Switch-mode Power Rectifier 60 V, 20 A

MBR20L60CTG MBRF20L60CTG

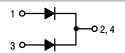
Features and Benefits

- Low Power Loss/High Efficiency
- High Surge Capacity
- 20 A Total (10 A Per Diode Leg)
- Guard-Ring for Stress Protection
- These Devices are Pb-Free and are RoHS Compliant*

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:


- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 Units Per Plastic Tube

ON Semiconductor®

www.onsemi.com

SCHOTTKY BARRIER RECTIFIER 20 AMPERES 60 VOLTS

TO-220


CASE 221A


STYLE 6

MARKING DIAGRAM

AYWW B20L60G AKA

A = Assembly Location

Y = Year
WW = Work Week
B20L60 = Device Code
G = Pb-Free Package
AKA = Polarity Designator

ORDERING INFORMATION

Device	Package	Shipping
MBR20L60CTG	TO-220 (Pb-Free)	50 Units / Rail
MBRF20L60CTG	TO-220FP (Pb-Free)	50 Units / Rail

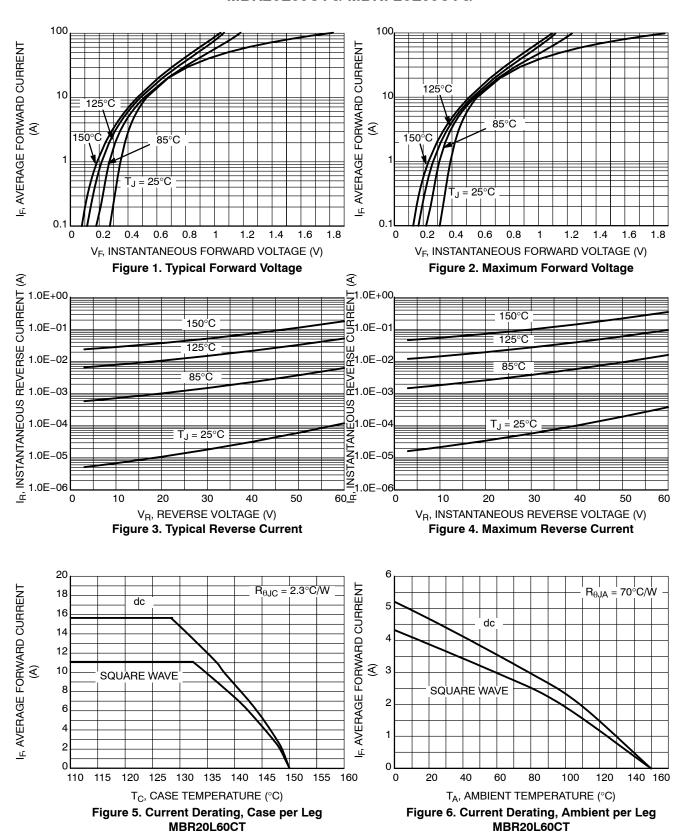
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
	I _{F(AV)}	10 20	A
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	240	А
Operating Junction Temperature (Note 1)	TJ	-55 to +150	°C
Storage Temperature	T _{stg}	- 65 to +175	°C
ESD Ratings: Machine Model = C Human Body Model = 3B		> 400 > 8000	V
Maximum Repetitive Peak Avalanche Voltage $(t_p < 1~\mu s, T_J < 150^{\circ}C, I_{AR} < 51~A)$	V_{ARM}	85	V
Maximum Single–Pulse Peak Avalanche Voltage $(t_p < 1~\mu s, T_J < 150^{\circ}C, I_{AR} < 51~A)$	V _{ASM}	85	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characte	Symbol	Value	Unit	
Maximum Thermal Resistance				°C/W
MBR20L60CTG	Junction-to-Case	$R_{ heta JC}$	2.3	
	Junction-to-Ambient	$R_{ hetaJA}$	70	
MBRF20L60CTG	Junction-to-Case	$R_{ heta JC}$	5.2	
	Junction-to-Ambient	$R_{ hetaJA}$	75	

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Characteristic	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F=10\text{ A}, T_C=25^\circ\text{C})\\ &(I_F=10\text{ A}, T_C=125^\circ\text{C})\\ &(I_F=20\text{ A}, T_C=25^\circ\text{C})\\ &(I_F=20\text{ A}, T_C=125^\circ\text{C}) \end{aligned} $	VF	0.53 0.49 0.68 0.64	0.57 0.54 0.73 0.69	V
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	118 52	380 96	μA mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

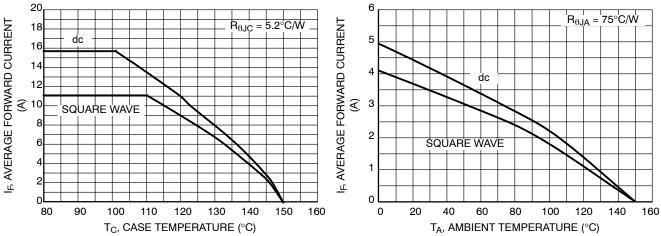


Figure 7. Current Derating, Case per Leg MBRF20L60CT

Figure 8. Current Derating, Ambient per Leg MBRF20L60CT

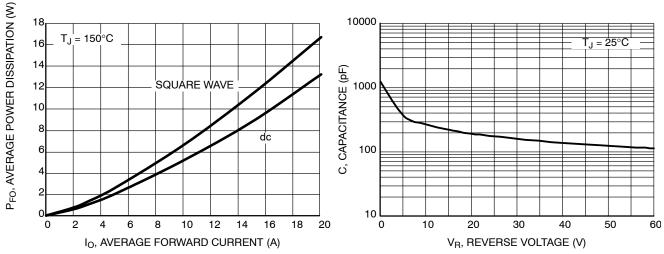


Figure 9. Forward Power Dissipation

Figure 10. Capacitance

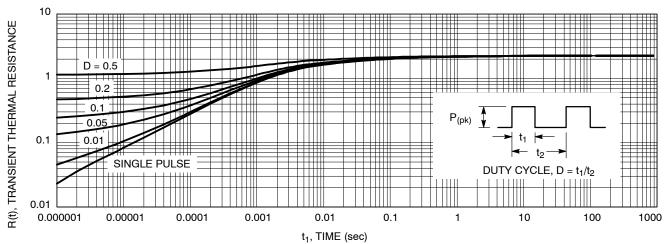


Figure 11. Thermal Response Junction-to-Case, per Leg for MBR20L60CT

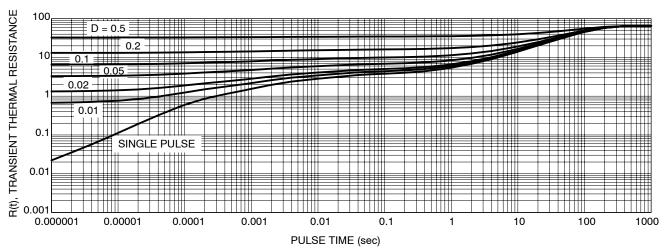


Figure 12. Thermal Response Junction-to-Ambient, per Leg for MBR20L60CT

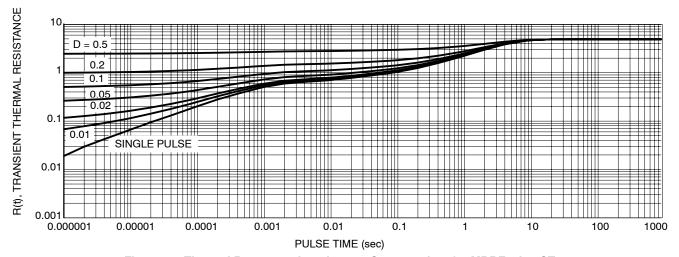


Figure 13. Thermal Response Junction-to-Case, per Leg for MBRF20L60CT

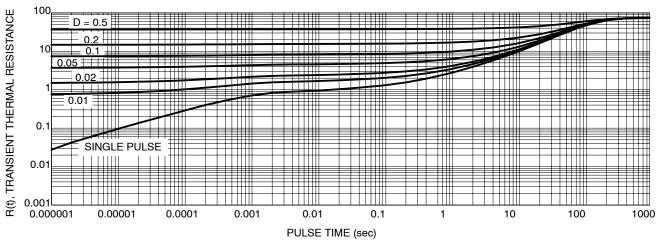
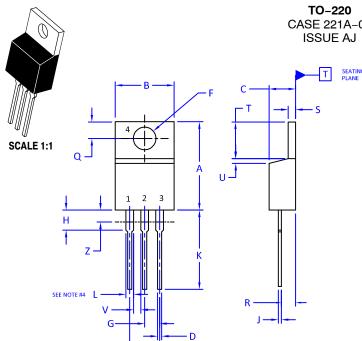



Figure 14. Thermal Response Junction-to-Ambient, per Leg for MBRF20L60CT

FULLPAK is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE

CASE 221A-09

DATE 05 NOV 2019

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

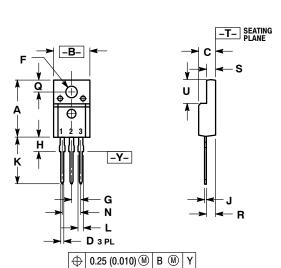
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11	:	STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220		PAGE 1 OF 1

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

SCALE 1:1


TO-220 FULLPAK CASE 221D-03 ISSUE K

DATE 27 FEB 2009

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

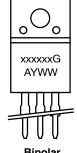
	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
C	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100 BSC		2.54 BSC	
Н	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200	BSC	5.08	BSC
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88

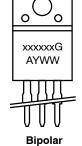
MARKING DIAGRAMS

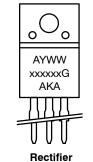
STYLE 1: PIN 1. GATE 2. DRAIN 3. SOURCE

STYLE 4: PIN 1. CATHODE

3. CATHODE


ANODE


STYLE 2: PIN 1. BASE 2. COLLECTOR 3. EMITTER 2.


STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE

STYLE 3: PIN 1. ANODE

CATHODE
 ANODE

= Assembly Location xxxxxx = Specific Device Code G = Pb-Free Package Υ = Year

= Assembly Location WW = Work Week = Year XXXXXX = Device Code = Work Week = Pb-Free Package WW G AKA = Polarity Designator

DOCUMENT NUMBER: 98ASB42514B Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1

Α

Υ

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative