

128K x 8 EEPROM

Radiation Tolerant

AVAILABLE AS MILITARY SPECIFICATIONS

• MIL-PRF-38535

FEATURES

- High speed: 250ns and 300ns
- Data Retention: 10 Years
- Low power dissipation, active current (20mW/MHz (TYP)), standby current (100μW(MAX))
- Single $+3.3V \pm .3V$ power supply
- Data Polling and Ready/Busy Signals
- Erase/Write Endurance (10,000 cycles in a page mode)

MARKINGS

- Software Data protection Algorithm
- Data Protection Circuitry during power on/off
- Hardware Data Protection with RES pin
- Automatic Programming:

Automatic Page Write: 15ms (MAX)

128 Byte page size

OPTIONS

• Timing		
250ns access	-25	
300ns access	-30	
• Packages		
Ceramic Flat Pack	F	No. 306
Radiation Shielded Ceramic FP*	SF	No. 305
Ceramic SOJ	DCJ	No. 508
 Operating Temperature Ranges 		
-Military (-55 $^{\circ}$ C to +125 $^{\circ}$ C)		XT
-Industrial (-40°C to +85°C)		IT
-Full Military Processing (-55°C to	+125°	C) 883C

*NOTE: Package lid is connected to ground (Vss). 2-sided shielding provided via a Tungsten lid and a Tungsten slug on the underside of package. 6.5X typ. TID boost due to shielding. (Geostationary orbit) Proven typ. total dose 40K to 100K RADS. Contact factory for more information. Micross can perform TID lot testing.

PIN ASSIGNMENT (Top View)

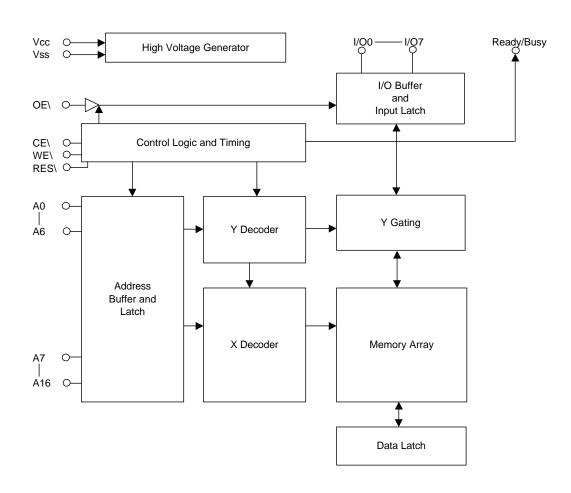
32-Pin CFP (F & SF), 32-Pin CSOJ (DCJ)

i i		
RDY/BUSY\	1 32	Vcc
A16	2 31	A15
A14	3 30	RES\
A12	4 29	WE∖
A7	5 28	A13
A6	6 27	A8
A5	7 26	A9
A4	8 25	A11
A3	9 24	OE\
A2	10 23	A10
A1	11 22	CE\
A0	12 21	I/O 7
I/O 0	13 20	I/O 6
I/O 1	14 19	I/O 5
I/O 2	15 18	I/O 4
Vss	16 17	I/O 3
		ı

GENERAL DESCRIPTION

The AS58LC1001 is a 1 Megabit CMOS Electrically Erasable Programmable Read Only Memory (EEPROM) organized as 131, 072 x 8 bits. The AS58LC1001 is capable or in system electrical Byte and Page reprogrammability.

The AS58LC1001 achieves high speed access, low power consumption, and a high level of reliability by employing advanced MNOS memory technology and CMOS process and circuitry technology and CMOS process and circuitry technology.


This device has a 128-Byte Page Programming function to make its erase and write operations faster. The AS58LC1001 features Data Polling and a Ready/Busy signal to indicate completion of erase and programming operations.

This EEPROM provides several levels of data protection. Hardware data protection is provided with the RES pin, in addition to noise protection on the WE signal and write inhibit during power on and off. Software data protection is implemented using JEDEC Optional Standard algorithm.

The AS58LC1001 is designed for high reliability in the most demanding applications. Data retention is specified for 10 years and erase/write endurance is guaranteed to a minimum of 10,000 cycles in the Page Mode.

For more products and information please visit our web site at www.micross.com

FUNCTIONAL BLOCK DIAGRAM

MODE SELECTION

MODE	CE\	OE\	WE\	RES\	RDY/BUSY\1	I/O
READ	V_{IL}	V_{IL}	V_{IH}	V_{H}	High-Z	D _{OUT}
STANDBY	V_{IH}	Х	Х	Х	High-Z	High-Z
WRITE	V_{IL}	V_{IH}	V_{IL}	V_{H}	High-Z to V _{OL}	D _{IN}
DESELECT	V_{IL}	V_{IH}	V_{IH}	V_{H}	High-Z	High-Z
WRITE	X	X	V _{IH}	Х		1
INHIBIT	Х	V_{IL}	Х	Х		
DATA POLLING	V_{IL}	V_{IL}	V _{IH}	V_{H}	V _{OL}	Data Out (I/O7)
PROGRAM	Х	Х	Х	V_{IL}	High-Z	High-Z

FUNCTIONAL DESCRIPTION

AUTOMATIC PAGE WRITE

The Page Write feature allows 1 to 128 Bytes of data to be written into the EEPROM in a single cycle and allows the undefined data within 128 Bytes to be written corresponding to the undefined address $(A_0 \text{ to } A_6)$. Loading the first Byte of data, the data load window of 30µs opens for the second. In the same manner each additional Byte of data can be loaded within 30µs. In case CE\ and WE\ are kept high for 100µs after data input, the EEPROM enters erase and write automatically and only the input data can be written into the EEPROM. In Page mode the data can be written and accessed 10⁴ times per page, and in Byte mode 10³ times per Byte.

DATA\ POLLING

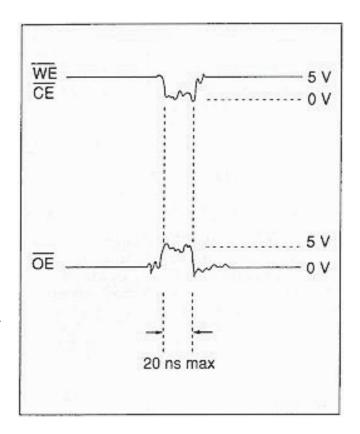
Data\ Polling allows the status of the EEPROM to be determined. If the EEPROM is set to Read mode during a Write cycle, and inversion of the last Byte of data to be loaded outputs from I/O, to indicate that the EEPROM is performing a Write operation.

WRITE PROTECTION

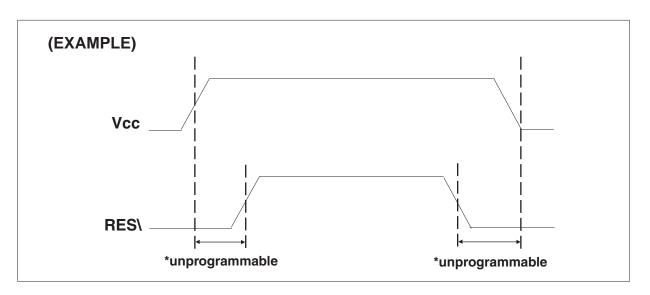
- (1) Noise protection: Noise on a write cycle will not act as a trigger with a WE\ pulse of less than 20ns.
- (2) Write inhibit: Holding OE\ low, WE\ high or CE\ high inhibits a write cycle during power on/off.

WE\ AND CE\ PIN OPERATION

During a write cycle, addresses are latched by the falling edge of WE\ or CE\, and data is latched by the rising edge of WE\ or CE\.


WRITE/ERASE ENDURANCE AND **DATA RETENTION**

The endurance with page programming is 10⁴ cycles (1% cumulative failure rate) and the data retention time is more than 10 years when a device is programmed less than 10^4 cycles.


DATA PROTECTION

To protect the data during operation and power on/off, the AS58C1001 has:

1. Data protection against Noise on Control Pins (CE\, OE\, WE\) during Operation. During readout or standby, noise on the control pins may act as a trigger and turn the EEPROM to programming mode by mistake. To prevent this phenomenon, the AS58LC1001 has a noise cancellation function that cuts noise if its width is 20ns or less in programming mode. Be careful not to allow noise of a width of more than 20ns on the control pins.

FUNCTIONAL DESCRIPTION (continued)

DATA PROTECTION (continued)

2. Data protection at Vcc on/off.

When RES\ is low, the EEPROM cannot be erased and programmed. Therefore, data can be protected by keeping RES\ low when Vcc is switched. RES\ should be high during programming because it does not provide a latch function. When Vcc is turned on or off, noise on the control pins generated by external circuits (CPU, etc.) may turn the EEPROM to programming mode by mistake. To prevent this unintentional programming, the EEPROM must be kept in an unprogrammable, standby or readout state by using a CPU reset signal to RES\ pin.

In addition, when RES\ is kept high at Vcc on/off timing, the input level of control pins (CE\, OE\, WE\) must be held as CE\=Vcc or OE\=LOW or WE\=Vcc level.

3. Software Data Protection

To protect against unintentional programming caused by noise generated by external circuits, AS58LC1001 has a Software data protection function. To initate Software data protection mode, 3 bytes of data must be input, followed by a dummy write cycle of any address and any data byte. This exact sequence switches the device into protection mode.

Write Data (Normal Data Input) 5555 AA 2AAA 55

The Software data protection mode can be cancelled by inputting the following 6 Bytes. This changes the AS58LC1001 to the Non-Protection mode, for normal operation.

5555

Address	Data
5555	AA
\	\
2AAA	55
\	\
5555	80
↓	↓
5555	AA
\	\
2AAA	55
\	\
5555	20

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to $+7.0V^{1}$
Voltage on any pin Relative to Vss	0.6V to +7.0V ¹
Storage Temperature	65°C to +150°C
Operating Temperature Range	55°C to +125°C
Soldering Temperature Range	260°C
Maximum Junction Temperature**	+150°C
Power Dissipation	1.0W

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

** Junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-55^{\circ}C \le T_{A} \le 125^{\circ}C; Vcc = 3.3V \pm .3V)$

PARAMETER	CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		V _{IH}	2.2	$V_{CC} + 0.3V$	V	9
Input Low (Logic 0) Voltage ³		V _{IL}	-0.3	0.8	V	2
Input Voltage (RES\ Pin)		V_{H}	Vcc-0.5	V _{CC} +0.3	V	
Input Leakage Current ⁴	OV ≤ V _{IN} ≤ Vcc	I _{LI}	-2	2	μΑ	4
Input Leakage (RES\ Pin)	RES\ = Vcc = 3.6V	I _{LI}	-50	10	μΑ	
Output Leakage Current	Output(s) disabled, $OV \leq V_{OUT} \leq Vcc$	I _{LO}	-2	2	μΑ	
Output High Voltage	I _{OH} = -400 μA	V _{OH}	2.4		V	
Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$	V _{OL}		0.5	V	

				MAX			
PARAMETER	CONDITIONS	SYM	-25	-30	-35	UNITS	NOTES
Power Supply Current:	I _{OUT} =OmA, Vcc = 3.6V Cycle=1μS, Duty=100%	I _{CC3}	8	8	8	mA.	
Operating	I _{OUT} =OmA, Vcc = 3.6V Cycle=MIN, Duty=100%	ICC3	20	20	20	ma	
Power Supply Current:	CE\=Vcc, Vcc = 3.6V	I _{CC1}	100	100	100	μА	
Standby	CE\=V _{IH} , Vcc = 3.6V	I _{CC2}	1.5	1.5	1.5	mA	

CAPACITANCE

PARAMETER	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C, f = 1MHz	C _{IN}	6	pF	
Output Capactiance	$V_{IN} = 0$	Со	12	pF	

AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(-55^{\circ}C \le T_{c} \le 125^{\circ}C; Vcc = +3.3V +/- 0.3V)$

Test Conditions

• Input Pulse Levels: 0.0V to 3.0V • Input rise and fall times: ≤ 20 ns

• Output Load: 1 TTL Gate +100pF (including scope and jig)

• Reference levels for measuring timing: 1.5V, 1.5V

ITEM DESCRIPTION	M DESCRIPTION TEST CONDITION SYMBO		-25		7	UNITS	
TIEW DESCRIPTION	TEST CONDITION	STWIDOL	MIN	MAX	MIN	MAX	ONTO
Address Access Time	CE\=OE\=V _{IL} WE\=V _{IH}	t _{ACC}		250		300	ns
Chip Enable Access Time	OE\=V _{IL} WE\=V _{IH}	t _{CE}		250	-	300	ns
Output Enable Acess Time	CE\=V _{IL} WE\=V _{IH}	t _{OE}	10	120	10	130	ns
Output Hold to Address Change	CE\=OE\=V _{IL} WE\=V _{IH}	t _{OH}	0		0		ns
Outrat Disable to High 7	CE\=V _{IL} WE\=V _{IH}	t _{DF}	0	75	0	75	ns
Output Disable to High-Z	CE\=OE\=V _{IL} WE\=V _{IH}	t _{DFR}	0	350	0	350	ns
RES\ to Output Delay	CE\=OE\=V _{IL} WE\=V _{IH}	t _{RR}	0	600	0	600	ns

AC ELECTRICAL CHARACTERISTICS FOR SOFTWARE DATA PROTECTION CYCLE OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNITS
Byte Load Cycle Time	t _{BLC}	1.0	30	μS
Write Cycle Time	t _{WC}	15		mS

AC ELECTRICAL CHARACTERISTICS FOR DATA\ POLLING OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNITS
Output Enable Hold Time	t _{OEH}	0		ns
Output Enable to Write Setup Time	t _{OES}	0		ns
Write Start Time	t _{DW}	250		ns
Write Cycle Time	t _{WC}		15	ms

AC ELECTRICAL CHARACTERISTICS FOR PAGE ERASE AND PAGE WRITE OPERATIONS

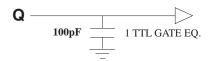
PARAMETER	SYMBOL	MIN	MAX	UNITS
Address Setup Time	t _{AS}	0		ns
Write Enable to Write Setup Time	t _{WS} ⁸	0		ns
Chip Enable to Write Setup Time	t _{CS} ⁷	0		ns
Write Pulse Width	t _{WP} ⁷	250		ns
Wille Fulse Width	t _{CW} ⁸	250		ns
Address Hold Time	t _{AH}	150		ns
Data Setup Time	t _{DS}	100		ns
Data Hold Time	t _{DH}	10		ns
Write Enable Hold Time	t _{WH} ⁸	0		ns
Chip Enable Hold Time	t _{CH} ⁷	0		ns
Out Enable to Write Setup Time	t _{OES}	0		ns
Output Enable Hold Time	t _{OEH}	0		ns
Data Latch Time	t _{DL}	750		ns
Write Cycle Time	t _{WC}	15		ms
Byte Load Window	t _{BL}	100		μS
Byte Load Cycle	t _{BLC}	1	30	μS
Time to Device Busy	t _{DB}	150		ns
RES\ to Write Setup Time	t _{RP}	200		μS
Vcc to RES\ Setup Time	t _{RES} ¹⁰	2		μS

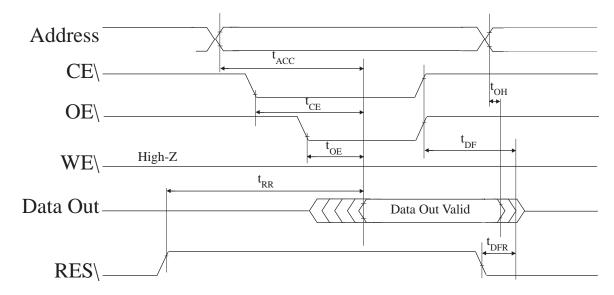
AC ELECTRICAL CHARACTERISTICS FOR BYTE ERASE AND BYTE WRITE OPERATIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Address Setup Time	t _{AS}	0		ns
Chip Enable to Write Setup Time	t _{CS} ⁷	0		ns
Write Pulse Width	t _{CW} ⁸	250		ns
Write i dise Width	t _{WP} ⁷	250		ns
Address Hold Time	t _{AH}	150		ns
Data Setup Time	t _{DS}	100		ns
Data Hold Time	t _{DH}	10		ns
Chip Enable Hold Time	t _{CH} ⁷	0		ns
Out Enable to Write Setup Time	t _{OES}	0		ns
Output Enable Hold Time	t _{OEH}	0		ns
Write Cycle Time	t _{WC}	10		ms
Byte Load Window	t _{BL}	100		μS
Time to Device Busy	t _{DB}	120		ns
RES\ to Write Setup Time	t _{RP}	100		μS
Vcc to RES\ Setup Time	t _{RES} ¹⁰	1		μS

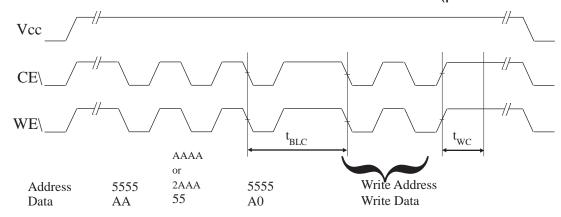
AC TEST CONDITIONS

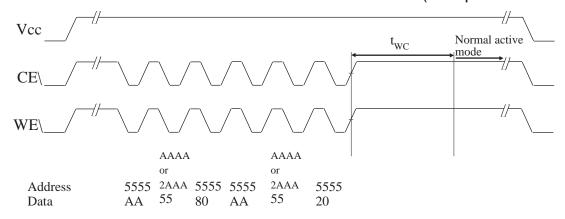
Input Pulse Levels0V to	3	V
Input Rise and Fall Times≤20	- 1	
Input Timing Reference Level1.	.5	V
Output Reference Level1.	.5	V
Output LoadSee Figur	re	1

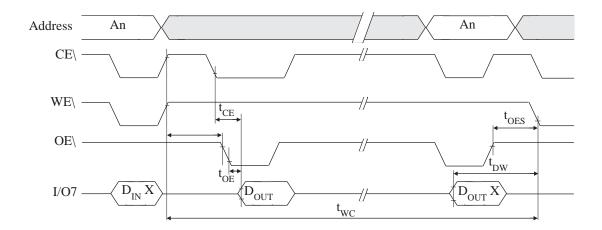


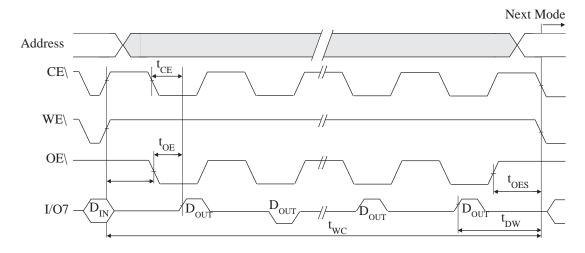

Figure 1
OUTPUT LOAD EQUIVALENT

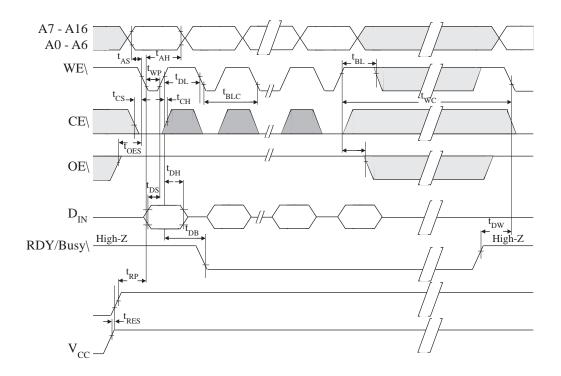
NOTES:

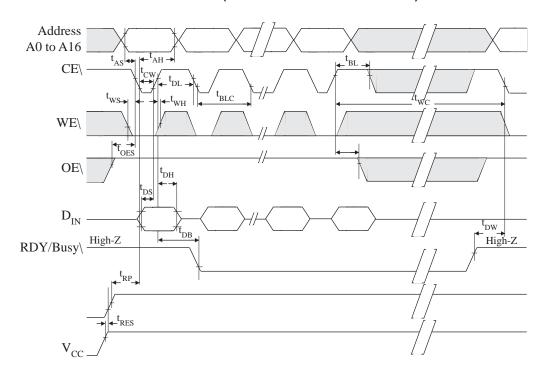

- 1. Relative to Vss
- 2. $V_{IN} \min = -3.0V$ for pulse widths ≤ 50 ns
- 3. V_{IL} min = -1.0V for pulse widths \leq 50ns
- 4. I_{IL} on RES\ = 100ua MAX
- t_{OF} is defined as the time at which E the output becomes and open circuit and data is no longer driven.
- 6. Use this device in longer cycle than this value
- 7. WE\ controlled operation
- 8. CE\ controlled operation
- 9. RES\ pin V_{IH} is V_{H}
- 10. Reference only, not tested

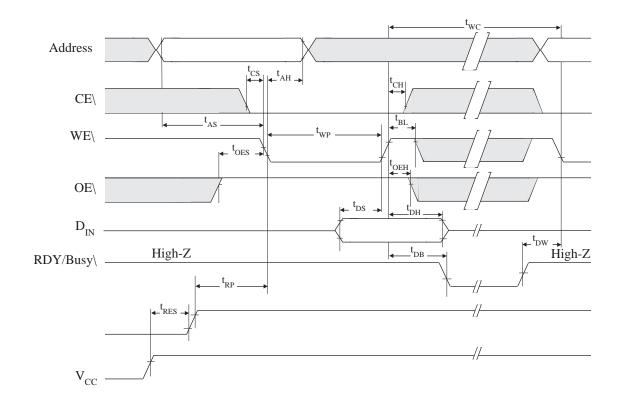

READ TIMING WAVEFORM

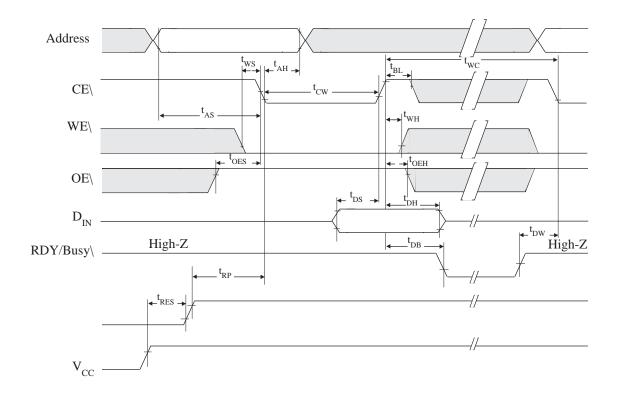

SOFTWARE DATA PROTECTION TIMING WAVEFORM (protection mode)


SOFTWARE DATA PROTECTION TIMING WAVEFORM (non-protection mode)

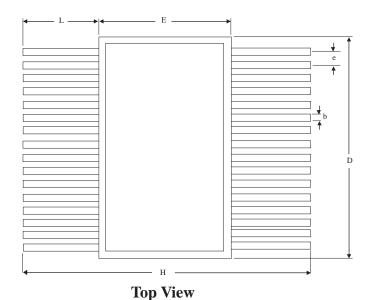

DATA\ POLLING TIMING WAVEFORM


TOGGLE BIT WAVEFORM

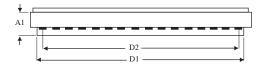

PAGE WRITE TIMING WAVEFORM (WE\ CONTROLLED)


PAGE WRITE TIMING WAVEFORM (CE\ CONTROLLED)

BYTE WRITE TIMING WAVEFORM (WE\ CONTROLLED)

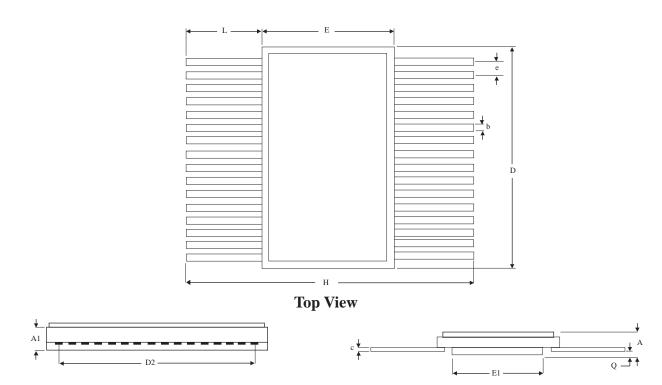



BYTE WRITE TIMING WAVEFORM (CE\ CONTROLLED)



MECHANICAL DEFINITIONS*

Micross Case #305 (Package Designator SF)

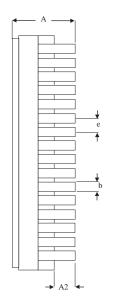


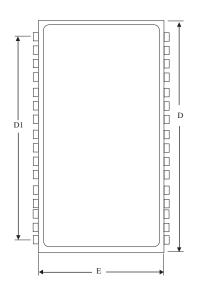
	SMD SPECIFICATIONS		
SYMBOL	MIN	MAX	
Α	0.125	0.150	
A1	0.090	0.110	
b	0.015	0.019	
С	0.003	0.007	
D	0.810	0.830	
D1	0.775	0.785	
D2	0.745	0.755	
E	0.425	0.445	
E1	0.290	0.310	
е	0.045	0.055	
Н	1.000	1.100	
Ĺ	0.290	0.310	
Q	0.026	0.037	

^{*}All measurements are in inches.

MECHANICAL DEFINITIONS*

Micross Case #306 (Package Designator F)




	SMD SPECIFICATIONS		
SYMBOL	MIN	MAX	
Α	0.097	0.123	
A1	0.090	0.110	
b	0.015	0.019	
С	0.003	0.007	
D	0.810	0.830	
D2	0.745	0.755	
E	0.425	0.445	
E1	0.330	0.356	
е	0.045	0.055	
Н	1.000	1.100	
L	0.290	0.310	
Q	0.026	0.037	

NOTE: All drawings are per the SMD. Micross' package dimensional limits may differ, but they will be within the SMD limits.

MECHANICAL DEFINITIONS*

Micross Case #508 (Package Designator DCJ)

	MICROSS PACKAGE SPECIFICATIONS		
SYMBOL	MIN	MAX	
А	0.132	0.142	
A1	0.076	0.086	
A2	0.018	0.028	
В	0.018	0.032	
b	0.015	0.019	
D	0.816	0.834	
D1	0.745	0.755	
Е	0.430	0.440	
E1	0.465	0.485	
E2	0.415	0.425	
е	0.045	0.055	

ORDERING INFORMATION

EXAMPLE: AS58LC1001SF-15/IT

 Device Number
 Package Type
 Speed ns
 Process

 AS58LC1001
 SF
 -25
 /*

 AS58LC1001
 SF
 -30
 /*

Device Number	Package Type	Speed ns	Process
AS58LC1001	F	-25	/*
AS58LC1001	F	-30	/*

EXAMPLE: AS58LC1001F-25/883C

EXAMPLE: AS58LC1001DCJ-20/IT

Device Number	Package Type	Speed ns	Process
AS58LC1001	DCJ	-25	/*
AS58LC1001	DCJ	-30	/*

*AVAILABLE PROCESSES

 $IT = Industrial \ Temperature \ Range \\ XT = Extended \ Temperature \ Range \\ 883C = Full \ Military \ Processing \\ -55^{\circ}C \ to +125^{\circ}C \\ -55^{\circ}C \ to +125^{\circ}C$

DOCUMENT TITLE

128K x 8 EEPROM Radiation Tolerant

<u>Rev #</u> 1.0	History Removed ECA Package	Release Date December 2008	<u>Status</u> Release
1.1	Updated AC ELECTRICAL CHARACTERISTICS on page 6 to refer	October 2009 rence 3.3V	Release
1.5	removed SOP Package (DG)	November 2009	Release
1.6	removed 5962 references	November 2009	Release
1.7	Updated Micross Information	January 2010	Release
1.8	Updated Military Specifications, added Full Military Processing temp range and updated note on page 1	November 2010	Release