

PNMDP60V22

N-Channel MOSFET

Description

The PNMDP60V22 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

MOSFET Product Summary				
V _{DS} (V)	$R_{DS(on)}(m\Omega)$	I _D (A)		
60	40@ V _{GS} = 10V	22		

Feature

- > High density cell design for ultra low Rdson
- > Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation

Applications

- Power switching application
- > Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic diagram

Marking (Top View)

TO-252-2L (Top View)

Absolute maximum rating@25°C

Rating	Symbol	Value	Units
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous $T_A = 25^{\circ}C$ $T_A = 100^{\circ}C$	۱ _D	22 15	A
Pulsed Drain Current	IDM	60	А
Maximum Power Dissipation	PD	45	W
Derating factor		0.3	W/°C
Single pulse avalanche energy 5)	E _{AS}	85	mJ
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 to 175	°C
Thermal Resistance, Junction-to-Case ²⁾	$R_{ extsf{ heta}JC}$	3.3	°C/W

PNMDP60V22

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V,I _D = 250µA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{\rm DS} = 60 \text{V}, V_{\rm GS} = 0 \text{V}$	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS} = \pm 20 \text{V}, \text{V}_{DS} = 0 \text{V}$	-	-	±100	nA
On Characteristics ³⁾						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.6	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10V,I _D = 20A	-	32	40	mΩ
Forward Transconductance	g _{FS}	$V_{DS} = 5V, I_D = 5A$	11	-	-	S
Dynamic Characteristics ⁴⁾						
Input Capacitance	C _{lss}		-	590	-	pF
Output Capacitance	C _{oss}	V _{DS} = 15V,V _{GS} = 0V, F = 1.0MHz	-	70	-	pF
Reverse Transfer Capacitance	C _{rss}		-	64	-	pF
Switching Characteristics ⁴⁾						
Turn-on Delay Time	t _{d(on)}		-	6	-	ns
Turn-on Rise Time	t _r	V _{DD} = 30V,I _D = 2A,	-	6.1	-	ns
Turn-Off Delay Time	t _{d(off)}	V_{GS}^{US} = 10V, R_{G}^{US} = 3 Ω	-	17	-	ns
Turn-Off Fall Time	t _r		-	3	-	ns
Total Gate Charge	Q _g		-	25.3	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 30V, I_{D} = 10A,$ $V_{CS} = 10V$	-	4.7	-	nC
Gate-Drain Charge	Q_{gd}		-	6.1	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage ³⁾	V_{SD}	V _{GS} = 0V,I _S = 2A	-	-	1.2	V
Diode Forward Current ²⁾	I _S		-	-	20	А
Reverse Recovery Time	t _{rr}	T, = 25°C,I _F = 20A,	-	29.5	-	nS
Reverse Recovery Charge	Q _{rr}	di/dt = 100A/µs ³⁾	-	50	-	nC

2

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

2. Surface Mounted on FR4 Board, t \leq 10 sec.

3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.

4. Guaranteed by design, not subject to production 5. EAS condition: $T_j=25^{\circ}C, V_{DD}=30V, V_G=10V, L=0.5mH, R_g=25\Omega$

PNMDP60V22

N-Channel MOSFET

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Characteristics

PNMDP60V22

150

30

175

40

1.0

0.8

PNMDP60V22

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

PNMDP60V22

Product dimension (TO-252)

Dim	Millimeters		Inches		
Dim	Min	Max	Min	Max	
А	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
с	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830 Тур.		0.190 Typ.		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900 Тур.		0.114 Тур.		
L2	1.400	1.700	0.055	0.067	
L3	1.600 Тур.		0.063	в Тур.	
L4	0.600	1.000	0.024	0.039	
φ	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350 Тур.		0.211 Тур.		

Ordering information

Device	Package	Reel	Shipping
PNMDP60V22	TO-252 (Pb-Free)	13"	2500 / Tape & Reel

IMPORTANT NOTICE

P and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

> Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics Prisemi®is a registered trademark of Prisemi Electronics. All rights are reserved.