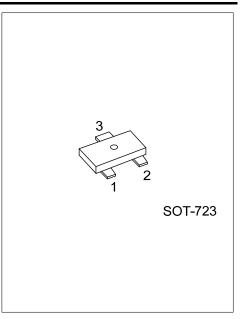


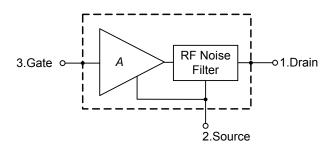
UNISONIC TECHNOLOGIES CO., LTD

UCF1923

N-CHANNEL JUNCTION FIELD EFFECT TRANSISTOR

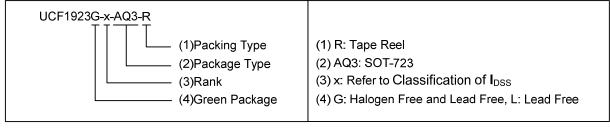

DESCRIPTION

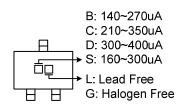
The UTC **UCF1923** is an N-channel junction FET, it uses UTC's advanced technology to provide the customers with high ESD voltage and low noise.


The UTC **UCF1923** is suitable for PADs, portable audio and MP3 players.

■ FEATURES

- * Very low noise
- * High ESD voltage


■ EQUIVALENT CIRCUIT


■ ORDERING INFORMATION

Ordering	Number	Daalaaaa	Pin	Assignn	Dankinn		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UCF1923L-x-AQ3-R	UCF1923G-x-AQ3-R	SOT-723	D	S	G	Tape Reel	

Note: Pin Assignment: D: Drain S: Source G: Gate

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 4

UCF1923

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

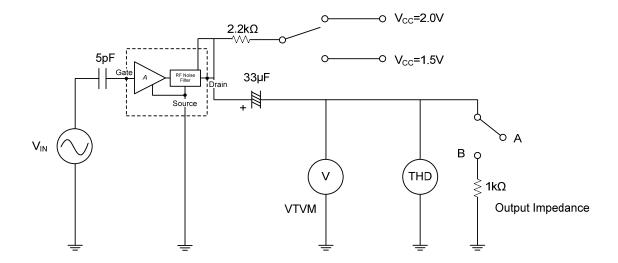
PARAMETER	SYMBOL	RATINGS	UNIT
Gate to Drain Voltage	V_{GDO}	-6.5	V
Drain Current	I _D	10	mA
Gate Current	I_{G}	10	mA
Allowable Power Dissipation	P_{D}	100	mW
Junction Temperature	TJ	+125	°C
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

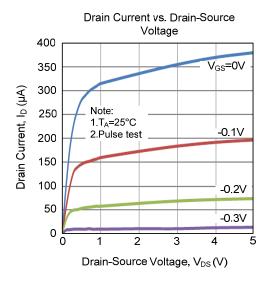
■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

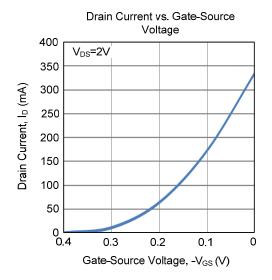
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Gate to Drain Breakdown Voltage	$V_{(BR)GDO}$	I _G =-100μA	-6.5			V
Drain Current	I _{DSS}	V _{DS} =2V, V _{GS} =0V	140		400	μΑ
ON CHARACTERISTICS						
Gate Off Voltage	$V_{GS(OFF)}$	V _{DS} =2V, I _D =1μA, I _{DSS} =250μA	-0.2		-1.5	V
Forward Transfer Admittance	Yfs	V_{DS} =2V, V_{GS} =0V, I_{DSS} =250 μ A	0.4			mS
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}	-V _{DS} =2V, V _{GS} =0V, f =1MHz		14.7		pF
Reverse Transfer Capacitance	C _{RSS}			8.3		pF
Voltage Gain	Gv	V_{DD} =2V, R _L =2.2k Ω , Cg=5pF, f=1kHz, V_{IN} =10mV, I_{DSS} =100 μ A		3.4		dB
Delta Voltage Gain	△G _V (V)	V_{DD} =2V~1.5V, R_L =2.2k Ω , Cg =5pF, f=1kHz, V_{IN} =10mV		0.7		dB
Frequency Characteristics	△G _V (f)	V _{DD} =2V, R _L =2.2kΩ, Cg=5pF, f=1kHz~110Hz, V _{IN} =10mV		-0.2		dB
Output Impedance	Zo	f = 1kHz			2200	Ω
Output Noise Voltage	V_{NO}	V_{DD} =3V, Cg=5pF, A-Curve Filter, R _L =2.2k Ω I_{DSS} =250 μ A			-104	dB
Total Harmonic Distortion	THD	V_{DD} =2V, R _L =2.2k Ω , Cg=5pF, f=1kHz, V_{IN} =30mV, I _{DSS} =250 μ A		1.0		%

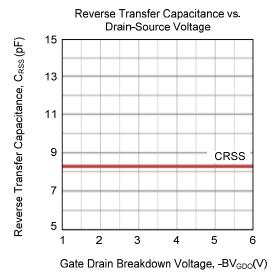

■ CLASSIFICATION OF I_{DSS}

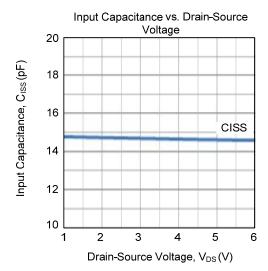
RANK	В	С	D	S
I _{DSS} (μA)	140 ~ 270	210 ~ 350	300 ~ 400	160 ~ 300

UCF1923


■ TEST CIRCUITS


Voltage Gain Frequency Characteristics Distortion Reduced Voltage Characteristics Output Noise Voltage




UCF1923

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.