

30 W, DC - 6.0 GHz, 28 V, GaN HEMT

Description

Cree's CGH27030S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH27030S ideal for LTE, 4G Telecom and BWA amplifier applications. The CGH27030S operates from a 28 volt rail. The transistor is available in a 3mm x 4mm, surface mount, dualflat-no-lead (DFN) package.

Package Type: 3x4 DFN PN: CGH27030S

Typical Performance 1.8-2.2 GHz ($T_c = 25^{\circ}C$), 28 V

Parameter	1.8 GHz	2.0 GHz	2.2 GHz	Units
Small Signal Gain	20.0	20.4	19.5	dB
Adjacent Channel Power @ P _{AVE} = 5 W	-39.5	-42.1	-39.1	dBc
Drain Efficiency @ P _{AVE} = 5 W	31.8	32.8	33.8	%
Input Return Loss	-4.2	-6.4	-7.7	dB

Note: Measured in the CGH27030S-AMP1 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH

Typical Performance 2.3-2.7 GHz ($T_c = 25^{\circ}C$), 28 V

Parameter	2.3 GHz	2.5 GHz	2.7 GHz	Units
Small Signal Gain	21.1	20.6	20.0	dB
Adjacent Channel Power @ P _{AVE} =5 W	-32.0	-36.4	-33.6	dBc
Drain Efficiency @ P _{AVE} = 5 W	37.8	36.2	35.0	%
Input Return Loss	-7.3	-7.9	-7.2	dB

Note: Measured in the CGH27030SF-AMP2 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH

Features for 28 V in CGH27030S-AMP1

- 1.8 2.2 GHz Operation
- 30 W Typical Output Power
- 18 dB Gain at 5 W P_{AVE}
- -39 dBc ACLR at 5 W P_{AVE}
- 33% efficiency at 5 W P_{AVE} High degree of APD and DPD correction can be applied

Features for 28 V in CGH27030S-AMP2

- 2.3 2.7 GHz Operation
- 30 W Typical Output Power
- 18.5 dB Gain at 5 W P_{AVE} •
- -39 dBc ACLR at 5 W P_{AVE} •
- 36% efficiency at 5 W P_{AVE}^{VE} High degree of APD and DPD correction can be applied

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

V _{dss}	120	N/ h	
		Volts	25°C
V _{GS}	-10, +2	Volts	25°C
Т _{stg}	-65, +150	°C	
T,	225	°C	
I _{GMAX}	7.2	mA	25°C
I _{DMAX}	3.0	A	25°C
T _s	245	°C	
T _c	-40, +150	°C	
R _{ejc}	3.65	°C/W	85°C
	T _{stg} T _J I _{gmax} I _{dmax} T _s T _c	T _{STG} -65, +150 T _J 225 I _{GMAX} 7.2 I _{DMAX} 3.0 T _S 245 T _c -40, +150	T _{STG} -65, +150 °C T _J 225 °C I _{GMAX} 7.2 mA I _{DMAX} 3.0 A T _s 245 °C T _c -40, +150 °C

Notes:

¹ Current limit for long term, reliable operation ² Refer to the Application Note on soldering at

wolfspeed.com/RF/Document-Library

 ${}^{3}T_{c}$ = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance

 4 Simulated for the CGH27030S at $\rm P_{_{DISS}}$ = 21.6 W 5 The R $_{_{TH}}$ for Cree's demonstration amplifier, CGH27030S-AMP1, with 33 x 0.011 via holes designed on a 20 mil thick Rogers 4350 PCB, is 3.51 °C. The total $\rm R_{_{TH}}$ from the heat sink to the junction is 3.62 °C + 3.51 °C = 7.13 °C/W

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V _{DC}	$V_{\rm DS} = 10 \text{ V}, I_{\rm D} = 7.2 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	V _{DS} = 28 V, I _D = 0.20 mA
Saturated Drain Current	I _{DS}	5.0	7.0	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{(BR)DSS}	84	-	-	V _{DC}	V _{GS} = -8 V, I _D = 7.2 mA
RF Characteristics ³ ($T_c = 25^{\circ}C$, $F_0 = 2.65$ GHz unless otherwise noted)						
Gain	G	-	19.1	-	dB	$V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 0.20 \text{ A}, \text{ P}_{_{IN}} = 10 \text{ dBm}$
Output Power ³	P _{out}	-	44.9	-	dBm	$V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 0.20 \text{ A}, \text{ P}_{_{IN}} = 30 \text{ dBm}$
Drain Efficiency ³	η	-	72	-	%	$V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 0.20 \text{ A}, \text{ P}_{_{IN}} = 30 \text{ dBm}$
Output Mismatch Stress	VSWR	_	10:1	-	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 30 \text{ dBm}$
Dynamic Characteristics						
Input Capacitance ⁴	C _{GS}	-	8.6	-	pF	$V_{\rm DS} = 28$ V, $V_{\rm gs} = -8$ V, f = 1 MHz
Output Capacitance ⁴	C _{DS}	_	2.0	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	-	0.4	_	pF	$V_{DS} = 28 \text{ V}, V_{gS} = -8 \text{ V}, f = 1 \text{ MHz}$

Notes:

¹ Measured on wafer prior to packaging ² Measured in Cree's production test fixture. This fixture is designed for

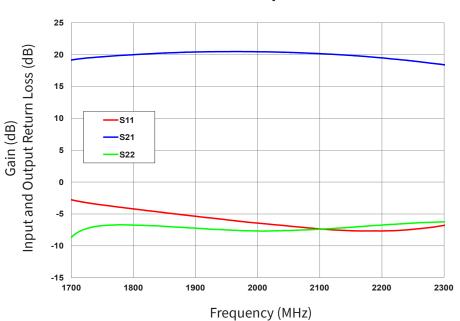
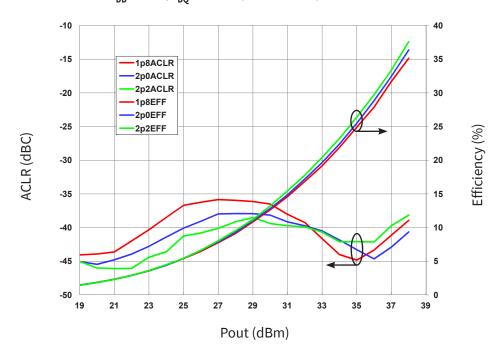
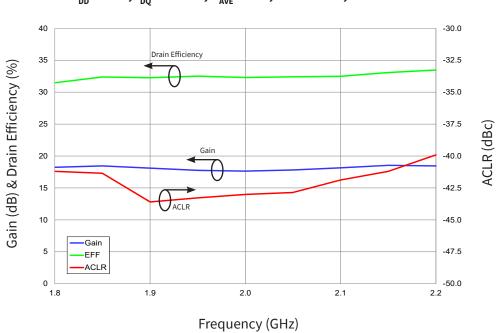
high volume test at 2.65 GHz

³Un-modulated Pulsed Signal, 100 µs, 10% duty cycle

⁴ Includes package and internal matching components

2

Typical Performance in CGH27030S-AMP1

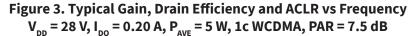
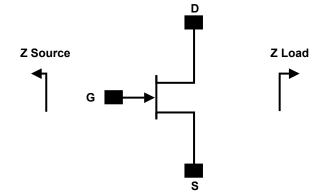
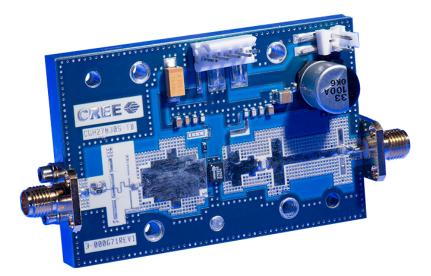

Figure 1. Small Signal Gain and Return Losses vs Frequency $V_{_{\rm DD}}$ = 28 V, $I_{_{\rm DO}}$ = 0.20 A

Figure 2. Typical Drain Efficiency and ACLR vs. Output Power $V_{DD} = 28 \text{ V}, I_{DO} = 0.20 \text{ A}, 1c \text{ WCDMA}, PAR = 7.5 \text{ dB}$

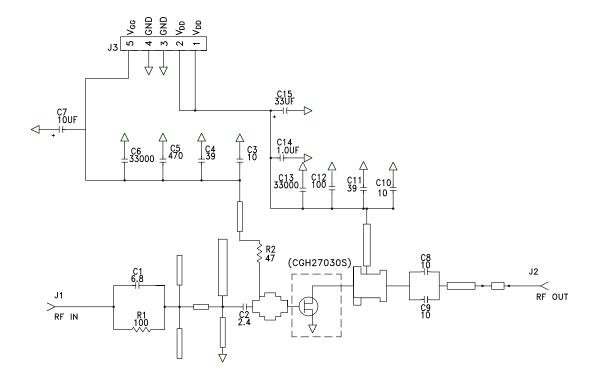


Typical Performance in CGH27030S-AMP1

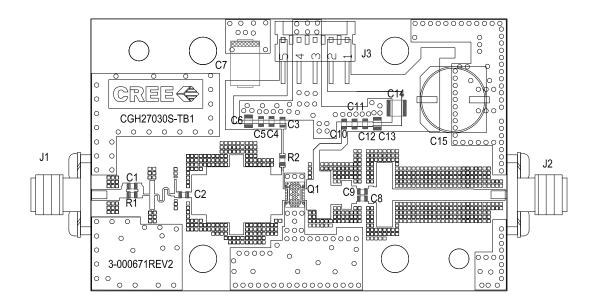
Source and Load Impedances for Application Circuit CGH27030S-AMP1


Frequency	Z Source	Z Load
1800	3.5 – j1.6	11 + j0.2
2000	3.6 – j0.6	10.5 – j1.8
2200	3.3 – j0.1	11 + j3.3

Note¹. $V_{DD} = 28$ V, $I_{DQ} = 0.20$ A in the DFN package Note². Impedances are extracted from the CGH27030S-AMP1 application circuit and are not source and load pull data derived from the transistor


CGH27030S-AMP1 Application Circuit Bill of Materials

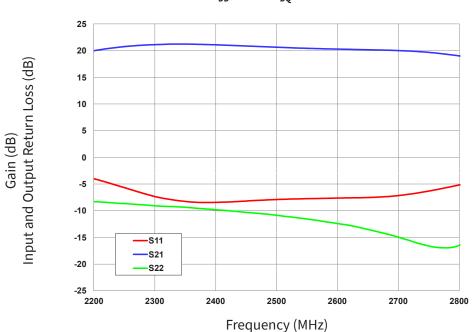
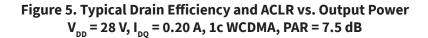
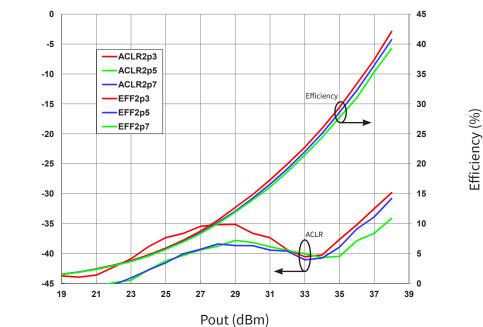
Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 100 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
C1	CAP, 6.8 pF, ±0.25 pF, 0603, ATC	1
C2	CAP, 2.4 pF, ±0.01 pF, 0603, ATC	1
C3, C8, C9, C10	CAP, 10.0 pF, ±0.5 pF, 0603, ATC	3
C12	CAP, 100.0 pF, 5%, 0603, ATC	1
C5	CAP, 470 pF, 5%, 100 V, 0603	1
C6, C13	P, 33000 pF, 0805, 10%, 100 V, X7R	2
C14	CAP, 1.0 UF, 100 V, 10%, X7R, 1210	1
С7	CAP, 10 UF, 16 V, TANTALUM	1
C15	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE,BLUNT POST	2
Q1	CGH27030S, QFN	1

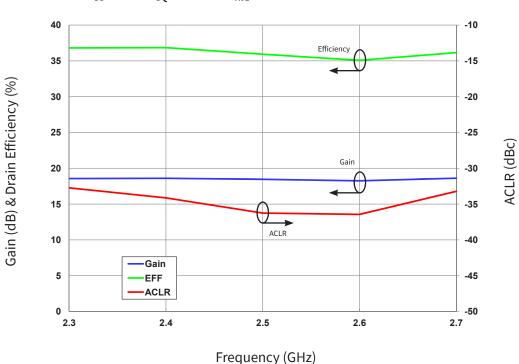

CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz

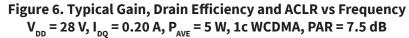
CGH27030S-AMP1 Application Circuit Schematic, 28 V, 1.8 - 2.2 GHz

CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz

Typical Performance in Application Circuit CGH27030S-AMP2

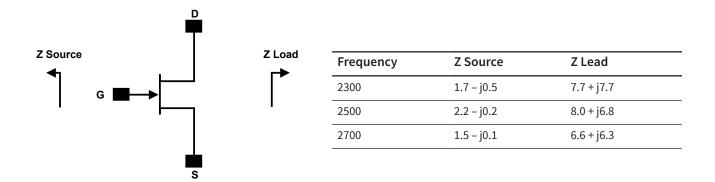





Figure 4. Small Signal Gain and Return Losses vs Frequency $V_{_{\rm DD}}$ = 28 V, $I_{_{\rm DO}}$ = 0.20 A



ACLR (dBC)

Typical Performance in Application Circuit CGH27030S-AMP2

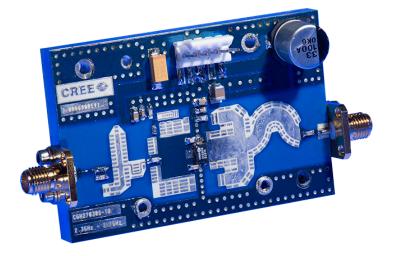

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

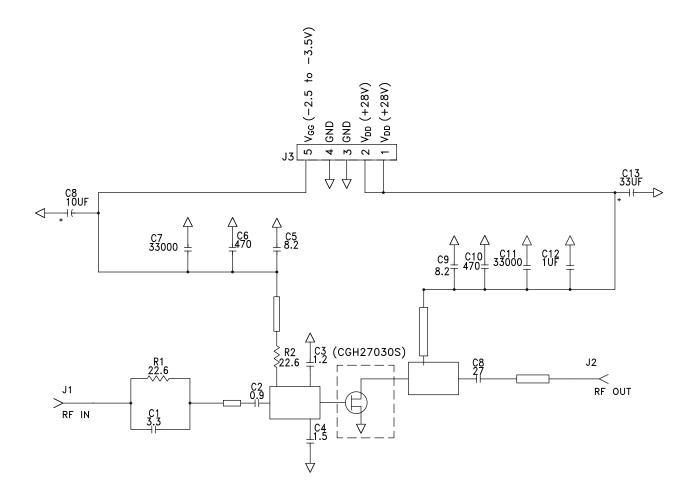
Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

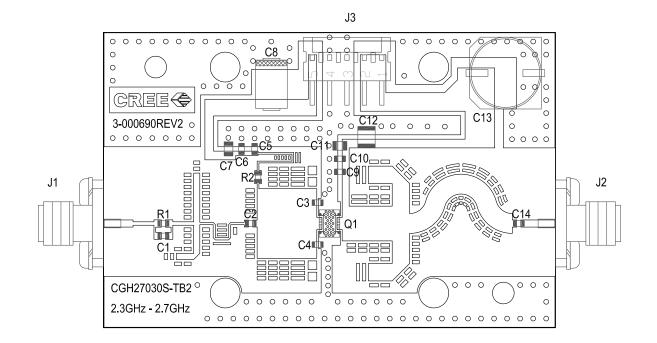
Source and Load Impedances for Application Circuit CGH27030S-AMP2


Note¹. $V_{DD} = 28V$, $I_{DQ} = 0.20$ A in the DFN package Note². Impedances are extracted from the CGH27030S-AMP2 demonstration amplifier and are not source and load pull data derived from the transistor

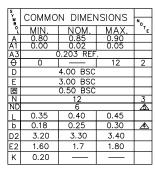
CGH27030S-AMP1 Application Circuit Bill of Materials

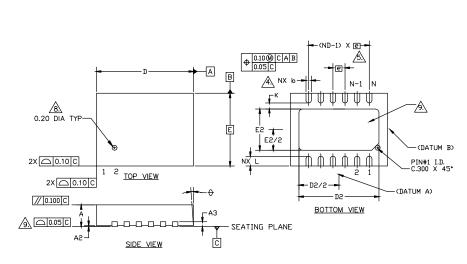

Designator	Description	Qty
R1, R2	RES, 22.6, OHM, +/-1%, 1/16W, 0603	2
C1	CAP, 3.3 pF, ±0.1 pF, 0603, ATC	1
C2	CAP, 0.9 pF, ±0.1 pF, 0603, ATC	1
C3	CAP, 1.2 pF, ±0.1 pF, 0603, ATC	1
C4	CAP, 1.5 pF, ±0.1 pF, 0603, ATC	1
C5, C9	CAP, 8.2 pF, ±0.25 pF, 0603, ATC	2
C6, C10	CAP, 470 pF, 5%, 100 V, 0603, X	2
C7, C11	CAP, 33000 pF, 0805, 100 V, X7R	2
C12	CAP, 1.0 UF, 100 V, 10%, X7R, 1210	1
C8	CAP, 10 UF 16 V TANTALUM	1
C14	CAP, 27 pF, ±5%, 0603, ATC	1
C13	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	1
Q1	CGH27030S, QFN	2

CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz



CGH27030S-AMP2 Application Circuit Schematic, 28 V, 2.3 - 2.7 GHz

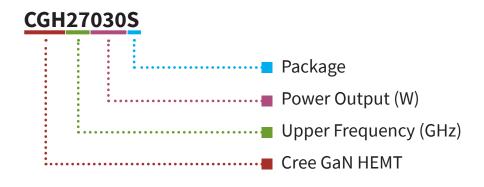




CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz

Product Dimensions CGH27030S (Package 3 x 4 DFN)

NOTES :


- A DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN .15 AND .30mm FROM TERMINAL TIP. A ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE
- 6. MAXIMUM PACKAGE WARPAGE IS .05 mm. 7. MAXIMUM ALLOWARLE RURDE
- MAXIMUM ALLOWABLE BURRS IS .076 mm IN ALL DIRECTIONS.
- A PIN #1 ID ON TOP WILL BE LASER MARKED. UNILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-229.
- 11. ALL PLATED SURFACES TIN 0.010 mm +/- 0.005 mm

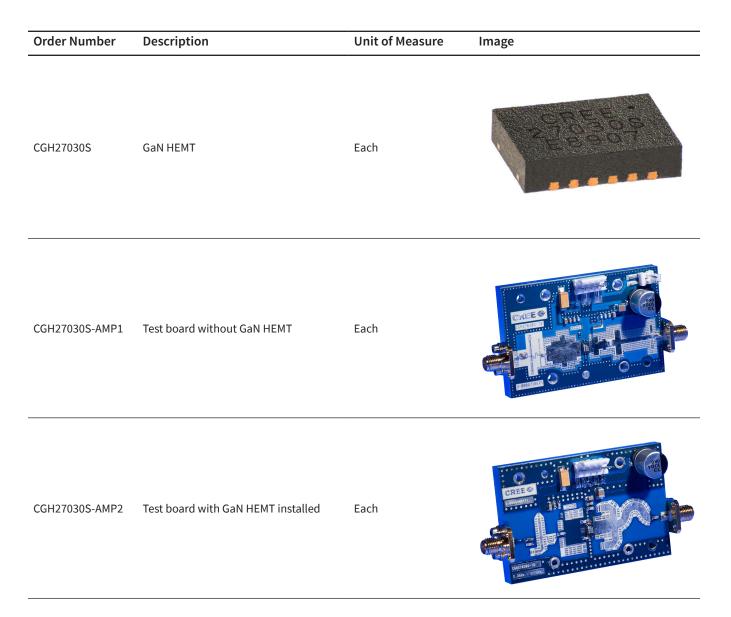
		_
Pin	Input/Output	
1	GND	
2	RF IN	
3	RF IN	
4	RF IN	
5	RF IN	Ω μ Ω Ω η
6	GND	
7	GND	
8	RF OUT	
9	RF OUT	
10	RF OUT	
11	RF OUT	-
12	GND	-

Note: Leadframe finish for 3x4 DFN package is Nickel/Palladium/Gold. Gold is the outer layer.

Part Number System

Table 1

Parameter	Value	Units
Upper Frequency ¹	2.7	GHz
Power Output	30	W
Package	Surface Mount	-


Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 Ghz

Table 2

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@cree.com

Notes

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

© 2013-2020 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.