

M62354AGP

8-bit 6ch D/A Converter with Buffer Amplifiers

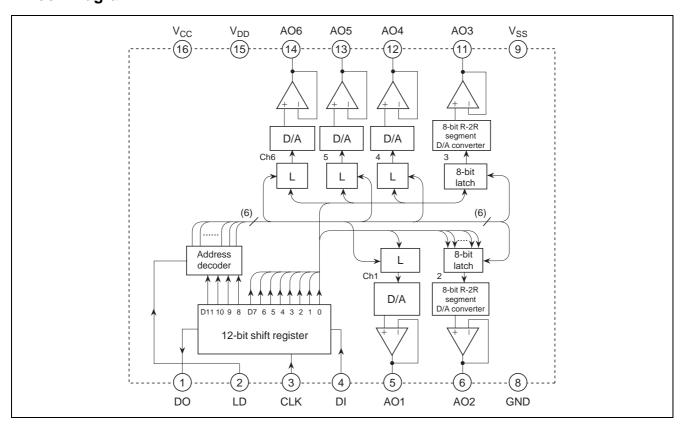
REJ03D0871-0201 Rev.2.01 Dec 27, 2007

Description

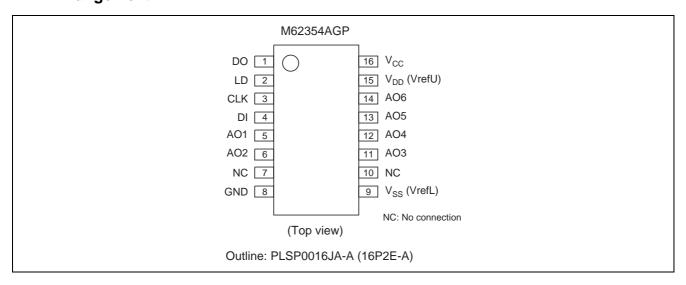
M62354A is a CMOS structured semiconductor integrated circuit integrating 6 channels of built-in D/A converters with high performance buffer operational amplifier for each channel output.

3-wire serial interface (DI, CLK, LD) method is used for the transfer format of digital data to allow connection with microcomputer with minimum wiring DO terminal is provided to allow cascading serial use.

Built-in buffer operational amplifiers are designed to operate or full swing in the whole voltage range from V_{CC} to GND for each input/output. And their higher stability for capacitive load perfectly fits in to the use for electronic volume (VCA) or the replacement for semi-variable resistor for tuning.

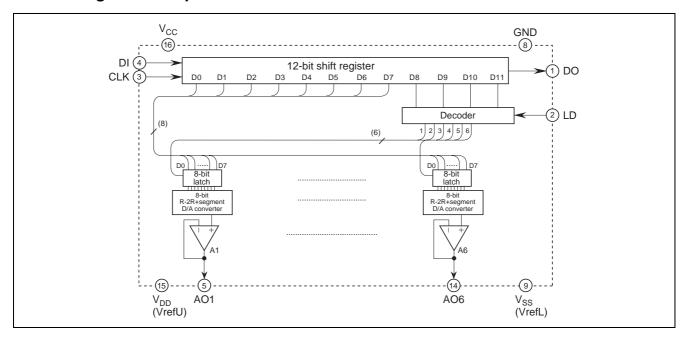

Features

- 12-bit serial data input (3 wire serial data transfer method, DI, CLK, LD)
- Corresponds to TTL input for digital input (VINH \geq 2 V, VINL \leq 0.8 V)
- R-2R + segment method high performance 6ch 8-bit D/A converters
- 6ch buffer operational amplifiers operating in the whole voltage range from V_{CC} to GND
- Buffer operational amplifiers with high oscillation stability for capacitive load


Application

Adjustment or control of industrial or home-use electronic equipments such as VTR camera, VTR set, TV, and CRT display.

Block Diagram


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
4	DI	Serial data input terminal. 12-bit serial data is input to this terminal.
1	DO	Serial data output terminal. Serial data of 12-bit shift register is output from this terminal.
3	CLK	Serial clock input terminal. Input signal from DI terminal is input to 12-bit shift register
		upon the rise of shift clock.
2	LD	Data is loaded to register when "H" is input to LD terminal.
5	AO1	8-bit D/A converter output terminal.
6	AO2	Built-in buffer amp. is connected to V _{CC} .
11	AO3	D/A converted voltage between V _{DD} and V _{SS} is output to each terminal.
12	AO4	
13	AO5	
14	AO6	
16	V _{CC}	Power supply terminal.
8	GND	Digital and analog common GND
15	V_{DD}	D/A converter High level reference voltage input terminal.
9	V _{SS}	D/A converter Low level reference voltage input terminal.

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
D/A converter High level reference voltage	V_{DD}	-0.3 to +7.0	V
Digital input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V
Output voltage	Vout	-0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	150	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

<Digital Part>

 $(V_{CC}, VrefU = 5 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0.0 \ V, Ta = -20 \ to \ +85^{\circ}C \ unless \ otherwise \ specified.)$

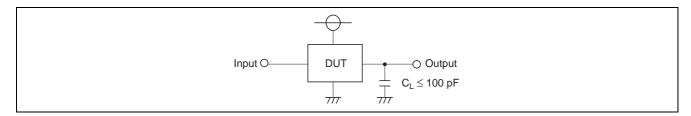
		Limits					
Item	Symbol	Min	Тур	Max	Unit	Conditions	
Supply voltage	Vcc	4.5	5.0	5.5	V		
Supply current	Icc	_	0.7	2.5	mA	CLK = 1 MHz operation	
						$V_{CC} = 5 \text{ V}, I_{AO} = 0 \mu A$	
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{CC}	
Digital input Low voltage	V _{IL}	1	_	0.8	V		
Digital input High voltage	V _{IH}	2.0	_	_	V		
Digital output Low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA	
Digital output High voltage	V _{OH}	V _{CC} - 0.4	_	_	V	I _{OH} = -400 μA	

Note: Typical value is for $Ta = 25^{\circ}C$

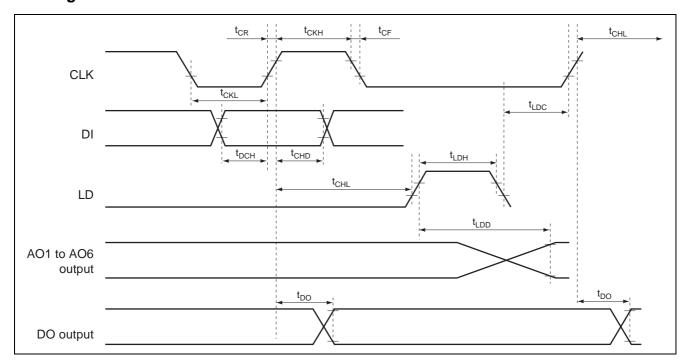
Changes from M62354GP: Digital input voltage corresponds to TTL spec.

<Analog Part>

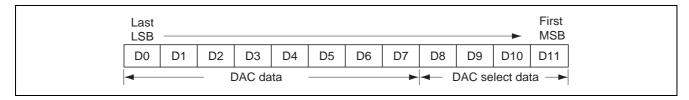
 $(V_{CC}, VrefU = 5 V \pm 10\%, V_{CC} \ge VrefU, GND, VrefL = 0.0 V, Ta = -20 to +85$ °C unless otherwise specified.)


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Reference voltage pin	IrefU	_	0.7	1.3	mA	VrefU = 5 V, VrefL = 0 V, I_{AO} = 0 μA
current						Data condition: at maximum current
D/A converter High level	V_{DD}	3.5	_	V_{CC}	V	The output does not necessarily be
reference voltage range	(VrefU)					the Values within the reference
D/A converter Low level	V _{SS}	GND	_	V _{CC} – 3.5	V	voltage setting range. The output
reference voltage range	(VrefL)			00		value is determined by the buffer
	, ,					amplifier output voltage range (V _{AO}).
Buffer amplifier output	V_{AO}	0.1	_	V _{CC} – 0.1	V	$I_{AO} = \pm 100 \mu A$
drive range		0.2	_	V _{CC} - 0.2		$I_{AO} = \pm 500 \mu A$
Buffer amplifier output	I _{AO}	-1	_	1	mA	Upper side saturation voltage = 0.3 V
drive range						Lower side saturation voltage = 0.2 V
Differential nonlinearity	S _{DL}	-1.0	_	1.0	LSB	VrefU = 4.79 V
Nonlinearity	S _L	-1.5	_	1.5	LSB	VrefL = 0.95 V (15 mV/LSB)
Zero code error	S _{ZERO}	-2.0	_	2.0	LSB	V _{CC} = 5.5 V
Full scale error	S _{FULL}	-2.0	_	2.0	LSB	Without load ($I_{AO} = +0 \mu A$)
Output capacitive load	Co	_	_	0.1	μF	
Buffer Amp. output	Ro	_	5	_	Ω	
impedance						

AC Characteristics


 $(V_{CC}, VrefU = 5 V \pm 10\%, V_{CC} \ge VrefU, GND, VrefL = 0.0 V, Ta = -20 to +85$ °C unless otherwise specified.)

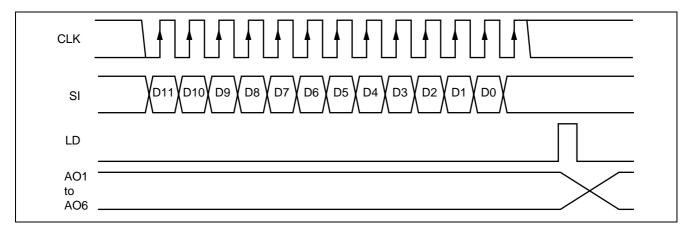
		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	t _{CKH}	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}					
Data setup time	t _{DCH}	30	_	_	ns	
Data hold time	t _{CHD}	60	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" hold time	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	$C_L \le 100 \text{ pF}$
D/A output setting time	t _{LDD}	_	_	300	μS	$C_L \le 100 \text{ pF}, \text{ V}_{AO}: 0.5 \leftrightarrow 4.5 \text{ V}$
						The time until the output becomes the final value of 1/2 LSB


Measurement Circuit

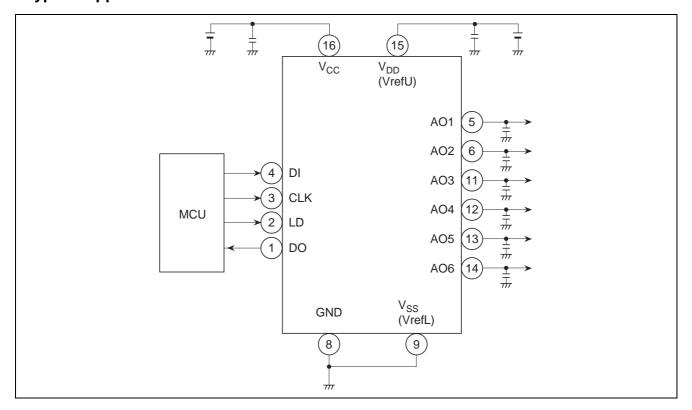
Timing Chart

Digital Data Format

DAC Data


D0	D1	D2	D3	D4	D5	D6	D7	D/A Output	
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL [V]	(1 LSB)
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL [V]	(2 LSB)
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL [V]	(3 LSB)
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL [V]	(4 LSB)
:	:	:	:	:	:	:	:	:	
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL [V]	(255 LSB)
1	1	1	1	1	1	1	1	VrefU [V]	(256 LSB)

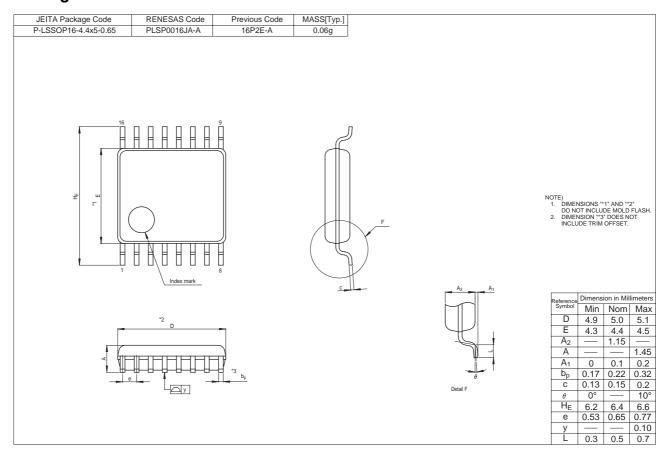
Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$


DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	AO1 select
0	0	1	0	AO2 select
0	0	1	1	AO3 select
0	1	0	0	AO4 select
0	1	0	1	AO5 select
0	1	1	0	AO6 select
0	1	1	1	Don't care
1	0	0	0	Don't care
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Typical Application


Precaution for Use

M62354AGP has 3 terminals (V_{DD} , V_{CC} , and V_{SS}) to which constant voltage is to be applied. Ripple voltage or spike noise to these terminals may worsen converting precision or cause erroneous operations. So be sure to use this device by putting capacitor between each terminal and GND to get D/A conversion operation stabilized.

Output buffer amplifiers have high oscillation stability against capacitive load. This means that jitters by wirings around output terminals or capacitor between output and GND (0.1 μF Max) do not cause any problems with DAC operations.

Connect capacitor (0.1 μ F or around) between output and GND for protection from spark discharge when this device is used under such high electric field as that for instance of instruments with cathode ray tube.

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510