

Silicon Carbide Schottky Power Rectifier 30A, 1200V

DESCRIPTION

This 1200 V SiC Schottky rectifier is in a hermetically sealed package and offers very fast switching capabilities. It provides greater efficiency at higher temperatures than competing ultrafast silicon rectifiers.

TO-254 Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- TO-254 package.
- Liahtweiaht.
- Hermetically sealed package.
- Internal metallurgical bonds.
- High temperature rated for T_{\perp} up to +175 °C.
- Zero reverse recovery current.
- Temperature independent switching behavior.
- Very fast switching compared to fast or uttrafast silicon rectifiers.
- Positive V_F temperature coefficient, better enabling the use of parallel devices for higher currents.
- RoHS compliant version is available.

APPLICATIONS / BENEFITS

- Military, space and other high reliability applications.
- Switching power supplies or other applications requiring extremely fast switching speed and the lowest possible switching losses.
- High forward surge capability.
- High reverse voltage capability with very fast switching.
- Inherently radiation hard (>100 krads) as described in Microsemi MicroNote 050.

Also available in:

Dual TO-258 package

(leaded)

MSiCSE30120CC, CA. and D

> TO-204AD (TO-3) package

U1 package (surface mount) MSiCSS30120

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +175	°C
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.0	°C/W
Working Peak Reverse Voltage	V_{RWM}	1200	V
Non-Repetitive Peak Inverse Voltage	V_{RSM}	1200	V
DC Blocking Voltage	V_{DC}	1200	V
Average DC Output Current @ 25 °C	I _O	30	Α
Non-Repetitive Sinusoidal Surge Current	I _{FSM}	150	Α
@ $t_p = 8.3$ ms, half sinewave, $I_O = 0$; $V_{RM} = 0$			

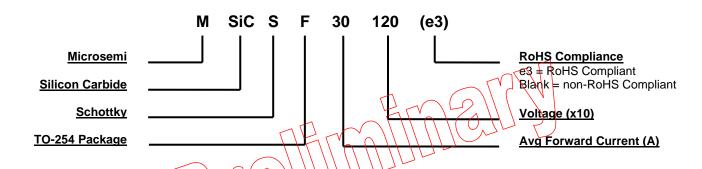
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

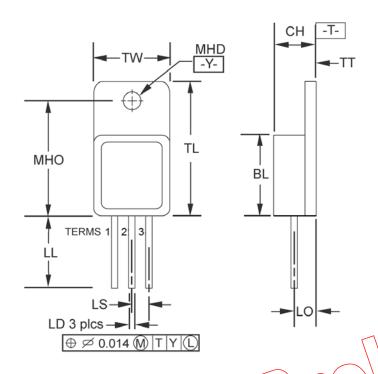
MECHANICAL and PACKAGING

- CASE: Nickel plated copper base & 1010 steel frame.
- TERMINALS: Solder dipped copper cored 52 alloy or RoHS compliant matte-tin plating.
- MARKING: Alpha numeric.
- POLARITY: See schematic on last page.
- WEIGHT: Approximately 6.5 grams.
- See package dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
C₃	Junction Capacitance: The junction capacitance in pF at a specified frequency (typically 1 MHz) and specified voltage.				
I _F	Forward Current: The forward current dc value, no alternating component.				
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.				
TJ	Junction Temperature: The temperature of a semiconductor junction.				
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).				
V_R	Reverse Voltage: The reverse voltage dc value, no alternating component.				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward Voltage* $I_F = 10 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 25 \text{ A}, T_J = 25 \text{ °C}$ $I_F = 50 \text{ A}, T_J = 25 \text{ °C}$	V _F		1.2 1.5 1.8	V
Reverse Current $V_R = 1200 \text{ V}, T_J = 25 \text{ °C}$ $V_R = 1200 \text{ V}, T_J = 175 \text{ °C}$	I _R		200 500	μΑ

^{*} Pulse test: Pulse width 300 µsec, duty cycle 2%.

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		
	Min	Max	Min	Max	
BL	0.535	0.545	13.59	13.84	
CH	0.249	0.260	6.32	6.60	
LD	0.035	0.045	0.89	1.14	
LL	0.510	0.570	12.95	14.48	
LO	0.150 BSC		3.81 BSC		
LS	0.150 BSC		3.81 BSC		
MHD	0.139	0.149	3.53	3.78	
MHO	0.665	0.685	16.89	17.40	
TL	0.790	0.800	20.07	20.32	
TT	0.040	0.050	1.02	1.27	
TW	0.535	0.545	13.59	13.84	
Term 1	See Schematic				
Term 2	Open (no connection)				
Term 3	See Schematic				

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

