

Silicon Carbide Dual Schottky Power Rectifier 30A, 1200V

DESCRIPTION

These dual SiC Schottky rectifiers are in a hermetically sealed package with options for common cathode, common anode, and doubler configurations. They offer very fast switching capabilities providing greater efficiency at higher operating temperatures than existing ultrafast silicon rectifiers.

FEATURES

TO-258 Package

11

Also available in:

TO-254 package

(leaded)

MSiCSF30120

U1 package (surface mount)

package

(leaded) MSiCST30120

MSiCSS30120

TO-204AD (TO-3)

Important: For the latest information, visit our website http://www.microsemi.com.

- Lightweight.
- Hermetically sealed package.
- Internal metallurgical bonds.
- High temperature rated for T_J up to +175 °C.
- Zero reverse recovery current.
- Temperature independent switching behavior.
- Very fast switching compared to fast or ultrafast silicon rectifiers.
- Positive V_F temperature coefficient, better enabling the use of parallel devices for higher currents.
- RoHS compliant versions are available.

APPLICATIONS / BENEFITS

- Military, space and other high reliability applications.
- Switching power supplies or other applications requiring extremely fast switching speed and the lowest possible switching losses.
- High forward surge capability.
- High reverse voltage capability with very fast switching.
- Inherently radiation hard (>100 krads) as described in Microsemi MicroNote 050.

MAXIMUM RATINGS @ $T_c = +25$ °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-65 to +175	°C
Thermal Resistance, Junction-to-Case	R _θ JC	1.0	°C/W
Working Peak Reverse Voltage	V _{RWM}	1200	V
Non-Repetitive Peak Inverse Voltage	V _{RSM}	1200	V
DC Blocking Voltage	V _{DC}	1200	V
Average DC Output Current @ 25 °C	lo	30	Α
Non-Repetitive Sinusoidal Surge Current @ tp = 8.3 ms, half sinewave, $I_0 = 0$; $V_{RM} = 0$	I _{FSM}	150	A

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Nickel plated copper base & 1020 steel frame.
- TERMINALS: Solder dipped copper cored 52 alloy or RoHS compliant matte/tin plating.
- MARKING: Alpha numeric.
- POLARITY: See <u>schematic</u> on last page.
- See package dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
C」	Junction Capacitance: The junction capacitance in pF at a specified frequency (typically 1 MHz) and specified voltage.			
١ _F	Forward Current: The forward current dc value, no alternating component.			
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.			
Τ _J	Junction Temperature: The temperature of a semiconductor junction.			
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).			
V _R	Reverse Voltage: The reverse voltage dc value, no alternating component.			

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward Voltage* $I_F = 10 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 25 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 50 \text{ A}, T_J = 25 \text{ °C}$	V _F		1.2 1.5 1.8	V
Reverse Current $V_R = 1200 V, T_J = 25 °C$ $V_R = 1200 V, T_J = 175 °C$	۱ _R		200 500	μA

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted

* Pulse test: Pulse width 300 µsec, duty cycle 2%.

Relinitiens D

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.

2. Glass meniscus included in dimension A and B.

SCHEMATIC

CC - COMMON CATHODE

TERM 1 = ANODE TERM 2 = CATHODE TERM 3 = ANODE

CA – COMMON ANODE

TERM 1 = CATHODE TERM 2 = ANODE TERM 3 = CATHODE

D - DOUBLER

TERM 1 = CATHODE TERM 2 = CENTER TAP TERM 3 = ANODE