

transforming specialty electronics

Hyperfast Rectifier Diode Chip

600V, 75A, V_F 1.8V, t_{rr} = 40ns

Part V_{RRM} I_{F(AV)n} V_{F Typ} t_{rr Typ} Die Size FFH75H60S 600V 75A 1.8V 40ns 5.5 x 5.5 mm² See page 2 for ordering part numbers & supply formats

Features

General Purpose

Applications

• Free Wheeling Diode

- Hyperfast Recovery, t_{rr} = 40ns @ I_F = 75A
- 600V Reverse Voltage & High Reliability
- Avalanche Energy Rated

Maximun	n Ratir	ngs
---------	---------	-----

Symbol	Parameter	Ratings	Units
V _{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current @ T _c = 105°C ¹	75	А
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	750	А
T _J , T _{STG}	Operation Junction & Storage Temperature	-65 to 150	°C

Electrical Characteristics, T_J = 25° unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
V _F	Forward Voltage ²	I _F = 75A	T _C = 25°C	-	1.8	2.2	V
			T _C = 125°C	-	1.6	2.0	V
I _R	Reverse Current ²	V _R = 600V	T _C = 25°C	-	-	100	μA
			T _C = 125°C	-	-	1.0	mA
t _{rr}	Reverse Recovery Time ³	I _F =75A, dI/dt =200A/μs	T _C = 25°C	-	40	-	
		V _{CC} = 390V	T _C = 125°C	-	85	-	
t _a	Current Rise Time ³	I _F =75A, dI/dt =200A/μs, V _{CC} = 390V		-	23	-	ns
t _b	Current Fall Time ³			-	17	-	
Q _{rr}	Reverse Recovery Charge ³			-	80	-	nC
W _{AVL}	Avalanche Energy (L = 40mH) ³		20	-	-	mJ	

Notes:

1. Performance will vary based on assembly technique and substrate choice

2. Pulse: Test Pulse width = 300µs, Duty Cycle = 2%

3. Specified in discrete package, not subject to 100% production test at wafer level

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com

Ordering Guide

Part Number	Format	Detail / Drawing		
FFH75H60SMW	Un-sawn wafer, electrical rejects inked	Page 2		
FFH75H60SMF	Sawn wafer on film-frame	Page 3		
FFH75H60SMD	Singulated die / chips in waffle pack	Page 3		
Note: Singulated Die / Chips can also be supplied in Pocket Tape or SurfTape® on request				

Die Drawing – Dimensions in μm

Chip backside is CATHODE

Mechanical Data

Parameter			Units
Chip Dimensions Un-sawn	5530 x 5530		μm
Chip Thickness (Nominal)	250		μm
Anode Pad Size	4548 x 4548		μm
Wafer Diameter	150 (subject to change)		mm
Saw Street	80 (subject to change)		μm
Wafer orientation on frame	Wafer notch parallel with frame flat		
Topside Metallisation & Thickness	Al	4	μm
Backside Metallisation & Thickness	V/Ni/Ag	0.3	μm
Topside Passivation	Silicon Nitride		
Recommended Die Attach Material	Soft Solder or Conductive Epoxy		
Recommended Wire Bond - Anode	Al 500µm X3		

Page2

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com

Sawn Wafer on Film-Frame – Dimensions (inches)

Die in Waffle Pack – Dimensions (mm)

 $\begin{array}{l} X=5.82mm \pm 0.13mm \mbox{ pocket size} \\ Y=5.82mm \pm 0.13mm \mbox{ pocket size} \\ Z=0.81mm \pm 0.08mm \mbox{ pocket depth} \\ A=5^\circ \pm 1/2^\circ \mbox{ pocket draft angle} \\ No \mbox{ Cross Slots} \\ Array=6 \ X \ 6 \ (36) \end{array}$

OVERALL TRAY SIZE

Size = 50.67mm ± 0.25 mm Height = 3.94mm ± 0.13 mm Flatness = 0.30mm

DISCLAIMER THE INFORMATION HEREIN IS GIVEN TO DESCRIBE CERTAIN COMPONENTS AND SHALL NOT BE CONSIDERED AS WARRANTED CHARACTERISTICS. NO RESPONSIBILITY IS ASSUMED FOR ITS USE; NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF EITHER MICROSS COMPONENTS OR FAIRCHILD SEMICONDUCTOR CORPORATION.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com