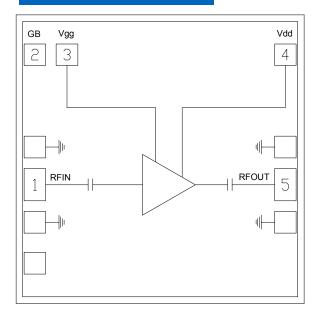


2-6 GHz Ultra Low Noise Amplifier


Features

- ► Ultra low noise figure
- ► High gain broadband performance
- ► Low power dissipation
- ► Small die size

Description

The CMD283 is a broadband MMIC low noise amplifier die ideally suited for EW and communications systems where small size and low power consumption are needed. The device is optimized for broadband performance and delivers 27 dB of gain with a corresponding noise figure of 0.6 dB at 4 GHz. The CMD283 is a 50 ohm matched design which eliminates the need for external DC blocks and RF port matching. The CMD283 offers full passivation for increased reliability and moisture protection.

Functional Block Diagram

Electrical Performance – V_{dd} = 3 V, V_{gg} = 1.5 V, T_A = 25 °C, F = 4 GHz					
Parameter	Min	Тур	Max	Units	
Frequency Range	2-6			GHz	
Gain		27		dB	
Noise Figure		0.6		dB	
Input Return Loss		15		dB	
Output Return Loss		10		dB	
Output P1dB		16		dBm	
Supply Current		42		mA	

2-6 GHz Ultra Low Noise Amplifier

Specifications

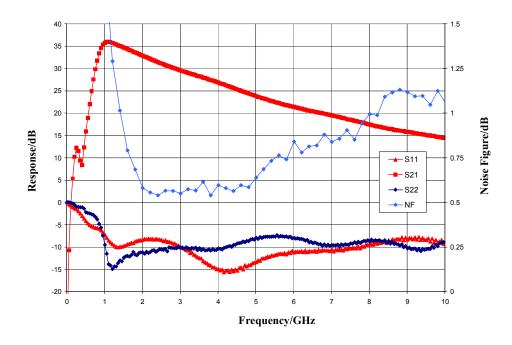
Absolute Maximum Ratings

Parameter	Rating		
Drain Voltage, Vdd	5.5 V		
Gate Voltage, Vgg	3.3 V		
RF Input Power	+20 dBm		
Channel Temperature, Tch	150 °C		
Power Dissipation, Pdiss	921 mW		
Thermal Resistance, Θ _{JC}	70 °C/W		
Operating Temperature	-55 to 85 °C		
Storage Temperature	-55 to 150 °C		

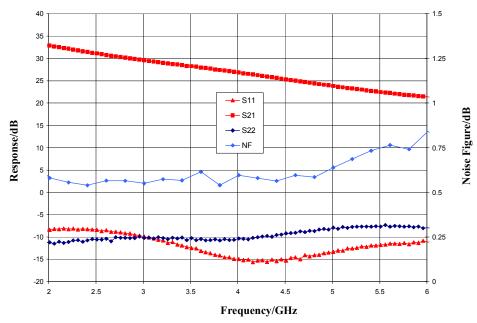
Exceeding any one or combination of the maximum ratings may cause permanent damage to the device.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Vdd	2	3	5	V
Idd		42		mA
Vgg		1.5		V
Igg		0.5		mA

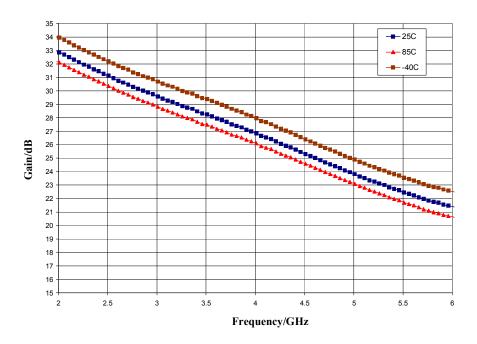

Electrical performance is measured at specific test conditions. Electrical specifications are not guaranteed over all recommended operating conditions

Electrical Specifications – V_{dd} = 3 V, V_{gg} = 1.5 V, T_A = 25 ^{o}C

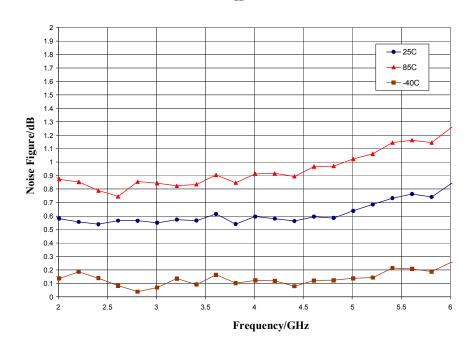

Parameter	Min	Тур	Max	Min	Тур	Max	Units
Frequency Range		2 - 4			4 - 6		GHz
Gain	24	30		18	24		dB
Noise Figure		0.6	0.9		0.7	1.1	dB
Input Return Loss		10			13		dB
Output Return Loss		10			8		dB
Output P1dB		16			16		dBm
Output IP3		26			26		dBm
Supply Current	29	42	80	29	42	80	mA
Gain Temperature Coefficient		0.015			0.015		dB/°C
Noise Figure Temperature Coefficient		0.006			0.006		dB/°C

Typical Performance

Broadband Performance, V_{dd} = 3 V, V_{gg} = 1.5 V, I_{dd} = 42 mA, T_A = 25 °C

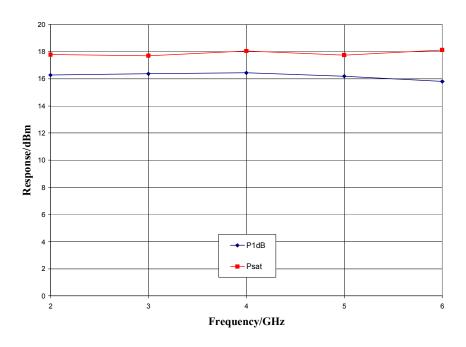


Narrow-band Performance, V_{dd} = 3 V, V_{gg} = 1.5 V, I_{dd} = 42 mA, T_A = 25 ^{o}C

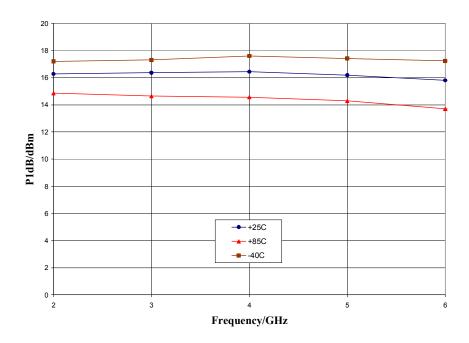


Typical Performance

Gain vs. Temperature, V_{dd} = 3 V, V_{gg} = 1.5 V

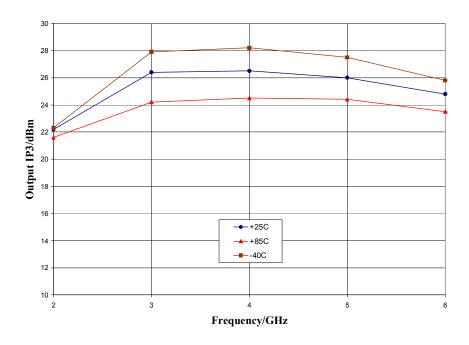


Noise Figure vs. Temperature, V_{dd} = 3 V, V_{gg} = 1.5 V



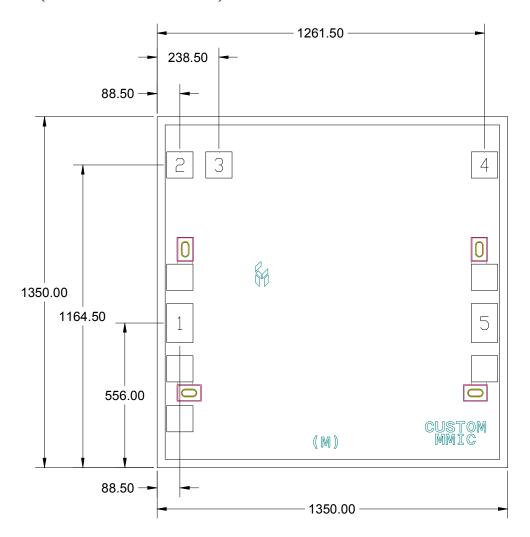
Typical Performance

Output Power, V_{dd} = 3 V, V_{gg} = 1.5 V, T_A = 25 °C


P1dB vs. Temperature, V_{dd} = 3 V, V_{gg} = 1.5 V

2-6 GHz Ultra Low Noise Amplifier

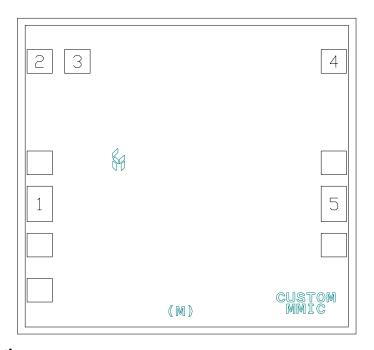
Typical Performance


Output IP3 vs. Temperature, V_{dd} = 3 V, V_{gg} = 1.5 V

Mechanical Information

Die Outline (all dimensions in microns)

Notes:


- 1. No connection required for unlabeled pads
- 2. Backside is RF and DC ground
- 3. Backside and bond pad metal: Gold
- 4. Die is 100 microns thick
- 5. DC bond pads (2, 3, 4) are 100 x 100 microns
- 6. RF bond pads (1, 5) are 100 x 150 microns

2-6 GHz Ultra Low Noise Amplifier

Pad Description

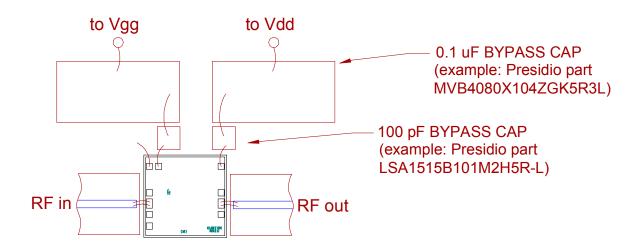
Pad Diagram

Functional Description

Pin	Function	Description	Schematic
1	RF in	DC blocked and 50 ohm matched	RF in O———
2	GB	Connect to DC ground	Vgg O *
3	Vgg	Power supply voltage Decoupling and bypass caps required	GB
4	Vdd	Power supply voltage Decoupling and bypass caps required	Vdd
5	RF out	DC blocked and 50 ohm matched	
Backside	Ground	Connect to RF / DC ground	GND =

2-6 GHz Ultra Low Noise Amplifier

Applications Information


Assembly Guidelines

The backside of the CMD283 is RF ground. Die attach should be accomplished with electrically and thermally conductive epoxy only. Eutectic attach is not recommended. Standard assembly procedures should be followed for high frequency devices. The top surface of the semiconductor should be made planar to the adjacent RF transmission lines, and the RF decoupling capacitors placed in close proximity to the DC connections on chip.

RF connections should be made as short as possible to reduce the inductive effect of the bond wire. Use of a 0.8 mil thermosonic wedge bonding is highly recommended as the loop height will be minimized. The RF input and output require a double bond wire as shown.

The semiconductor is 100 um thick and should be handled by the sides of the die or with a custom collet. Do not make contact directly with the die surface as this will damage the monolithic circuitry. Handle with care.

Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

2-6 GHz Ultra Low Noise Amplifier

Applications Information

Biasing and Operation

The CMD283 is biased with a positive drain supply and positive gate supply. Performance is optimized when the drain voltage is set to +3.0 V. The recommended gate voltage is +1.5 V.

Turn ON procedure:

- 1. Apply drain voltage V_{dd} and set to +3 V
- 2.Apply gate voltage $V_{\rm gg}$ and set to +1.5 V

Turn OFF procedure:

- 1. Turn off gate voltage V_{gg}
- $2. Turn \ off \ drain \ voltage \ V_{dd}$

The preferred biasing procedure has been proven to be robust and should be used whenever possible. However, the CMD283 does allow for simultaneous biasing (applying Vdd and Vgg at the same time).

Refer to Application Note 103: Amplifier Biasing Techniques for instructions.

For either approach, RF power can be applied at any time.