

www.ti.com

SCAS860B - OCTOBER 2008 - REVISED MARCH 2012

# RAD-TOLERANT CLASS V, HEX SCHMITT-TRIGGER INVERTER

Check for Samples: SN54AC14-SP

# FEATURES

| TEATOREO                                                                                       |                                     |
|------------------------------------------------------------------------------------------------|-------------------------------------|
| <ul> <li>2-V to 6-V V<sub>CC</sub> Operation</li> </ul>                                        | J OR W PACKAGE<br>(TOP VIEW)        |
| <ul> <li>Inputs Accept Voltages to 6 V</li> </ul>                                              |                                     |
| <ul> <li>Max tpd of 9.5 ns at 5 V</li> </ul>                                                   | 1A [] 1 14 [] V <sub>CC</sub>       |
| • Rad-Tolerant: 50 kRad(Si) TID (1)                                                            | 1Y [] 2 13 [] 6A                    |
| <ul> <li>TID Dose Rate &lt; 2mRad/sec</li> </ul>                                               | 2A [] 3 12 [] 6Y                    |
| QML-V Qualified, SMD 5962-87624                                                                |                                     |
|                                                                                                | 3A [] 5 10 [] 5Y<br>3Y [] 6 9 [] 4A |
| (1) Radiation tolerance is a typical value based upon initial device                           | 3Y∐ 6 9∐ 4A<br>GND II 7 8II 4Y      |
| qualification. Radiation Lot Acceptance Testing is available -<br>contact factory for details. |                                     |

# **DESCRIPTION/ORDERING INFORMATION**

These Schmitt-trigger devices contain six independent inverters. They perform the Boolean function  $Y = \overline{A}$ . Because of the Schmitt action, they have different input threshold levels for positive-going (V<sub>T+</sub>) and for negative-going (V<sub>T-</sub>) signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals. They also have a greater noise margin than conventional inverters.

### **ORDERING INFORMATION**<sup>(1)</sup>

| T <sub>A</sub> | PACK     | AGE <sup>(2)</sup> | TOP-SIDE MARKING |                 |
|----------------|----------|--------------------|------------------|-----------------|
| 55°C to 105°C  | CDIP – J | Tube               | 5962-8762402VCA  | 5962-8762402VCA |
| –55°C to 125°C | CFP – W  | Tube               | 5962-8762402VDA  | 5962-8762402VDA |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

| FUNCTION TABLE<br>(EACH INVERTER) |             |  |  |  |  |  |  |  |
|-----------------------------------|-------------|--|--|--|--|--|--|--|
| INPUT<br>A                        | OUTPUT<br>Y |  |  |  |  |  |  |  |
| Н                                 | L           |  |  |  |  |  |  |  |
| L                                 | Н           |  |  |  |  |  |  |  |

## LOGIC DIAGRAM, EACH INVERTER (POSITIVE LOGIC)





Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS860B-OCTOBER 2008-REVISED MARCH 2012

TEXAS INSTRUMENTS

www.ti.com

### **ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>**

over operating free-air temperature range (unless otherwise noted)

|                  |                                                   |                                        | MIN                   | MAX                   | UNIT |
|------------------|---------------------------------------------------|----------------------------------------|-----------------------|-----------------------|------|
| $V_{CC}$         | Supply voltage range                              | -0.5                                   | 7                     | V                     |      |
| VI               | Input voltage range <sup>(2)</sup>                | -0.5                                   | V <sub>CC</sub> + 0.5 | V                     |      |
| Vo               | Output voltage range <sup>(2)</sup>               |                                        | -0.5                  | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                               | $V_{I} < 0 \text{ or } V_{I} > V_{CC}$ |                       | ±20                   | mA   |
| I <sub>OK</sub>  | Output clamp current                              | V <sub>O</sub> < 0                     |                       | ±20                   | mA   |
| lo               | Continuous output current                         | $V_{O} = 0$ to $V_{CC}$                |                       | ±50                   | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND |                                        |                       | ±200                  | mA   |
| T <sub>stg</sub> | Storage temperature range                         |                                        | -65                   | 150                   | °C   |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

### **RECOMMENDED OPERATING CONDITIONS**<sup>(1)</sup>

|                 |                                |                         |     | MIN | MAX             | UNIT |
|-----------------|--------------------------------|-------------------------|-----|-----|-----------------|------|
| V <sub>CC</sub> | Supply voltage                 |                         |     | 2   | 6               | V    |
| VI              | Input voltage                  |                         |     | 0   | V <sub>CC</sub> | V    |
| Vo              | Output voltage                 |                         |     |     | V <sub>CC</sub> | V    |
|                 |                                | $V_{CC} = 3 V$          |     |     | -12             |      |
| I <sub>OH</sub> | High-level output current      | $V_{CC} = 4.5 V$        |     |     | -24             | mA   |
|                 |                                | V <sub>CC</sub> = 5.5 V |     |     | -24             |      |
|                 |                                | $V_{CC} = 3 V$          |     |     | 12              |      |
| I <sub>OL</sub> | Low-level output current       | V <sub>CC</sub> = 4.5 V |     |     | 24              | mA   |
|                 |                                | V <sub>CC</sub> = 5.5 V |     |     | 24              |      |
| T <sub>A</sub>  | Operating free-air temperature |                         | -55 | 125 | °C              |      |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Copyright © 2008–2012, Texas Instruments Incorporated



SCAS860B-OCTOBER 2008-REVISED MARCH 2012

www.ti.com

## **Electrical Characteristics**

over operating free-air temperature range (unless otherwise noted)

|                     | TEST CONDITIONS                                                                                            | N               | T <sub>A</sub> = 25° | C    | T <sub>A</sub> = -55°C T | O 125℃ | UNIT |  |
|---------------------|------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------|--------------------------|--------|------|--|
| PARAMETER           | TEST CONDITIONS                                                                                            | V <sub>cc</sub> | MIN                  | MAX  | MIN                      | MAX    | UNIT |  |
| V <sub>T+</sub>     |                                                                                                            | 3 V             |                      | 2.3  |                          | 2.3    |      |  |
| Positive-going      |                                                                                                            | 4.5 V           |                      | 3.2  |                          | 3.2    | V    |  |
| threshold           |                                                                                                            | 5.5 V           |                      | 3.9  |                          | 3.9    |      |  |
| V <sub>T-</sub>     |                                                                                                            | 3 V             | 0.5                  |      | 0.5                      |        |      |  |
| Negative-going      |                                                                                                            | 4.5 V           | 0.9                  |      | 0.9                      |        | V    |  |
| threshold           |                                                                                                            | 5.5 V           | 1.1                  |      | 1.1                      |        |      |  |
| ΔV <sub>T</sub>     |                                                                                                            | 3 V             | 0.3                  | 1.3  | 0.3                      | 1.3    |      |  |
| Hysteresis          |                                                                                                            | 4.5 V           | 0.4                  | 1.4  | 0.4                      | 1.4    | V    |  |
| $(V_{T+} - V_{T-})$ |                                                                                                            | 5.5 V           | 0.5                  | 1.6  | 0.5                      | 1.6    |      |  |
|                     |                                                                                                            | 3 V             | 2.9                  |      | 2.9                      |        |      |  |
|                     | I <sub>OH</sub> = -50 μA                                                                                   | 4.5 V           | 4.4                  |      | 4.4                      |        |      |  |
|                     |                                                                                                            | 5.5 V           | 5.4                  |      | 5.4                      |        |      |  |
| V <sub>OH</sub>     | I <sub>OH</sub> = -12 mA                                                                                   | 3 V             | 2.56                 |      | 2.4                      |        | V    |  |
|                     |                                                                                                            | 4.5 V           | 3.86                 |      | 3.7                      |        |      |  |
|                     | $I_{OH} = -24 \text{ mA}$                                                                                  | 5.5 V           | 4.86                 |      | 4.7                      |        |      |  |
|                     | $I_{OH} = -50 \text{ mA}^{(1)}$                                                                            | 5.5 V           |                      |      | 3.85                     |        |      |  |
|                     |                                                                                                            | 3 V             |                      | 0.1  |                          | 0.1    |      |  |
|                     | I <sub>OL</sub> = 50 μA                                                                                    | 4.5 V           |                      | 0.1  |                          | 0.1    |      |  |
|                     |                                                                                                            | 5.5 V           |                      | 0.1  |                          | 0.1    |      |  |
| V <sub>OL</sub>     | I <sub>OL</sub> = 12 mA                                                                                    | 3 V             |                      | 0.5  |                          | 0.5    | V    |  |
|                     |                                                                                                            | 4.5 V           |                      | 0.5  |                          | 0.5    |      |  |
|                     | $I_{OL} = 24 \text{ mA}$                                                                                   | 5.5 V           |                      | 0.5  |                          | 0.5    |      |  |
|                     | $I_{OL} = 50 \text{ mA}^{(1)}$                                                                             | 5.5 V           |                      |      |                          | 1.65   |      |  |
| l <sub>l</sub>      | $V_{I} = V_{CC}$ or GND                                                                                    | 5.5 V           |                      | ±0.1 |                          | ±1     | μA   |  |
| I <sub>CC</sub>     | $V_{I} = V_{CC}$ or GND, $I_{O} = 0$                                                                       | 5.5 V           |                      | 4    |                          | 80     | μA   |  |
| lcct                | $V_{I} = V_{CC}/2 V$<br>One input at V <sub>I</sub> , other input at V <sub>CC</sub> or GND <sup>(2)</sup> | 5.5 V           |                      | 7.5  |                          | 7.5    | mA   |  |
| Ci                  | $V_I = V_{CC}$ or GND                                                                                      | 5 V             |                      | 8    |                          | 8      | pF   |  |

(1) Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

(2)  $V_{I}$  is incremented in 0.1-V steps to 3.7 V.

www.ti.com

#### SCAS860B-OCTOBER 2008-REVISED MARCH 2012

### SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range,  $V_{CC}$  = 3.3 V ± 0.3 V,  $C_L$  = 50 pF (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM    | то       | Τμ  | ₄ = 25°C |      | T <sub>A</sub> = -55°C T | O 125°C | UNIT |
|------------------|---------|----------|-----|----------|------|--------------------------|---------|------|
| FARAMETER        | (INPUT) | (OUTPUT) | MIN | TYP      | MAX  | MIN                      | MAX     | UNIT |
| t <sub>PLH</sub> | A       | Y        | 1.5 | 6        | 13.5 | 1                        | 16      |      |
| t <sub>PHL</sub> |         |          | 1.5 | 6        | 11.5 | 1                        | 14      | ns   |

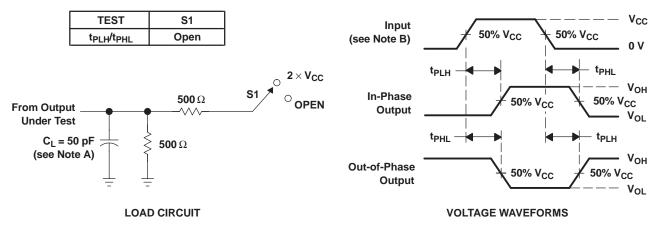
## SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range,  $V_{CC}$  = 5 V ± 0.5 V,  $C_L$  = 50 pF (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM    | то       | T <sub>A</sub> = 25°C |     |     | T <sub>A</sub> = –55°C T | UNIT |      |
|------------------|---------|----------|-----------------------|-----|-----|--------------------------|------|------|
|                  | (INPUT) | (OUTPUT) | MIN                   | TYP | MAX | MIN                      | MAX  | UNIT |
| t <sub>PLH</sub> | A       | Y        | 1.5                   | 5   | 10  | 1.5                      | 12   | 20   |
| t <sub>PHL</sub> |         |          | 1.5                   | 5   | 8.5 | 1.5                      | 10   | ns   |

## **OPERATING CHARACTERISTICS**

 $V_{CC} = 5 \text{ V}, \text{ } \text{T}_{\text{A}} = 25^{\circ}\text{C}$ 


| PARAMETER                                     | TEST CONDITIONS                                    | TYP | UNIT |
|-----------------------------------------------|----------------------------------------------------|-----|------|
| C <sub>pd</sub> Power dissipation capacitance | $C_{L} = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$ | 25  | pF   |



SCAS860B-OCTOBER 2008-REVISED MARCH 2012

www.ti.com

### PARAMETER MEASUREMENT INFORMATION



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.
- C. The outputs are measured one at a time with one input transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms

SCAS860B - OCTOBER 2008 - REVISED MARCH 2012

6

# **REVISION HISTORY**

| Ch | anges from Revision A (March, 2010) to Revision B Pa           | age | ÷ |
|----|----------------------------------------------------------------|-----|---|
| •  | Added I <sub>CCt</sub> parameter to Electrical Characteristics | 3   | 3 |



www.ti.com



## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)     | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)           | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|---------------------|--------------------------------------|----------------------|--------------|-----------------------------------|---------|
| 5962-8762401VCA  | ACTIVE        | CDIP         | J                  | 14   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-8762401VC<br>A<br>SNV54AC14J | Samples |
| 5962-8762401VDA  | ACTIVE        | CFP          | W                  | 14   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-8762401VD<br>A<br>SNV54AC14W | Samples |
| 5962-8762402VCA  | ACTIVE        | CDIP         | J                  | 14   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-8762402VC<br>A<br>SNV54AC14J | Samples |
| 5962-8762402VDA  | ACTIVE        | CFP          | W                  | 14   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-8762402VD<br>A<br>SNV54AC14W | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.



www.ti.com

# PACKAGE OPTION ADDENDUM

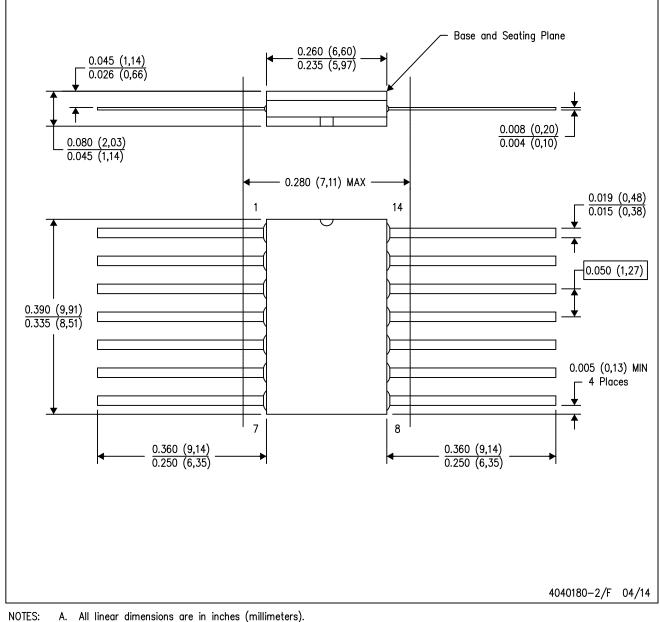
24-Aug-2021

<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54AC14-SP :


• Catalog : SN54AC14

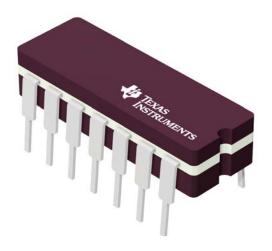
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK




- A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. This package can be hermetically sealed with a ceramic lid using glass frit.
  - D. Index point is provided on cap for terminal identification only.
  - E. Falls within MIL STD 1835 GDFP1-F14



# **GENERIC PACKAGE VIEW**

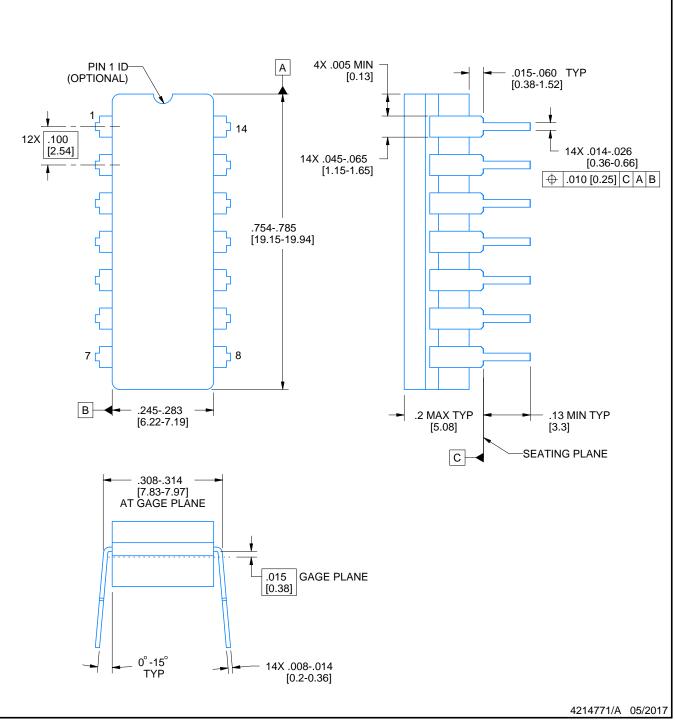
# CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.




# J0014A



# **PACKAGE OUTLINE**

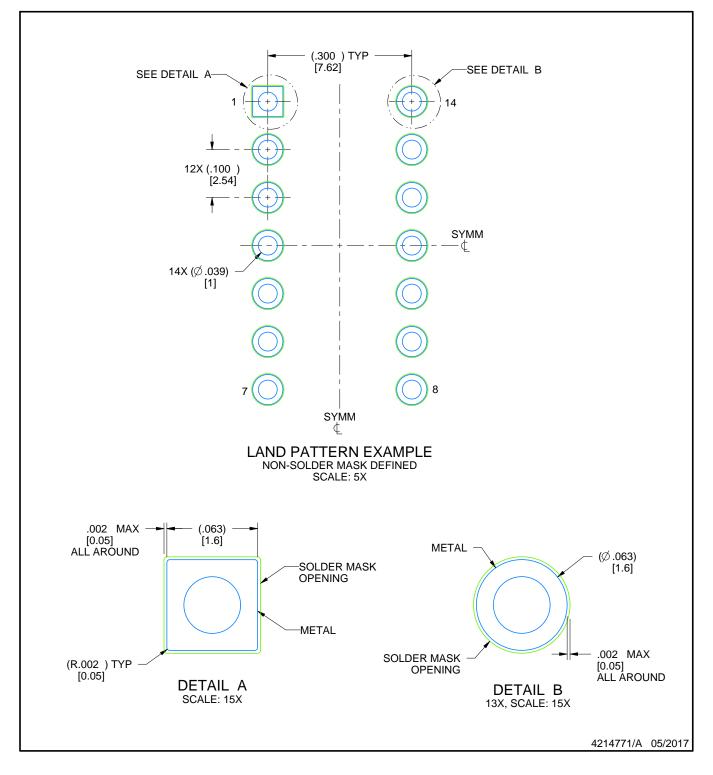
## CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE



NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
   Falls within MIL-STD-1835 and GDIP1-T14.




# J0014A

# **EXAMPLE BOARD LAYOUT**

# CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE





## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated