$\propto \operatorname{New}_{\text {I }} \mathcal{I}_{\text {eris }} S_{\varepsilon m i-C o n d u c t o r ~} \mathfrak{P}_{\text {roduct }}$, Inc.

Ultra fast low-loss
 controlled avalanche rectifiers

FEATURES

- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack.

DESCRIPTION

Rugged glass SOD 57 package, using a high temperature alloyed construction.

This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

Fig. 1 Simplified outline (SOD57) and symbol.

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

Ultra fast low-loss

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
IFRM	repetitive peak forward current BYV27-50 to 400 BYV27-500 and 600	$\mathrm{T}_{\text {tp }}=85^{\circ} \mathrm{C}$; see Figs 8,9 and 10	-	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
IFRM	repetitive peak forward current BYV27-50 to 200 BYV27-300 and 400 BYV27-500 and 600	$\begin{aligned} & \mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C} ; \\ & \text { see Figs } 11,12 \text { and } 13 \end{aligned}$		$\begin{aligned} & 14 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$
$\mathrm{I}_{\text {FSM }}$	non-repetitive peak forward current BYV27-50 to 400 BYV27-500 and 600	$\mathrm{t}=10 \mathrm{~ms}$ half sine wave; $T_{j}=T_{j \text { max }}$ prior to surge; $V_{R}=V_{R R M \text { max }}$	-	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & A \\ & A \end{aligned}$
$E_{\text {RSM }}$	non-repetitive peak reverse avalanche energy	$\mathrm{L}=120 \mathrm{mH} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; inductive load switched off	-	20	mJ
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+175	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	see Fig. 17	-65	+175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{F}	forward voltage BYV27-50 to 200 BYV27-300 and 400 BYV27-500 and 600	$\begin{aligned} & I_{F}=2 A ; T_{j}=T_{j \text { max; }} \\ & \text { see Figs } 18,19 \text { and } 20 \end{aligned}$			$\begin{aligned} & 0.78 \\ & 0.82 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{F}	forward voltage BYV27-50 to 200 BYV27-300 and 400 BYV27-500 and 600	$I_{F}=2 A_{i}$ see Figs 18, 19 and 20			$\begin{aligned} & 0.98 \\ & 1.05 \\ & 1.25 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$V_{(B R) R}$	reverse avalanche breakdown voltage BYV27-50 BYV27-100 BYV27-150 BYV27-200 BYV27-300 BYV27-400 BYV27-500 BYV27-600	$\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{~mA}$	$\begin{array}{r} 55 \\ 110 \\ 165 \\ 220 \\ 330 \\ 440 \\ 560 \\ 675 \end{array}$			$\begin{aligned} & v \\ & v \end{aligned}$
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}}$; see Fig. 21	-	-	5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRMmax }}$; $\mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$; see Fig. 21	-	-	150	$\mu \mathrm{A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{t}_{\text {rr }}$	reverse recovery time BYV27-50 to 200 BYV27-300 to 600	when switched from $I_{F}=0.5 \mathrm{~A}$ to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}$; measured at $\mathrm{I}_{\mathrm{R}}=0.25 \mathrm{~A}$; see Fig. 27	-	-	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{d}	diode capacitance BYV27-50 to 200 BYV27-300 and 400 BYV27-500 and 600	$\begin{aligned} & f=1 \mathrm{MHz} ; V_{R}=0 ; \\ & \text { see Figs } 22,23 \text { and } 24 \end{aligned}$		$\begin{gathered} 100 \\ 80 \\ 65 \\ \hline \end{gathered}$	-	pF pF pF
$\left\|\frac{d l_{\mathrm{R}}}{\mathrm{dt}}\right\|$	maximum slope of reverse recovery current	when switched from $I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geq 30 \mathrm{~V}$ and dif/dt $=-1 \mathrm{~A} / \mu \mathrm{s}$; see Fig. 26	-	-	4	A $\mu \mathrm{s}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th }} \mathrm{j}$ tp	thermal resistance from junction to tie-point	lead length $=10 \mathrm{~mm}$	46	KW
$\mathrm{R}_{\text {th } \mathrm{j} \text { a }}$	thermal resistance from junction to ambient	note 1	100	KW

