

Description

The P1415N is an Over-Voltage-Protection (OVP) load switch with fixed OVLO threshold voltage. The OVLO threshold voltage is fixed 6.0V. The device will switch off internal MOSFET to disconnect IN to OUT to protect load when any of input voltage over the threshold. The Over temperature protection (OTP) function monitors chip temperature to protect the device. The OCP function turns off OUTPUT if the load current is over the threshold and recovers when VIN re-plug or CE reactive. The OCP current limit threshold is adjustable by an external R_{ILIM}.

The P1415N is available in DFN2x2-8L. Standard products are Pb-free and Halogen-free.

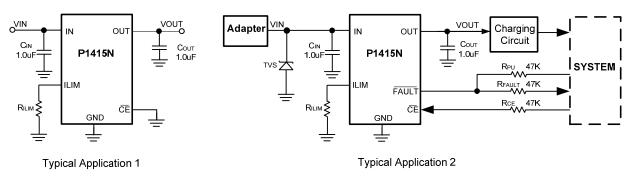


Figure 1: Typical Application

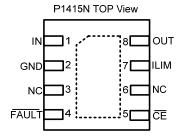


Figure 2: Pin order (Top view) and Marking (Top view)

Feature

- Maximum input voltage : 32V
- Ultra fast OVP response time: 50ns (Typ.)
- Fixed OVLO threshold voltage: 6.0V, ±3%
- Adjustable over-current protection:

100mA-1.5A, \pm 10%

- Supports up to 1.5 A Load Current
- Thermal Shutdown
- Enable Function
- > Fault Status Indication
- Available in Green DFN2×2-8L Package

Application

- Mobile Handsets and Tablets
- Portable Media Players
- Low-Power Handheld

Pin Definitions

Pin No.	Symbol	Descriptions
1	IN	Switch Input and Device Power Supply.
2	GND	Ground Terminal. Connect to the thermal pad and to the ground rail of the circuit.
3,6	NC	No connect.
4	FAULT	Open-drain Device Status Output. FAULT is pulled to GND with a 3kΩ resistant internally when the input pass FET has been turned off due to input over-voltage or overload current protection, an over-temperature condition, or because the battery voltage is outside safe limits. FAULT is high impedance during normal operation.
5	CE	Active-Low Chip Enable Input. Connect \overline{CE} = "HIGH" to turn the input pass FET off. Connect \overline{CE} = "LOW" to turn the internal pass FET on, connecting the input to the charging circuitry. CE is internally pulled down.
7	ILIM	Current limit adjustment. Connect a resistor to GND to set over current threshold. $I_{\text{Lim}} = 600/R_{\text{ILIM}}$. (current in A, resistance in Ω) Short ILIM to GND will disable current limitation.
8	OUT	Switch output Terminal to the Charging System.

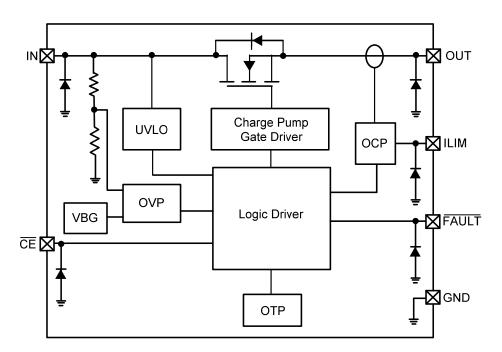


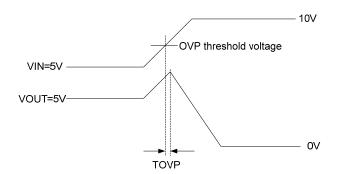
Figure 3: IC Block Diagram

Absolute maximum rating

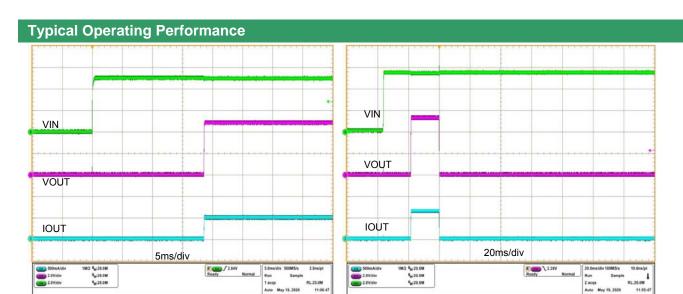
Parameter(Note1)	Symbol	Value	Units
Input voltage (IN pin)	V _{IN}	-0.3 ~ 32	V
Output voltage (OUT pin)	V _{OUT}	-0.3 ~ 6.0	V
Junction temperature	TJ	150	$^{\circ}$ C
Lead temperature(10s)	TL	260	$^{\circ}$
Storage temperature	Tstg	-55~150	$^{\circ}$
FCD Detines	НВМ	±2000	V
ESD Ratings	MM	±500	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

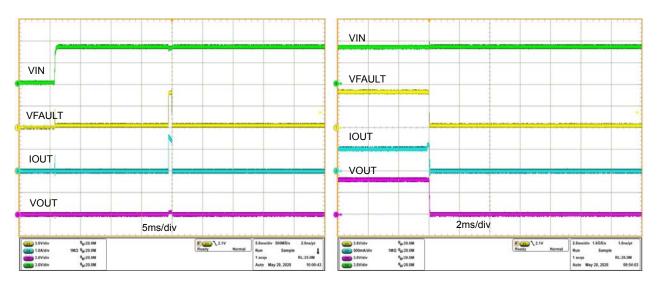
Recommended Operating Conditions

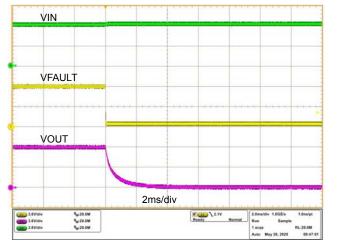

Parameter	Symbol	Value	Units
Input voltage	V _{IN}	3.5~32	V
MAX Continuous Output current	I _{OUT}	1.5	Α
Ambient operating temperature	Topr	0~85	$^{\circ}$

Electrical Characteristics

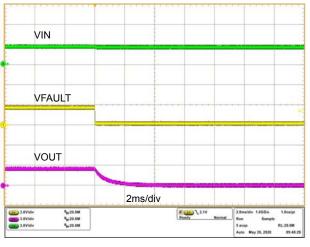

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input voltage range	V _{IN}		3.5		32	V
Quiescent current	Ι _Q	NO Load, /CE=GND, V _{IN} =5V		120	200	uA
Over voltage quiescent current	$I_{Q_{QVP}}$	NO Load, /CE=GND, V _{IN} =30V		200		uA
Disable OVP quiescent current	I_{Q_DIS}	NO Load, /CE=5.5V, V _{IN} =5.5V		50	100	uA
Drop Voltage from IN to OUT	V_{DROP}	V _{IN} =5V, I _{OUT} =0.5A		110	140	mV
OVP response time	t _{OVP}	V _{IN} rising, C _{IN} =C _L =0pF (Note2)		50		ns
OVP voltage	V_{OVLO}	VIN rising	5.82	6.0	6.18	V
/CE high threshold voltage	V_{CE_H}	V _{CE} Rising	1.4			V
/CE low threshold voltage	V_{CE_L}	V _{CE} Falling			0.4	V
UVLO threshold voltage	VUVLO	VIN rising		2.35		V
UVLO hysteresis voltage	VUVLO_HYS	VIN falling		25		mV
OCP setting range	IOCP_RANG		100		1500	mA
Debounce Time	TDEB	VIN>UVLO to VOUT=VIN*10%	10	18	30	ms
Turn On Time	TON	VOUT=VIN*10% to VOUT=VIN*90%		40		us
Output discharge resistance	R _{DCHG}	VIN=5V		400		Ω
OTP threshold temperature	TOTP	VIN=5V		150		$^{\circ}$
OTP hysteresis temperature	THYS	VIN=5V		20		$^{\circ}$

Note 2:Guaranteed by design


OVP response time test


Power on Response(Rout= 10Ω , R_{ILIM} = $1k\Omega$)

Power on OCP Response(Rout= 8Ω , R_{ILIM} = $1k\Omega$)



Power on Response with Output Short

OCP Response

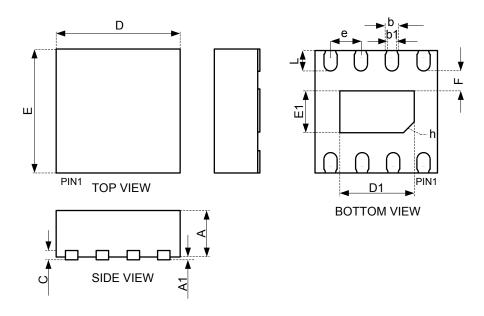
UVLO Response

Function Descriptions

1. Under-voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn on threshold. Built-in hysteresis prevents unwanted on and off cycling because of input voltage droop during turn on.

2. Over Current Protection (OCP)


If the load current rises to the OCP threshold, the device will cut off the output voltage immediately[1]. The OCP threshold is calculated by the equation: $I_{Lim} = 600/R_{ILIM}$ (current in A, resistance in Ω). Note[1]: It takes 18ms after power on for OCP begins to detect.

3. Over-voltage Lockout (OVLO)

When VIN exceeds the OVP threshold voltage, the over-voltage lockout (OVLO) circuit turns off the protected power switch.

Product dimension (DFN2X2-8L)

Dim	Millimeters				
	MIN	Тур.	MAX		
Α	0.70	0.75	0.80		
A1	0.000	0.020	0.050		
b	0.200	0.250	0.300		
b1	0.18REF				
С	0.180	0.200	0.220		
D	1.900	2.000	2.100		
Е	1.900	2.000	2.100		
D1	1.100	1.200	1.300		
E1	0.600	0.700	0.800		
е	0.475	0.500	0.525		
L	0.300	0.350	0.400		
F	0.280	0.300	0.320		
h	0.230	0.280	0.330		

IMPORTANT NOTICE

Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

is a registered trademark of Prisemi Electronics.

All rights are reserved.