5:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		5.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		19.0	
t _D	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	3.2	4.0	4.8
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

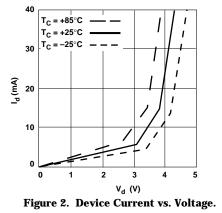
Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.


 S_{21} S_{22} S_{11} S_{12} Freq. GHz Mag Ang dB Mag dB Mag Ang Mag Ang Ang 0.1 .05 166 13.54.73 174 -18.4.120 -11 1 .14 0.2 .05 151 13.44.70 169 -18.3.122 3 -21.14 13.3 4.63 -18.3 .121 6 -40 0.4 .04 115158 .14 7 .1250.6 .04 65 13.14.53148 -18.0.16 -58 9 -710.8 .05 2612.94.41 138 -17.8.139 .17 1.0 .06 -5 12.64.25127 -17.6.132 10 .18 -84 .08 -51 3.82 -16.5.149 12 .18 -1091.511.6104 2.0 -99 10.5 3.33 82 -15.9.161 11 .17 -126.11 2.5.14 -1279.3 2.9168 -15.2.174 13 .16 -134 3.0 .20 -1547.9 2.4852 -14.8.183 7.16 -1393.5 .25 -1736.7 2.1637 -14.7.184 5.16 -1324.0 .29 1715.51.88 23-14.8.182 1 .18 -1305.0.35 139 3.5 1.50 -14.3.193 -6 .21 -133-1-26 6.0 .46 100 1.71.22-14.5.189 -14 .20 -169


MSA-0785 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 22 mA$)


A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

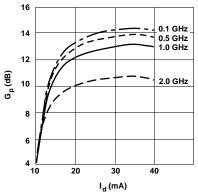


Figure 3. Power Gain vs. Current.

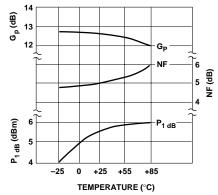


Figure 4. Output Power at 1 dB Gain **Compression, NF and Power Gain vs.** Case Temperature, f = 1.0 GHz, I_d=22mA.

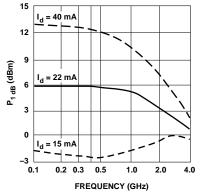


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

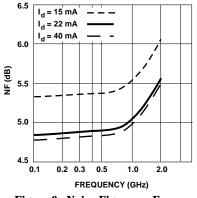
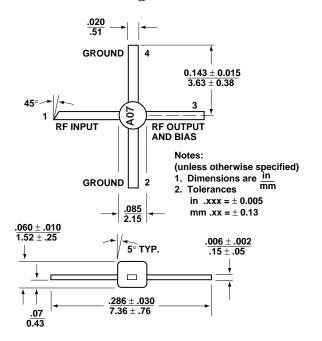



Figure 6. Noise Figure vs. Frequency.

85 Plastic Package Dimensions